• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MemoryDependenceAnalysis analysis pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
14 #define LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/PointerEmbeddedInt.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/PointerSumType.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/IR/PredIteratorCache.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include <cassert>
32 #include <cstdint>
33 #include <utility>
34 #include <vector>
35 
36 namespace llvm {
37 
38 class AssumptionCache;
39 class DominatorTree;
40 class Function;
41 class Instruction;
42 class LoadInst;
43 class PHITransAddr;
44 class TargetLibraryInfo;
45 class PhiValues;
46 class Value;
47 
48 /// A memory dependence query can return one of three different answers.
49 class MemDepResult {
50   enum DepType {
51     /// Clients of MemDep never see this.
52     ///
53     /// Entries with this marker occur in a LocalDeps map or NonLocalDeps map
54     /// when the instruction they previously referenced was removed from
55     /// MemDep.  In either case, the entry may include an instruction pointer.
56     /// If so, the pointer is an instruction in the block where scanning can
57     /// start from, saving some work.
58     ///
59     /// In a default-constructed MemDepResult object, the type will be Invalid
60     /// and the instruction pointer will be null.
61     Invalid = 0,
62 
63     /// This is a dependence on the specified instruction which clobbers the
64     /// desired value.  The pointer member of the MemDepResult pair holds the
65     /// instruction that clobbers the memory.  For example, this occurs when we
66     /// see a may-aliased store to the memory location we care about.
67     ///
68     /// There are several cases that may be interesting here:
69     ///   1. Loads are clobbered by may-alias stores.
70     ///   2. Loads are considered clobbered by partially-aliased loads.  The
71     ///      client may choose to analyze deeper into these cases.
72     Clobber,
73 
74     /// This is a dependence on the specified instruction which defines or
75     /// produces the desired memory location.  The pointer member of the
76     /// MemDepResult pair holds the instruction that defines the memory.
77     ///
78     /// Cases of interest:
79     ///   1. This could be a load or store for dependence queries on
80     ///      load/store.  The value loaded or stored is the produced value.
81     ///      Note that the pointer operand may be different than that of the
82     ///      queried pointer due to must aliases and phi translation. Note
83     ///      that the def may not be the same type as the query, the pointers
84     ///      may just be must aliases.
85     ///   2. For loads and stores, this could be an allocation instruction. In
86     ///      this case, the load is loading an undef value or a store is the
87     ///      first store to (that part of) the allocation.
88     ///   3. Dependence queries on calls return Def only when they are readonly
89     ///      calls or memory use intrinsics with identical callees and no
90     ///      intervening clobbers.  No validation is done that the operands to
91     ///      the calls are the same.
92     Def,
93 
94     /// This marker indicates that the query has no known dependency in the
95     /// specified block.
96     ///
97     /// More detailed state info is encoded in the upper part of the pair (i.e.
98     /// the Instruction*)
99     Other
100   };
101 
102   /// If DepType is "Other", the upper part of the sum type is an encoding of
103   /// the following more detailed type information.
104   enum OtherType {
105     /// This marker indicates that the query has no dependency in the specified
106     /// block.
107     ///
108     /// To find out more, the client should query other predecessor blocks.
109     NonLocal = 1,
110     /// This marker indicates that the query has no dependency in the specified
111     /// function.
112     NonFuncLocal,
113     /// This marker indicates that the query dependency is unknown.
