• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>The Lanczos Approximation</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../backgrounders.html" title="Chapter 23. Backgrounders">
9<link rel="prev" href="relative_error.html" title="Relative Error">
10<link rel="next" href="remez.html" title="The Remez Method">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="relative_error.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="remez.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.lanczos"></a><a class="link" href="lanczos.html" title="The Lanczos Approximation">The Lanczos Approximation</a>
28</h2></div></div></div>
29<h5>
30<a name="math_toolkit.lanczos.h0"></a>
31      <span class="phrase"><a name="math_toolkit.lanczos.motivation"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.motivation">Motivation</a>
32    </h5>
33<p>
34      <span class="emphasis"><em>Why base gamma and gamma-like functions on the Lanczos approximation?</em></span>
35    </p>
36<p>
37      First of all I should make clear that for the gamma function over real numbers
38      (as opposed to complex ones) the Lanczos approximation (See <a href="http://en.wikipedia.org/wiki/Lanczos_approximation" target="_top">Wikipedia
39      or </a> <a href="http://mathworld.wolfram.com/LanczosApproximation.html" target="_top">Mathworld</a>)
40      appears to offer no clear advantage over more traditional methods such as
41      <a href="http://en.wikipedia.org/wiki/Stirling_approximation" target="_top">Stirling's
42      approximation</a>. <a class="link" href="lanczos.html#pugh">Pugh</a> carried out an extensive
43      comparison of the various methods available and discovered that they were all
44      very similar in terms of complexity and relative error. However, the Lanczos
45      approximation does have a couple of properties that make it worthy of further
46      consideration:
47    </p>
48<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
49<li class="listitem">
50          The approximation has an easy to compute truncation error that holds for
51          all <span class="emphasis"><em>z &gt; 0</em></span>. In practice that means we can use the
52          same approximation for all <span class="emphasis"><em>z &gt; 0</em></span>, and be certain
53          that no matter how large or small <span class="emphasis"><em>z</em></span> is, the truncation
54          error will <span class="emphasis"><em>at worst</em></span> be bounded by some finite value.
55        </li>
56<li class="listitem">
57          The approximation has a form that is particularly amenable to analytic
58          manipulation, in particular ratios of gamma or gamma-like functions are
59          particularly easy to compute without resorting to logarithms.
60        </li>
61</ul></div>
62<p>
63      It is the combination of these two properties that make the approximation attractive:
64      Stirling's approximation is highly accurate for large z, and has some of the
65      same analytic properties as the Lanczos approximation, but can't easily be
66      used across the whole range of z.
67    </p>
68<p>
69      As the simplest example, consider the ratio of two gamma functions: one could
70      compute the result via lgamma:
71    </p>
72<pre class="programlisting"><span class="identifier">exp</span><span class="special">(</span><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">b</span><span class="special">));</span>
73</pre>
74<p>
75      However, even if lgamma is uniformly accurate to 0.5ulp, the worst case relative
76      error in the above can easily be shown to be:
77    </p>
78<pre class="programlisting"><span class="identifier">Erel</span> <span class="special">&gt;</span> <span class="identifier">a</span> <span class="special">*</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">a</span><span class="special">)/</span><span class="number">2</span> <span class="special">+</span> <span class="identifier">b</span> <span class="special">*</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">b</span><span class="special">)/</span><span class="number">2</span>
79</pre>
80<p>
81      For small <span class="emphasis"><em>a</em></span> and <span class="emphasis"><em>b</em></span> that's not a problem,
82      but to put the relationship another way: <span class="emphasis"><em>each time a and b increase
83      in magnitude by a factor of 10, at least one decimal digit of precision will
84      be lost.</em></span>
85    </p>
86<p>
87      In contrast, by analytically combining like power terms in a ratio of Lanczos
88      approximation's, these errors can be virtually eliminated for small <span class="emphasis"><em>a</em></span>
89      and <span class="emphasis"><em>b</em></span>, and kept under control for very large (or very
90      small for that matter) <span class="emphasis"><em>a</em></span> and <span class="emphasis"><em>b</em></span>. Of
91      course, computing large powers is itself a notoriously hard problem, but even
92      so, analytic combinations of Lanczos approximations can make the difference
93      between obtaining a valid result, or simply garbage. Refer to the implementation
94      notes for the <a class="link" href="sf_beta/beta_function.html" title="Beta">beta</a>
95      function for an example of this method in practice. The incomplete <a class="link" href="sf_gamma/igamma.html" title="Incomplete Gamma Functions">gamma_p
96      gamma</a> and <a class="link" href="sf_beta/ibeta_function.html" title="Incomplete Beta Functions">beta</a>
97      functions use similar analytic combinations of power terms, to combine gamma
98      and beta functions divided by large powers into single (simpler) expressions.
