• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Hyperexponential Distribution</title>
5<link rel="stylesheet" href="../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../dists.html" title="Distributions">
9<link rel="prev" href="geometric_dist.html" title="Geometric Distribution">
10<link rel="next" href="hypergeometric_dist.html" title="Hypergeometric Distribution">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="geometric_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="hypergeometric_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h4 class="title">
27<a name="math_toolkit.dist_ref.dists.hyperexponential_dist"></a><a class="link" href="hyperexponential_dist.html" title="Hyperexponential Distribution">Hyperexponential
28        Distribution</a>
29</h4></div></div></div>
30<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">hyperexponential</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
31<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
32
33<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
34          <span class="keyword">typename</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
35<span class="keyword">class</span> <span class="identifier">hyperexponential_distribution</span><span class="special">;</span>
36
37<span class="keyword">typedef</span> <span class="identifier">hyperexponential_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">hyperexponential</span><span class="special">;</span>
38
39<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">typename</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
40<span class="keyword">class</span> <span class="identifier">hyperexponential_distribution</span>
41<span class="special">{</span>
42<span class="keyword">public</span><span class="special">:</span>
43   <span class="keyword">typedef</span> <span class="identifier">RealType</span> <span class="identifier">value_type</span><span class="special">;</span>
44   <span class="keyword">typedef</span> <span class="identifier">Policy</span>   <span class="identifier">policy_type</span><span class="special">;</span>
45
46   <span class="comment">// Constructors:</span>
47   <span class="identifier">hyperexponential_distribution</span><span class="special">();</span>  <span class="comment">// Default.</span>
48
49   <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">RateIterT</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">RateIterT2</span><span class="special">&gt;</span>
50   <span class="identifier">hyperexponential_distribution</span><span class="special">(</span>  <span class="comment">// Default equal probabilities.</span>
51                                 <span class="identifier">RateIterT</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rate_first</span><span class="special">,</span>
52                                 <span class="identifier">RateIterT2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rate_last</span><span class="special">);</span>  <span class="comment">// Rates using Iterators.</span>
53
54   <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ProbIterT</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">RateIterT</span><span class="special">&gt;</span>
55   <span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">ProbIterT</span> <span class="identifier">prob_first</span><span class="special">,</span> <span class="identifier">ProbIterT</span> <span class="identifier">prob_last</span><span class="special">,</span>
56                                 <span class="identifier">RateIterT</span> <span class="identifier">rate_first</span><span class="special">,</span> <span class="identifier">RateIterT</span> <span class="identifier">rate_last</span><span class="special">);</span>   <span class="comment">// Iterators.</span>
57
58   <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ProbRangeT</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">RateRangeT</span><span class="special">&gt;</span>
59   <span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">ProbRangeT</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">prob_range</span><span class="special">,</span>
60                                 <span class="identifier">RateRangeT</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rate_range</span><span class="special">);</span>  <span class="comment">// Ranges.</span>
61
62   <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">RateRangeT</span><span class="special">&gt;</span>
63   <span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">RateRangeT</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rate_range</span><span class="special">);</span>
64
65 <span class="preprocessor">#if</span> <span class="special">!</span><span class="identifier">defined</span><span class="special">(</span><span class="identifier">BOOST_NO_CXX11_HDR_INITIALIZER_LIST</span><span class="special">)</span>     <span class="comment">// C++11 initializer lists supported.</span>
66   <span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">initializer_list</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">l1</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">initializer_list</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">l2</span><span class="special">);</span>
67   <span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">initializer_list</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">l1</span><span class="special">);</span>
68 <span class="preprocessor">#endif</span>
69
70   <span class="comment">// Accessors:</span>
71   <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">num_phases</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
72   <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">probabilities</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
73   <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">rates</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
74<span class="special">};</span>
75
76<span class="special">}}</span> <span class="comment">// namespaces</span>
77</pre>
78<div class="note"><table border="0" summary="Note">
79<tr>
80<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
81<th align="left">Note</th>
82</tr>
83<tr><td align="left" valign="top"><p>
84            An implementation-defined mechanism is provided to avoid ambiguity between
85            constructors accepting ranges, iterators and constants as parameters.
86            This should be transparent to the user. See below and the header file
87            hyperexponential.hpp for details and explanatory comments.
88          </p></td></tr>
89</table></div>
90<p>
91          The class type <code class="computeroutput"><span class="identifier">hyperexponential_distribution</span></code>
92          represents a <a href="http://en.wikipedia.org/wiki/Hyperexponential_distribution" target="_top">hyperexponential
93          distribution</a>.
94        </p>
95<p>
96          A <span class="emphasis"><em>k</em></span>-phase hyperexponential distribution is a <a href="http://en.wikipedia.org/wiki/Continuous_probability_distribution" target="_top">continuous
97          probability distribution</a> obtained as a mixture of <span class="emphasis"><em>k</em></span>
98          <a class="link" href="exp_dist.html" title="Exponential Distribution">Exponential Distribution</a>s.
99          It is also referred to as <span class="emphasis"><em>mixed exponential distribution</em></span>
100          or parallel <span class="emphasis"><em>k-phase exponential distribution</em></span>.
101        </p>
102<p>
103          A <span class="emphasis"><em>k</em></span>-phase hyperexponential distribution is characterized
104          by two parameters, namely a <span class="emphasis"><em>phase probability vector</em></span>
105          <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(α<sub>1</sub>,...,α<sub>k</sub>)</em></span> and a
106          <span class="emphasis"><em>rate vector</em></span> <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(λ<sub>1</sub>,...,λ<sub>k</sub>)</em></span>.
107        </p>
108<p>
109          The <a href="http://en.wikipedia.org/wiki/Probability_density_function" target="_top">probability
110          density function</a> for random variate <span class="emphasis"><em>x</em></span> in a
111          hyperexponential distribution is given by:
112        </p>
113<div class="blockquote"><blockquote class="blockquote"><p>
114            <span class="inlinemediaobject"><img src="../../../../equations/hyperexponential_pdf.svg"></span>
115
116          </p></blockquote></div>
117<p>
118          The following graph illustrates the PDF of the hyperexponential distribution
119          with five different parameters, namely:
120        </p>
121<div class="orderedlist"><ol class="orderedlist" type="1">
122<li class="listitem">
123              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(1.0)</em></span> and <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(1.0)</em></span> (which degenerates to a simple
124              exponential distribution),
125            </li>
126<li class="listitem">
127              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.1, 0.9)</em></span> and
128              <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.5, 1.5)</em></span>,
129            </li>
130<li class="listitem">
131              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.9, 0.1)</em></span> and
132              <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.5, 1.5)</em></span>,
133            </li>
134<li class="listitem">
135              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.2, 0.3, 0.5)</em></span>
136              and <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.5, 1.0, 1.5)</em></span>,
137            </li>
138<li class="listitem">
139              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.5, 0.3, 0.2)</em></span>
140              and <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.5, 1.0, 1.5)</em></span>.
141            </li>
142</ol></div>
143<div class="blockquote"><blockquote class="blockquote"><p>
144            <span class="inlinemediaobject"><img src="../../../../graphs/hyperexponential_pdf.svg" align="middle"></span>
145
146          </p></blockquote></div>
147<p>
148          Also, the following graph illustrates the PDF of the hyperexponential distribution
149          (solid lines) where only the <span class="emphasis"><em>phase probability vector</em></span>
150          changes together with the PDF of the two limiting exponential distributions
151          (dashed lines):
152        </p>
153<div class="orderedlist"><ol class="orderedlist" type="1">
154<li class="listitem">
155              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.1, 0.9)</em></span> and
156              <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.5, 1.5)</em></span>,
157            </li>
158<li class="listitem">
159              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.6, 0.4)</em></span> and
160              <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.5, 1.5)</em></span>,
161            </li>
162<li class="listitem">
163              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.9, 0.1)</em></span> and
164              <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.5, 1.5)</em></span>,
165            </li>
166<li class="listitem">
167              Exponential distribution with parameter <span class="emphasis"><em>λ=0.5</em></span>,
168            </li>
169<li class="listitem">
170              Exponential distribution with parameter <span class="emphasis"><em>λ=1.5</em></span>.
171            </li>
172</ol></div>
173<p>
174          As expected, as the first element <span class="emphasis"><em>α<sub>1</sub></em></span> of the <span class="emphasis"><em>phase
175          probability vector</em></span> approaches to <span class="emphasis"><em>1</em></span> (or,
176          equivalently, <span class="emphasis"><em>α<sub>2</sub></em></span> approaches to <span class="emphasis"><em>0</em></span>),
177          the resulting hyperexponential distribution nears the exponential distribution
178          with parameter <span class="emphasis"><em>λ=0.5</em></span>. Conversely, as the first element
179          <span class="emphasis"><em>α<sub>2</sub></em></span> of the <span class="emphasis"><em>phase probability vector</em></span>
180          approaches to <span class="emphasis"><em>1</em></span> (or, equivalently, <span class="emphasis"><em>α<sub>1</sub></em></span>
181          approaches to <span class="emphasis"><em>0</em></span>), the resulting hyperexponential distribution
182          nears the exponential distribution with parameter <span class="emphasis"><em>λ=1.5</em></span>.
