1 /*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ratelimit.h>
38 #include <net/addrconf.h>
39 #include <rdma/ib_cm.h>
40
41 #include "rds_single_path.h"
42 #include "rds.h"
43 #include "ib.h"
44 #include "ib_mr.h"
45
46 /*
47 * Set the selected protocol version
48 */
rds_ib_set_protocol(struct rds_connection * conn,unsigned int version)49 static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version)
50 {
51 conn->c_version = version;
52 }
53
54 /*
55 * Set up flow control
56 */
rds_ib_set_flow_control(struct rds_connection * conn,u32 credits)57 static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits)
58 {
59 struct rds_ib_connection *ic = conn->c_transport_data;
60
61 if (rds_ib_sysctl_flow_control && credits != 0) {
62 /* We're doing flow control */
63 ic->i_flowctl = 1;
64 rds_ib_send_add_credits(conn, credits);
65 } else {
66 ic->i_flowctl = 0;
67 }
68 }
69
70 /*
71 * Tune RNR behavior. Without flow control, we use a rather
72 * low timeout, but not the absolute minimum - this should
73 * be tunable.
74 *
75 * We already set the RNR retry count to 7 (which is the
76 * smallest infinite number :-) above.
77 * If flow control is off, we want to change this back to 0
78 * so that we learn quickly when our credit accounting is
79 * buggy.
80 *
81 * Caller passes in a qp_attr pointer - don't waste stack spacv
82 * by allocation this twice.
83 */
84 static void
rds_ib_tune_rnr(struct rds_ib_connection * ic,struct ib_qp_attr * attr)85 rds_ib_tune_rnr(struct rds_ib_connection *ic, struct ib_qp_attr *attr)
86 {
87 int ret;
88
89 attr->min_rnr_timer = IB_RNR_TIMER_000_32;
90 ret = ib_modify_qp(ic->i_cm_id->qp, attr, IB_QP_MIN_RNR_TIMER);
91 if (ret)
92 printk(KERN_NOTICE "ib_modify_qp(IB_QP_MIN_RNR_TIMER): err=%d\n", -ret);
93 }
94
95 /*
96 * Connection established.
97 * We get here for both outgoing and incoming connection.
98 */
rds_ib_cm_connect_complete(struct rds_connection * conn,struct rdma_cm_event * event)99 void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event)
100 {
101 struct rds_ib_connection *ic = conn->c_transport_data;
102 const union rds_ib_conn_priv *dp = NULL;
103 struct ib_qp_attr qp_attr;
104 __be64 ack_seq = 0;
105 __be32 credit = 0;
106 u8 major = 0;
107 u8 minor = 0;
108 int err;
109
110 dp = event->param.conn.private_data;
111 if (conn->c_isv6) {
112 if (event->param.conn.private_data_len >=
113 sizeof(struct rds6_ib_connect_private)) {
114 major = dp->ricp_v6.dp_protocol_major;
115 minor = dp->ricp_v6.dp_protocol_minor;
116 credit = dp->ricp_v6.dp_credit;
117 /* dp structure start is not guaranteed to be 8 bytes
118 * aligned. Since dp_ack_seq is 64-bit extended load
119 * operations can be used so go through get_unaligned
120 * to avoid unaligned errors.
121 */
122 ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq);
123 }
124 } else if (event->param.conn.private_data_len >=
125 sizeof(struct rds_ib_connect_private)) {
126 major = dp->ricp_v4.dp_protocol_major;
127 minor = dp->ricp_v4.dp_protocol_minor;
128 credit = dp->ricp_v4.dp_credit;
129 ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq);
130 }
131
132 /* make sure it isn't empty data */
133 if (major) {
134 rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor));
135 rds_ib_set_flow_control(conn, be32_to_cpu(credit));
136 }
137
138 if (conn->c_version < RDS_PROTOCOL_VERSION) {
139 if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) {
140 pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n",
141 &conn->c_laddr, &conn->c_faddr,
142 RDS_PROTOCOL_MAJOR(conn->c_version),
143 RDS_PROTOCOL_MINOR(conn->c_version));
144 rds_conn_destroy(conn);
145 return;
146 }
147 }
148
149 pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n",
150 ic->i_active_side ? "Active" : "Passive",
151 &conn->c_laddr, &conn->c_faddr, conn->c_tos,
152 RDS_PROTOCOL_MAJOR(conn->c_version),
153 RDS_PROTOCOL_MINOR(conn->c_version),
154 ic->i_flowctl ? ", flow control" : "");
155
156 /* receive sl from the peer */
157 ic->i_sl = ic->i_cm_id->route.path_rec->sl;
158
159 atomic_set(&ic->i_cq_quiesce, 0);
160
161 /* Init rings and fill recv. this needs to wait until protocol
162 * negotiation is complete, since ring layout is different
163 * from 3.1 to 4.1.