99    </p>
100<h5>
101<a name="math_toolkit.lanczos.h1"></a>
102      <span class="phrase"><a name="math_toolkit.lanczos.the_approximation"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.the_approximation">The
103      Approximation</a>
104    </h5>
105<p>
106      The Lanczos Approximation to the Gamma Function is given by:
107    </p>
108<div class="blockquote"><blockquote class="blockquote"><p>
109        <span class="inlinemediaobject"><img src="../../equations/lanczos0.svg"></span>
110
111      </p></blockquote></div>
112<p>
113      Where S<sub>g</sub>(z) is an infinite sum, that is convergent for all z &gt; 0, and <span class="emphasis"><em>g</em></span>
114      is an arbitrary parameter that controls the "shape" of the terms
115      in the sum which is given by:
116    </p>
117<div class="blockquote"><blockquote class="blockquote"><p>
118        <span class="inlinemediaobject"><img src="../../equations/lanczos0a.svg"></span>
119
120      </p></blockquote></div>
121<p>
122      With individual coefficients defined in closed form by:
123    </p>
124<div class="blockquote"><blockquote class="blockquote"><p>
125        <span class="inlinemediaobject"><img src="../../equations/lanczos0b.svg"></span>
126
127      </p></blockquote></div>
128<p>
129      However, evaluation of the sum in that form can lead to numerical instability
130      in the computation of the ratios of rising and falling factorials (effectively
131      we're multiplying by a series of numbers very close to 1, so roundoff errors
132      can accumulate quite rapidly).
133    </p>
134<p>
135      The Lanczos approximation is therefore often written in partial fraction form
136      with the leading constants absorbed by the coefficients in the sum:
137    </p>
138<div class="blockquote"><blockquote class="blockquote"><p>
139        <span class="inlinemediaobject"><img src="../../equations/lanczos1.svg"></span>
140
141      </p></blockquote></div>
142<p>
143      where:
144    </p>
145<div class="blockquote"><blockquote class="blockquote"><p>
146        <span class="inlinemediaobject"><img src="../../equations/lanczos2.svg"></span>
147
148      </p></blockquote></div>
149<p>
150      Again parameter <span class="emphasis"><em>g</em></span> is an arbitrarily chosen constant, and
151      <span class="emphasis"><em>N</em></span> is an arbitrarily chosen number of terms to evaluate
152      in the "Lanczos sum" part.
153    </p>
154<div class="note"><table border="0" summary="Note">
155<tr>
156<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
157<th align="left">Note</th>
158</tr>
159<tr><td align="left" valign="top"><p>
160        Some authors choose to define the sum from k=1 to N, and hence end up with
161        N+1 coefficients. This happens to confuse both the following discussion and
162        the code (since C++ deals with half open array ranges, rather than the closed
163        range of the sum). This convention is consistent with <a class="link" href="lanczos.html#godfrey">Godfrey</a>,
164        but not <a class="link" href="lanczos.html#pugh">Pugh</a>, so take care when referring to
165        the literature in this field.
166      </p></td></tr>
167</table></div>
168<h5>
169<a name="math_toolkit.lanczos.h2"></a>
170      <span class="phrase"><a name="math_toolkit.lanczos.computing_the_coefficients"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.computing_the_coefficients">Computing
171      the Coefficients</a>
172    </h5>
173<p>
174      The coefficients C0..CN-1 need to be computed from <span class="emphasis"><em>N</em></span> and
175      <span class="emphasis"><em>g</em></span> at high precision, and then stored as part of the program.