114     Unknown
115   };
116 
117   using ValueTy = PointerSumType<
118       DepType, PointerSumTypeMember<Invalid, Instruction *>,
119       PointerSumTypeMember<Clobber, Instruction *>,
120       PointerSumTypeMember<Def, Instruction *>,
121       PointerSumTypeMember<Other, PointerEmbeddedInt<OtherType, 3>>>;
122   ValueTy Value;
123 
MemDepResult(ValueTy V)124   explicit MemDepResult(ValueTy V) : Value(V) {}
125 
126 public:
127   MemDepResult() = default;
128 
129   /// get methods: These are static ctor methods for creating various
130   /// MemDepResult kinds.
getDef(Instruction * Inst)131   static MemDepResult getDef(Instruction *Inst) {
132     assert(Inst && "Def requires inst");
133     return MemDepResult(ValueTy::create<Def>(Inst));
134   }
getClobber(Instruction * Inst)135   static MemDepResult getClobber(Instruction *Inst) {
136     assert(Inst && "Clobber requires inst");
137     return MemDepResult(ValueTy::create<Clobber>(Inst));
138   }
getNonLocal()139   static MemDepResult getNonLocal() {
140     return MemDepResult(ValueTy::create<Other>(NonLocal));
141   }
getNonFuncLocal()142   static MemDepResult getNonFuncLocal() {
143     return MemDepResult(ValueTy::create<Other>(NonFuncLocal));
144   }
getUnknown()145   static MemDepResult getUnknown() {
146     return MemDepResult(ValueTy::create<Other>(Unknown));
147   }
148 
149   /// Tests if this MemDepResult represents a query that is an instruction
150   /// clobber dependency.
isClobber()151   bool isClobber() const { return Value.is<Clobber>(); }
152 
153   /// Tests if this MemDepResult represents a query that is an instruction
154   /// definition dependency.
isDef()155   bool isDef() const { return Value.is<Def>(); }
156 
157   /// Tests if this MemDepResult represents a query that is transparent to the
158   /// start of the block, but where a non-local hasn't been done.
isNonLocal()159   bool isNonLocal() const {
160     return Value.is<Other>() && Value.cast<Other>() == NonLocal;
161   }
162 
163   /// Tests if this MemDepResult represents a query that is transparent to the
164   /// start of the function.
isNonFuncLocal()165   bool isNonFuncLocal() const {
166     return Value.is<Other>() && Value.cast<Other>() == NonFuncLocal;
167   }
168 
169   /// Tests if this MemDepResult represents a query which cannot and/or will
170   /// not be computed.
isUnknown()171   bool isUnknown() const {
172     return Value.is<Other>() && Value.cast<Other>() == Unknown;
173   }
174 
175   /// If this is a normal dependency, returns the instruction that is depended
176   /// on.  Otherwise, returns null.
getInst()177   Instruction *getInst() const {
178     switch (Value.getTag()) {
179     case Invalid:
180       return Value.cast<Invalid>();
181     case Clobber:
182       return Value.cast<Clobber>();
183     case Def:
184       return Value.cast<Def>();
185     case Other:
186       return nullptr;
187     }
188     llvm_unreachable("Unknown discriminant!");
189   }
190 
191   bool operator==(const MemDepResult &M) const { return Value == M.Value; }
192   bool operator!=(const MemDepResult &M) const { return Value != M.Value; }
193   bool operator<(const MemDepResult &M) const { return Value < M.Value; }
194   bool operator>(const MemDepResult &M) const { return Value > M.Value; }
195 
196 private:
197   friend class MemoryDependenceResults;
198 
199   /// Tests if this is a MemDepResult in its dirty/invalid. state.
isDirty()200   bool isDirty() const { return Value.is<Invalid>(); }
201 
getDirty(Instruction * Inst)202   static MemDepResult getDirty(Instruction *Inst) {
203     return MemDepResult(ValueTy::create<Invalid>(Inst));
204   }
205 };
206 
207 /// This is an entry in the NonLocalDepInfo cache.
208 ///
209 /// For each BasicBlock (the BB entry) it keeps a MemDepResult.
210 class NonLocalDepEntry {
211   BasicBlock *BB;
212   MemDepResult Result;
213 
214 public:
NonLocalDepEntry(BasicBlock * bb,MemDepResult result)215   NonLocalDepEntry(BasicBlock *bb, MemDepResult result)
216       : BB(bb), Result(result) {}
217 
218   // This is used for searches.
