1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #ifdef CONFIG_NEWIP
72 #include <uapi/linux/nip_addr.h>
73 #endif
74
75 /*
76 * This structure really needs to be cleaned up.
77 * Most of it is for TCP, and not used by any of
78 * the other protocols.
79 */
80
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93
94 /* This is the per-socket lock. The spinlock provides a synchronization
95 * between user contexts and software interrupt processing, whereas the
96 * mini-semaphore synchronizes multiple users amongst themselves.
97 */
98 typedef struct {
99 spinlock_t slock;
100 int owned;
101 wait_queue_head_t wq;
102 /*
103 * We express the mutex-alike socket_lock semantics
104 * to the lock validator by explicitly managing
105 * the slock as a lock variant (in addition to
106 * the slock itself):
107 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112
113 struct sock;
114 struct proto;
115 struct net;
116
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119
120 /**
121 * struct sock_common - minimal network layer representation of sockets
122 * @skc_daddr: Foreign IPv4 addr
123 * @skc_rcv_saddr: Bound local IPv4 addr
124 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_portpair: __u32 union of @skc_dport & @skc_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_ipv6only: socket is IPV6 only
135 * @skc_net_refcnt: socket is using net ref counting
136 * @skc_bound_dev_if: bound device index if != 0
137 * @skc_bind_node: bind hash linkage for various protocol lookup tables
138 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
139 * @skc_prot: protocol handlers inside a network family
140 * @skc_net: reference to the network namespace of this socket
141 * @skc_v6_daddr: IPV6 destination address
142 * @skc_v6_rcv_saddr: IPV6 source address
143 * @skc_cookie: socket's cookie value
144 * @skc_node: main hash linkage for various protocol lookup tables
145 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
146 * @skc_tx_queue_mapping: tx queue number for this connection
147 * @skc_rx_queue_mapping: rx queue number for this connection
148 * @skc_flags: place holder for sk_flags
149 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
150 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
151 * @skc_listener: connection request listener socket (aka rsk_listener)
152 * [union with @skc_flags]
153 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
154 * [union with @skc_flags]
155 * @skc_incoming_cpu: record/match cpu processing incoming packets
156 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
157 * [union with @skc_incoming_cpu]
158 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
159 * [union with @skc_incoming_cpu]
160 * @skc_refcnt: reference count
161 *
162 * This is the minimal network layer representation of sockets, the header
163 * for struct sock and struct inet_timewait_sock.
164 */
165 struct sock_common {
166 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
167 * address on 64bit arches : cf INET_MATCH()
168 */
169 union {
170 __addrpair skc_addrpair;
171 struct {
172 __be32 skc_daddr;
173 __be32 skc_rcv_saddr;
174 };
175 };
176 union {
177 unsigned int skc_hash;
178 __u16 skc_u16hashes[2];
179 };
180 /* skc_dport && skc_num must be grouped as well */
181 union {
182 __portpair skc_portpair;
183 struct {
184 __be16 skc_dport;
185 __u16 skc_num;
186 };
187 };
188
189 unsigned short skc_family;
190 volatile unsigned char skc_state;
191 unsigned char skc_reuse:4;
192 unsigned char skc_reuseport:1;
193 unsigned char skc_ipv6only:1;
194 unsigned char skc_net_refcnt:1;
195 int skc_bound_dev_if;
196 union {
197 struct hlist_node skc_bind_node;
198 struct hlist_node skc_portaddr_node;
199 };
200 struct proto *skc_prot;
201 possible_net_t skc_net;
202
203 #if IS_ENABLED(CONFIG_IPV6)
204 struct in6_addr skc_v6_daddr;
205 struct in6_addr skc_v6_rcv_saddr;
206 #endif
207
208 #if IS_ENABLED(CONFIG_NEWIP)
209 struct nip_addr nip_daddr; /* NIP */
210 struct nip_addr nip_rcv_saddr; /* NIP */
211 #endif
212
213 atomic64_t skc_cookie;
214
215 /* following fields are padding to force
216 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
217 * assuming IPV6 is enabled. We use this padding differently
218 * for different kind of 'sockets'
219 */
220 union {
221 unsigned long skc_flags;
222 struct sock *skc_listener; /* request_sock */
223 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
224 };
225 /*
226 * fields between dontcopy_begin/dontcopy_end
227 * are not copied in sock_copy()
228 */
229 /* private: */
230 int skc_dontcopy_begin[0];
231 /* public: */
232 union {
233 struct hlist_node skc_node;
234 struct hlist_nulls_node skc_nulls_node;
235 };
236 unsigned short skc_tx_queue_mapping;
237 #ifdef CONFIG_XPS
238 unsigned short skc_rx_queue_mapping;
239 #endif
240 union {
241 int skc_incoming_cpu;
242 u32 skc_rcv_wnd;
243 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
244 };
245
246 refcount_t skc_refcnt;
247 /* private: */
248 int skc_dontcopy_end[0];
249 union {
250 u32 skc_rxhash;
251 u32 skc_window_clamp;
252 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
253 };
254 /* public: */
255 };
256
257 struct bpf_local_storage;
258
259 /**
260 * struct sock - network layer representation of sockets
261 * @__sk_common: shared layout with inet_timewait_sock
262 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
263 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
264 * @sk_lock: synchronizer
265 * @sk_kern_sock: True if sock is using kernel lock classes
266 * @sk_rcvbuf: size of receive buffer in bytes
267 * @sk_wq: sock wait queue and async head
268 * @sk_rx_dst: receive input route used by early demux
269 * @sk_dst_cache: destination cache
270 * @sk_dst_pending_confirm: need to confirm neighbour
271 * @sk_policy: flow policy
272 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
273 * @sk_receive_queue: incoming packets
274 * @sk_wmem_alloc: transmit queue bytes committed
275 * @sk_tsq_flags: TCP Small Queues flags
276 * @sk_write_queue: Packet sending queue
277 * @sk_omem_alloc: "o" is "option" or "other"
278 * @sk_wmem_queued: persistent queue size
279 * @sk_forward_alloc: space allocated forward