176      Calculation of the coefficients is performed via the method of <a class="link" href="lanczos.html#godfrey">Godfrey</a>;
177      let the constants be contained in a column vector P, then:
178    </p>
179<p>
180      P = D B C F
181    </p>
182<p>
183      where B is an NxN matrix:
184    </p>
185<div class="blockquote"><blockquote class="blockquote"><p>
186        <span class="inlinemediaobject"><img src="../../equations/lanczos4.svg"></span>
187
188      </p></blockquote></div>
189<p>
190      D is an NxN matrix:
191    </p>
192<div class="blockquote"><blockquote class="blockquote"><p>
193        <span class="inlinemediaobject"><img src="../../equations/lanczos3.svg"></span>
194
195      </p></blockquote></div>
196<p>
197      C is an NxN matrix:
198    </p>
199<div class="blockquote"><blockquote class="blockquote"><p>
200        <span class="inlinemediaobject"><img src="../../equations/lanczos5.svg"></span>
201
202      </p></blockquote></div>
203<p>
204      and F is an N element column vector:
205    </p>
206<div class="blockquote"><blockquote class="blockquote"><p>
207        <span class="inlinemediaobject"><img src="../../equations/lanczos6.svg"></span>
208
209      </p></blockquote></div>
210<p>
211      Note than the matrices B, D and C contain all integer terms and depend only
212      on <span class="emphasis"><em>N</em></span>, this product should be computed first, and then
213      multiplied by <span class="emphasis"><em>F</em></span> as the last step.
214    </p>
215<h5>
216<a name="math_toolkit.lanczos.h3"></a>
217      <span class="phrase"><a name="math_toolkit.lanczos.choosing_the_right_parameters"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.choosing_the_right_parameters">Choosing
218      the Right Parameters</a>
219    </h5>
220<p>
221      The trick is to choose <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span> to
222      give the desired level of accuracy: choosing a small value for <span class="emphasis"><em>g</em></span>
223      leads to a strictly convergent series, but one which converges only slowly.
224      Choosing a larger value of <span class="emphasis"><em>g</em></span> causes the terms in the series
225      to be large and/or divergent for about the first <span class="emphasis"><em>g-1</em></span> terms,
226      and to then suddenly converge with a "crunch".
227    </p>
228<p>
229      <a class="link" href="lanczos.html#pugh">Pugh</a> has determined the optimal value of <span class="emphasis"><em>g</em></span>
230      for <span class="emphasis"><em>N</em></span> in the range <span class="emphasis"><em>1 &lt;= N &lt;= 60</em></span>:
231      unfortunately in practice choosing these values leads to cancellation errors
232      in the Lanczos sum as the largest term in the (alternating) series is approximately
233      1000 times larger than the result. These optimal values appear not to be useful
234      in practice unless the evaluation can be done with a number of guard digits
235      <span class="emphasis"><em>and</em></span> the coefficients are stored at higher precision than
236      that desired in the result. These values are best reserved for say, computing
237      to float precision with double precision arithmetic.
238    </p>
239<div class="table">
240<a name="math_toolkit.lanczos.optimal_choices_for_n_and_g_when"></a><p class="title"><b>Table 23.1. Optimal choices for N and g when computing with guard digits (source:
241      Pugh)</b></p>
242<div class="table-contents"><table class="table" summary="Optimal choices for N and g when computing with guard digits (source:
243      Pugh)">
244<colgroup>
245<col>
246<col>
247<col>
248<col>
249</colgroup>
250<thead><tr>
251<th>
252              <p>
253                Significand Size
254              </p>
255            </th>
256<th>
257              <p>
258                N
259              </p>
260            </th>
261<th>
262              <p>
263                g
264              </p>
265            </th>
266<th>
267              <p>
268                Max Error
269              </p>
270            </th>
271</tr></thead>
272<tbody>
273<tr>
274<td>
275              <p>
276                24
277              </p>
278            </td>
279<td>
280              <p>
281                6
282              </p>
283            </td>
284<td>
285              <p>
286                5.581
287              </p>
288            </td>
289<td>
290              <p>
291                9.51e-12
292              </p>
293            </td>
294</tr>
295<tr>
296<td>
297              <p>
298                53
299              </p>
300            </td>
301<td>
302              <p>
303                13
304              </p>
305            </td>
306<td>
307              <p>
308                13.144565
309              </p>
310            </td>
311<td>
312              <p>
313                9.2213e-23
314              </p>
315            </td>
316</tr>
317</tbody>
318</table></div>
319</div>
320<br class="table-break"><p>
321      The alternative described by <a class="link" href="lanczos.html#godfrey">Godfrey</a> is to perform
322      an exhaustive search of the <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span>
323      parameter space to determine the optimal combination for a given <span class="emphasis"><em>p</em></span>
324      digit floating-point type. Repeating this work found a good approximation for
325      double precision arithmetic (close to the one <a class="link" href="lanczos.html#godfrey">Godfrey</a>
326      found), but failed to find really good approximations for 80 or 128-bit long
327      doubles. Further it was observed that the approximations obtained tended to
328      optimised for the small values of z (1 &lt; z &lt; 200) used to test the implementation
329      against the factorials. Computing ratios of gamma functions with large arguments
330      were observed to suffer from error resulting from the truncation of the Lancozos
331      series.