NonLocalDepEntry(BasicBlock * bb)219   NonLocalDepEntry(BasicBlock *bb) : BB(bb) {}
220 
221   // BB is the sort key, it can't be changed.
getBB()222   BasicBlock *getBB() const { return BB; }
223 
setResult(const MemDepResult & R)224   void setResult(const MemDepResult &R) { Result = R; }
225 
getResult()226   const MemDepResult &getResult() const { return Result; }
227 
228   bool operator<(const NonLocalDepEntry &RHS) const { return BB < RHS.BB; }
229 };
230 
231 /// This is a result from a NonLocal dependence query.
232 ///
233 /// For each BasicBlock (the BB entry) it keeps a MemDepResult and the
234 /// (potentially phi translated) address that was live in the block.
235 class NonLocalDepResult {
236   NonLocalDepEntry Entry;
237   Value *Address;
238 
239 public:
NonLocalDepResult(BasicBlock * bb,MemDepResult result,Value * address)240   NonLocalDepResult(BasicBlock *bb, MemDepResult result, Value *address)
241       : Entry(bb, result), Address(address) {}
242 
243   // BB is the sort key, it can't be changed.
getBB()244   BasicBlock *getBB() const { return Entry.getBB(); }
245 
setResult(const MemDepResult & R,Value * Addr)246   void setResult(const MemDepResult &R, Value *Addr) {
247     Entry.setResult(R);
248     Address = Addr;
249   }
250 
getResult()251   const MemDepResult &getResult() const { return Entry.getResult(); }
252 
253   /// Returns the address of this pointer in this block.
254   ///
255   /// This can be different than the address queried for the non-local result
256   /// because of phi translation.  This returns null if the address was not
257   /// available in a block (i.e. because phi translation failed) or if this is
258   /// a cached result and that address was deleted.
259   ///
260   /// The address is always null for a non-local 'call' dependence.
getAddress()261   Value *getAddress() const { return Address; }
262 };
263 
264 /// Provides a lazy, caching interface for making common memory aliasing
265 /// information queries, backed by LLVM's alias analysis passes.
266 ///
267 /// The dependency information returned is somewhat unusual, but is pragmatic.
268 /// If queried about a store or call that might modify memory, the analysis
269 /// will return the instruction[s] that may either load from that memory or
270 /// store to it.  If queried with a load or call that can never modify memory,
271 /// the analysis will return calls and stores that might modify the pointer,
272 /// but generally does not return loads unless a) they are volatile, or
273 /// b) they load from *must-aliased* pointers.  Returning a dependence on
274 /// must-alias'd pointers instead of all pointers interacts well with the
275 /// internal caching mechanism.
276 class MemoryDependenceResults {
277   // A map from instructions to their dependency.
278   using LocalDepMapType = DenseMap<Instruction *, MemDepResult>;
279   LocalDepMapType LocalDeps;
280 
281 public:
282   using NonLocalDepInfo = std::vector<NonLocalDepEntry>;
283 
284 private:
285   /// A pair<Value*, bool> where the bool is true if the dependence is a read
286   /// only dependence, false if read/write.
287   using ValueIsLoadPair = PointerIntPair<const Value *, 1, bool>;
288 
289   /// This pair is used when caching information for a block.
290   ///
291   /// If the pointer is null, the cache value is not a full query that starts
292   /// at the specified block.  If non-null, the bool indicates whether or not
293   /// the contents of the block was skipped.
294   using BBSkipFirstBlockPair = PointerIntPair<BasicBlock *, 1, bool>;
295 
296   /// This record is the information kept for each (value, is load) pair.
297   struct NonLocalPointerInfo {
298     /// The pair of the block and the skip-first-block flag.
299     BBSkipFirstBlockPair Pair;
300     /// The results of the query for each relevant block.