280 * @sk_napi_id: id of the last napi context to receive data for sk
281 * @sk_ll_usec: usecs to busypoll when there is no data
282 * @sk_allocation: allocation mode
283 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
284 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
285 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
286 * @sk_sndbuf: size of send buffer in bytes
287 * @__sk_flags_offset: empty field used to determine location of bitfield
288 * @sk_padding: unused element for alignment
289 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
290 * @sk_no_check_rx: allow zero checksum in RX packets
291 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
292 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
293 * @sk_route_forced_caps: static, forced route capabilities
294 * (set in tcp_init_sock())
295 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
296 * @sk_gso_max_size: Maximum GSO segment size to build
297 * @sk_gso_max_segs: Maximum number of GSO segments
298 * @sk_pacing_shift: scaling factor for TCP Small Queues
299 * @sk_lingertime: %SO_LINGER l_linger setting
300 * @sk_backlog: always used with the per-socket spinlock held
301 * @sk_callback_lock: used with the callbacks in the end of this struct
302 * @sk_error_queue: rarely used
303 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
304 * IPV6_ADDRFORM for instance)
305 * @sk_err: last error
306 * @sk_err_soft: errors that don't cause failure but are the cause of a
307 * persistent failure not just 'timed out'
308 * @sk_drops: raw/udp drops counter
309 * @sk_ack_backlog: current listen backlog
310 * @sk_max_ack_backlog: listen backlog set in listen()
311 * @sk_uid: user id of owner
312 * @sk_priority: %SO_PRIORITY setting
313 * @sk_type: socket type (%SOCK_STREAM, etc)
314 * @sk_protocol: which protocol this socket belongs in this network family
315 * @sk_peer_pid: &struct pid for this socket's peer
316 * @sk_peer_cred: %SO_PEERCRED setting
317 * @sk_rcvlowat: %SO_RCVLOWAT setting
318 * @sk_rcvtimeo: %SO_RCVTIMEO setting
319 * @sk_sndtimeo: %SO_SNDTIMEO setting
320 * @sk_txhash: computed flow hash for use on transmit
321 * @sk_filter: socket filtering instructions
322 * @sk_timer: sock cleanup timer
323 * @sk_stamp: time stamp of last packet received
324 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
325 * @sk_tsflags: SO_TIMESTAMPING socket options
326 * @sk_tskey: counter to disambiguate concurrent tstamp requests
327 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
328 * @sk_socket: Identd and reporting IO signals
329 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
330 * @sk_frag: cached page frag
331 * @sk_peek_off: current peek_offset value
332 * @sk_send_head: front of stuff to transmit
333 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
335 * @sk_security: used by security modules
336 * @sk_mark: generic packet mark
337 * @sk_cgrp_data: cgroup data for this cgroup
338 * @sk_memcg: this socket's memory cgroup association
339 * @sk_write_pending: a write to stream socket waits to start
340 * @sk_state_change: callback to indicate change in the state of the sock
341 * @sk_data_ready: callback to indicate there is data to be processed
342 * @sk_write_space: callback to indicate there is bf sending space available
343 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
344 * @sk_backlog_rcv: callback to process the backlog
345 * @sk_validate_xmit_skb: ptr to an optional validate function
346 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
347 * @sk_reuseport_cb: reuseport group container
348 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
349 * @sk_rcu: used during RCU grace period
350 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
351 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
352 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
353 * @sk_txtime_unused: unused txtime flags
354 */
355 struct sock {
356 /*
357 * Now struct inet_timewait_sock also uses sock_common, so please just
358 * don't add nothing before this first member (__sk_common) --acme
359 */
360 struct sock_common __sk_common;
361 #define sk_node __sk_common.skc_node
362 #define sk_nulls_node __sk_common.skc_nulls_node
363 #define sk_refcnt __sk_common.skc_refcnt
364 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
365 #ifdef CONFIG_XPS
366 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
367 #endif
368
369 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
370 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
371 #define sk_hash __sk_common.skc_hash
372 #define sk_portpair __sk_common.skc_portpair
373 #define sk_num __sk_common.skc_num
374 #define sk_dport __sk_common.skc_dport
375 #define sk_addrpair __sk_common.skc_addrpair
376 #define sk_daddr __sk_common.skc_daddr
377 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
378 #define sk_family __sk_common.skc_family
379 #define sk_state __sk_common.skc_state
380 #define sk_reuse __sk_common.skc_reuse
381 #define sk_reuseport __sk_common.skc_reuseport
382 #define sk_ipv6only __sk_common.skc_ipv6only
383 #define sk_net_refcnt __sk_common.skc_net_refcnt
384 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
385 #define sk_bind_node __sk_common.skc_bind_node
386 #define sk_prot __sk_common.skc_prot
387 #define sk_net __sk_common.skc_net
388 #define sk_v6_daddr __sk_common.skc_v6_daddr
389 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
390 #define sk_cookie __sk_common.skc_cookie
391 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
392 #define sk_flags __sk_common.skc_flags
393 #define sk_rxhash __sk_common.skc_rxhash
394
395 socket_lock_t sk_lock;
396 atomic_t sk_drops;
397 int sk_rcvlowat;
398 struct sk_buff_head sk_error_queue;
399 struct sk_buff *sk_rx_skb_cache;
400 struct sk_buff_head sk_receive_queue;
401 /*
402 * The backlog queue is special, it is always used with
403 * the per-socket spinlock held and requires low latency
404 * access. Therefore we special case it's implementation.
405 * Note : rmem_alloc is in this structure to fill a hole
406 * on 64bit arches, not because its logically part of
407 * backlog.