332    </p>
333<p>
334      <a class="link" href="lanczos.html#pugh">Pugh</a> identified all the locations where the theoretical
335      error of the approximation were at a minimum, but unfortunately has published
336      only the largest of these minima. However, he makes the observation that the
337      minima coincide closely with the location where the first neglected term (a<sub>N</sub>)
338      in the Lanczos series S<sub>g</sub>(z) changes sign. These locations are quite easy to
339      locate, albeit with considerable computer time. These "sweet spots"
340      need only be computed once, tabulated, and then searched when required for
341      an approximation that delivers the required precision for some fixed precision
342      type.
343    </p>
344<p>
345      Unfortunately, following this path failed to find a really good approximation
346      for 128-bit long doubles, and those found for 64 and 80-bit reals required
347      an excessive number of terms. There are two competing issues here: high precision
348      requires a large value of <span class="emphasis"><em>g</em></span>, but avoiding cancellation
349      errors in the evaluation requires a small <span class="emphasis"><em>g</em></span>.
350    </p>
351<p>
352      At this point note that the Lanczos sum can be converted into rational form
353      (a ratio of two polynomials, obtained from the partial-fraction form using
354      polynomial arithmetic), and doing so changes the coefficients so that <span class="emphasis"><em>they
355      are all positive</em></span>. That means that the sum in rational form can be
356      evaluated without cancellation error, albeit with double the number of coefficients
357      for a given N. Repeating the search of the "sweet spots", this time
358      evaluating the Lanczos sum in rational form, and testing only those "sweet
359      spots" whose theoretical error is less than the machine epsilon for the
360      type being tested, yielded good approximations for all the types tested. The
361      optimal values found were quite close to the best cases reported by <a class="link" href="lanczos.html#pugh">Pugh</a>
362      (just slightly larger <span class="emphasis"><em>N</em></span> and slightly smaller <span class="emphasis"><em>g</em></span>
363      for a given precision than <a class="link" href="lanczos.html#pugh">Pugh</a> reports), and even
364      though converting to rational form doubles the number of stored coefficients,
365      it should be noted that half of them are integers (and therefore require less
366      storage space) and the approximations require a smaller <span class="emphasis"><em>N</em></span>
367      than would otherwise be required, so fewer floating point operations may be
368      required overall.
369    </p>
370<p>
371      The following table shows the optimal values for <span class="emphasis"><em>N</em></span> and
372      <span class="emphasis"><em>g</em></span> when computing at fixed precision. These should be taken
373      as work in progress: there are no values for 106-bit significand machines (Darwin
374      long doubles &amp; NTL quad_float), and further optimisation of the values
375      of <span class="emphasis"><em>g</em></span> may be possible. Errors given in the table are estimates
376      of the error due to truncation of the Lanczos infinite series to <span class="emphasis"><em>N</em></span>
377      terms. They are calculated from the sum of the first five neglected terms -
378      and are known to be rather pessimistic estimates - although it is noticeable
379      that the best combinations of <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span>
380      occurred when the estimated truncation error almost exactly matches the machine
381      epsilon for the type in question.