301     NonLocalDepInfo NonLocalDeps;
302     /// The maximum size of the dereferences of the pointer.
303     ///
304     /// May be UnknownSize if the sizes are unknown.
305     LocationSize Size = LocationSize::unknown();
306     /// The AA tags associated with dereferences of the pointer.
307     ///
308     /// The members may be null if there are no tags or conflicting tags.
309     AAMDNodes AATags;
310 
311     NonLocalPointerInfo() = default;
312   };
313 
314   /// Cache storing single nonlocal def for the instruction.
315   /// It is set when nonlocal def would be found in function returning only
316   /// local dependencies.
317   DenseMap<AssertingVH<const Value>, NonLocalDepResult> NonLocalDefsCache;
318   using ReverseNonLocalDefsCacheTy =
319     DenseMap<Instruction *, SmallPtrSet<const Value*, 4>>;
320   ReverseNonLocalDefsCacheTy ReverseNonLocalDefsCache;
321 
322   /// This map stores the cached results of doing a pointer lookup at the
323   /// bottom of a block.
324   ///
325   /// The key of this map is the pointer+isload bit, the value is a list of
326   /// <bb->result> mappings.
327   using CachedNonLocalPointerInfo =
328       DenseMap<ValueIsLoadPair, NonLocalPointerInfo>;
329   CachedNonLocalPointerInfo NonLocalPointerDeps;
330 
331   // A map from instructions to their non-local pointer dependencies.
332   using ReverseNonLocalPtrDepTy =
333       DenseMap<Instruction *, SmallPtrSet<ValueIsLoadPair, 4>>;
334   ReverseNonLocalPtrDepTy ReverseNonLocalPtrDeps;
335 
336   /// This is the instruction we keep for each cached access that we have for
337   /// an instruction.
338   ///
339   /// The pointer is an owning pointer and the bool indicates whether we have
340   /// any dirty bits in the set.
341   using PerInstNLInfo = std::pair<NonLocalDepInfo, bool>;
342 
343   // A map from instructions to their non-local dependencies.
344   using NonLocalDepMapType = DenseMap<Instruction *, PerInstNLInfo>;
345 
346   NonLocalDepMapType NonLocalDeps;
347 
348   // A reverse mapping from dependencies to the dependees.  This is
349   // used when removing instructions to keep the cache coherent.
350   using ReverseDepMapType =
351       DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>>;
352   ReverseDepMapType ReverseLocalDeps;
353 
354   // A reverse mapping from dependencies to the non-local dependees.
355   ReverseDepMapType ReverseNonLocalDeps;
356 
357   /// Current AA implementation, just a cache.
358   AliasAnalysis &AA;
359   AssumptionCache &AC;
360   const TargetLibraryInfo &TLI;
361   DominatorTree &DT;
362   PhiValues &PV;
363   PredIteratorCache PredCache;
364 
365   unsigned DefaultBlockScanLimit;
366 
367 public:
MemoryDependenceResults(AliasAnalysis & AA,AssumptionCache & AC,const TargetLibraryInfo & TLI,DominatorTree & DT,PhiValues & PV,unsigned DefaultBlockScanLimit)368   MemoryDependenceResults(AliasAnalysis &AA, AssumptionCache &AC,
369                           const TargetLibraryInfo &TLI, DominatorTree &DT,
370                           PhiValues &PV, unsigned DefaultBlockScanLimit)
371       : AA(AA), AC(AC), TLI(TLI), DT(DT), PV(PV),
372         DefaultBlockScanLimit(DefaultBlockScanLimit) {}
373 
374   /// Handle invalidation in the new PM.
375   bool invalidate(Function &F, const PreservedAnalyses &PA,
376                   FunctionAnalysisManager::Invalidator &Inv);
377 
378   /// Some methods limit the number of instructions they will examine.
379   /// The return value of this method is the default limit that will be
380   /// used if no limit is explicitly passed in.