164 */
165 rds_ib_send_init_ring(ic);
166 rds_ib_recv_init_ring(ic);
167 /* Post receive buffers - as a side effect, this will update
168 * the posted credit count. */
169 rds_ib_recv_refill(conn, 1, GFP_KERNEL);
170
171 /* Tune RNR behavior */
172 rds_ib_tune_rnr(ic, &qp_attr);
173
174 qp_attr.qp_state = IB_QPS_RTS;
175 err = ib_modify_qp(ic->i_cm_id->qp, &qp_attr, IB_QP_STATE);
176 if (err)
177 printk(KERN_NOTICE "ib_modify_qp(IB_QP_STATE, RTS): err=%d\n", err);
178
179 /* update ib_device with this local ipaddr */
180 err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr);
181 if (err)
182 printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n",
183 err);
184
185 /* If the peer gave us the last packet it saw, process this as if
186 * we had received a regular ACK. */
187 if (dp) {
188 if (ack_seq)
189 rds_send_drop_acked(conn, be64_to_cpu(ack_seq),
190 NULL);
191 }
192
193 conn->c_proposed_version = conn->c_version;
194 rds_connect_complete(conn);
195 }
196
rds_ib_cm_fill_conn_param(struct rds_connection * conn,struct rdma_conn_param * conn_param,union rds_ib_conn_priv * dp,u32 protocol_version,u32 max_responder_resources,u32 max_initiator_depth,bool isv6)197 static void rds_ib_cm_fill_conn_param(struct rds_connection *conn,
198 struct rdma_conn_param *conn_param,
199 union rds_ib_conn_priv *dp,
200 u32 protocol_version,
201 u32 max_responder_resources,
202 u32 max_initiator_depth,
203 bool isv6)
204 {
205 struct rds_ib_connection *ic = conn->c_transport_data;
206 struct rds_ib_device *rds_ibdev = ic->rds_ibdev;
207
208 memset(conn_param, 0, sizeof(struct rdma_conn_param));
209
210 conn_param->responder_resources =
211 min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources);
212 conn_param->initiator_depth =
213 min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth);
214 conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7);
215 conn_param->rnr_retry_count = 7;
216
217 if (dp) {
218 memset(dp, 0, sizeof(*dp));
219 if (isv6) {
220 dp->ricp_v6.dp_saddr = conn->c_laddr;
221 dp->ricp_v6.dp_daddr = conn->c_faddr;
222 dp->ricp_v6.dp_protocol_major =
223 RDS_PROTOCOL_MAJOR(protocol_version);
224 dp->ricp_v6.dp_protocol_minor =
225 RDS_PROTOCOL_MINOR(protocol_version);
226 dp->ricp_v6.dp_protocol_minor_mask =
227 cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS);
228 dp->ricp_v6.dp_ack_seq =
229 cpu_to_be64(rds_ib_piggyb_ack(ic));
230 dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos;
231
232 conn_param->private_data = &dp->ricp_v6;
233 conn_param->private_data_len = sizeof(dp->ricp_v6);
234 } else {
235 dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3];
236 dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3];
237 dp->ricp_v4.dp_protocol_major =
238 RDS_PROTOCOL_MAJOR(protocol_version);
239 dp->ricp_v4.dp_protocol_minor =
240 RDS_PROTOCOL_MINOR(protocol_version);
241 dp->ricp_v4.dp_protocol_minor_mask =
242 cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS);
243 dp->ricp_v4.dp_ack_seq =
244 cpu_to_be64(rds_ib_piggyb_ack(ic));
245 dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos;
246
247 conn_param->private_data = &dp->ricp_v4;
248 conn_param->private_data_len = sizeof(dp->ricp_v4);
249 }
250
251 /* Advertise flow control */
252 if (ic->i_flowctl) {
253 unsigned int credits;
254
255 credits = IB_GET_POST_CREDITS
256 (atomic_read(&ic->i_credits));
257 if (isv6)
258 dp->ricp_v6.dp_credit = cpu_to_be32(credits);
259 else
260 dp->ricp_v4.dp_credit = cpu_to_be32(credits);
261 atomic_sub(IB_SET_POST_CREDITS(credits),
262 &ic->i_credits);
263 }
264 }
265 }
266
rds_ib_cq_event_handler(struct ib_event * event,void * data)267 static void rds_ib_cq_event_handler(struct ib_event *event, void *data)
268 {
269 rdsdebug("event %u (%s) data %p\n",
270 event->event, ib_event_msg(event->event), data);
271 }
272
273 /* Plucking the oldest entry from the ring can be done concurrently with
274 * the thread refilling the ring. Each ring operation is protected by
275 * spinlocks and the transient state of refilling doesn't change the
276 * recording of which entry is oldest.
277 *
278 * This relies on IB only calling one cq comp_handler for each cq so that
279 * there will only be one caller of rds_recv_incoming() per RDS connection.
280 */
rds_ib_cq_comp_handler_recv(struct ib_cq * cq,void * context)281 static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context)
282 {
283 struct rds_connection *conn = context;
284 struct rds_ib_connection *ic = conn->c_transport_data;
285
286 rdsdebug("conn %p cq %p\n", conn, cq);
287
288 rds_ib_stats_inc(s_ib_evt_handler_call);
289
290 tasklet_schedule(&ic->i_recv_tasklet);
291 }
292
poll_scq(struct rds_ib_connection * ic,struct ib_cq * cq,struct ib_wc * wcs)293 static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq,
294 struct ib_wc *wcs)
295 {
296 int nr, i;
297 struct ib_wc *wc;
298
299 while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) {
300 for (i = 0; i < nr; i++) {
301 wc = wcs + i;
302 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
303 (unsigned long long)wc->wr_id, wc->status,
304 wc->byte_len, be32_to_cpu(wc->ex.imm_data));
305
306 if (wc->wr_id <= ic->i_send_ring.w_nr ||
307 wc->wr_id == RDS_IB_ACK_WR_ID)
308 rds_ib_send_cqe_handler(ic, wc);
309 else
310 rds_ib_mr_cqe_handler(ic, wc);
311
312 }
313 }
314 }
315
rds_ib_tasklet_fn_send(unsigned long data)316 static void rds_ib_tasklet_fn_send(unsigned long data)
317 {
318 struct rds_ib_connection *ic = (struct rds_ib_connection *)data;
319 struct rds_connection *conn = ic->conn;
320
321 rds_ib_stats_inc(s_ib_tasklet_call);
322
323 /* if cq has been already reaped, ignore incoming cq event */
324 if (atomic_read(&ic->i_cq_quiesce))
325 return;
326
327 poll_scq(ic, ic->i_send_cq, ic->i_send_wc);
328 ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP);