183        </p>
184<div class="blockquote"><blockquote class="blockquote"><p>
185            <span class="inlinemediaobject"><img src="../../../../graphs/hyperexponential_pdf_samerate.svg" align="middle"></span>
186
187          </p></blockquote></div>
188<p>
189          Finally, the following graph compares the PDF of the hyperexponential distribution
190          with different number of phases but with the same mean value equal to
191          <span class="emphasis"><em>2</em></span>:
192        </p>
193<div class="orderedlist"><ol class="orderedlist" type="1">
194<li class="listitem">
195              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(1.0)</em></span> and <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(2.0)</em></span> (which degenerates to a simple
196              exponential distribution),
197            </li>
198<li class="listitem">
199              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.5, 0.5)</em></span> and
200              <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.3, 1.5)</em></span>,
201            </li>
202<li class="listitem">
203              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(1.0/3.0, 1.0/3.0, 1.0/3.0)</em></span>
204              and <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(0.2, 1.5, 3.0)</em></span>,
205            </li>
206</ol></div>
207<div class="blockquote"><blockquote class="blockquote"><p>
208            <span class="inlinemediaobject"><img src="../../../../graphs/hyperexponential_pdf_samemean.svg" align="middle"></span>
209
210          </p></blockquote></div>
211<p>
212          As can be noted, even if the three distributions have the same mean value,
213          the two hyperexponential distributions have a <span class="emphasis"><em>longer</em></span>
214          tail with respect to the one of the exponential distribution. Indeed, the
215          hyperexponential distribution has a larger variability than the exponential
216          distribution, thus resulting in a <a href="http://en.wikipedia.org/wiki/Coefficient_of_variation" target="_top">Coefficient
217          of Variation</a> greater than <span class="emphasis"><em>1</em></span> (as opposed to
218          the one of the exponential distribution which is exactly <span class="emphasis"><em>1</em></span>).
219        </p>
220<h4>
221<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h0"></a>
222          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.applications"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.applications">Applications</a>
223        </h4>
224<p>
225          A <span class="emphasis"><em>k</em></span>-phase hyperexponential distribution is frequently
226          used in <a href="http://en.wikipedia.org/wiki/Queueing_theory" target="_top">queueing
227          theory</a> to model the distribution of the superposition of <span class="emphasis"><em>k</em></span>
228          independent events, like, for instance, the service time distribution of
229          a queueing station with <span class="emphasis"><em>k</em></span> servers in parallel where
230          the <span class="emphasis"><em>i</em></span>-th server is chosen with probability <span class="emphasis"><em>α<sub>i</sub></em></span>
231          and its service time distribution is an exponential distribution with rate
232          <span class="emphasis"><em>λ<sub>i</sub></em></span> (Allen,1990; Papadopolous et al.,1993; Trivedi,2002).
233        </p>
234<p>
235          For instance, CPUs service-time distribution in a computing system has
236          often been observed to possess such a distribution (Rosin,1965). Also,
237          the arrival of different types of customer to a single queueing station
238          is often modeled as a hyperexponential distribution (Papadopolous et al.,1993).
239          Similarly, if a product manufactured in several parallel assembly lines
240          and the outputs are merged, the failure density of the overall product
241          is likely to be hyperexponential (Trivedi,2002).
242        </p>
243<p>
244          Finally, since the hyperexponential distribution exhibits a high Coefficient
245          of Variation (CoV), that is a CoV &gt; 1, it is especially suited to fit
246          empirical data with large CoV (Feitelson,2014; Wolski et al.,2013) and
247          to approximate <a href="http://en.wikipedia.org/wiki/Long_tail" target="_top">long-tail
248          probability distributions</a> (Feldmann et al.,1998).
249        </p>
250<h4>
251<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h1"></a>
252          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.related_distributions"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.related_distributions">Related
253          distributions</a>
254        </h4>
255<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
256<li class="listitem">
257              When the number of phases <span class="emphasis"><em>k</em></span> is equal to <code class="computeroutput"><span class="number">1</span></code>, the hyperexponential distribution
258              is simply an <a class="link" href="exp_dist.html" title="Exponential Distribution">Exponential
259              Distribution</a>.
260            </li>
261<li class="listitem">
262              When the <span class="emphasis"><em>k</em></span> rates are all equal to <span class="emphasis"><em>λ</em></span>,
263              the hyperexponential distribution is simple an <a class="link" href="exp_dist.html" title="Exponential Distribution">Exponential
264              Distribution</a> with rate <span class="emphasis"><em>λ</em></span>.
265            </li>
266</ul></div>
267<h4>
268<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h2"></a>
269          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.examples"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.examples">Examples</a>
270        </h4>
271<h5>
272<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h3"></a>
273          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.lifetime_of_appliances"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.lifetime_of_appliances">Lifetime
274          of Appliances</a>
275        </h5>
276<p>
277          Suppose a customer is buying an appliance and is choosing at random between
278          an appliance with average lifetime of 10 years and an appliance with average
279          lifetime of 12 years. Assuming the lifetime of this appliance follows an
280          exponential distribution, the lifetime distribution of the purchased appliance
281          can be modeled as a hyperexponential distribution with phase probability
282          vector <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(1/2,1/2)</em></span>
283          and rate vector <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(1/10,1/12)</em></span>
284          (Wolfram,2014).
285        </p>
286<p>
287          In the rest of this section, we provide an example C++ implementation for
288          computing the average lifetime and the probability that the appliance will
289          work for more than 15 years.
290        </p>
291<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">hyperexponential</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
292<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
293<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
294<span class="special">{</span>
295   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">10.0</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">12.0</span> <span class="special">};</span>
296
297   <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span> <span class="identifier">he</span><span class="special">(</span><span class="identifier">rates</span><span class="special">);</span>
298
299   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Average lifetime: "</span>
300      <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">mean</span><span class="special">(</span><span class="identifier">he</span><span class="special">)</span>
301      <span class="special">&lt;&lt;</span> <span class="string">" years"</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
302   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Probability that the appliance will work for more than 15 years: "</span>
303      <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">he</span><span class="special">,</span> <span class="number">15.0</span><span class="special">))</span>
304      <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
305<span class="special">}</span>
306</pre>
307<p>
308          The resulting output is:
309        </p>
310<pre class="programlisting"><span class="identifier">Average</span> <span class="identifier">lifetime</span><span class="special">:</span> <span class="number">11</span> <span class="identifier">years</span>
311<span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">the</span> <span class="identifier">appliance</span> <span class="identifier">will</span> <span class="identifier">work</span> <span class="keyword">for</span> <span class="identifier">more</span> <span class="identifier">than</span> <span class="number">15</span> <span class="identifier">years</span><span class="special">:</span> <span class="number">0.254817</span>
312</pre>
313<h5>
314<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h4"></a>
315          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.workloads_of_private_cloud_compu"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.workloads_of_private_cloud_compu">Workloads
316          of Private Cloud Computing Systems</a>
317        </h5>
318<p>
319          <a href="http://en.wikipedia.org/wiki/Cloud_computing" target="_top">Cloud computing</a>
320          has become a popular metaphor for dynamic and secure self-service access
321          to computational and storage capabilities. In (Wolski et al.,2013), the
322          authors analyze and model workloads gathered from enterprise-operated commercial
323          <a href="http://en.wikipedia.org/wiki/Cloud_computing#Private_cloud" target="_top">private
324          clouds</a> and show that 3-phase hyperexponential distributions (fitted
325          using the <a href="http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm" target="_top">Expectation
326          Maximization algorithm</a>) capture workload attributes accurately.
327        </p>
328<p>
329          In this type of computing system, user requests consist in demanding the
330          provisioning of one or more <a href="http://en.wikipedia.org/wiki/Virtual_machine" target="_top">Virtual
331          Machines</a> (VMs). In particular, in (Wolski et al.,2013) the workload
332          experienced by each cloud system is a function of four distributions, one
333          for each of the following workload attributes:
334        </p>
335<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
336<li class="listitem">
337              <span class="emphasis"><em>Request Interarrival Time</em></span>: the amount of time
338              until the next request,
339            </li>
340<li class="listitem">
341              <span class="emphasis"><em>VM Lifetime</em></span>: the time duration over which a VM
342              is provisioned to a physical machine,
343            </li>
344<li class="listitem">
345              <span class="emphasis"><em>Request Size</em></span>: the number of VMs in the request,
346              and
347            </li>
348<li class="listitem">
349              <span class="emphasis"><em>Core Count</em></span>: the CPU core count requested for each
350              VM.
351            </li>
352</ul></div>
353<p>
354          The authors assume that all VMs in a request have the same core count,
355          but request sizes and core counts can vary from request to request. Moreover,
356          all VMs within a request are assumed to have the same lifetime. Given these
357          assumptions, the authors build a statistical model for the request interarrival
358          time and VM lifetime attributes by fitting their respective data to a 3-phase
359          hyperexponential distribution.