381   unsigned getDefaultBlockScanLimit() const;
382 
383   /// Returns the instruction on which a memory operation depends.
384   ///
385   /// See the class comment for more details. It is illegal to call this on
386   /// non-memory instructions.
387   MemDepResult getDependency(Instruction *QueryInst,
388                              OrderedBasicBlock *OBB = nullptr);
389 
390   /// Perform a full dependency query for the specified call, returning the set
391   /// of blocks that the value is potentially live across.
392   ///
393   /// The returned set of results will include a "NonLocal" result for all
394   /// blocks where the value is live across.
395   ///
396   /// This method assumes the instruction returns a "NonLocal" dependency
397   /// within its own block.
398   ///
399   /// This returns a reference to an internal data structure that may be
400   /// invalidated on the next non-local query or when an instruction is
401   /// removed.  Clients must copy this data if they want it around longer than
402   /// that.
403   const NonLocalDepInfo &getNonLocalCallDependency(CallBase *QueryCall);
404 
405   /// Perform a full dependency query for an access to the QueryInst's
406   /// specified memory location, returning the set of instructions that either
407   /// define or clobber the value.
408   ///
409   /// Warning: For a volatile query instruction, the dependencies will be
410   /// accurate, and thus usable for reordering, but it is never legal to
411   /// remove the query instruction.
412   ///
413   /// This method assumes the pointer has a "NonLocal" dependency within
414   /// QueryInst's parent basic block.
415   void getNonLocalPointerDependency(Instruction *QueryInst,
416                                     SmallVectorImpl<NonLocalDepResult> &Result);
417 
418   /// Removes an instruction from the dependence analysis, updating the
419   /// dependence of instructions that previously depended on it.
420   void removeInstruction(Instruction *InstToRemove);
421 
422   /// Invalidates cached information about the specified pointer, because it
423   /// may be too conservative in memdep.
424   ///
425   /// This is an optional call that can be used when the client detects an
426   /// equivalence between the pointer and some other value and replaces the
427   /// other value with ptr. This can make Ptr available in more places that
428   /// cached info does not necessarily keep.
429   void invalidateCachedPointerInfo(Value *Ptr);
430 
431   /// Clears the PredIteratorCache info.
432   ///
433   /// This needs to be done when the CFG changes, e.g., due to splitting
434   /// critical edges.
435   void invalidateCachedPredecessors();
436 
437   /// Returns the instruction on which a memory location depends.
438   ///
439   /// If isLoad is true, this routine ignores may-aliases with read-only
440   /// operations.  If isLoad is false, this routine ignores may-aliases
441   /// with reads from read-only locations. If possible, pass the query
442   /// instruction as well; this function may take advantage of the metadata
443   /// annotated to the query instruction to refine the result. \p Limit
444   /// can be used to set the maximum number of instructions that will be
445   /// examined to find the pointer dependency. On return, it will be set to
446   /// the number of instructions left to examine. If a null pointer is passed
447   /// in, the limit will default to the value of -memdep-block-scan-limit.
448   ///
449   /// Note that this is an uncached query, and thus may be inefficient.
450   MemDepResult getPointerDependencyFrom(const MemoryLocation &Loc, bool isLoad,
451                                         BasicBlock::iterator ScanIt,
452                                         BasicBlock *BB,
453                                         Instruction *QueryInst = nullptr,
454                                         unsigned *Limit = nullptr,
455                                         OrderedBasicBlock *OBB = nullptr);
456 
457   MemDepResult
458   getSimplePointerDependencyFrom(const MemoryLocation &MemLoc, bool isLoad,
459                                  BasicBlock::iterator ScanIt, BasicBlock *BB,
460                                  Instruction *QueryInst, unsigned *Limit,
461                                  OrderedBasicBlock *OBB);
462 
463   /// This analysis looks for other loads and stores with invariant.group
464   /// metadata and the same pointer operand. Returns Unknown if it does not
465   /// find anything, and Def if it can be assumed that 2 instructions load or
466   /// store the same value and NonLocal which indicate that non-local Def was
467   /// found, which can be retrieved by calling getNonLocalPointerDependency
468   /// with the same queried instruction.