408 */
409 struct {
410 atomic_t rmem_alloc;
411 int len;
412 struct sk_buff *head;
413 struct sk_buff *tail;
414 } sk_backlog;
415 #define sk_rmem_alloc sk_backlog.rmem_alloc
416
417 int sk_forward_alloc;
418 #ifdef CONFIG_NET_RX_BUSY_POLL
419 unsigned int sk_ll_usec;
420 /* ===== mostly read cache line ===== */
421 unsigned int sk_napi_id;
422 #endif
423 int sk_rcvbuf;
424
425 struct sk_filter __rcu *sk_filter;
426 union {
427 struct socket_wq __rcu *sk_wq;
428 /* private: */
429 struct socket_wq *sk_wq_raw;
430 /* public: */
431 };
432 #ifdef CONFIG_XFRM
433 struct xfrm_policy __rcu *sk_policy[2];
434 #endif
435 struct dst_entry *sk_rx_dst;
436 struct dst_entry __rcu *sk_dst_cache;
437 atomic_t sk_omem_alloc;
438 int sk_sndbuf;
439
440 /* ===== cache line for TX ===== */
441 int sk_wmem_queued;
442 refcount_t sk_wmem_alloc;
443 unsigned long sk_tsq_flags;
444 union {
445 struct sk_buff *sk_send_head;
446 struct rb_root tcp_rtx_queue;
447 };
448 struct sk_buff *sk_tx_skb_cache;
449 struct sk_buff_head sk_write_queue;
450 __s32 sk_peek_off;
451 int sk_write_pending;
452 __u32 sk_dst_pending_confirm;
453 u32 sk_pacing_status; /* see enum sk_pacing */
454 long sk_sndtimeo;
455 struct timer_list sk_timer;
456 __u32 sk_priority;
457 __u32 sk_mark;
458 unsigned long sk_pacing_rate; /* bytes per second */
459 unsigned long sk_max_pacing_rate;
460 struct page_frag sk_frag;
461 netdev_features_t sk_route_caps;
462 netdev_features_t sk_route_nocaps;
463 netdev_features_t sk_route_forced_caps;
464 int sk_gso_type;
465 unsigned int sk_gso_max_size;
466 gfp_t sk_allocation;
467 __u32 sk_txhash;
468
469 /*
470 * Because of non atomicity rules, all
471 * changes are protected by socket lock.
472 */
473 u8 sk_padding : 1,
474 sk_kern_sock : 1,
475 sk_no_check_tx : 1,
476 sk_no_check_rx : 1,
477 sk_userlocks : 4;
478 u8 sk_pacing_shift;
479 u16 sk_type;
480 u16 sk_protocol;
481 u16 sk_gso_max_segs;
482 unsigned long sk_lingertime;
483 struct proto *sk_prot_creator;
484 rwlock_t sk_callback_lock;
485 int sk_err,
486 sk_err_soft;
487 u32 sk_ack_backlog;
488 u32 sk_max_ack_backlog;
489 kuid_t sk_uid;
490 spinlock_t sk_peer_lock;
491 struct pid *sk_peer_pid;
492 const struct cred *sk_peer_cred;
493
494 long sk_rcvtimeo;
495 ktime_t sk_stamp;
496 #if BITS_PER_LONG==32
497 seqlock_t sk_stamp_seq;
498 #endif
499 u16 sk_tsflags;
500 u8 sk_shutdown;
501 u32 sk_tskey;
502 atomic_t sk_zckey;
503
504 u8 sk_clockid;
505 u8 sk_txtime_deadline_mode : 1,
506 sk_txtime_report_errors : 1,
507 sk_txtime_unused : 6;
508
509 struct socket *sk_socket;
510 void *sk_user_data;
511 #ifdef CONFIG_SECURITY
512 void *sk_security;
513 #endif
514 struct sock_cgroup_data sk_cgrp_data;
515 struct mem_cgroup *sk_memcg;
516 void (*sk_state_change)(struct sock *sk);
517 void (*sk_data_ready)(struct sock *sk);
518 void (*sk_write_space)(struct sock *sk);
519 void (*sk_error_report)(struct sock *sk);
520 int (*sk_backlog_rcv)(struct sock *sk,
521 struct sk_buff *skb);
522 #ifdef CONFIG_SOCK_VALIDATE_XMIT
523 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
524 struct net_device *dev,
525 struct sk_buff *skb);
526 #endif
527 void (*sk_destruct)(struct sock *sk);
528 struct sock_reuseport __rcu *sk_reuseport_cb;
529 #ifdef CONFIG_BPF_SYSCALL
530 struct bpf_local_storage __rcu *sk_bpf_storage;
531 #endif
532 struct rcu_head sk_rcu;
533 };
534
535 enum sk_pacing {
536 SK_PACING_NONE = 0,
537 SK_PACING_NEEDED = 1,
538 SK_PACING_FQ = 2,
539 };
540
541 /* Pointer stored in sk_user_data might not be suitable for copying
542 * when cloning the socket. For instance, it can point to a reference
543 * counted object. sk_user_data bottom bit is set if pointer must not
544 * be copied.
545 */
546 #define SK_USER_DATA_NOCOPY 1UL
547 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */
548 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
549
550 /**
551 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
552 * @sk: socket
553 */
sk_user_data_is_nocopy(const struct sock * sk)554 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
555 {
556 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
557 }
558
559 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
560
561 #define rcu_dereference_sk_user_data(sk) \
562 ({ \
563 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
564 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
565 })
566 #define rcu_assign_sk_user_data(sk, ptr) \
567 ({ \
568 uintptr_t __tmp = (uintptr_t)(ptr); \
569 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
570 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
571 })
572 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \
573 ({ \
574 uintptr_t __tmp = (uintptr_t)(ptr); \
575 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
576 rcu_assign_pointer(__sk_user_data((sk)), \
577 __tmp | SK_USER_DATA_NOCOPY); \
578 })
579
580 /*
581 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
582 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
583 * on a socket means that the socket will reuse everybody else's port
584 * without looking at the other's sk_reuse value.