360        </p>
361<p>
362          In the following table, we show the sample mean and standard deviation
363          (SD), in seconds, of the request interarrival time and of the VM lifetime
364          distributions of the three datasets collected by authors:
365        </p>
366<div class="informaltable"><table class="table">
367<colgroup>
368<col>
369<col>
370<col>
371<col>
372</colgroup>
373<thead><tr>
374<th>
375                  <p>
376                    Dataset
377                  </p>
378                </th>
379<th>
380                  <p>
381                    Mean Request Interarrival Time (SD)
382                  </p>
383                </th>
384<th>
385                  <p>
386                    Mean Multi-core VM Lifetime (SD)
387                  </p>
388                </th>
389<th>
390                  <p>
391                    Mean Single-core VM Lifetime (SD)
392                  </p>
393                </th>
394</tr></thead>
395<tbody>
396<tr>
397<td>
398                  <p>
399                    DS1
400                  </p>
401                </td>
402<td>
403                  <p>
404                    2202.1 (2.2e+04)
405                  </p>
406                </td>
407<td>
408                  <p>
409                    257173 (4.6e+05)
410                  </p>
411                </td>
412<td>
413                  <p>
414                    28754.4 (1.6e+05)
415                  </p>
416                </td>
417</tr>
418<tr>
419<td>
420                  <p>
421                    DS2
422                  </p>
423                </td>
424<td>
425                  <p>
426                    41285.7 (1.1e+05)
427                  </p>
428                </td>
429<td>
430                  <p>
431                    144669.0 (7.9e+05)
432                  </p>
433                </td>
434<td>
435                  <p>
436                    599815.0 (1.7e+06)
437                  </p>
438                </td>
439</tr>
440<tr>
441<td>
442                  <p>
443                    DS3
444                  </p>
445                </td>
446<td>
447                  <p>
448                    11238.8 (3.0e+04)
449                  </p>
450                </td>
451<td>
452                  <p>
453                    30739.2 (1.6e+05)
454                  </p>
455                </td>
456<td>
457                  <p>
458                    44447.8 (2.2e+05)
459                  </p>
460                </td>
461</tr>
462</tbody>
463</table></div>
464<p>
465          Whereas in the following table we show the hyperexponential distribution
466          parameters resulting from the fit:
467        </p>
468<div class="informaltable"><table class="table">
469<colgroup>
470<col>
471<col>
472<col>
473<col>
474</colgroup>
475<thead><tr>
476<th>
477                  <p>
478                    Dataset
479                  </p>
480                </th>
481<th>
482                  <p>
483                    Request Interarrival Time
484                  </p>
485                </th>
486<th>
487                  <p>
488                    Multi-core VM Lifetime
489                  </p>
490                </th>
491<th>
492                  <p>
493                    Single-core VM Lifetime
494                  </p>
495                </th>
496</tr></thead>
497<tbody>
498<tr>
499<td>
500                  <p>
501                    DS1
502                  </p>
503                </td>
504<td>
505                  <p>
506                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.34561,0.08648,0.56791),
507                    <span class="bold"><strong>λ</strong></span>=(0.008,0.00005,0.02894)</em></span>
508                  </p>
509                </td>
510<td>
511                  <p>
512                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.24667,0.37948,0.37385),
513                    <span class="bold"><strong>λ</strong></span>=(0.00004,0.000002,0.00059)</em></span>
514                  </p>
515                </td>
516<td>
517                  <p>
518                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.09325,0.22251,0.68424),
519                    <span class="bold"><strong>λ</strong></span>=(0.000003,0.00109,0.00109)</em></span>
520                  </p>
521                </td>
522</tr>
523<tr>
524<td>
525                  <p>
526                    DS2
527                  </p>
528                </td>
529<td>
530                  <p>
531                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.38881,0.18227,0.42892),
532                    <span class="bold"><strong>λ</strong></span>=(0.000006,0.05228,0.00081)</em></span>
533                  </p>
534                </td>
535<td>
536                  <p>
537                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.42093,0.43960,0.13947),
538                    <span class="bold"><strong>λ</strong></span>=(0.00186,0.00008,0.0000008)</em></span>
539                  </p>
540                </td>
541<td>
542                  <p>
543                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.44885,0.30675,0.2444),
544                    <span class="bold"><strong>λ</strong></span>=(0.00143,0.00005,0.0000004)</em></span>
545                  </p>
546                </td>
547</tr>
548<tr>
549<td>
550                  <p>
551                    DS3
552                  </p>
553                </td>
554<td>
555                  <p>
556                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.39442,0.24644,0.35914),
557                    <span class="bold"><strong>λ</strong></span>=(0.00030,0.00003,0.00257)</em></span>
558                  </p>
559                </td>
560<td>
561                  <p>
562                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.37621,0.14838,0.47541),
563                    <span class="bold"><strong>λ</strong></span>=(0.00498,0.000005,0.00022)</em></span>
564                  </p>
565                </td>
566<td>
567                  <p>
568                    <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(0.34131,0.12544,0.53325),
569                    <span class="bold"><strong>λ</strong></span>=(0.000297,0.000003,0.00410)</em></span>
570                  </p>
571                </td>
572</tr>
573</tbody>
574</table></div>
575<p>
576          In the rest of this section, we provide an example C++ implementation for
577          computing some statistical properties of the fitted distributions for each
578          of the analyzed dataset.
579        </p>
580<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
581<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
582<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">string</span><span class="special">&gt;</span>
583
584<span class="keyword">struct</span> <span class="identifier">ds_info</span>
585<span class="special">{</span>
586   <span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">name</span><span class="special">;</span>
587   <span class="keyword">double</span> <span class="identifier">iat_sample_mean</span><span class="special">;</span>
588   <span class="keyword">double</span> <span class="identifier">iat_sample_sd</span><span class="special">;</span>
589   <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span> <span class="identifier">iat_he</span><span class="special">;</span>
590   <span class="keyword">double</span> <span class="identifier">multi_lt_sample_mean</span><span class="special">;</span>
591   <span class="keyword">double</span> <span class="identifier">multi_lt_sample_sd</span><span class="special">;</span>
592   <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span> <span class="identifier">multi_lt_he</span><span class="special">;</span>
593   <span class="keyword">double</span> <span class="identifier">single_lt_sample_mean</span><span class="special">;</span>
594   <span class="keyword">double</span> <span class="identifier">single_lt_sample_sd</span><span class="special">;</span>
595   <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span> <span class="identifier">single_lt_he</span><span class="special">;</span>
596<span class="special">};</span>
597
598<span class="comment">// DS1 dataset</span>
599<span class="identifier">ds_info</span> <span class="identifier">make_ds1</span><span class="special">()</span>
600<span class="special">{</span>
601   <span class="identifier">ds_info</span> <span class="identifier">ds</span><span class="special">;</span>
602
603   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">name</span> <span class="special">=</span> <span class="string">"DS1"</span><span class="special">;</span>
604
605   <span class="comment">// VM interarrival time distribution</span>
606   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">iat_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.34561</span><span class="special">,</span><span class="number">0.08648</span><span class="special">,</span><span class="number">0.56791</span> <span class="special">};</span>
607   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">iat_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.0008</span><span class="special">,</span><span class="number">0.00005</span><span class="special">,</span><span class="number">0.02894</span> <span class="special">};</span>
608   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_sample_mean</span> <span class="special">=</span> <span class="number">2202.1</span><span class="special">;</span>
609   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_sample_sd</span> <span class="special">=</span> <span class="number">2.2e+4</span><span class="special">;</span>
610   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">iat_fit_probs</span><span class="special">,</span> <span class="identifier">iat_fit_rates</span><span class="special">);</span>
611
612   <span class="comment">// Multi-core VM lifetime distribution</span>
613   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">multi_lt_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.24667</span><span class="special">,</span><span class="number">0.37948</span><span class="special">,</span><span class="number">0.37385</span> <span class="special">};</span>
614   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">multi_lt_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.00004</span><span class="special">,</span><span class="number">0.000002</span><span class="special">,</span><span class="number">0.00059</span> <span class="special">};</span>
615   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_sample_mean</span> <span class="special">=</span> <span class="number">257173</span><span class="special">;</span>
616   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_sample_sd</span> <span class="special">=</span> <span class="number">4.6e+5</span><span class="special">;</span>
617   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">multi_lt_fit_probs</span><span class="special">,</span> <span class="identifier">multi_lt_fit_rates</span><span class="special">);</span>
618
619   <span class="comment">// Single-core VM lifetime distribution</span>
620   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">single_lt_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.09325</span><span class="special">,</span><span class="number">0.22251</span><span class="special">,</span><span class="number">0.68424</span> <span class="special">};</span>
621   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">single_lt_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.000003</span><span class="special">,</span><span class="number">0.00109</span><span class="special">,</span><span class="number">0.00109</span> <span class="special">};</span>
622   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_sample_mean</span> <span class="special">=</span> <span class="number">28754.4</span><span class="special">;</span>
623   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_sample_sd</span> <span class="special">=</span> <span class="number">1.6e+5</span><span class="special">;</span>
624   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">single_lt_fit_probs</span><span class="special">,</span> <span class="identifier">single_lt_fit_rates</span><span class="special">);</span>
625
626   <span class="keyword">return</span> <span class="identifier">ds</span><span class="special">;</span>
627<span class="special">}</span>
628
629<span class="comment">// DS2 dataset</span>
630<span class="identifier">ds_info</span> <span class="identifier">make_ds2</span><span class="special">()</span>
631<span class="special">{</span>
632   <span class="identifier">ds_info</span> <span class="identifier">ds</span><span class="special">;</span>
633
634   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">name</span> <span class="special">=</span> <span class="string">"DS2"</span><span class="special">;</span>
635
636   <span class="comment">// VM interarrival time distribution</span>
637   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">iat_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.38881</span><span class="special">,</span><span class="number">0.18227</span><span class="special">,</span><span class="number">0.42892</span> <span class="special">};</span>
638   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">iat_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.000006</span><span class="special">,</span><span class="number">0.05228</span><span class="special">,</span><span class="number">0.00081</span> <span class="special">};</span>
639   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_sample_mean</span> <span class="special">=</span> <span class="number">41285.7</span><span class="special">;</span>
640   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_sample_sd</span> <span class="special">=</span> <span class="number">1.1e+05</span><span class="special">;</span>
641   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">iat_fit_probs</span><span class="special">,</span> <span class="identifier">iat_fit_rates</span><span class="special">);</span>
642
643   <span class="comment">// Multi-core VM lifetime distribution</span>
