• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2020 Google, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "util/ralloc.h"
25 #include "util/u_dynarray.h"
26 
27 #include "ir3.h"
28 
29 /**
30  * A bit more extra cleanup after sched pass.  In particular, prior to
31  * instruction scheduling, we can't easily eliminate unneeded mov's
32  * from "arrays", because we don't yet know if there is an intervening
33  * array-write scheduled before the use of the array-read.
34  *
35  * NOTE array is equivalent to nir "registers".. ie. it can be length of
36  * one.  It is basically anything that is not SSA.
37  */
38 
39 /**
40  * Check if any instruction before `use` and after `src` writes to the
41  * specified array.  If `offset` is negative, it is a relative (a0.x)
42  * access and we care about all writes to the array (as we don't know
43  * which array element is read).  Otherwise in the case of non-relative
44  * access, we only have to care about the write to the specified (>= 0)
45  * offset. In this case, we update `def` to point to the last write in
46  * between `use` and `src` to the same array, so that `use` points to
47  * the correct array write.
48  */
49 static bool
has_conflicting_write(struct ir3_instruction * src,struct ir3_instruction * use,struct ir3_register ** def,unsigned id,int offset)50 has_conflicting_write(struct ir3_instruction *src, struct ir3_instruction *use,
51                       struct ir3_register **def, unsigned id, int offset)
52 {
53    assert(src->block == use->block);
54    bool last_write = true;
55 
56    /* NOTE that since src and use are in the same block, src by
57     * definition appears in the block's instr_list before use:
58     */
59    foreach_instr_rev (instr, &use->node) {
60       if (instr == src)
61          break;
62 
63       /* if we are looking at a RELATIV read, we can't move
64        * it past an a0.x write:
65        */
66       if ((offset < 0) && (dest_regs(instr) > 0) &&
67           (instr->dsts[0]->num == regid(REG_A0, 0)))
68          return true;
69 
70       if (!writes_gpr(instr))
71          continue;
72 
73       struct ir3_register *dst = instr->dsts[0];
74       if (!(dst->flags & IR3_REG_ARRAY))
75          continue;
76 
77       if (dst->array.id != id)
78          continue;
79 
80       /*
81        * At this point, we have narrowed down an instruction
82        * that writes to the same array.. check if it the write
83        * is to an array element that we care about:
84        */
85 
86       /* is write to an unknown array element? */
87       if (dst->flags & IR3_REG_RELATIV)
88          return true;
89 
90       /* is read from an unknown array element? */
91       if (offset < 0)
92          return true;
93 
94       /* is write to same array element? */
95       if (dst->array.offset == offset)
96          return true;
97 
98       if (last_write)
99          *def = dst;
100 
101       last_write = false;
102    }
103 
104    return false;
105 }
106 
107 /* Can we fold the mov src into use without invalid flags? */
108 static bool
valid_flags(struct ir3_instruction * use,struct ir3_instruction * mov)109 valid_flags(struct ir3_instruction *use, struct ir3_instruction *mov)
110 {
111    struct ir3_register *src = mov->srcs[0];
112 
113    foreach_src_n (reg, n, use) {
114       if (ssa(reg) != mov)
115          continue;
116 
117       if (!ir3_valid_flags(use, n, reg->flags | src->flags))
118          return false;
119    }
120 
121    return true;
122 }
123 
124 static bool
instr_cp_postsched(struct ir3_instruction * mov)125 instr_cp_postsched(struct ir3_instruction *mov)
126 {
127    struct ir3_register *src = mov->srcs[0];
128 
129    /* only consider mov's from "arrays", other cases we have
130     * already considered already:
131     */
132    if (!(src->flags & IR3_REG_ARRAY))
133       return false;
134 
135    int offset = (src->flags & IR3_REG_RELATIV) ? -1 : src->array.offset;
136 
137    /* Once we move the array read directly into the consuming
138     * instruction(s), we will also need to update instructions
139     * that had a false-dep on the original mov to have deps
140     * on the consuming instructions:
141     */
142    struct util_dynarray newdeps;
143    util_dynarray_init(&newdeps, mov->uses);
144 
145    foreach_ssa_use (use, mov) {
146       if (use->block != mov->block)
147          continue;
148 
149       if (is_meta(use))
150          continue;
151 
152       struct ir3_register *def = src->def;
153       if (has_conflicting_write(mov, use, &def, src->array.id, offset))
154          continue;
155 
156       if (conflicts(mov->address, use->address))
157          continue;
158 
159       if (!valid_flags(use, mov))
160          continue;
161 
162       /* Ok, we've established that it is safe to remove this copy: */
163 
164       bool removed = false;
165       foreach_src_n (reg, n, use) {
166          if (ssa(reg) != mov)
167             continue;
168 
169          use->srcs[n] = ir3_reg_clone(mov->block->shader, src);
170 
171          /* preserve (abs)/etc modifiers: */
172          use->srcs[n]->flags |= reg->flags;
173 
174          /* If we're sinking the array read past any writes, make
175           * sure to update it to point to the new previous write:
176           */
177          use->srcs[n]->def = def;
178 
179          removed = true;
180       }
181 
182       /* the use could have been only a false-dep, only add to the newdeps
183        * array and update the address if we've actually updated a real src
184        * reg for the use:
185        */
186       if (removed) {
187          if (src->flags & IR3_REG_RELATIV)
188             ir3_instr_set_address(use, mov->address->def->instr);
189 
190          util_dynarray_append(&newdeps, struct ir3_instruction *, use);
191 
192          /* Remove the use from the src instruction: */
193          _mesa_set_remove_key(mov->uses, use);
194       }
195    }
196 
197    /* Once we have the complete set of instruction(s) that are are now
198     * directly reading from the array, update any false-dep uses to
199     * now depend on these instructions.  The only remaining uses at
200     * this point should be false-deps:
201     */
202    foreach_ssa_use (use, mov) {
203       util_dynarray_foreach (&newdeps, struct ir3_instruction *, instrp) {
204          struct ir3_instruction *newdep = *instrp;
205          ir3_instr_add_dep(use, newdep);
206       }
207    }
208 
209    return util_dynarray_num_elements(&newdeps, struct ir3_instruction **) > 0;
210 }
211 
212 bool
ir3_cp_postsched(struct ir3 * ir)213 ir3_cp_postsched(struct ir3 *ir)
214 {
215    void *mem_ctx = ralloc_context(NULL);
216    bool progress = false;
217 
218    ir3_find_ssa_uses(ir, mem_ctx, false);
219 
220    foreach_block (block, &ir->block_list) {
221       foreach_instr_safe (instr, &block->instr_list) {
222          if (is_same_type_mov(instr))
223             progress |= instr_cp_postsched(instr);
224       }
225    }
226 
227    ralloc_free(mem_ctx);
228 
229    return progress;
230 }
231