585 */
586
587 #define SK_NO_REUSE 0
588 #define SK_CAN_REUSE 1
589 #define SK_FORCE_REUSE 2
590
591 int sk_set_peek_off(struct sock *sk, int val);
592
sk_peek_offset(struct sock * sk,int flags)593 static inline int sk_peek_offset(struct sock *sk, int flags)
594 {
595 if (unlikely(flags & MSG_PEEK)) {
596 return READ_ONCE(sk->sk_peek_off);
597 }
598
599 return 0;
600 }
601
sk_peek_offset_bwd(struct sock * sk,int val)602 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
603 {
604 s32 off = READ_ONCE(sk->sk_peek_off);
605
606 if (unlikely(off >= 0)) {
607 off = max_t(s32, off - val, 0);
608 WRITE_ONCE(sk->sk_peek_off, off);
609 }
610 }
611
sk_peek_offset_fwd(struct sock * sk,int val)612 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
613 {
614 sk_peek_offset_bwd(sk, -val);
615 }
616
617 /*
618 * Hashed lists helper routines
619 */
sk_entry(const struct hlist_node * node)620 static inline struct sock *sk_entry(const struct hlist_node *node)
621 {
622 return hlist_entry(node, struct sock, sk_node);
623 }
624
__sk_head(const struct hlist_head * head)625 static inline struct sock *__sk_head(const struct hlist_head *head)
626 {
627 return hlist_entry(head->first, struct sock, sk_node);
628 }
629
sk_head(const struct hlist_head * head)630 static inline struct sock *sk_head(const struct hlist_head *head)
631 {
632 return hlist_empty(head) ? NULL : __sk_head(head);
633 }
634
__sk_nulls_head(const struct hlist_nulls_head * head)635 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
636 {
637 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
638 }
639
sk_nulls_head(const struct hlist_nulls_head * head)640 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
641 {
642 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
643 }
644
sk_next(const struct sock * sk)645 static inline struct sock *sk_next(const struct sock *sk)
646 {
647 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
648 }
649
sk_nulls_next(const struct sock * sk)650 static inline struct sock *sk_nulls_next(const struct sock *sk)
651 {
652 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
653 hlist_nulls_entry(sk->sk_nulls_node.next,
654 struct sock, sk_nulls_node) :
655 NULL;
656 }
657
sk_unhashed(const struct sock * sk)658 static inline bool sk_unhashed(const struct sock *sk)
659 {
660 return hlist_unhashed(&sk->sk_node);
661 }
662
sk_hashed(const struct sock * sk)663 static inline bool sk_hashed(const struct sock *sk)
664 {
665 return !sk_unhashed(sk);
666 }
667
sk_node_init(struct hlist_node * node)668 static inline void sk_node_init(struct hlist_node *node)
669 {
670 node->pprev = NULL;
671 }
672
sk_nulls_node_init(struct hlist_nulls_node * node)673 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
674 {
675 node->pprev = NULL;
676 }
677
__sk_del_node(struct sock * sk)678 static inline void __sk_del_node(struct sock *sk)
679 {
680 __hlist_del(&sk->sk_node);
681 }
682
683 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)684 static inline bool __sk_del_node_init(struct sock *sk)
685 {
686 if (sk_hashed(sk)) {
687 __sk_del_node(sk);
688 sk_node_init(&sk->sk_node);
689 return true;
690 }
691 return false;
692 }
693
694 /* Grab socket reference count. This operation is valid only
695 when sk is ALREADY grabbed f.e. it is found in hash table
696 or a list and the lookup is made under lock preventing hash table
697 modifications.
698 */
699
sock_hold(struct sock * sk)700 static __always_inline void sock_hold(struct sock *sk)
701 {
702 refcount_inc(&sk->sk_refcnt);
703 }
704
705 /* Ungrab socket in the context, which assumes that socket refcnt
706 cannot hit zero, f.e. it is true in context of any socketcall.
707 */
__sock_put(struct sock * sk)708 static __always_inline void __sock_put(struct sock *sk)
709 {
710 refcount_dec(&sk->sk_refcnt);
711 }
712
sk_del_node_init(struct sock * sk)713 static inline bool sk_del_node_init(struct sock *sk)
714 {
715 bool rc = __sk_del_node_init(sk);
716
717 if (rc) {
718 /* paranoid for a while -acme */
719 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
720 __sock_put(sk);
721 }
722 return rc;
723 }
724 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
725
__sk_nulls_del_node_init_rcu(struct sock * sk)726 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
727 {
728 if (sk_hashed(sk)) {
729 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
730 return true;
731 }
732 return false;
733 }
734
sk_nulls_del_node_init_rcu(struct sock * sk)735 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
736 {
737 bool rc = __sk_nulls_del_node_init_rcu(sk);
738
739 if (rc) {
740 /* paranoid for a while -acme */
741 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
742 __sock_put(sk);
743 }
744 return rc;
745 }
746
__sk_add_node(struct sock * sk,struct hlist_head * list)747 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
748 {
749 hlist_add_head(&sk->sk_node, list);
750 }
751
sk_add_node(struct sock * sk,struct hlist_head * list)752 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
753 {
754 sock_hold(sk);
755 __sk_add_node(sk, list);
756 }
757
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)758 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
759 {
760 sock_hold(sk);
761 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
762 sk->sk_family == AF_INET6)
763 hlist_add_tail_rcu(&sk->sk_node, list);
764 else
765 hlist_add_head_rcu(&sk->sk_node, list);
766 }
767
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)768 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
769 {
770 sock_hold(sk);
771 hlist_add_tail_rcu(&sk->sk_node, list);
772 }
773
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)774 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
775 {
776 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
777 }
778
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)779 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
780 {
781 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
782 }
783
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)784 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
785 {
786 sock_hold(sk);
787 __sk_nulls_add_node_rcu(sk, list);
788 }
789
__sk_del_bind_node(struct sock * sk)790 static inline void __sk_del_bind_node(struct sock *sk)
791 {
792 __hlist_del(&sk->sk_bind_node);
793 }
794
sk_add_bind_node(struct sock * sk,struct hlist_head * list)795 static inline void sk_add_bind_node(struct sock *sk,
796 struct hlist_head *list)
797 {
798 hlist_add_head(&sk->sk_bind_node, list);
799 }
800
801 #define sk_for_each(__sk, list) \
802 hlist_for_each_entry(__sk, list, sk_node)
803 #define sk_for_each_rcu(__sk, list) \
804 hlist_for_each_entry_rcu(__sk, list, sk_node)
805 #define sk_nulls_for_each(__sk, node, list) \
806 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
807 #define sk_nulls_for_each_rcu(__sk, node, list) \
808 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
809 #define sk_for_each_from(__sk) \
810 hlist_for_each_entry_from(__sk, sk_node)
811 #define sk_nulls_for_each_from(__sk, node) \
812 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
813 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
814 #define sk_for_each_safe(__sk, tmp, list) \
815 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
816 #define sk_for_each_bound(__sk, list) \
817 hlist_for_each_entry(__sk, list, sk_bind_node)
818
819 /**
820 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
821 * @tpos: the type * to use as a loop cursor.