644   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">multi_lt_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.42093</span><span class="special">,</span><span class="number">0.43960</span><span class="special">,</span><span class="number">0.13947</span> <span class="special">};</span>
645   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">multi_lt_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.00186</span><span class="special">,</span><span class="number">0.00008</span><span class="special">,</span><span class="number">0.0000008</span> <span class="special">};</span>
646   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_sample_mean</span> <span class="special">=</span> <span class="number">144669.0</span><span class="special">;</span>
647   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_sample_sd</span> <span class="special">=</span> <span class="number">7.9e+05</span><span class="special">;</span>
648   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">multi_lt_fit_probs</span><span class="special">,</span> <span class="identifier">multi_lt_fit_rates</span><span class="special">);</span>
649
650   <span class="comment">// Single-core VM lifetime distribution</span>
651   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">single_lt_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.44885</span><span class="special">,</span><span class="number">0.30675</span><span class="special">,</span><span class="number">0.2444</span> <span class="special">};</span>
652   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">single_lt_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.00143</span><span class="special">,</span><span class="number">0.00005</span><span class="special">,</span><span class="number">0.0000004</span> <span class="special">};</span>
653   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_sample_mean</span> <span class="special">=</span> <span class="number">599815.0</span><span class="special">;</span>
654   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_sample_sd</span> <span class="special">=</span> <span class="number">1.7e+06</span><span class="special">;</span>
655   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">single_lt_fit_probs</span><span class="special">,</span> <span class="identifier">single_lt_fit_rates</span><span class="special">);</span>
656
657   <span class="keyword">return</span> <span class="identifier">ds</span><span class="special">;</span>
658<span class="special">}</span>
659
660<span class="comment">// DS3 dataset</span>
661<span class="identifier">ds_info</span> <span class="identifier">make_ds3</span><span class="special">()</span>
662<span class="special">{</span>
663   <span class="identifier">ds_info</span> <span class="identifier">ds</span><span class="special">;</span>
664
665   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">name</span> <span class="special">=</span> <span class="string">"DS3"</span><span class="special">;</span>
666
667   <span class="comment">// VM interarrival time distribution</span>
668   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">iat_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.39442</span><span class="special">,</span><span class="number">0.24644</span><span class="special">,</span><span class="number">0.35914</span> <span class="special">};</span>
669   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">iat_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.00030</span><span class="special">,</span><span class="number">0.00003</span><span class="special">,</span><span class="number">0.00257</span> <span class="special">};</span>
670   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_sample_mean</span> <span class="special">=</span> <span class="number">11238.8</span><span class="special">;</span>
671   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_sample_sd</span> <span class="special">=</span> <span class="number">3.0e+04</span><span class="special">;</span>
672   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">iat_fit_probs</span><span class="special">,</span> <span class="identifier">iat_fit_rates</span><span class="special">);</span>
673
674   <span class="comment">// Multi-core VM lifetime distribution</span>
675   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">multi_lt_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.37621</span><span class="special">,</span><span class="number">0.14838</span><span class="special">,</span><span class="number">0.47541</span> <span class="special">};</span>
676   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">multi_lt_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.00498</span><span class="special">,</span><span class="number">0.000005</span><span class="special">,</span><span class="number">0.00022</span> <span class="special">};</span>
677   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_sample_mean</span> <span class="special">=</span> <span class="number">30739.2</span><span class="special">;</span>
678   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_sample_sd</span> <span class="special">=</span> <span class="number">1.6e+05</span><span class="special">;</span>
679   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">multi_lt_fit_probs</span><span class="special">,</span> <span class="identifier">multi_lt_fit_rates</span><span class="special">);</span>
680
681   <span class="comment">// Single-core VM lifetime distribution</span>
682   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">single_lt_fit_probs</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.34131</span><span class="special">,</span><span class="number">0.12544</span><span class="special">,</span><span class="number">0.53325</span> <span class="special">};</span>
683   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">single_lt_fit_rates</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.000297</span><span class="special">,</span><span class="number">0.000003</span><span class="special">,</span><span class="number">0.00410</span> <span class="special">};</span>
684   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_sample_mean</span> <span class="special">=</span> <span class="number">44447.8</span><span class="special">;</span>
685   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_sample_sd</span> <span class="special">=</span> <span class="number">2.2e+05</span><span class="special">;</span>
686   <span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_he</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">hyperexponential</span><span class="special">(</span><span class="identifier">single_lt_fit_probs</span><span class="special">,</span> <span class="identifier">single_lt_fit_rates</span><span class="special">);</span>
687
688   <span class="keyword">return</span> <span class="identifier">ds</span><span class="special">;</span>
689<span class="special">}</span>
690
691<span class="keyword">void</span> <span class="identifier">print_fitted</span><span class="special">(</span><span class="identifier">ds_info</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">ds</span><span class="special">)</span>
692<span class="special">{</span>
693   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">secs_in_a_hour</span> <span class="special">=</span> <span class="number">3600</span><span class="special">;</span>
694   <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">secs_in_a_month</span> <span class="special">=</span> <span class="number">30</span> <span class="special">*</span> <span class="number">24</span> <span class="special">*</span> <span class="identifier">secs_in_a_hour</span><span class="special">;</span>
695
696   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"### "</span> <span class="special">&lt;&lt;</span> <span class="identifier">ds</span><span class="special">.</span><span class="identifier">name</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
697   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"* Fitted Request Interarrival Time"</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
698   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Mean (SD): "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">mean</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_he</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">" ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">standard_deviation</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_he</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">") seconds."</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
699   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - 99th Percentile: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quantile</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_he</span><span class="special">,</span> <span class="number">0.99</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">" seconds."</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
700   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Probability that a VM will arrive within 30 minutes: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_he</span><span class="special">,</span> <span class="identifier">secs_in_a_hour</span> <span class="special">/</span> <span class="number">2.0</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
701   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Probability that a VM will arrive after 1 hour: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">iat_he</span><span class="special">,</span> <span class="identifier">secs_in_a_hour</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
702   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"* Fitted Multi-core VM Lifetime"</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
703   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Mean (SD): "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">mean</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_he</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">" ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">standard_deviation</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_he</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">") seconds."</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
704   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - 99th Percentile: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quantile</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_he</span><span class="special">,</span> <span class="number">0.99</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">" seconds."</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
705   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Probability that a VM will last for less than 1 month: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_he</span><span class="special">,</span> <span class="identifier">secs_in_a_month</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
706   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Probability that a VM will last for more than 3 months: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">multi_lt_he</span><span class="special">,</span> <span class="number">3.0</span><span class="special">*</span><span class="identifier">secs_in_a_month</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
707   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"* Fitted Single-core VM Lifetime"</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
708   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Mean (SD): "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">mean</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_he</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">" ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">standard_deviation</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_he</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">") seconds."</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
709   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - 99th Percentile: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quantile</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_he</span><span class="special">,</span> <span class="number">0.99</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">" seconds."</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
710   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Probability that a VM will last for less than 1 month: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_he</span><span class="special">,</span> <span class="identifier">secs_in_a_month</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
711   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">" - Probability that a VM will last for more than 3 months: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">ds</span><span class="special">.</span><span class="identifier">single_lt_he</span><span class="special">,</span> <span class="number">3.0</span><span class="special">*</span><span class="identifier">secs_in_a_month</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
712<span class="special">}</span>
713
714<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
715<span class="special">{</span>
716   <span class="identifier">print_fitted</span><span class="special">(</span><span class="identifier">make_ds1</span><span class="special">());</span>
717
718   <span class="identifier">print_fitted</span><span class="special">(</span><span class="identifier">make_ds2</span><span class="special">());</span>
719
720   <span class="identifier">print_fitted</span><span class="special">(</span><span class="identifier">make_ds3</span><span class="special">());</span>
721<span class="special">}</span>
722</pre>
723<p>
724          The resulting output (with floating-point precision set to 2) is:
725        </p>
726<pre class="programlisting"><span class="special">###</span> <span class="identifier">DS1</span>
727<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Request</span> <span class="identifier">Interarrival</span> <span class="identifier">Time</span>
728 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">2.2e+03</span> <span class="special">(</span><span class="number">8.1e+03</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