469   MemDepResult getInvariantGroupPointerDependency(LoadInst *LI, BasicBlock *BB);
470 
471   /// Looks at a memory location for a load (specified by MemLocBase, Offs, and
472   /// Size) and compares it against a load.
473   ///
474   /// If the specified load could be safely widened to a larger integer load
475   /// that is 1) still efficient, 2) safe for the target, and 3) would provide
476   /// the specified memory location value, then this function returns the size
477   /// in bytes of the load width to use.  If not, this returns zero.
478   static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
479                                                   int64_t MemLocOffs,
480                                                   unsigned MemLocSize,
481                                                   const LoadInst *LI);
482 
483   /// Release memory in caches.
484   void releaseMemory();
485 
486 private:
487   MemDepResult getCallDependencyFrom(CallBase *Call, bool isReadOnlyCall,
488                                      BasicBlock::iterator ScanIt,
489                                      BasicBlock *BB);
490   bool getNonLocalPointerDepFromBB(Instruction *QueryInst,
491                                    const PHITransAddr &Pointer,
492                                    const MemoryLocation &Loc, bool isLoad,
493                                    BasicBlock *BB,
494                                    SmallVectorImpl<NonLocalDepResult> &Result,
495                                    DenseMap<BasicBlock *, Value *> &Visited,
496                                    bool SkipFirstBlock = false);
497   MemDepResult GetNonLocalInfoForBlock(Instruction *QueryInst,
498                                        const MemoryLocation &Loc, bool isLoad,
499                                        BasicBlock *BB, NonLocalDepInfo *Cache,
500                                        unsigned NumSortedEntries);
501 
502   void RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P);
503 
504   void verifyRemoved(Instruction *Inst) const;
505 };
506 
507 /// An analysis that produces \c MemoryDependenceResults for a function.
508 ///
509 /// This is essentially a no-op because the results are computed entirely
510 /// lazily.
511 class MemoryDependenceAnalysis
512     : public AnalysisInfoMixin<MemoryDependenceAnalysis> {
513   friend AnalysisInfoMixin<MemoryDependenceAnalysis>;
514 
515   static AnalysisKey Key;
516 
517   unsigned DefaultBlockScanLimit;
518 
519 public:
520   using Result = MemoryDependenceResults;
521 
522   MemoryDependenceAnalysis();
MemoryDependenceAnalysis(unsigned DefaultBlockScanLimit)523   MemoryDependenceAnalysis(unsigned DefaultBlockScanLimit) : DefaultBlockScanLimit(DefaultBlockScanLimit) { }
524 
525   MemoryDependenceResults run(Function &F, FunctionAnalysisManager &AM);
526 };
527 
528 /// A wrapper analysis pass for the legacy pass manager that exposes a \c
529 /// MemoryDepnedenceResults instance.
530 class MemoryDependenceWrapperPass : public FunctionPass {
531   Optional<MemoryDependenceResults> MemDep;
532 
533 public:
534   static char ID;
535 
536   MemoryDependenceWrapperPass();
537   ~MemoryDependenceWrapperPass() override;
538 
539   /// Pass Implementation stuff.  This doesn't do any analysis eagerly.
540   bool runOnFunction(Function &) override;
541 
542   /// Clean up memory in between runs
543   void releaseMemory() override;
544 
545   /// Does not modify anything.  It uses Value Numbering and Alias Analysis.
546   void getAnalysisUsage(AnalysisUsage &AU) const override;
547 
getMemDep()548   MemoryDependenceResults &getMemDep() { return *MemDep; }
549 };
550 
551 } // end namespace llvm
552 
553 #endif // LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
554