822 * @pos: the &struct hlist_node to use as a loop cursor.
823 * @head: the head for your list.
824 * @offset: offset of hlist_node within the struct.
825 *
826 */
827 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
828 for (pos = rcu_dereference(hlist_first_rcu(head)); \
829 pos != NULL && \
830 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
831 pos = rcu_dereference(hlist_next_rcu(pos)))
832
sk_user_ns(struct sock * sk)833 static inline struct user_namespace *sk_user_ns(struct sock *sk)
834 {
835 /* Careful only use this in a context where these parameters
836 * can not change and must all be valid, such as recvmsg from
837 * userspace.
838 */
839 return sk->sk_socket->file->f_cred->user_ns;
840 }
841
842 /* Sock flags */
843 enum sock_flags {
844 SOCK_DEAD,
845 SOCK_DONE,
846 SOCK_URGINLINE,
847 SOCK_KEEPOPEN,
848 SOCK_LINGER,
849 SOCK_DESTROY,
850 SOCK_BROADCAST,
851 SOCK_TIMESTAMP,
852 SOCK_ZAPPED,
853 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
854 SOCK_DBG, /* %SO_DEBUG setting */
855 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
856 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
857 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
858 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
859 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
860 SOCK_FASYNC, /* fasync() active */
861 SOCK_RXQ_OVFL,
862 SOCK_ZEROCOPY, /* buffers from userspace */
863 SOCK_WIFI_STATUS, /* push wifi status to userspace */
864 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
865 * Will use last 4 bytes of packet sent from
866 * user-space instead.
867 */
868 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
869 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
870 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
871 SOCK_TXTIME,
872 SOCK_XDP, /* XDP is attached */
873 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
874 };
875
876 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
877
sock_copy_flags(struct sock * nsk,struct sock * osk)878 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
879 {
880 nsk->sk_flags = osk->sk_flags;
881 }
882
sock_set_flag(struct sock * sk,enum sock_flags flag)883 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
884 {
885 __set_bit(flag, &sk->sk_flags);
886 }
887
sock_reset_flag(struct sock * sk,enum sock_flags flag)888 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
889 {
890 __clear_bit(flag, &sk->sk_flags);
891 }
892
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)893 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
894 int valbool)
895 {
896 if (valbool)
897 sock_set_flag(sk, bit);
898 else
899 sock_reset_flag(sk, bit);
900 }
901
sock_flag(const struct sock * sk,enum sock_flags flag)902 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
903 {
904 return test_bit(flag, &sk->sk_flags);
905 }
906
907 #ifdef CONFIG_NET
908 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)909 static inline int sk_memalloc_socks(void)
910 {
911 return static_branch_unlikely(&memalloc_socks_key);
912 }
913
914 void __receive_sock(struct file *file);
915 #else
916
sk_memalloc_socks(void)917 static inline int sk_memalloc_socks(void)
918 {
919 return 0;
920 }
921
__receive_sock(struct file * file)922 static inline void __receive_sock(struct file *file)
923 { }
924 #endif
925
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)926 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
927 {
928 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
929 }
930
sk_acceptq_removed(struct sock * sk)931 static inline void sk_acceptq_removed(struct sock *sk)
932 {
933 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
934 }
935
sk_acceptq_added(struct sock * sk)936 static inline void sk_acceptq_added(struct sock *sk)
937 {
938 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
939 }
940
sk_acceptq_is_full(const struct sock * sk)941 static inline bool sk_acceptq_is_full(const struct sock *sk)
942 {
943 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
944 }
945
946 /*
947 * Compute minimal free write space needed to queue new packets.
948 */
sk_stream_min_wspace(const struct sock * sk)949 static inline int sk_stream_min_wspace(const struct sock *sk)
950 {
951 return READ_ONCE(sk->sk_wmem_queued) >> 1;
952 }
953
sk_stream_wspace(const struct sock * sk)954 static inline int sk_stream_wspace(const struct sock *sk)
955 {
956 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
957 }
958
sk_wmem_queued_add(struct sock * sk,int val)959 static inline void sk_wmem_queued_add(struct sock *sk, int val)
960 {
961 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
962 }
963
964 void sk_stream_write_space(struct sock *sk);
965
966 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)967 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
968 {
969 /* dont let skb dst not refcounted, we are going to leave rcu lock */
970 skb_dst_force(skb);
971
972 if (!sk->sk_backlog.tail)
973 WRITE_ONCE(sk->sk_backlog.head, skb);
974 else
975 sk->sk_backlog.tail->next = skb;
976
977 WRITE_ONCE(sk->sk_backlog.tail, skb);
978 skb->next = NULL;
979 }
980
981 /*
982 * Take into account size of receive queue and backlog queue
983 * Do not take into account this skb truesize,
984 * to allow even a single big packet to come.