729 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">4.3e+04</span> <span class="identifier">seconds</span><span class="special">.</span>
730 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">arrive</span> <span class="identifier">within</span> <span class="number">30</span> <span class="identifier">minutes</span><span class="special">:</span> <span class="number">0.84</span>
731 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">arrive</span> <span class="identifier">after</span> <span class="number">1</span> <span class="identifier">hour</span><span class="special">:</span> <span class="number">0.092</span>
732<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Multi</span><span class="special">-</span><span class="identifier">core</span> <span class="identifier">VM</span> <span class="identifier">Lifetime</span>
733 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">2e+05</span> <span class="special">(</span><span class="number">3.9e+05</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
734 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">1.8e+06</span> <span class="identifier">seconds</span><span class="special">.</span>
735 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">less</span> <span class="identifier">than</span> <span class="number">1</span> <span class="identifier">month</span><span class="special">:</span> <span class="number">1</span>
736 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">more</span> <span class="identifier">than</span> <span class="number">3</span> <span class="identifier">months</span><span class="special">:</span> <span class="number">6.7e-08</span>
737<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Single</span><span class="special">-</span><span class="identifier">core</span> <span class="identifier">VM</span> <span class="identifier">Lifetime</span>
738 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">3.2e+04</span> <span class="special">(</span><span class="number">1.4e+05</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
739 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">7.4e+05</span> <span class="identifier">seconds</span><span class="special">.</span>
740 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">less</span> <span class="identifier">than</span> <span class="number">1</span> <span class="identifier">month</span><span class="special">:</span> <span class="number">1</span>
741 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">more</span> <span class="identifier">than</span> <span class="number">3</span> <span class="identifier">months</span><span class="special">:</span> <span class="number">6.9e-12</span>
742<span class="special">###</span> <span class="identifier">DS2</span>
743<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Request</span> <span class="identifier">Interarrival</span> <span class="identifier">Time</span>
744 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">6.5e+04</span> <span class="special">(</span><span class="number">1.3e+05</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
745 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">6.1e+05</span> <span class="identifier">seconds</span><span class="special">.</span>
746 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">arrive</span> <span class="identifier">within</span> <span class="number">30</span> <span class="identifier">minutes</span><span class="special">:</span> <span class="number">0.52</span>
747 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">arrive</span> <span class="identifier">after</span> <span class="number">1</span> <span class="identifier">hour</span><span class="special">:</span> <span class="number">0.4</span>
748<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Multi</span><span class="special">-</span><span class="identifier">core</span> <span class="identifier">VM</span> <span class="identifier">Lifetime</span>
749 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">1.8e+05</span> <span class="special">(</span><span class="number">6.4e+05</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
750 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">3.3e+06</span> <span class="identifier">seconds</span><span class="special">.</span>
751 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">less</span> <span class="identifier">than</span> <span class="number">1</span> <span class="identifier">month</span><span class="special">:</span> <span class="number">0.98</span>
752 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">more</span> <span class="identifier">than</span> <span class="number">3</span> <span class="identifier">months</span><span class="special">:</span> <span class="number">0.00028</span>
753<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Single</span><span class="special">-</span><span class="identifier">core</span> <span class="identifier">VM</span> <span class="identifier">Lifetime</span>
754 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">6.2e+05</span> <span class="special">(</span><span class="number">1.6e+06</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
755 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">8e+06</span> <span class="identifier">seconds</span><span class="special">.</span>
756 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">less</span> <span class="identifier">than</span> <span class="number">1</span> <span class="identifier">month</span><span class="special">:</span> <span class="number">0.91</span>
757 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">more</span> <span class="identifier">than</span> <span class="number">3</span> <span class="identifier">months</span><span class="special">:</span> <span class="number">0.011</span>
758<span class="special">###</span> <span class="identifier">DS3</span>
759<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Request</span> <span class="identifier">Interarrival</span> <span class="identifier">Time</span>
760 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">9.7e+03</span> <span class="special">(</span><span class="number">2.2e+04</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
761 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">1.1e+05</span> <span class="identifier">seconds</span><span class="special">.</span>
762 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">arrive</span> <span class="identifier">within</span> <span class="number">30</span> <span class="identifier">minutes</span><span class="special">:</span> <span class="number">0.53</span>
763 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">arrive</span> <span class="identifier">after</span> <span class="number">1</span> <span class="identifier">hour</span><span class="special">:</span> <span class="number">0.36</span>
764<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Multi</span><span class="special">-</span><span class="identifier">core</span> <span class="identifier">VM</span> <span class="identifier">Lifetime</span>
765 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">3.2e+04</span> <span class="special">(</span><span class="number">1e+05</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
766 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">5.4e+05</span> <span class="identifier">seconds</span><span class="special">.</span>
767 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">less</span> <span class="identifier">than</span> <span class="number">1</span> <span class="identifier">month</span><span class="special">:</span> <span class="number">1</span>
768 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">more</span> <span class="identifier">than</span> <span class="number">3</span> <span class="identifier">months</span><span class="special">:</span> <span class="number">1.9e-18</span>
769<span class="special">*</span> <span class="identifier">Fitted</span> <span class="identifier">Single</span><span class="special">-</span><span class="identifier">core</span> <span class="identifier">VM</span> <span class="identifier">Lifetime</span>
770 <span class="special">-</span> <span class="identifier">Mean</span> <span class="special">(</span><span class="identifier">SD</span><span class="special">):</span> <span class="number">4.3e+04</span> <span class="special">(</span><span class="number">1.6e+05</span><span class="special">)</span> <span class="identifier">seconds</span><span class="special">.</span>
771 <span class="special">-</span> <span class="number">99</span><span class="identifier">th</span> <span class="identifier">Percentile</span><span class="special">:</span> <span class="number">8.4e+05</span> <span class="identifier">seconds</span><span class="special">.</span>
772 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">less</span> <span class="identifier">than</span> <span class="number">1</span> <span class="identifier">month</span><span class="special">:</span> <span class="number">1</span>
773 <span class="special">-</span> <span class="identifier">Probability</span> <span class="identifier">that</span> <span class="identifier">a</span> <span class="identifier">VM</span> <span class="identifier">will</span> <span class="identifier">last</span> <span class="keyword">for</span> <span class="identifier">more</span> <span class="identifier">than</span> <span class="number">3</span> <span class="identifier">months</span><span class="special">:</span> <span class="number">9.3e-12</span>
774</pre>
775<div class="note"><table border="0" summary="Note">
776<tr>
777<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
778<th align="left">Note</th>
779</tr>
780<tr><td align="left" valign="top"><p>
781            The above results differ from the ones shown in Tables III, V, and VII
782            of (Wolski et al.,2013). We carefully double-checked them with Wolfram
783            Mathematica 10, which confirmed our results.
784          </p></td></tr>
785</table></div>
786<h4>
787<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h5"></a>
788          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.member_functions"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.member_functions">Member
789          Functions</a>
790        </h4>
791<h5>
792<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h6"></a>
793          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.default_constructor"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.default_constructor">Default
794          Constructor</a>
795        </h5>
796<pre class="programlisting"><span class="identifier">hyperexponential_distribution</span><span class="special">();</span>
797</pre>
798<p>
799          Constructs a <span class="emphasis"><em>1</em></span>-phase hyperexponential distribution
800          (i.e., an exponential distribution) with rate <code class="computeroutput"><span class="number">1</span></code>.
801        </p>
802<h5>
803<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h7"></a>
804          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.constructor_from_iterators"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.constructor_from_iterators">Constructor
805          from Iterators</a>
806        </h5>
807<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ProbIterT</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">RateIterT</span><span class="special">&gt;</span>
808<span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">ProbIterT</span> <span class="identifier">prob_first</span><span class="special">,</span> <span class="identifier">ProbIterT</span> <span class="identifier">prob_last</span><span class="special">,</span>
809                              <span class="identifier">RateIterT</span> <span class="identifier">rate_first</span><span class="special">,</span> <span class="identifier">RateIterT</span> <span class="identifier">rate_last</span><span class="special">);</span>
810</pre>
811<p>
812          Constructs a hyperexponential distribution with <span class="emphasis"><em>phase probability
813          vector</em></span> parameter given by the range defined by [<code class="computeroutput"><span class="identifier">prob_first</span></code>, <code class="computeroutput"><span class="identifier">prob_last</span></code>)
814          iterator pair, and <span class="emphasis"><em>rate vector</em></span> parameter given by
815          the range defined by the [<code class="computeroutput"><span class="identifier">rate_first</span></code>,
816          <code class="computeroutput"><span class="identifier">rate_last</span></code>) iterator pair.
817        </p>
818<h6>
819<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h8"></a>
820          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.parameters"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.parameters">Parameters</a>
821        </h6>
822<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
823<li class="listitem">
824              <code class="computeroutput"><span class="identifier">prob_first</span></code>, <code class="computeroutput"><span class="identifier">prob_last</span></code>: the range of non-negative
825              real elements representing the phase probabilities; elements are normalized
826              to sum to unity.
827            </li>
828<li class="listitem">
829              <code class="computeroutput"><span class="identifier">rate_first</span></code>, <code class="computeroutput"><span class="identifier">rate_last</span></code>: the range of positive
830              elements representing the rates.
831            </li>
832</ul></div>
833<h6>
834<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h9"></a>
835          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.type_requirements"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.type_requirements">Type
836          Requirements</a>
837        </h6>
838<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
839              <code class="computeroutput"><span class="identifier">ProbIterT</span></code>, <code class="computeroutput"><span class="identifier">RateIterT</span></code>: must meet the requirements
840              of the <a href="http://en.cppreference.com/w/cpp/concept/InputIterator" target="_top">InputIterator</a>
841              concept.
