1 // Copyright 2002 The Trustees of Indiana University.
2
3 // Use, modification and distribution is subject to the Boost Software
4 // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
6
7 // Boost.MultiArray Library
8 // Authors: Ronald Garcia
9 // Jeremy Siek
10 // Andrew Lumsdaine
11 // See http://www.boost.org/libs/multi_array for documentation.
12
13 //
14 // constructors.cpp - Testing out the various constructor options
15 //
16
17
18 #include <boost/core/lightweight_test.hpp>
19
20 #include <boost/multi_array.hpp>
21 #include <algorithm>
22 #include <list>
23
check_shape(const double &,std::size_t *,int *,unsigned int)24 void check_shape(const double&, std::size_t*, int*, unsigned int)
25 {}
26
27 template <class Array>
check_shape(const Array & A,std::size_t * sizes,int * strides,unsigned int num_elements)28 void check_shape(const Array& A,
29 std::size_t* sizes,
30 int* strides,
31 unsigned int num_elements)
32 {
33 BOOST_TEST(A.num_elements() == num_elements);
34 BOOST_TEST(A.size() == *sizes);
35 BOOST_TEST(std::equal(sizes, sizes + A.num_dimensions(), A.shape()));
36 BOOST_TEST(std::equal(strides, strides + A.num_dimensions(), A.strides()));
37 check_shape(A[0], ++sizes, ++strides, num_elements / A.size());
38 }
39
40
equal(const double & a,const double & b)41 bool equal(const double& a, const double& b)
42 {
43 return a == b;
44 }
45
46 template <typename ArrayA, typename ArrayB>
equal(const ArrayA & A,const ArrayB & B)47 bool equal(const ArrayA& A, const ArrayB& B)
48 {
49 typename ArrayA::const_iterator ia;
50 typename ArrayB::const_iterator ib = B.begin();
51 for (ia = A.begin(); ia != A.end(); ++ia, ++ib)
52 if (!::equal(*ia, *ib))
53 return false;
54 return true;
55 }
56
57
58 int
main()59 main()
60 {
61 typedef boost::multi_array<double, 3>::size_type size_type;
62 boost::array<size_type,3> sizes = { { 3, 3, 3 } };
63 int strides[] = { 9, 3, 1 };
64 size_type num_elements = 27;
65
66 // Default multi_array constructor
67 {
68 boost::multi_array<double, 3> A;
69 }
70
71 // Constructor 1, default storage order and allocator
72 {
73 boost::multi_array<double, 3> A(sizes);
74 check_shape(A, &sizes[0], strides, num_elements);
75
76 double* ptr = 0;
77 boost::multi_array_ref<double,3> B(ptr,sizes);
78 check_shape(B, &sizes[0], strides, num_elements);
79
80 const double* cptr = ptr;
81 boost::const_multi_array_ref<double,3> C(cptr,sizes);
82 check_shape(C, &sizes[0], strides, num_elements);
83 }
84
85 // Constructor 1, fortran storage order and user-supplied allocator
86 {
87 typedef boost::multi_array<double, 3,
88 std::allocator<double> >::size_type size_type;
89 size_type num_elements = 27;
90 int col_strides[] = { 1, 3, 9 };
91
92 boost::multi_array<double, 3,
93 std::allocator<double> > A(sizes,boost::fortran_storage_order());
94 check_shape(A, &sizes[0], col_strides, num_elements);
95
96 double *ptr=0;
97 boost::multi_array_ref<double, 3>
98 B(ptr,sizes,boost::fortran_storage_order());
99 check_shape(B, &sizes[0], col_strides, num_elements);
100
101 const double *cptr=ptr;
102 boost::const_multi_array_ref<double, 3>
103 C(cptr,sizes,boost::fortran_storage_order());
104 check_shape(C, &sizes[0], col_strides, num_elements);
105 }
106
107 // Constructor 2, default storage order and allocator
108 {
109 typedef boost::multi_array<double, 3>::size_type size_type;
110 size_type num_elements = 27;