329 poll_scq(ic, ic->i_send_cq, ic->i_send_wc);
330
331 if (rds_conn_up(conn) &&
332 (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
333 test_bit(0, &conn->c_map_queued)))
334 rds_send_xmit(&ic->conn->c_path[0]);
335 }
336
poll_rcq(struct rds_ib_connection * ic,struct ib_cq * cq,struct ib_wc * wcs,struct rds_ib_ack_state * ack_state)337 static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq,
338 struct ib_wc *wcs,
339 struct rds_ib_ack_state *ack_state)
340 {
341 int nr, i;
342 struct ib_wc *wc;
343
344 while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) {
345 for (i = 0; i < nr; i++) {
346 wc = wcs + i;
347 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
348 (unsigned long long)wc->wr_id, wc->status,
349 wc->byte_len, be32_to_cpu(wc->ex.imm_data));
350
351 rds_ib_recv_cqe_handler(ic, wc, ack_state);
352 }
353 }
354 }
355
rds_ib_tasklet_fn_recv(unsigned long data)356 static void rds_ib_tasklet_fn_recv(unsigned long data)
357 {
358 struct rds_ib_connection *ic = (struct rds_ib_connection *)data;
359 struct rds_connection *conn = ic->conn;
360 struct rds_ib_device *rds_ibdev = ic->rds_ibdev;
361 struct rds_ib_ack_state state;
362
363 if (!rds_ibdev)
364 rds_conn_drop(conn);
365
366 rds_ib_stats_inc(s_ib_tasklet_call);
367
368 /* if cq has been already reaped, ignore incoming cq event */
369 if (atomic_read(&ic->i_cq_quiesce))
370 return;
371
372 memset(&state, 0, sizeof(state));
373 poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state);
374 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
375 poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state);
376
377 if (state.ack_next_valid)
378 rds_ib_set_ack(ic, state.ack_next, state.ack_required);
379 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
380 rds_send_drop_acked(conn, state.ack_recv, NULL);
381 ic->i_ack_recv = state.ack_recv;
382 }
383
384 if (rds_conn_up(conn))
385 rds_ib_attempt_ack(ic);
386 }
387
rds_ib_qp_event_handler(struct ib_event * event,void * data)388 static void rds_ib_qp_event_handler(struct ib_event *event, void *data)
389 {
390 struct rds_connection *conn = data;
391 struct rds_ib_connection *ic = conn->c_transport_data;
392
393 rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event,
394 ib_event_msg(event->event));
395
396 switch (event->event) {
397 case IB_EVENT_COMM_EST:
398 rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST);
399 break;
400 default:
401 rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n",
402 event->event, ib_event_msg(event->event),
403 &conn->c_laddr, &conn->c_faddr);
404 rds_conn_drop(conn);
405 break;
406 }
407 }
408
rds_ib_cq_comp_handler_send(struct ib_cq * cq,void * context)409 static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context)
410 {
411 struct rds_connection *conn = context;
412 struct rds_ib_connection *ic = conn->c_transport_data;
413
414 rdsdebug("conn %p cq %p\n", conn, cq);
415
416 rds_ib_stats_inc(s_ib_evt_handler_call);
417
418 tasklet_schedule(&ic->i_send_tasklet);
419 }
420
ibdev_get_unused_vector(struct rds_ib_device * rds_ibdev)421 static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev)
422 {
423 int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1];
424 int index = rds_ibdev->dev->num_comp_vectors - 1;
425 int i;
426
427 for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) {
428 if (rds_ibdev->vector_load[i] < min) {
429 index = i;
430 min = rds_ibdev->vector_load[i];
431 }
432 }
433
434 rds_ibdev->vector_load[index]++;
435 return index;
436 }
437
ibdev_put_vector(struct rds_ib_device * rds_ibdev,int index)438 static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index)
439 {
440 rds_ibdev->vector_load[index]--;
441 }
442
rds_dma_hdr_free(struct ib_device * dev,struct rds_header * hdr,dma_addr_t dma_addr,enum dma_data_direction dir)443 static void rds_dma_hdr_free(struct ib_device *dev, struct rds_header *hdr,
444 dma_addr_t dma_addr, enum dma_data_direction dir)
445 {
446 ib_dma_unmap_single(dev, dma_addr, sizeof(*hdr), dir);
447 kfree(hdr);
448 }
449
rds_dma_hdr_alloc(struct ib_device * dev,dma_addr_t * dma_addr,enum dma_data_direction dir)450 static struct rds_header *rds_dma_hdr_alloc(struct ib_device *dev,
451 dma_addr_t *dma_addr, enum dma_data_direction dir)
452 {
453 struct rds_header *hdr;
454
455 hdr = kzalloc_node(sizeof(*hdr), GFP_KERNEL, ibdev_to_node(dev));
456 if (!hdr)
457 return NULL;
458
459 *dma_addr = ib_dma_map_single(dev, hdr, sizeof(*hdr),
460 DMA_BIDIRECTIONAL);
461 if (ib_dma_mapping_error(dev, *dma_addr)) {
462 kfree(hdr);
463 return NULL;
464 }
465
466 return hdr;
467 }
468
469 /* Free the DMA memory used to store struct rds_header.
470 *
471 * @dev: the RDS IB device
472 * @hdrs: pointer to the array storing DMA memory pointers
473 * @dma_addrs: pointer to the array storing DMA addresses
474 * @num_hdars: number of headers to free.
475 */
rds_dma_hdrs_free(struct rds_ib_device * dev,struct rds_header ** hdrs,dma_addr_t * dma_addrs,u32 num_hdrs,enum dma_data_direction dir)476 static void rds_dma_hdrs_free(struct rds_ib_device *dev,
477 struct rds_header **hdrs, dma_addr_t *dma_addrs, u32 num_hdrs,
478 enum dma_data_direction dir)
479 {
480 u32 i;
481
482 for (i = 0; i < num_hdrs; i++)
483 rds_dma_hdr_free(dev->dev, hdrs[i], dma_addrs[i], dir);
484 kvfree(hdrs);
485 kvfree(dma_addrs);
486 }
487
488
489 /* Allocate DMA coherent memory to be used to store struct rds_header for
490 * sending/receiving packets. The pointers to the DMA memory and the
491 * associated DMA addresses are stored in two arrays.
492 *
493 * @dev: the RDS IB device
494 * @dma_addrs: pointer to the array for storing DMA addresses
495 * @num_hdrs: number of headers to allocate
496 *
497 * It returns the pointer to the array storing the DMA memory pointers. On
498 * error, NULL pointer is returned.