842            </li></ul></div>
843<h6>
844<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h10"></a>
845          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.example"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.example">Example</a>
846        </h6>
847<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;</span> <span class="identifier">phase_prob</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.5</span><span class="special">,</span> <span class="number">0.5</span> <span class="special">};</span>
848<span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;</span> <span class="identifier">rates</span> <span class="special">=</span> <span class="special">{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">10</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">12</span> <span class="special">};</span>
849
850<span class="identifier">hyperexponential</span> <span class="identifier">he</span><span class="special">(</span><span class="identifier">phase_prob</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">phase_prob</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">rates</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">rates</span><span class="special">.</span><span class="identifier">end</span><span class="special">());</span>
851</pre>
852<h5>
853<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h11"></a>
854          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.construction_from_ranges_contain"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.construction_from_ranges_contain">Construction
855          from Ranges/Containers</a>
856        </h5>
857<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ProbRangeT</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">RateRangeT</span><span class="special">&gt;</span>
858<span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">ProbRangeT</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">prob_range</span><span class="special">,</span>
859                              <span class="identifier">RateRangeT</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rate_range</span><span class="special">);</span>
860</pre>
861<p>
862          Constructs a hyperexponential distribution with <span class="emphasis"><em>phase probability
863          vector</em></span> parameter given by the range defined by <code class="computeroutput"><span class="identifier">prob_range</span></code>, and <span class="emphasis"><em>rate vector</em></span>
864          parameter given by the range defined by <code class="computeroutput"><span class="identifier">rate_range</span></code>.
865        </p>
866<div class="note"><table border="0" summary="Note">
867<tr>
868<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
869<th align="left">Note</th>
870</tr>
871<tr><td align="left" valign="top"><p>
872            As an implementation detail, this constructor uses Boost's <a href="http://www.boost.org/doc/libs/release/libs/core/doc/html/core/enable_if.html" target="_top">enable_if/disable_if
873            mechanism</a> to disambiguate between this and other 2-argument constructors.
874            Refer to the source code for more details.
875          </p></td></tr>
876</table></div>
877<h6>
878<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h12"></a>
879          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.parameters0"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.parameters0">Parameters</a>
880        </h6>
881<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
882<li class="listitem">
883              <code class="computeroutput"><span class="identifier">prob_range</span></code>: the range
884              of non-negative real elements representing the phase probabilities;
885              elements are normalized to sum to unity.
886            </li>
887<li class="listitem">
888              <code class="computeroutput"><span class="identifier">rate_range</span></code>: the range
889              of positive real elements representing the rates.
890            </li>
891</ul></div>
892<h6>
893<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h13"></a>
894          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.type_requirements0"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.type_requirements0">Type
895          Requirements</a>
896        </h6>
897<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
898              <code class="computeroutput"><span class="identifier">ProbRangeT</span></code>, <code class="computeroutput"><span class="identifier">RateRangeT</span></code>: must meet the requirements
899              of the <a href="http://www.boost.org/doc/libs/release/libs/range/doc/html/range/concepts.html" target="_top">Range</a>
900              concept: that includes native C++ arrays, standard library containers,
901              or a std::pair or iterators.
902            </li></ul></div>
903<h6>
904<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h14"></a>
905          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.examples0"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.examples0">Examples</a>
906        </h6>
907<pre class="programlisting"><span class="comment">// We could be using any standard library container here... vector, deque, array, list etc:</span>
908<span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;</span> <span class="identifier">phase_prob</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.5</span><span class="special">,</span> <span class="number">0.5</span> <span class="special">};</span>
909<span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;</span> <span class="identifier">rates</span>      <span class="special">=</span> <span class="special">{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">10</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">12</span> <span class="special">};</span>
910
911<span class="identifier">hyperexponential</span> <span class="identifier">he1</span><span class="special">(</span><span class="identifier">phase_prob</span><span class="special">,</span> <span class="identifier">rates</span><span class="special">);</span>    <span class="comment">// Construct from standard library container.</span>
912
913<span class="keyword">double</span> <span class="identifier">phase_probs2</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0.5</span><span class="special">,</span> <span class="number">0.5</span> <span class="special">};</span>
914<span class="keyword">double</span> <span class="identifier">rates2</span><span class="special">[]</span>       <span class="special">=</span> <span class="special">{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">10</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">12</span> <span class="special">};</span>
915
916<span class="identifier">hyperexponential</span> <span class="identifier">he2</span><span class="special">(</span><span class="identifier">phase_probs2</span><span class="special">,</span> <span class="identifier">rates2</span><span class="special">);</span>  <span class="comment">// Construct from native C++ array.</span>
917</pre>
918<h5>
919<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h15"></a>
920          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.construction_with_rates_iterator"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.construction_with_rates_iterator">Construction
921          with rates-iterators (and all phase probabilities equal)</a>
922        </h5>
923<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">RateIterT</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">RateIterT2</span><span class="special">&gt;</span>
924<span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">RateIterT</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rate_first</span><span class="special">,</span>
925                              <span class="identifier">RateIterT2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rate_last</span><span class="special">);</span>
926</pre>
927<p>
928          Constructs a hyperexponential distribution with <span class="emphasis"><em>rate vector</em></span>
929          parameter given by the range defined by the [<code class="computeroutput"><span class="identifier">rate_first</span></code>,
930          <code class="computeroutput"><span class="identifier">rate_last</span></code>) iterator pair,
931          and <span class="emphasis"><em>phase probability vector</em></span> set to the equal phase
932          probabilities (i.e., to a vector of the same length <code class="computeroutput"><span class="identifier">n</span></code>
933          of the <span class="emphasis"><em>rate vector</em></span> and with each element set to <code class="computeroutput"><span class="number">1.0</span><span class="special">/</span><span class="identifier">n</span></code>).
934        </p>
935<div class="note"><table border="0" summary="Note">
936<tr>
937<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
938<th align="left">Note</th>
939</tr>
940<tr><td align="left" valign="top"><p>
941            As an implementation detail, this constructor uses Boost's <a href="http://www.boost.org/doc/libs/release/libs/core/doc/html/core/enable_if.html" target="_top">enable_if/disable_if
942            mechanism</a> to disambiguate between this and other 2-argument constructors.
943            Refer to the source code for more details.
944          </p></td></tr>
945</table></div>
946<h6>
947<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h16"></a>
948          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.parameters1"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.parameters1">Parameters</a>
949        </h6>
950<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
951              <code class="computeroutput"><span class="identifier">rate_first</span></code>, <code class="computeroutput"><span class="identifier">rate_last</span></code>: the range of positive
952              elements representing the rates.
953            </li></ul></div>
954<h6>
955<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h17"></a>
956          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.type_requirements1"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.type_requirements1">Type
957          Requirements</a>
958        </h6>
959<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
960              <code class="computeroutput"><span class="identifier">RateIterT</span></code>, <code class="computeroutput"><span class="identifier">RateIterT2</span></code>: must meet the requirements
961              of the <a href="http://en.cppreference.com/w/cpp/concept/InputIterator" target="_top">InputIterator</a>
962              concept.
963            </li></ul></div>
964<h6>
965<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h18"></a>
966          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.example0"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.example0">Example</a>
967        </h6>
968<pre class="programlisting"><span class="comment">// We could be using any standard library container here... vector, deque, array, list etc:</span>
969<span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;</span> <span class="identifier">rates</span> <span class="special">=</span> <span class="special">{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">10</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">12</span> <span class="special">};</span>
970
971<span class="identifier">hyperexponential</span> <span class="identifier">he</span><span class="special">(</span><span class="identifier">rates</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">rates</span><span class="special">.</span><span class="identifier">end</span><span class="special">());</span>
972
973<span class="identifier">BOOST_ASSERT</span><span class="special">(</span><span class="identifier">he</span><span class="special">.</span><span class="identifier">probabilities</span><span class="special">()[</span><span class="number">0</span><span class="special">]</span> <span class="special">==</span> <span class="number">0.5</span><span class="special">);</span> <span class="comment">// Phase probabilities will be equal and normalised to unity.</span>
974</pre>
975<h5>
976<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h19"></a>
977          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.construction_from_a_single_range"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.construction_from_a_single_range">Construction
978          from a single range of rates (all phase probabilities will be equal)</a>
979        </h5>
980<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">RateRangeT</span><span class="special">&gt;</span>
981<span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">RateRangeT</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">rate_range</span><span class="special">);</span>
982</pre>
983<p>
984          Constructs a hyperexponential distribution with <span class="emphasis"><em>rate vector</em></span>
985          parameter given by the range defined by <code class="computeroutput"><span class="identifier">rate_range</span></code>,
986          and <span class="emphasis"><em>phase probability vector</em></span> set to the equal phase
987          probabilities (i.e., to a vector of the same length <code class="computeroutput"><span class="identifier">n</span></code>
988          of the <span class="emphasis"><em>rate vector</em></span> and with each element set to <code class="computeroutput"><span class="number">1.0</span><span class="special">/</span><span class="identifier">n</span></code>).
989        </p>
990<h6>
991<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h20"></a>
992          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.parameters2"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.parameters2">Parameters</a>
993        </h6>
994<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
995              <code class="computeroutput"><span class="identifier">rate_range</span></code>: the range
996              of positive real elements representing the rates.
997            </li></ul></div>
998<h6>
999<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h21"></a>
1000          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.type_requirements2"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.type_requirements2">Type
1001          Requirements</a>
1002        </h6>
1003<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
1004              <code class="computeroutput"><span class="identifier">RateRangeT</span></code>: must meet
1005              the requirements of the <a href="http://www.boost.org/doc/libs/release/libs/range/doc/html/range/concepts.html" target="_top">Range</a>
1006              concept: this includes native C++ array, standard library containers,
1007              and a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span></code> of iterators.