111
112 boost::multi_array<double, 3>::extent_gen extents;
113 boost::multi_array<double, 3> A(extents[3][3][3]);
114 check_shape(A, &sizes[0], strides, num_elements);
115
116 double *ptr=0;
117 boost::multi_array_ref<double, 3> B(ptr,extents[3][3][3]);
118 check_shape(B, &sizes[0], strides, num_elements);
119
120 const double *cptr=ptr;
121 boost::const_multi_array_ref<double, 3> C(cptr,extents[3][3][3]);
122 check_shape(C, &sizes[0], strides, num_elements);
123 }
124
125 // Copy Constructors
126 {
127 typedef boost::multi_array<double, 3>::size_type size_type;
128 size_type num_elements = 27;
129 std::vector<double> vals(27, 4.5);
130
131 boost::multi_array<double, 3> A(sizes);
132 A.assign(vals.begin(),vals.end());
133 boost::multi_array<double, 3> B(A);
134 check_shape(B, &sizes[0], strides, num_elements);
135 BOOST_TEST(::equal(A, B));
136
137 double ptr[27];
138 boost::multi_array_ref<double, 3> C(ptr,sizes);
139 A.assign(vals.begin(),vals.end());
140 boost::multi_array_ref<double, 3> D(C);
141 check_shape(D, &sizes[0], strides, num_elements);
142 BOOST_TEST(C.data() == D.data());
143
144 const double* cptr = ptr;
145 boost::const_multi_array_ref<double, 3> E(cptr,sizes);
146 boost::const_multi_array_ref<double, 3> F(E);
147 check_shape(F, &sizes[0], strides, num_elements);
148 BOOST_TEST(E.data() == F.data());
149 }
150
151
152 // Conversion construction
153 {
154 typedef boost::multi_array<double, 3>::size_type size_type;
155 size_type num_elements = 27;
156 std::vector<double> vals(27, 4.5);
157
158 boost::multi_array<double, 3> A(sizes);
159 A.assign(vals.begin(),vals.end());
160 boost::multi_array_ref<double, 3> B(A);
161 boost::const_multi_array_ref<double, 3> C(A);
162 check_shape(B, &sizes[0], strides, num_elements);
163 check_shape(C, &sizes[0], strides, num_elements);
164 BOOST_TEST(B.data() == A.data());
165 BOOST_TEST(C.data() == A.data());
166
167 double ptr[27];
168 boost::multi_array_ref<double, 3> D(ptr,sizes);
169 D.assign(vals.begin(),vals.end());
170 boost::const_multi_array_ref<double, 3> E(D);
171 check_shape(E, &sizes[0], strides, num_elements);
172 BOOST_TEST(E.data() == D.data());
173 }
174
175 // Assignment Operator
176 {
177 typedef boost::multi_array<double, 3>::size_type size_type;
178 size_type num_elements = 27;
179 std::vector<double> vals(27, 4.5);
180
181 boost::multi_array<double, 3> A(sizes), B(sizes);
182 A.assign(vals.begin(),vals.end());
183 B = A;
184 check_shape(B, &sizes[0], strides, num_elements);
185 BOOST_TEST(::equal(A, B));
186
187 double ptr1[27];
188 double ptr2[27];
189 boost::multi_array_ref<double, 3> C(ptr1,sizes), D(ptr2,sizes);
190 C.assign(vals.begin(),vals.end());
191 D = C;
192 check_shape(D, &sizes[0], strides, num_elements);
193 BOOST_TEST(::equal(C,D));
194 }
195
196
197 // subarray value_type is multi_array
198 {
199 typedef boost::multi_array<double,3> array;
200 typedef array::size_type size_type;
201 size_type num_elements = 27;
202 std::vector<double> vals(num_elements, 4.5);
203
204 boost::multi_array<double, 3> A(sizes);
205 A.assign(vals.begin(),vals.end());
206
207 typedef array::subarray<2>::type subarray;
208 subarray B = A[1];
209 subarray::value_type C = B[0];
210
211 // should comparisons between the types work?
212 BOOST_TEST(::equal(A[1][0],C));
213 BOOST_TEST(::equal(B[0],C));
214 }
215 return boost::report_errors();
216 }
217
218
219