499 */
rds_dma_hdrs_alloc(struct rds_ib_device * dev,dma_addr_t ** dma_addrs,u32 num_hdrs,enum dma_data_direction dir)500 static struct rds_header **rds_dma_hdrs_alloc(struct rds_ib_device *dev,
501 dma_addr_t **dma_addrs, u32 num_hdrs,
502 enum dma_data_direction dir)
503 {
504 struct rds_header **hdrs;
505 dma_addr_t *hdr_daddrs;
506 u32 i;
507
508 hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL,
509 ibdev_to_node(dev->dev));
510 if (!hdrs)
511 return NULL;
512
513 hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL,
514 ibdev_to_node(dev->dev));
515 if (!hdr_daddrs) {
516 kvfree(hdrs);
517 return NULL;
518 }
519
520 for (i = 0; i < num_hdrs; i++) {
521 hdrs[i] = rds_dma_hdr_alloc(dev->dev, &hdr_daddrs[i], dir);
522 if (!hdrs[i]) {
523 rds_dma_hdrs_free(dev, hdrs, hdr_daddrs, i, dir);
524 return NULL;
525 }
526 }
527
528 *dma_addrs = hdr_daddrs;
529 return hdrs;
530 }
531
532 /*
533 * This needs to be very careful to not leave IS_ERR pointers around for
534 * cleanup to trip over.
535 */
rds_ib_setup_qp(struct rds_connection * conn)536 static int rds_ib_setup_qp(struct rds_connection *conn)
537 {
538 struct rds_ib_connection *ic = conn->c_transport_data;
539 struct ib_device *dev = ic->i_cm_id->device;
540 struct ib_qp_init_attr attr;
541 struct ib_cq_init_attr cq_attr = {};
542 struct rds_ib_device *rds_ibdev;
543 unsigned long max_wrs;
544 int ret, fr_queue_space;
545
546 /*
547 * It's normal to see a null device if an incoming connection races
548 * with device removal, so we don't print a warning.
549 */
550 rds_ibdev = rds_ib_get_client_data(dev);
551 if (!rds_ibdev)
552 return -EOPNOTSUPP;
553
554 /* The fr_queue_space is currently set to 512, to add extra space on
555 * completion queue and send queue. This extra space is used for FRWR
556 * registration and invalidation work requests
557 */
558 fr_queue_space = RDS_IB_DEFAULT_FR_WR;
559
560 /* add the conn now so that connection establishment has the dev */
561 rds_ib_add_conn(rds_ibdev, conn);
562
563 max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ?
564 rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr;
565 if (ic->i_send_ring.w_nr != max_wrs)
566 rds_ib_ring_resize(&ic->i_send_ring, max_wrs);
567
568 max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ?
569 rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr;
570 if (ic->i_recv_ring.w_nr != max_wrs)
571 rds_ib_ring_resize(&ic->i_recv_ring, max_wrs);
572
573 /* Protection domain and memory range */
574 ic->i_pd = rds_ibdev->pd;
575
576 ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev);
577 cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1;
578 cq_attr.comp_vector = ic->i_scq_vector;
579 ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send,
580 rds_ib_cq_event_handler, conn,
581 &cq_attr);
582 if (IS_ERR(ic->i_send_cq)) {
583 ret = PTR_ERR(ic->i_send_cq);
584 ic->i_send_cq = NULL;
585 ibdev_put_vector(rds_ibdev, ic->i_scq_vector);
586 rdsdebug("ib_create_cq send failed: %d\n", ret);
587 goto rds_ibdev_out;
588 }
589
590 ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev);
591 cq_attr.cqe = ic->i_recv_ring.w_nr;
592 cq_attr.comp_vector = ic->i_rcq_vector;
593 ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv,
594 rds_ib_cq_event_handler, conn,
595 &cq_attr);
596 if (IS_ERR(ic->i_recv_cq)) {
597 ret = PTR_ERR(ic->i_recv_cq);
598 ic->i_recv_cq = NULL;
599 ibdev_put_vector(rds_ibdev, ic->i_rcq_vector);
600 rdsdebug("ib_create_cq recv failed: %d\n", ret);
601 goto send_cq_out;
602 }
603
604 ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP);
605 if (ret) {
606 rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
607 goto recv_cq_out;
608 }
609
610 ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
611 if (ret) {
612 rdsdebug("ib_req_notify_cq recv failed: %d\n", ret);
613 goto recv_cq_out;
614 }
615
616 /* XXX negotiate max send/recv with remote? */
617 memset(&attr, 0, sizeof(attr));
618 attr.event_handler = rds_ib_qp_event_handler;
619 attr.qp_context = conn;
620 /* + 1 to allow for the single ack message */
621 attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1;
622 attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1;
623 attr.cap.max_send_sge = rds_ibdev->max_sge;
624 attr.cap.max_recv_sge = RDS_IB_RECV_SGE;
625 attr.sq_sig_type = IB_SIGNAL_REQ_WR;
626 attr.qp_type = IB_QPT_RC;
627 attr.send_cq = ic->i_send_cq;
628 attr.recv_cq = ic->i_recv_cq;
629
630 /*
631 * XXX this can fail if max_*_wr is too large? Are we supposed
632 * to back off until we get a value that the hardware can support?