985 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)986 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
987 {
988 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
989
990 return qsize > limit;
991 }
992
993 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)994 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
995 unsigned int limit)
996 {
997 if (sk_rcvqueues_full(sk, limit))
998 return -ENOBUFS;
999
1000 /*
1001 * If the skb was allocated from pfmemalloc reserves, only
1002 * allow SOCK_MEMALLOC sockets to use it as this socket is
1003 * helping free memory
1004 */
1005 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1006 return -ENOMEM;
1007
1008 __sk_add_backlog(sk, skb);
1009 sk->sk_backlog.len += skb->truesize;
1010 return 0;
1011 }
1012
1013 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1014
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1015 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1016 {
1017 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1018 return __sk_backlog_rcv(sk, skb);
1019
1020 return sk->sk_backlog_rcv(sk, skb);
1021 }
1022
sk_incoming_cpu_update(struct sock * sk)1023 static inline void sk_incoming_cpu_update(struct sock *sk)
1024 {
1025 int cpu = raw_smp_processor_id();
1026
1027 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1028 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1029 }
1030
sock_rps_record_flow_hash(__u32 hash)1031 static inline void sock_rps_record_flow_hash(__u32 hash)
1032 {
1033 #ifdef CONFIG_RPS
1034 struct rps_sock_flow_table *sock_flow_table;
1035
1036 rcu_read_lock();
1037 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1038 rps_record_sock_flow(sock_flow_table, hash);
1039 rcu_read_unlock();
1040 #endif
1041 }
1042
sock_rps_record_flow(const struct sock * sk)1043 static inline void sock_rps_record_flow(const struct sock *sk)
1044 {
1045 #ifdef CONFIG_RPS
1046 if (static_branch_unlikely(&rfs_needed)) {
1047 /* Reading sk->sk_rxhash might incur an expensive cache line
1048 * miss.
1049 *
1050 * TCP_ESTABLISHED does cover almost all states where RFS
1051 * might be useful, and is cheaper [1] than testing :
1052 * IPv4: inet_sk(sk)->inet_daddr
1053 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1054 * OR an additional socket flag
1055 * [1] : sk_state and sk_prot are in the same cache line.
1056 */
1057 if (sk->sk_state == TCP_ESTABLISHED)
1058 sock_rps_record_flow_hash(sk->sk_rxhash);
1059 }
1060 #endif
1061 }
1062
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1063 static inline void sock_rps_save_rxhash(struct sock *sk,
1064 const struct sk_buff *skb)
1065 {
1066 #ifdef CONFIG_RPS
1067 if (unlikely(sk->sk_rxhash != skb->hash))
1068 sk->sk_rxhash = skb->hash;
1069 #endif
1070 }
1071
sock_rps_reset_rxhash(struct sock * sk)1072 static inline void sock_rps_reset_rxhash(struct sock *sk)
1073 {
1074 #ifdef CONFIG_RPS
1075 sk->sk_rxhash = 0;
1076 #endif
1077 }
1078
1079 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1080 ({ int __rc; \
1081 release_sock(__sk); \
1082 __rc = __condition; \
1083 if (!__rc) { \
1084 *(__timeo) = wait_woken(__wait, \
1085 TASK_INTERRUPTIBLE, \
1086 *(__timeo)); \
1087 } \
1088 sched_annotate_sleep(); \
1089 lock_sock(__sk); \
1090 __rc = __condition; \
1091 __rc; \
1092 })
1093
1094 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1095 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1096 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1097 int sk_stream_error(struct sock *sk, int flags, int err);
1098 void sk_stream_kill_queues(struct sock *sk);
1099 void sk_set_memalloc(struct sock *sk);
1100 void sk_clear_memalloc(struct sock *sk);
1101
1102 void __sk_flush_backlog(struct sock *sk);
1103
sk_flush_backlog(struct sock * sk)1104 static inline bool sk_flush_backlog(struct sock *sk)
1105 {
1106 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1107 __sk_flush_backlog(sk);
1108 return true;
1109 }
1110 return false;
1111 }
1112
1113 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1114
1115 struct request_sock_ops;
1116 struct timewait_sock_ops;
1117 struct inet_hashinfo;
1118 struct raw_hashinfo;
1119 struct smc_hashinfo;
1120 struct module;
1121
1122 /*
1123 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1124 * un-modified. Special care is taken when initializing object to zero.
1125 */
sk_prot_clear_nulls(struct sock * sk,int size)1126 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1127 {
1128 if (offsetof(struct sock, sk_node.next) != 0)
1129 memset(sk, 0, offsetof(struct sock, sk_node.next));
1130 memset(&sk->sk_node.pprev, 0,
1131 size - offsetof(struct sock, sk_node.pprev));
1132 }
1133
1134 /* Networking protocol blocks we attach to sockets.
1135 * socket layer -> transport layer interface
1136 */
1137 struct proto {
1138 void (*close)(struct sock *sk,
1139 long timeout);
1140 int (*pre_connect)(struct sock *sk,
1141 struct sockaddr *uaddr,
1142 int addr_len);
1143 int (*connect)(struct sock *sk,
1144 struct sockaddr *uaddr,
1145 int addr_len);
1146 int (*disconnect)(struct sock *sk, int flags);
1147
1148 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1149 bool kern);
1150
1151 int (*ioctl)(struct sock *sk, int cmd,
1152 unsigned long arg);
1153 int (*init)(struct sock *sk);
1154 void (*destroy)(struct sock *sk);
1155 void (*shutdown)(struct sock *sk, int how);
1156 int (*setsockopt)(struct sock *sk, int level,
1157 int optname, sockptr_t optval,
1158 unsigned int optlen);
1159 int (*getsockopt)(struct sock *sk, int level,
1160 int optname, char __user *optval,
1161 int __user *option);
1162 void (*keepalive)(struct sock *sk, int valbool);
1163 #ifdef CONFIG_COMPAT
1164 int (*compat_ioctl)(struct sock *sk,
1165 unsigned int cmd, unsigned long arg);
1166 #endif
1167 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1168 size_t len);
1169 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1170 size_t len, int noblock, int flags,
1171 int *addr_len);
1172 int (*sendpage)(struct sock *sk, struct page *page,
1173 int offset, size_t size, int flags);
1174 int (*bind)(struct sock *sk,
1175 struct sockaddr *addr, int addr_len);
1176 int (*bind_add)(struct sock *sk,
1177 struct sockaddr *addr, int addr_len);
1178
1179 int (*backlog_rcv) (struct sock *sk,
1180 struct sk_buff *skb);
1181
1182 void (*release_cb)(struct sock *sk);
1183
1184 /* Keeping track of sk's, looking them up, and port selection methods. */
1185 int (*hash)(struct sock *sk);
1186 void (*unhash)(struct sock *sk);
1187 void (*rehash)(struct sock *sk);
1188 int (*get_port)(struct sock *sk, unsigned short snum);
1189
1190 /* Keeping track of sockets in use */
1191 #ifdef CONFIG_PROC_FS
1192 unsigned int inuse_idx;
1193 #endif
1194
1195 bool (*stream_memory_free)(const struct sock *sk, int wake);
1196 bool (*stream_memory_read)(const struct sock *sk);
1197 /* Memory pressure */
1198 void (*enter_memory_pressure)(struct sock *sk);
1199 void (*leave_memory_pressure)(struct sock *sk);
1200 atomic_long_t *memory_allocated; /* Current allocated memory. */
1201 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1202 /*
1203 * Pressure flag: try to collapse.