1008            </li></ul></div>
1009<h6>
1010<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h22"></a>
1011          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.examples1"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.examples1">Examples</a>
1012        </h6>
1013<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;</span> <span class="identifier">rates</span> <span class="special">=</span> <span class="special">{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">10</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">12</span> <span class="special">};</span>
1014
1015<span class="identifier">hyperexponential</span> <span class="identifier">he</span><span class="special">(</span><span class="identifier">rates</span><span class="special">);</span>
1016
1017<span class="identifier">BOOST_ASSERT</span><span class="special">(</span><span class="identifier">he</span><span class="special">.</span><span class="identifier">probabilities</span><span class="special">()[</span><span class="number">0</span><span class="special">]</span> <span class="special">==</span> <span class="number">0.5</span><span class="special">);</span> <span class="comment">// Phase probabilities will be equal and normalised to unity.</span>
1018</pre>
1019<h5>
1020<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h23"></a>
1021          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.construction_from_initializer_li"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.construction_from_initializer_li">Construction
1022          from Initializer lists</a>
1023        </h5>
1024<pre class="programlisting"><span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">initializer_list</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">l1</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">initializer_list</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">l2</span><span class="special">);</span>
1025</pre>
1026<p>
1027          Constructs a hyperexponential distribution with <span class="emphasis"><em>phase probability
1028          vector</em></span> parameter given by the <a href="http://en.cppreference.com/w/cpp/language/list_initialization" target="_top">brace-init-list</a>
1029          defined by <code class="computeroutput"><span class="identifier">l1</span></code>, and <span class="emphasis"><em>rate
1030          vector</em></span> parameter given by the <a href="http://en.cppreference.com/w/cpp/language/list_initialization" target="_top">brace-init-list</a>
1031          defined by <code class="computeroutput"><span class="identifier">l2</span></code>.
1032        </p>
1033<h6>
1034<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h24"></a>
1035          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.parameters3"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.parameters3">Parameters</a>
1036        </h6>
1037<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1038<li class="listitem">
1039              <code class="computeroutput"><span class="identifier">l1</span></code>: the brace-init-list
1040              of non-negative real elements representing the phase probabilities;
1041              elements are normalized to sum to unity.
1042            </li>
1043<li class="listitem">
1044              <code class="computeroutput"><span class="identifier">l2</span></code>: the brace-init-list
1045              of positive real elements representing the rates.
1046            </li>
1047</ul></div>
1048<p>
1049          The number of elements of the phase probabilities list and the rates list
1050          must be the same.
1051        </p>
1052<h6>
1053<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h25"></a>
1054          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.example1"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.example1">Example</a>
1055        </h6>
1056<pre class="programlisting"><span class="identifier">hyperexponential</span> <span class="identifier">he</span> <span class="special">=</span> <span class="special">{</span> <span class="special">{</span> <span class="number">0.5</span><span class="special">,</span> <span class="number">0.5</span> <span class="special">},</span> <span class="special">{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">10</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">12</span> <span class="special">}</span> <span class="special">};</span>
1057</pre>
1058<h5>
1059<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h26"></a>
1060          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.construction_from_a_single_initi"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.construction_from_a_single_initi">Construction
1061          from a single initializer list (all phase probabilities will be equal)</a>
1062        </h5>
1063<pre class="programlisting"><span class="identifier">hyperexponential_distribution</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">initializer_list</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">l1</span><span class="special">);</span>
1064</pre>
1065<p>
1066          Constructs a hyperexponential distribution with <span class="emphasis"><em>rate vector</em></span>
1067          parameter given by the <a href="http://en.cppreference.com/w/cpp/language/list_initialization" target="_top">brace-init-list</a>
1068          defined by <code class="computeroutput"><span class="identifier">l1</span></code>, and <span class="emphasis"><em>phase
1069          probability vector</em></span> set to the equal phase probabilities (i.e.,
1070          to a vector of the same length <code class="computeroutput"><span class="identifier">n</span></code>
1071          of the <span class="emphasis"><em>rate vector</em></span> and with each element set to <code class="computeroutput"><span class="number">1.0</span><span class="special">/</span><span class="identifier">n</span></code>).
1072        </p>
1073<h6>
1074<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h27"></a>
1075          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.parameters4"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.parameters4">Parameters</a>
1076        </h6>
1077<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
1078              <code class="computeroutput"><span class="identifier">l1</span></code>: the brace-init-list
1079              of non-negative real elements representing the phase probabilities;
1080              they are normalized to ensure that they sum to unity.
1081            </li></ul></div>
1082<h6>
1083<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h28"></a>
1084          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.example2"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.example2">Example</a>
1085        </h6>
1086<pre class="programlisting"><span class="identifier">hyperexponential</span> <span class="identifier">he</span> <span class="special">=</span> <span class="special">{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">10</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">12</span> <span class="special">};</span>
1087
1088<span class="identifier">BOOST_ASSERT</span><span class="special">(</span><span class="identifier">he</span><span class="special">.</span><span class="identifier">probabilities</span><span class="special">()[</span><span class="number">0</span><span class="special">]</span> <span class="special">==</span> <span class="number">0.5</span><span class="special">);</span>
1089</pre>
1090<h5>
1091<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h29"></a>
1092          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.accessors"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.accessors">Accessors</a>
1093        </h5>
1094<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">num_phases</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
1095</pre>
1096<p>
1097          Gets the number of phases of this distribution (the size of both the rate
1098          and probability vectors).
1099        </p>
1100<h6>
1101<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h30"></a>
1102          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.return_value"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.return_value">Return
1103          Value</a>
1104        </h6>
1105<p>
1106          An non-negative integer number representing the number of phases of this
1107          distribution.
1108        </p>
1109<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">probabilities</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
1110</pre>
1111<p>
1112          Gets the <span class="emphasis"><em>phase probability vector</em></span> parameter of this
1113          distribution.
1114        </p>
1115<div class="note"><table border="0" summary="Note">
1116<tr>
1117<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
1118<th align="left">Note</th>
1119</tr>
1120<tr><td align="left" valign="top"><p>
1121            The returned probabilities are the <span class="bold"><strong>normalized</strong></span>
1122            versions of the probability parameter values passed at construction time.
1123          </p></td></tr>
1124</table></div>
1125<h6>
1126<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h31"></a>
1127          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.return_value0"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.return_value0">Return
1128          Value</a>
1129        </h6>
1130<p>
1131          A vector of non-negative real numbers representing the <span class="emphasis"><em>phase
1132          probability vector</em></span> parameter of this distribution.
1133        </p>
1134<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">rates</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
1135</pre>
1136<p>
1137          Gets the <span class="emphasis"><em>rate vector</em></span> parameter of this distribution.
1138        </p>
1139<h6>
1140<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h32"></a>
1141          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.return_value1"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.return_value1">Return
1142          Value</a>
1143        </h6>
1144<p>
1145          A vector of positive real numbers representing the <span class="emphasis"><em>rate vector</em></span>
1146          parameter of this distribution.
1147        </p>
1148<div class="warning"><table border="0" summary="Warning">
1149<tr>
1150<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../../../../../doc/src/images/warning.png"></td>
1151<th align="left">Warning</th>
1152</tr>
1153<tr><td align="left" valign="top">
1154<p>
1155            The return type of these functions is a vector-by-value. This is deliberate
1156            as we wish to hide the actual container used internally which may be
1157            subject to future changes (for example to facilitate vectorization of
1158            the cdf code etc). Users should note that some code that might otherwise
1159            have been expected to work does not. For example, an attempt to output
1160            the (normalized) probabilities:
1161          </p>
1162<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">copy</span><span class="special">(</span><span class="identifier">he</span><span class="special">.</span><span class="identifier">probabilities</span><span class="special">().</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">he</span><span class="special">.</span><span class="identifier">probabilities</span><span class="special">().</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream_iterator</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">,</span> <span class="string">" "</span><span class="special">));</span>
1163</pre>
1164<p>
1165            fails at compile or runtime because iterator types are incompatible,
1166            but, for example,
1167          </p>
1168<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">he</span><span class="special">.</span><span class="identifier">probabilities</span><span class="special">()[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="char">' '</span> <span class="special">&lt;&lt;</span> <span class="identifier">he</span><span class="special">.</span><span class="identifier">probabilities</span><span class="special">()[</span><span class="number">1</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
1169</pre>
1170<p>
1171            outputs the expected values.
1172          </p>
1173<p>
1174            In general if you want to access a member of the returned container,
1175            then assign to a variable first, and then access those members:
1176          </p>
1177<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">t</span> <span class="special">=</span> <span class="identifier">he</span><span class="special">.</span><span class="identifier">probabilities</span><span class="special">();</span>
1178<span class="identifier">std</span><span class="special">::</span><span class="identifier">copy</span><span class="special">(</span><span class="identifier">t</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">t</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream_iterator</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">,</span> <span class="string">" "</span><span class="special">));</span>
1179</pre>
1180</td></tr>
1181</table></div>
1182<h4>
1183<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h33"></a>
1184          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.non_member_accessor_functions"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.non_member_accessor_functions">Non-member
1185          Accessor Functions</a>
1186        </h4>
1187<p>
1188          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
1189          functions</a> that are generic to all distributions are supported:
1190          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
1191          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
1192          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
1193          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
1194          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
1195          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
1196          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
1197          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
1198        </p>
1199<p>
1200          The formulae for calculating these are shown in the table below.
1201        </p>
1202<h4>
1203<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h34"></a>
1204          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.accuracy"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.accuracy">Accuracy</a>
1205        </h4>
1206<p>
1207          The hyperexponential distribution is implemented in terms of the <a class="link" href="exp_dist.html" title="Exponential Distribution">Exponential Distribution</a>
1208          and as such should have very small errors, usually an <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">epsilon</a>
1209          or few.