633 */
634 ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr);
635 if (ret) {
636 rdsdebug("rdma_create_qp failed: %d\n", ret);
637 goto recv_cq_out;
638 }
639
640 ic->i_send_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_send_hdrs_dma,
641 ic->i_send_ring.w_nr,
642 DMA_TO_DEVICE);
643 if (!ic->i_send_hdrs) {
644 ret = -ENOMEM;
645 rdsdebug("DMA send hdrs alloc failed\n");
646 goto qp_out;
647 }
648
649 ic->i_recv_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_recv_hdrs_dma,
650 ic->i_recv_ring.w_nr,
651 DMA_FROM_DEVICE);
652 if (!ic->i_recv_hdrs) {
653 ret = -ENOMEM;
654 rdsdebug("DMA recv hdrs alloc failed\n");
655 goto send_hdrs_dma_out;
656 }
657
658 ic->i_ack = rds_dma_hdr_alloc(rds_ibdev->dev, &ic->i_ack_dma,
659 DMA_TO_DEVICE);
660 if (!ic->i_ack) {
661 ret = -ENOMEM;
662 rdsdebug("DMA ack header alloc failed\n");
663 goto recv_hdrs_dma_out;
664 }
665
666 ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work),
667 ic->i_send_ring.w_nr),
668 ibdev_to_node(dev));
669 if (!ic->i_sends) {
670 ret = -ENOMEM;
671 rdsdebug("send allocation failed\n");
672 goto ack_dma_out;
673 }
674
675 ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work),
676 ic->i_recv_ring.w_nr),
677 ibdev_to_node(dev));
678 if (!ic->i_recvs) {
679 ret = -ENOMEM;
680 rdsdebug("recv allocation failed\n");
681 goto sends_out;
682 }
683
684 rds_ib_recv_init_ack(ic);
685
686 rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd,
687 ic->i_send_cq, ic->i_recv_cq);
688
689 goto out;
690
691 sends_out:
692 vfree(ic->i_sends);
693
694 ack_dma_out:
695 rds_dma_hdr_free(rds_ibdev->dev, ic->i_ack, ic->i_ack_dma,
696 DMA_TO_DEVICE);
697 ic->i_ack = NULL;
698
699 recv_hdrs_dma_out:
700 rds_dma_hdrs_free(rds_ibdev, ic->i_recv_hdrs, ic->i_recv_hdrs_dma,
701 ic->i_recv_ring.w_nr, DMA_FROM_DEVICE);
702 ic->i_recv_hdrs = NULL;
703 ic->i_recv_hdrs_dma = NULL;
704
705 send_hdrs_dma_out:
706 rds_dma_hdrs_free(rds_ibdev, ic->i_send_hdrs, ic->i_send_hdrs_dma,
707 ic->i_send_ring.w_nr, DMA_TO_DEVICE);
708 ic->i_send_hdrs = NULL;
709 ic->i_send_hdrs_dma = NULL;
710
711 qp_out:
712 rdma_destroy_qp(ic->i_cm_id);
713 recv_cq_out:
714 ib_destroy_cq(ic->i_recv_cq);
715 ic->i_recv_cq = NULL;
716 send_cq_out:
717 ib_destroy_cq(ic->i_send_cq);
718 ic->i_send_cq = NULL;
719 rds_ibdev_out:
720 rds_ib_remove_conn(rds_ibdev, conn);
721 out:
722 rds_ib_dev_put(rds_ibdev);
723
724 return ret;
725 }
726
rds_ib_protocol_compatible(struct rdma_cm_event * event,bool isv6)727 static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6)
728 {
729 const union rds_ib_conn_priv *dp = event->param.conn.private_data;
730 u8 data_len, major, minor;
731 u32 version = 0;
732 __be16 mask;
733 u16 common;
734
735 /*
736 * rdma_cm private data is odd - when there is any private data in the
737 * request, we will be given a pretty large buffer without telling us the
738 * original size. The only way to tell the difference is by looking at
739 * the contents, which are initialized to zero.
740 * If the protocol version fields aren't set, this is a connection attempt
741 * from an older version. This could be 3.0 or 2.0 - we can't tell.
742 * We really should have changed this for OFED 1.3 :-(
743 */
744
745 /* Be paranoid. RDS always has privdata */
746 if (!event->param.conn.private_data_len) {
747 printk(KERN_NOTICE "RDS incoming connection has no private data, "
748 "rejecting\n");
749 return 0;
750 }
751
752 if (isv6) {
753 data_len = sizeof(struct rds6_ib_connect_private);
754 major = dp->ricp_v6.dp_protocol_major;
755 minor = dp->ricp_v6.dp_protocol_minor;
756 mask = dp->ricp_v6.dp_protocol_minor_mask;
757 } else {
758 data_len = sizeof(struct rds_ib_connect_private);
759 major = dp->ricp_v4.dp_protocol_major;
760 minor = dp->ricp_v4.dp_protocol_minor;
761 mask = dp->ricp_v4.dp_protocol_minor_mask;
762 }
763
764 /* Even if len is crap *now* I still want to check it. -ASG */
765 if (event->param.conn.private_data_len < data_len || major == 0)
766 return RDS_PROTOCOL_4_0;
767
768 common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS;
769 if (major == 4 && common) {
770 version = RDS_PROTOCOL_4_0;
771 while ((common >>= 1) != 0)
772 version++;
773 } else if (RDS_PROTOCOL_COMPAT_VERSION ==
774 RDS_PROTOCOL(major, minor)) {
775 version = RDS_PROTOCOL_COMPAT_VERSION;
776 } else {
777 if (isv6)
778 printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n",
779 &dp->ricp_v6.dp_saddr, major, minor);
780 else
781 printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n",
782 &dp->ricp_v4.dp_saddr, major, minor);
783 }
784 return version;
785 }
786
787 #if IS_ENABLED(CONFIG_IPV6)
788 /* Given an IPv6 address, find the net_device which hosts that address and
789 * return its index. This is used by the rds_ib_cm_handle_connect() code to
790 * find the interface index of where an incoming request comes from when
791 * the request is using a link local address.
792 *
793 * Note one problem in this search. It is possible that two interfaces have
794 * the same link local address. Unfortunately, this cannot be solved unless
795 * the underlying layer gives us the interface which an incoming RDMA connect
796 * request comes from.