1204 * Technical note: it is used by multiple contexts non atomically.
1205 * All the __sk_mem_schedule() is of this nature: accounting
1206 * is strict, actions are advisory and have some latency.
1207 */
1208 unsigned long *memory_pressure;
1209 long *sysctl_mem;
1210
1211 int *sysctl_wmem;
1212 int *sysctl_rmem;
1213 u32 sysctl_wmem_offset;
1214 u32 sysctl_rmem_offset;
1215
1216 int max_header;
1217 bool no_autobind;
1218
1219 struct kmem_cache *slab;
1220 unsigned int obj_size;
1221 slab_flags_t slab_flags;
1222 unsigned int useroffset; /* Usercopy region offset */
1223 unsigned int usersize; /* Usercopy region size */
1224
1225 unsigned int __percpu *orphan_count;
1226
1227 struct request_sock_ops *rsk_prot;
1228 struct timewait_sock_ops *twsk_prot;
1229
1230 union {
1231 struct inet_hashinfo *hashinfo;
1232 struct udp_table *udp_table;
1233 struct raw_hashinfo *raw_hash;
1234 struct smc_hashinfo *smc_hash;
1235 } h;
1236
1237 struct module *owner;
1238
1239 char name[32];
1240
1241 struct list_head node;
1242 #ifdef SOCK_REFCNT_DEBUG
1243 atomic_t socks;
1244 #endif
1245 int (*diag_destroy)(struct sock *sk, int err);
1246 } __randomize_layout;
1247
1248 int proto_register(struct proto *prot, int alloc_slab);
1249 void proto_unregister(struct proto *prot);
1250 int sock_load_diag_module(int family, int protocol);
1251
1252 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1253 static inline void sk_refcnt_debug_inc(struct sock *sk)
1254 {
1255 atomic_inc(&sk->sk_prot->socks);
1256 }
1257
sk_refcnt_debug_dec(struct sock * sk)1258 static inline void sk_refcnt_debug_dec(struct sock *sk)
1259 {
1260 atomic_dec(&sk->sk_prot->socks);
1261 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1262 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1263 }
1264
sk_refcnt_debug_release(const struct sock * sk)1265 static inline void sk_refcnt_debug_release(const struct sock *sk)
1266 {
1267 if (refcount_read(&sk->sk_refcnt) != 1)
1268 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1269 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1270 }
1271 #else /* SOCK_REFCNT_DEBUG */
1272 #define sk_refcnt_debug_inc(sk) do { } while (0)
1273 #define sk_refcnt_debug_dec(sk) do { } while (0)
1274 #define sk_refcnt_debug_release(sk) do { } while (0)
1275 #endif /* SOCK_REFCNT_DEBUG */
1276
__sk_stream_memory_free(const struct sock * sk,int wake)1277 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1278 {
1279 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1280 return false;
1281
1282 return sk->sk_prot->stream_memory_free ?
1283 sk->sk_prot->stream_memory_free(sk, wake) : true;
1284 }
1285
sk_stream_memory_free(const struct sock * sk)1286 static inline bool sk_stream_memory_free(const struct sock *sk)
1287 {
1288 return __sk_stream_memory_free(sk, 0);
1289 }
1290
__sk_stream_is_writeable(const struct sock * sk,int wake)1291 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1292 {
1293 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1294 __sk_stream_memory_free(sk, wake);
1295 }
1296
sk_stream_is_writeable(const struct sock * sk)1297 static inline bool sk_stream_is_writeable(const struct sock *sk)
1298 {
1299 return __sk_stream_is_writeable(sk, 0);
1300 }
1301
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1302 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1303 struct cgroup *ancestor)
1304 {
1305 #ifdef CONFIG_SOCK_CGROUP_DATA
1306 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1307 ancestor);
1308 #else
1309 return -ENOTSUPP;
1310 #endif
1311 }
1312
sk_has_memory_pressure(const struct sock * sk)1313 static inline bool sk_has_memory_pressure(const struct sock *sk)
1314 {
1315 return sk->sk_prot->memory_pressure != NULL;
1316 }
1317
sk_under_memory_pressure(const struct sock * sk)1318 static inline bool sk_under_memory_pressure(const struct sock *sk)
1319 {
1320 if (!sk->sk_prot->memory_pressure)
1321 return false;
1322
1323 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1324 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1325 return true;
1326
1327 return !!*sk->sk_prot->memory_pressure;
1328 }
1329
1330 static inline long
sk_memory_allocated(const struct sock * sk)1331 sk_memory_allocated(const struct sock *sk)
1332 {
1333 return atomic_long_read(sk->sk_prot->memory_allocated);
1334 }
1335
1336 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1337 sk_memory_allocated_add(struct sock *sk, int amt)
1338 {
1339 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1340 }
1341
1342 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1343 sk_memory_allocated_sub(struct sock *sk, int amt)
1344 {
1345 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1346 }
1347
sk_sockets_allocated_dec(struct sock * sk)1348 static inline void sk_sockets_allocated_dec(struct sock *sk)
1349 {
1350 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1351 }
1352
sk_sockets_allocated_inc(struct sock * sk)1353 static inline void sk_sockets_allocated_inc(struct sock *sk)
1354 {
1355 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1356 }
1357
1358 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1359 sk_sockets_allocated_read_positive(struct sock *sk)
1360 {
1361 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1362 }
1363
1364 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1365 proto_sockets_allocated_sum_positive(struct proto *prot)
1366 {
1367 return percpu_counter_sum_positive(prot->sockets_allocated);
1368 }
1369
1370 static inline long
proto_memory_allocated(struct proto * prot)1371 proto_memory_allocated(struct proto *prot)
1372 {
1373 return atomic_long_read(prot->memory_allocated);
1374 }
1375
1376 static inline bool
proto_memory_pressure(struct proto * prot)1377 proto_memory_pressure(struct proto *prot)
1378 {
1379 if (!prot->memory_pressure)
1380 return false;
1381 return !!*prot->memory_pressure;
1382 }
1383
1384
1385 #ifdef CONFIG_PROC_FS
1386 /* Called with local bh disabled */
1387 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1388 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1389 int sock_inuse_get(struct net *net);
1390 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1391 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1392 int inc)
1393 {
1394 }
1395 #endif
1396
1397
1398 /* With per-bucket locks this operation is not-atomic, so that
1399 * this version is not worse.