382    </p>
383<div class="table">
384<a name="math_toolkit.lanczos.optimum_value_for_n_and_g_when_c"></a><p class="title"><b>Table 23.2. Optimum value for N and g when computing at fixed precision</b></p>
385<div class="table-contents"><table class="table" summary="Optimum value for N and g when computing at fixed precision">
386<colgroup>
387<col>
388<col>
389<col>
390<col>
391<col>
392</colgroup>
393<thead><tr>
394<th>
395              <p>
396                Significand Size
397              </p>
398            </th>
399<th>
400              <p>
401                Platform/Compiler Used
402              </p>
403            </th>
404<th>
405              <p>
406                N
407              </p>
408            </th>
409<th>
410              <p>
411                g
412              </p>
413            </th>
414<th>
415              <p>
416                Max Truncation Error
417              </p>
418            </th>
419</tr></thead>
420<tbody>
421<tr>
422<td>
423              <p>
424                24
425              </p>
426            </td>
427<td>
428              <p>
429                Win32, VC++ 7.1
430              </p>
431            </td>
432<td>
433              <p>
434                6
435              </p>
436            </td>
437<td>
438              <p>
439                1.428456135094165802001953125
440              </p>
441            </td>
442<td>
443              <p>
444                9.41e-007
445              </p>
446            </td>
447</tr>
448<tr>
449<td>
450              <p>
451                53
452              </p>
453            </td>
454<td>
455              <p>
456                Win32, VC++ 7.1
457              </p>
458            </td>
459<td>
460              <p>
461                13
462              </p>
463            </td>
464<td>
465              <p>
466                6.024680040776729583740234375
467              </p>
468            </td>
469<td>
470              <p>
471                3.23e-016
472              </p>
473            </td>
474</tr>
475<tr>
476<td>
477              <p>
478                64
479              </p>
480            </td>
481<td>
482              <p>
483                Suse Linux 9 IA64, gcc-3.3.3
484              </p>
485            </td>
486<td>
487              <p>
488                17
489              </p>
490            </td>
491<td>
492              <p>
493                12.2252227365970611572265625
494              </p>
495            </td>
496<td>
497              <p>
498                2.34e-024
499              </p>
500            </td>
501</tr>
502<tr>
503<td>
504              <p>
505                116
506              </p>
507            </td>
508<td>
509              <p>
510                HP Tru64 Unix 5.1B / Alpha, Compaq C++ V7.1-006
511              </p>
512            </td>
513<td>
514              <p>
515                24
516              </p>
517            </td>
518<td>
519              <p>
520                20.3209821879863739013671875
521              </p>
522            </td>
523<td>
524              <p>
525                4.75e-035
526              </p>
527            </td>
528</tr>
529</tbody>
530</table></div>
531</div>
532<br class="table-break"><p>
533      Finally note that the Lanczos approximation can be written as follows by removing
534      a factor of exp(g) from the denominator, and then dividing all the coefficients
535      by exp(g):
536    </p>
537<div class="blockquote"><blockquote class="blockquote"><p>
538        <span class="inlinemediaobject"><img src="../../equations/lanczos7.svg"></span>
539
540      </p></blockquote></div>
541<p>
542      This form is more convenient for calculating lgamma, but for the gamma function
543      the division by <span class="emphasis"><em>e</em></span> turns a possibly exact quality into
544      an inexact value: this reduces accuracy in the common case that the input is
545      exact, and so isn't used for the gamma function.
546    </p>
547<h5>
548<a name="math_toolkit.lanczos.h4"></a>
549      <span class="phrase"><a name="math_toolkit.lanczos.references"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.references">References</a>
550    </h5>
551<div class="orderedlist"><ol class="orderedlist" type="1">
552<li class="listitem">
553          <a name="godfrey"></a>Paul Godfrey, <a href="http://my.fit.edu/~gabdo/gamma.txt" target="_top">"A
554          note on the computation of the convergent Lanczos complex Gamma approximation"</a>.
555        </li>
556<li class="listitem">
557          <a name="pugh"></a>Glendon Ralph Pugh, <a href="http://bh0.physics.ubc.ca/People/matt/Doc/ThesesOthers/Phd/pugh.pdf" target="_top">"An
558          Analysis of the Lanczos Gamma Approximation"</a>, PhD Thesis November
559          2004.
560        </li>
561<li class="listitem">
562          Viktor T. Toth, <a href="http://www.rskey.org/gamma.htm" target="_top">"Calculators
563          and the Gamma Function"</a>.
564        </li>
565<li class="listitem">
566          Mathworld, <a href="http://mathworld.wolfram.com/LanczosApproximation.html" target="_top">The
567          Lanczos Approximation</a>.
568        </li>
569</ol></div>
570</div>
571<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
572<td align="left"></td>
573<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
574      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
575      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
576      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
577      Daryle Walker and Xiaogang Zhang<p>
578        Distributed under the Boost Software License, Version 1.0. (See accompanying
579        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
580      </p>
581</div></td>
582</tr></table>
583<hr>
584<div class="spirit-nav">
585<a accesskey="p" href="relative_error.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="remez.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
586</div>
587</body>
588</html>
589