797 */
__rds_find_ifindex(struct net * net,const struct in6_addr * addr)798 static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr)
799 {
800 struct net_device *dev;
801 int idx = 0;
802
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev) {
805 if (ipv6_chk_addr(net, addr, dev, 1)) {
806 idx = dev->ifindex;
807 break;
808 }
809 }
810 rcu_read_unlock();
811
812 return idx;
813 }
814 #endif
815
rds_ib_cm_handle_connect(struct rdma_cm_id * cm_id,struct rdma_cm_event * event,bool isv6)816 int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id,
817 struct rdma_cm_event *event, bool isv6)
818 {
819 __be64 lguid = cm_id->route.path_rec->sgid.global.interface_id;
820 __be64 fguid = cm_id->route.path_rec->dgid.global.interface_id;
821 const struct rds_ib_conn_priv_cmn *dp_cmn;
822 struct rds_connection *conn = NULL;
823 struct rds_ib_connection *ic = NULL;
824 struct rdma_conn_param conn_param;
825 const union rds_ib_conn_priv *dp;
826 union rds_ib_conn_priv dp_rep;
827 struct in6_addr s_mapped_addr;
828 struct in6_addr d_mapped_addr;
829 const struct in6_addr *saddr6;
830 const struct in6_addr *daddr6;
831 int destroy = 1;
832 u32 ifindex = 0;
833 u32 version;
834 int err = 1;
835
836 /* Check whether the remote protocol version matches ours. */
837 version = rds_ib_protocol_compatible(event, isv6);
838 if (!version) {
839 err = RDS_RDMA_REJ_INCOMPAT;
840 goto out;
841 }
842
843 dp = event->param.conn.private_data;
844 if (isv6) {
845 #if IS_ENABLED(CONFIG_IPV6)
846 dp_cmn = &dp->ricp_v6.dp_cmn;
847 saddr6 = &dp->ricp_v6.dp_saddr;
848 daddr6 = &dp->ricp_v6.dp_daddr;
849 /* If either address is link local, need to find the
850 * interface index in order to create a proper RDS
851 * connection.
852 */
853 if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) {
854 /* Using init_net for now .. */
855 ifindex = __rds_find_ifindex(&init_net, daddr6);
856 /* No index found... Need to bail out. */
857 if (ifindex == 0) {
858 err = -EOPNOTSUPP;
859 goto out;
860 }
861 } else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) {
862 /* Use our address to find the correct index. */
863 ifindex = __rds_find_ifindex(&init_net, daddr6);
864 /* No index found... Need to bail out. */
865 if (ifindex == 0) {
866 err = -EOPNOTSUPP;
867 goto out;
868 }
869 }
870 #else
871 err = -EOPNOTSUPP;
872 goto out;
873 #endif
874 } else {
875 dp_cmn = &dp->ricp_v4.dp_cmn;
876 ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr);
877 ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr);
878 saddr6 = &s_mapped_addr;
879 daddr6 = &d_mapped_addr;
880 }
881
882 rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n",
883 saddr6, daddr6, RDS_PROTOCOL_MAJOR(version),
884 RDS_PROTOCOL_MINOR(version),
885 (unsigned long long)be64_to_cpu(lguid),
886 (unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss);
887
888 /* RDS/IB is not currently netns aware, thus init_net */
889 conn = rds_conn_create(&init_net, daddr6, saddr6,
890 &rds_ib_transport, dp_cmn->ricpc_dp_toss,
891 GFP_KERNEL, ifindex);
892 if (IS_ERR(conn)) {
893 rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn));
894 conn = NULL;
895 goto out;
896 }
897
898 /*
899 * The connection request may occur while the
900 * previous connection exist, e.g. in case of failover.
901 * But as connections may be initiated simultaneously
902 * by both hosts, we have a random backoff mechanism -
903 * see the comment above rds_queue_reconnect()
904 */
905 mutex_lock(&conn->c_cm_lock);
906 if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) {
907 if (rds_conn_state(conn) == RDS_CONN_UP) {
908 rdsdebug("incoming connect while connecting\n");
909 rds_conn_drop(conn);
910 rds_ib_stats_inc(s_ib_listen_closed_stale);
911 } else
912 if (rds_conn_state(conn) == RDS_CONN_CONNECTING) {
913 /* Wait and see - our connect may still be succeeding */
914 rds_ib_stats_inc(s_ib_connect_raced);
915 }
916 goto out;
917 }
918
919 ic = conn->c_transport_data;
920
921 rds_ib_set_protocol(conn, version);
922 rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit));
923
924 /* If the peer gave us the last packet it saw, process this as if
925 * we had received a regular ACK. */
926 if (dp_cmn->ricpc_ack_seq)
927 rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq),
928 NULL);
929
930 BUG_ON(cm_id->context);
931 BUG_ON(ic->i_cm_id);
932
933 ic->i_cm_id = cm_id;
934 cm_id->context = conn;
935
936 /* We got halfway through setting up the ib_connection, if we
937 * fail now, we have to take the long route out of this mess. */
938 destroy = 0;
939
940 err = rds_ib_setup_qp(conn);
941 if (err) {
942 rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err);
943 goto out;
944 }
945
946 rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version,
947 event->param.conn.responder_resources,
948 event->param.conn.initiator_depth, isv6);
949
950 /* rdma_accept() calls rdma_reject() internally if it fails */
951 if (rdma_accept(cm_id, &conn_param))
952 rds_ib_conn_error(conn, "rdma_accept failed\n");
953
954 out:
955 if (conn)