1210        </p>
1211<h4>
1212<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h35"></a>
1213          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.implementation"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.implementation">Implementation</a>
1214        </h4>
1215<p>
1216          In the following table:
1217        </p>
1218<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1219<li class="listitem">
1220              <span class="emphasis"><em><span class="bold"><strong>α</strong></span>=(α<sub>1</sub>,...,α<sub>k</sub>)</em></span> is
1221              the <span class="emphasis"><em>phase probability vector</em></span> parameter of the
1222              <span class="emphasis"><em>k</em></span>-phase hyperexponential distribution,
1223            </li>
1224<li class="listitem">
1225              <span class="emphasis"><em><span class="bold"><strong>λ</strong></span>=(λ<sub>1</sub>,...,λ<sub>k</sub>)</em></span> is
1226              the <span class="emphasis"><em>rate vector</em></span> parameter of the <span class="emphasis"><em>k</em></span>-phase
1227              hyperexponential distribution,
1228            </li>
1229<li class="listitem">
1230              <span class="emphasis"><em>x</em></span> is the random variate.
1231            </li>
1232</ul></div>
1233<div class="informaltable"><table class="table">
1234<colgroup>
1235<col>
1236<col>
1237</colgroup>
1238<thead><tr>
1239<th>
1240                  <p>
1241                    Function
1242                  </p>
1243                </th>
1244<th>
1245                  <p>
1246                    Implementation Notes
1247                  </p>
1248                </th>
1249</tr></thead>
1250<tbody>
1251<tr>
1252<td>
1253                  <p>
1254                    support
1255                  </p>
1256                </td>
1257<td>
1258                  <p>
1259                    <span class="emphasis"><em>x</em></span> ∈ [0,∞)
1260                  </p>
1261                </td>
1262</tr>
1263<tr>
1264<td>
1265                  <p>
1266                    pdf
1267                  </p>
1268                </td>
1269<td>
1270                  <div class="blockquote"><blockquote class="blockquote"><p>
1271                      <span class="inlinemediaobject"><img src="../../../../equations/hyperexponential_pdf.svg"></span>
1272
1273                    </p></blockquote></div>
1274                </td>
1275</tr>
1276<tr>
1277<td>
1278                  <p>
1279                    cdf
1280                  </p>
1281                </td>
1282<td>
1283                  <div class="blockquote"><blockquote class="blockquote"><p>
1284                      <span class="inlinemediaobject"><img src="../../../../equations/hyperexponential_cdf.svg"></span>
1285
1286                    </p></blockquote></div>
1287                </td>
1288</tr>
1289<tr>
1290<td>
1291                  <p>
1292                    cdf complement
1293                  </p>
1294                </td>
1295<td>
1296                  <div class="blockquote"><blockquote class="blockquote"><p>
1297                      <span class="inlinemediaobject"><img src="../../../../equations/hyperexponential_ccdf.svg"></span>
1298
1299                    </p></blockquote></div>
1300                </td>
1301</tr>
1302<tr>
1303<td>
1304                  <p>
1305                    quantile
1306                  </p>
1307                </td>
1308<td>
1309                  <p>
1310                    No closed form available. Computed numerically.
1311                  </p>
1312                </td>
1313</tr>
1314<tr>
1315<td>
1316                  <p>
1317                    quantile from the complement
1318                  </p>
1319                </td>
1320<td>
1321                  <p>
1322                    No closed form available. Computed numerically.
1323                  </p>
1324                </td>
1325</tr>
1326<tr>
1327<td>
1328                  <p>
1329                    mean
1330                  </p>
1331                </td>
1332<td>
1333                  <div class="blockquote"><blockquote class="blockquote"><p>
1334                      <span class="inlinemediaobject"><img src="../../../../equations/hyperexponential_mean.svg"></span>
1335
1336                    </p></blockquote></div>
1337                </td>
1338</tr>
1339<tr>
1340<td>
1341                  <p>
1342                    variance
1343                  </p>
1344                </td>
1345<td>
1346                  <div class="blockquote"><blockquote class="blockquote"><p>
1347                      <span class="inlinemediaobject"><img src="../../../../equations/hyperexponential_variance.svg"></span>
1348
1349                    </p></blockquote></div>
1350                </td>
1351</tr>
1352<tr>
1353<td>
1354                  <p>
1355                    mode
1356                  </p>
1357                </td>
1358<td>
1359                  <p>
1360                    <code class="computeroutput"><span class="number">0</span></code>
1361                  </p>
1362                </td>
1363</tr>
1364<tr>
1365<td>
1366                  <p>
1367                    skewness
1368                  </p>
1369                </td>
1370<td>
1371                  <div class="blockquote"><blockquote class="blockquote"><p>
1372                      <span class="inlinemediaobject"><img src="../../../../equations/hyperexponential_skewness.svg"></span>
1373
1374                    </p></blockquote></div>
1375                </td>
1376</tr>
1377<tr>
1378<td>
1379                  <p>
1380                    kurtosis
1381                  </p>
1382                </td>
1383<td>
1384                  <div class="blockquote"><blockquote class="blockquote"><p>
1385                      <span class="inlinemediaobject"><img src="../../../../equations/hyperexponential_kurtosis.svg"></span>
1386
1387                    </p></blockquote></div>
1388                </td>
1389</tr>
1390<tr>
1391<td>
1392                  <p>
1393                    kurtosis excess
1394                  </p>
1395                </td>
1396<td>
1397                  <p>
1398                    kurtosis <code class="computeroutput"><span class="special">-</span> <span class="number">3</span></code>
1399                  </p>
1400                </td>
1401</tr>
1402</tbody>
1403</table></div>
1404<h4>
1405<a name="math_toolkit.dist_ref.dists.hyperexponential_dist.h36"></a>
1406          <span class="phrase"><a name="math_toolkit.dist_ref.dists.hyperexponential_dist.references"></a></span><a class="link" href="hyperexponential_dist.html#math_toolkit.dist_ref.dists.hyperexponential_dist.references">References</a>
1407        </h4>
1408<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1409<li class="listitem">
1410              A.O. Allen, <span class="emphasis"><em>Probability, Statistics, and Queuing Theory with
1411              Computer Science Applications, Second Edition</em></span>, Academic
1412              Press, 1990.
1413            </li>
1414<li class="listitem">
1415              D.G. Feitelson, <span class="emphasis"><em>Workload Modeling for Computer Systems Performance
1416              Evaluation</em></span>, Cambridge University Press, 2014
1417            </li>
1418<li class="listitem">
1419              A. Feldmann and W. Whitt, <span class="emphasis"><em>Fitting mixtures of exponentials
1420              to long-tail distributions to analyze network performance models</em></span>,
1421              Performance Evaluation 31(3-4):245, doi:10.1016/S0166-5316(97)00003-5,
1422              1998.
1423            </li>
1424<li class="listitem">
1425              H.T. Papadopolous, C. Heavey and J. Browne, <span class="emphasis"><em>Queueing Theory
1426              in Manufacturing Systems Analysis and Design</em></span>, Chapman &amp;
1427              Hall/CRC, 1993, p. 35.
1428            </li>
1429<li class="listitem">
1430              R.F. Rosin, <span class="emphasis"><em>Determining a computing center environment</em></span>,
1431              Communications of the ACM 8(7):463-468, 1965.
1432            </li>
1433<li class="listitem">
1434              K.S. Trivedi, <span class="emphasis"><em>Probability and Statistics with Reliability,
1435              Queueing, and Computer Science Applications</em></span>, John Wiley
1436              &amp; Sons, Inc., 2002.
1437            </li>
1438<li class="listitem">
1439              Wikipedia, <span class="emphasis"><em>Hyperexponential Distribution</em></span>, Online:
1440              <a href="http://en.wikipedia.org/wiki/Hyperexponential_distribution" target="_top">http://en.wikipedia.org/wiki/Hyperexponential_distribution</a>,
1441              2014
1442            </li>
1443<li class="listitem">
1444              R. Wolski and J. Brevik, <span class="emphasis"><em>Using Parametric Models to Represent
1445              Private Cloud Workloads</em></span>, IEEE TSC, PrePrint, DOI: <a href="http://doi.ieeecomputersociety.org/10.1109/TSC.2013.48" target="_top">10.1109/TSC.2013.48</a>,
1446              2013.
1447            </li>
1448<li class="listitem">
1449              Wolfram Mathematica, <span class="emphasis"><em>Hyperexponential Distribution</em></span>,
1450              Online: <a href="http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html" target="_top">http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html</a>,
1451              2014.
1452            </li>
1453</ul></div>
1454</div>
1455<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
1456<td align="left"></td>
1457<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
1458      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
1459      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
1460      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
1461      Daryle Walker and Xiaogang Zhang<p>
1462        Distributed under the Boost Software License, Version 1.0. (See accompanying
1463        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
1464      </p>
1465</div></td>
1466</tr></table>
1467<hr>
1468<div class="spirit-nav">
1469<a accesskey="p" href="geometric_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="hypergeometric_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
1470</div>
1471</body>
1472</html>
1473