956 mutex_unlock(&conn->c_cm_lock);
957 if (err)
958 rdma_reject(cm_id, &err, sizeof(int),
959 IB_CM_REJ_CONSUMER_DEFINED);
960 return destroy;
961 }
962
963
rds_ib_cm_initiate_connect(struct rdma_cm_id * cm_id,bool isv6)964 int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6)
965 {
966 struct rds_connection *conn = cm_id->context;
967 struct rds_ib_connection *ic = conn->c_transport_data;
968 struct rdma_conn_param conn_param;
969 union rds_ib_conn_priv dp;
970 int ret;
971
972 /* If the peer doesn't do protocol negotiation, we must
973 * default to RDSv3.0 */
974 rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1);
975 ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */
976
977 ret = rds_ib_setup_qp(conn);
978 if (ret) {
979 rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret);
980 goto out;
981 }
982
983 rds_ib_cm_fill_conn_param(conn, &conn_param, &dp,
984 conn->c_proposed_version,
985 UINT_MAX, UINT_MAX, isv6);
986 ret = rdma_connect_locked(cm_id, &conn_param);
987 if (ret)
988 rds_ib_conn_error(conn, "rdma_connect_locked failed (%d)\n",
989 ret);
990
991 out:
992 /* Beware - returning non-zero tells the rdma_cm to destroy
993 * the cm_id. We should certainly not do it as long as we still
994 * "own" the cm_id. */
995 if (ret) {
996 if (ic->i_cm_id == cm_id)
997 ret = 0;
998 }
999 ic->i_active_side = true;
1000 return ret;
1001 }
1002
rds_ib_conn_path_connect(struct rds_conn_path * cp)1003 int rds_ib_conn_path_connect(struct rds_conn_path *cp)
1004 {
1005 struct rds_connection *conn = cp->cp_conn;
1006 struct sockaddr_storage src, dest;
1007 rdma_cm_event_handler handler;
1008 struct rds_ib_connection *ic;
1009 int ret;
1010
1011 ic = conn->c_transport_data;
1012
1013 /* XXX I wonder what affect the port space has */
1014 /* delegate cm event handler to rdma_transport */
1015 #if IS_ENABLED(CONFIG_IPV6)
1016 if (conn->c_isv6)
1017 handler = rds6_rdma_cm_event_handler;
1018 else
1019 #endif
1020 handler = rds_rdma_cm_event_handler;
1021 ic->i_cm_id = rdma_create_id(&init_net, handler, conn,
1022 RDMA_PS_TCP, IB_QPT_RC);
1023 if (IS_ERR(ic->i_cm_id)) {
1024 ret = PTR_ERR(ic->i_cm_id);
1025 ic->i_cm_id = NULL;
1026 rdsdebug("rdma_create_id() failed: %d\n", ret);
1027 goto out;
1028 }
1029
1030 rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn);
1031
1032 if (ipv6_addr_v4mapped(&conn->c_faddr)) {
1033 struct sockaddr_in *sin;
1034
1035 sin = (struct sockaddr_in *)&src;
1036 sin->sin_family = AF_INET;
1037 sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3];
1038 sin->sin_port = 0;
1039
1040 sin = (struct sockaddr_in *)&dest;
1041 sin->sin_family = AF_INET;
1042 sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3];
1043 sin->sin_port = htons(RDS_PORT);
1044 } else {
1045 struct sockaddr_in6 *sin6;
1046
1047 sin6 = (struct sockaddr_in6 *)&src;
1048 sin6->sin6_family = AF_INET6;
1049 sin6->sin6_addr = conn->c_laddr;
1050 sin6->sin6_port = 0;
1051 sin6->sin6_scope_id = conn->c_dev_if;
1052
1053 sin6 = (struct sockaddr_in6 *)&dest;
1054 sin6->sin6_family = AF_INET6;
1055 sin6->sin6_addr = conn->c_faddr;
1056 sin6->sin6_port = htons(RDS_CM_PORT);
1057 sin6->sin6_scope_id = conn->c_dev_if;
1058 }
1059
1060 ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src,
1061 (struct sockaddr *)&dest,
1062 RDS_RDMA_RESOLVE_TIMEOUT_MS);
1063 if (ret) {
1064 rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id,
1065 ret);
1066 rdma_destroy_id(ic->i_cm_id);
1067 ic->i_cm_id = NULL;
1068 }
1069
1070 out:
1071 return ret;
1072 }
1073
1074 /*
1075 * This is so careful about only cleaning up resources that were built up
1076 * so that it can be called at any point during startup. In fact it
1077 * can be called multiple times for a given connection.
1078 */
rds_ib_conn_path_shutdown(struct rds_conn_path * cp)1079 void rds_ib_conn_path_shutdown(struct rds_conn_path *cp)
1080 {
1081 struct rds_connection *conn = cp->cp_conn;
1082 struct rds_ib_connection *ic = conn->c_transport_data;
1083 int err = 0;
1084
1085 rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id,
1086 ic->i_pd, ic->i_send_cq, ic->i_recv_cq,
1087 ic->i_cm_id ? ic->i_cm_id->qp : NULL);
1088
1089 if (ic->i_cm_id) {
1090 rdsdebug("disconnecting cm %p\n", ic->i_cm_id);
1091 err = rdma_disconnect(ic->i_cm_id);
1092 if (err) {
1093 /* Actually this may happen quite frequently, when
1094 * an outgoing connect raced with an incoming connect.
1095 */
1096 rdsdebug("failed to disconnect, cm: %p err %d\n",
1097 ic->i_cm_id, err);
1098 }
1099
1100 /* kick off "flush_worker" for all pools in order to reap
1101 * all FRMR registrations that are still marked "FRMR_IS_INUSE"
1102 */
1103 rds_ib_flush_mrs();
1104
1105 /*
1106 * We want to wait for tx and rx completion to finish
1107 * before we tear down the connection, but we have to be
1108 * careful not to get stuck waiting on a send ring that
1109 * only has unsignaled sends in it. We've shutdown new
1110 * sends before getting here so by waiting for signaled
1111 * sends to complete we're ensured that there will be no
1112 * more tx processing.
1113 */
1114 wait_event(rds_ib_ring_empty_wait,
1115 rds_ib_ring_empty(&ic->i_recv_ring) &&
1116 (atomic_read(&ic->i_signaled_sends) == 0) &&
1117 (atomic_read(&ic->i_fastreg_inuse_count) == 0) &&
1118 (atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR));
1119 tasklet_kill(&ic->i_send_tasklet);
1120 tasklet_kill(&ic->i_recv_tasklet);
1121
1122 atomic_set(&ic->i_cq_quiesce, 1);
1123
1124 /* first destroy the ib state that generates callbacks */
1125 if (ic->i_cm_id->qp)
1126 rdma_destroy_qp(ic->i_cm_id);
1127 if (ic->i_send_cq) {
1128 if (ic->rds_ibdev)
1129 ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector);
1130 ib_destroy_cq(ic->i_send_cq);
1131 }
1132
1133 if (ic->i_recv_cq) {
1134 if (ic->rds_ibdev)
1135 ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector);
1136 ib_destroy_cq(ic->i_recv_cq);
1137 }
1138
1139 if (ic->rds_ibdev) {
1140 /* then free the resources that ib callbacks use */
1141 if (ic->i_send_hdrs) {
1142 rds_dma_hdrs_free(ic->rds_ibdev,
1143 ic->i_send_hdrs,
1144 ic->i_send_hdrs_dma,
1145 ic->i_send_ring.w_nr,
1146 DMA_TO_DEVICE);
1147 ic->i_send_hdrs = NULL;
1148 ic->i_send_hdrs_dma = NULL;
1149 }
1150
1151 if (ic->i_recv_hdrs) {
1152 rds_dma_hdrs_free(ic->rds_ibdev,
1153 ic->i_recv_hdrs,
1154 ic->i_recv_hdrs_dma,
1155 ic->i_recv_ring.w_nr,
1156 DMA_FROM_DEVICE);
1157 ic->i_recv_hdrs = NULL;
1158 ic->i_recv_hdrs_dma = NULL;
1159 }
1160
1161 if (ic->i_ack) {
1162 rds_dma_hdr_free(ic->rds_ibdev->dev, ic->i_ack,
1163 ic->i_ack_dma, DMA_TO_DEVICE);
1164 ic->i_ack = NULL;
1165 }
1166 } else {
1167 WARN_ON(ic->i_send_hdrs);
1168 WARN_ON(ic->i_send_hdrs_dma);
1169 WARN_ON(ic->i_recv_hdrs);
1170 WARN_ON(ic->i_recv_hdrs_dma);
1171 WARN_ON(ic->i_ack);
1172 }
1173
1174 if (ic->i_sends)
1175 rds_ib_send_clear_ring(ic);
1176 if (ic->i_recvs)
1177 rds_ib_recv_clear_ring(ic);
1178
1179 rdma_destroy_id(ic->i_cm_id);
1180
1181 /*
1182 * Move connection back to the nodev list.
1183 */
1184 if (ic->rds_ibdev)
1185 rds_ib_remove_conn(ic->rds_ibdev, conn);
1186
1187 ic->i_cm_id = NULL;
1188 ic->i_pd = NULL;
1189 ic->i_send_cq = NULL;
1190 ic->i_recv_cq = NULL;
1191 }
1192 BUG_ON(ic->rds_ibdev);
1193
1194 /* Clear pending transmit */
1195 if (ic->i_data_op) {
1196 struct rds_message *rm;
1197
1198 rm = container_of(ic->i_data_op, struct rds_message, data);
1199 rds_message_put(rm);
1200 ic->i_data_op = NULL;
1201 }
1202
1203 /* Clear the ACK state */
1204 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
1205 #ifdef KERNEL_HAS_ATOMIC64
1206 atomic64_set(&ic->i_ack_next, 0);
1207 #else
1208 ic->i_ack_next = 0;
1209 #endif
1210 ic->i_ack_recv = 0;
1211
1212 /* Clear flow control state */
1213 ic->i_flowctl = 0;
1214 atomic_set(&ic->i_credits, 0);
1215
1216 /* Re-init rings, but retain sizes. */
1217 rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr);
1218 rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr);
1219
1220 if (ic->i_ibinc) {
1221 rds_inc_put(&ic->i_ibinc->ii_inc);
1222 ic->i_ibinc = NULL;
1223 }
1224
1225 vfree(ic->i_sends);
1226 ic->i_sends = NULL;
1227 vfree(ic->i_recvs);
1228 ic->i_recvs = NULL;
1229 ic->i_active_side = false;
1230 }
1231
rds_ib_conn_alloc(struct rds_connection * conn,gfp_t gfp)1232 int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp)
1233 {
1234 struct rds_ib_connection *ic;
1235 unsigned long flags;
1236 int ret;
1237
1238 /* XXX too lazy? */
1239 ic = kzalloc(sizeof(struct rds_ib_connection), gfp);
1240 if (!ic)
1241 return -ENOMEM;
1242
1243 ret = rds_ib_recv_alloc_caches(ic, gfp);
1244 if (ret) {
1245 kfree(ic);
1246 return ret;
1247 }
1248
1249 INIT_LIST_HEAD(&ic->ib_node);
1250 tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send,
1251 (unsigned long)ic);
1252 tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv,
1253 (unsigned long)ic);
1254 mutex_init(&ic->i_recv_mutex);
1255 #ifndef KERNEL_HAS_ATOMIC64
1256 spin_lock_init(&ic->i_ack_lock);
1257 #endif
1258 atomic_set(&ic->i_signaled_sends, 0);
1259 atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR);
1260
1261 /*
1262 * rds_ib_conn_shutdown() waits for these to be emptied so they
1263 * must be initialized before it can be called.
1264 */
1265 rds_ib_ring_init(&ic->i_send_ring, 0);
1266 rds_ib_ring_init(&ic->i_recv_ring, 0);
1267
1268 ic->conn = conn;
1269 conn->c_transport_data = ic;
1270
1271 spin_lock_irqsave(&ib_nodev_conns_lock, flags);
1272 list_add_tail(&ic->ib_node, &ib_nodev_conns);
1273 spin_unlock_irqrestore(&ib_nodev_conns_lock, flags);
1274
1275
1276 rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data);
1277 return 0;
1278 }
1279
1280 /*
1281 * Free a connection. Connection must be shut down and not set for reconnect.
1282 */
rds_ib_conn_free(void * arg)1283 void rds_ib_conn_free(void *arg)
1284 {
1285 struct rds_ib_connection *ic = arg;
1286 spinlock_t *lock_ptr;
1287
1288 rdsdebug("ic %p\n", ic);
1289
1290 /*
1291 * Conn is either on a dev's list or on the nodev list.
1292 * A race with shutdown() or connect() would cause problems
1293 * (since rds_ibdev would change) but that should never happen.
1294 */
1295 lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock;
1296
1297 spin_lock_irq(lock_ptr);
1298 list_del(&ic->ib_node);
1299 spin_unlock_irq(lock_ptr);
1300
1301 rds_ib_recv_free_caches(ic);
1302
1303 kfree(ic);
1304 }
1305
1306
1307 /*
1308 * An error occurred on the connection
1309 */
1310 void
__rds_ib_conn_error(struct rds_connection * conn,const char * fmt,...)1311 __rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...)
1312 {
1313 va_list ap;
1314
1315 rds_conn_drop(conn);
1316
1317 va_start(ap, fmt);
1318 vprintk(fmt, ap);
1319 va_end(ap);
1320 }
1321