1400 */
__sk_prot_rehash(struct sock * sk)1401 static inline int __sk_prot_rehash(struct sock *sk)
1402 {
1403 sk->sk_prot->unhash(sk);
1404 return sk->sk_prot->hash(sk);
1405 }
1406
1407 /* About 10 seconds */
1408 #define SOCK_DESTROY_TIME (10*HZ)
1409
1410 /* Sockets 0-1023 can't be bound to unless you are superuser */
1411 #define PROT_SOCK 1024
1412
1413 #define SHUTDOWN_MASK 3
1414 #define RCV_SHUTDOWN 1
1415 #define SEND_SHUTDOWN 2
1416
1417 #define SOCK_SNDBUF_LOCK 1
1418 #define SOCK_RCVBUF_LOCK 2
1419 #define SOCK_BINDADDR_LOCK 4
1420 #define SOCK_BINDPORT_LOCK 8
1421
1422 struct socket_alloc {
1423 struct socket socket;
1424 struct inode vfs_inode;
1425 };
1426
SOCKET_I(struct inode * inode)1427 static inline struct socket *SOCKET_I(struct inode *inode)
1428 {
1429 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1430 }
1431
SOCK_INODE(struct socket * socket)1432 static inline struct inode *SOCK_INODE(struct socket *socket)
1433 {
1434 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1435 }
1436
1437 /*
1438 * Functions for memory accounting
1439 */
1440 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1441 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1442 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1443 void __sk_mem_reclaim(struct sock *sk, int amount);
1444
1445 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1446 * do not necessarily have 16x time more memory than 4KB ones.
1447 */
1448 #define SK_MEM_QUANTUM 4096
1449 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1450 #define SK_MEM_SEND 0
1451 #define SK_MEM_RECV 1
1452
1453 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1454 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1455 {
1456 long val = sk->sk_prot->sysctl_mem[index];
1457
1458 #if PAGE_SIZE > SK_MEM_QUANTUM
1459 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1460 #elif PAGE_SIZE < SK_MEM_QUANTUM
1461 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1462 #endif
1463 return val;
1464 }
1465
sk_mem_pages(int amt)1466 static inline int sk_mem_pages(int amt)
1467 {
1468 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1469 }
1470
sk_has_account(struct sock * sk)1471 static inline bool sk_has_account(struct sock *sk)
1472 {
1473 /* return true if protocol supports memory accounting */
1474 return !!sk->sk_prot->memory_allocated;
1475 }
1476
sk_wmem_schedule(struct sock * sk,int size)1477 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1478 {
1479 if (!sk_has_account(sk))
1480 return true;
1481 return size <= sk->sk_forward_alloc ||
1482 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1483 }
1484
1485 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1486 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1487 {
1488 if (!sk_has_account(sk))
1489 return true;
1490 return size <= sk->sk_forward_alloc ||
1491 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1492 skb_pfmemalloc(skb);
1493 }
1494
sk_mem_reclaim(struct sock * sk)1495 static inline void sk_mem_reclaim(struct sock *sk)
1496 {
1497 if (!sk_has_account(sk))
1498 return;
1499 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1500 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1501 }
1502
sk_mem_reclaim_partial(struct sock * sk)1503 static inline void sk_mem_reclaim_partial(struct sock *sk)
1504 {
1505 if (!sk_has_account(sk))
1506 return;
1507 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1508 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1509 }
1510
sk_mem_charge(struct sock * sk,int size)1511 static inline void sk_mem_charge(struct sock *sk, int size)
1512 {
1513 if (!sk_has_account(sk))
1514 return;
1515 sk->sk_forward_alloc -= size;
1516 }
1517
sk_mem_uncharge(struct sock * sk,int size)1518 static inline void sk_mem_uncharge(struct sock *sk, int size)
1519 {
1520 if (!sk_has_account(sk))
1521 return;
1522 sk->sk_forward_alloc += size;
1523
1524 /* Avoid a possible overflow.
1525 * TCP send queues can make this happen, if sk_mem_reclaim()
1526 * is not called and more than 2 GBytes are released at once.
1527 *
1528 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1529 * no need to hold that much forward allocation anyway.
1530 */
1531 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1532 __sk_mem_reclaim(sk, 1 << 20);
1533 }
1534
1535 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1536 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1537 {
1538 sk_wmem_queued_add(sk, -skb->truesize);
1539 sk_mem_uncharge(sk, skb->truesize);
1540 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1541 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1542 skb_ext_reset(skb);
1543 skb_zcopy_clear(skb, true);
1544 sk->sk_tx_skb_cache = skb;
1545 return;
1546 }
1547 __kfree_skb(skb);
1548 }
1549
sock_release_ownership(struct sock * sk)1550 static inline void sock_release_ownership(struct sock *sk)
1551 {
1552 if (sk->sk_lock.owned) {
1553 sk->sk_lock.owned = 0;
1554
1555 /* The sk_lock has mutex_unlock() semantics: */
1556 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1557 }
1558 }
1559
1560 /*
1561 * Macro so as to not evaluate some arguments when
1562 * lockdep is not enabled.
1563 *
1564 * Mark both the sk_lock and the sk_lock.slock as a
1565 * per-address-family lock class.
1566 */
1567 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1568 do { \
1569 sk->sk_lock.owned = 0; \
1570 init_waitqueue_head(&sk->sk_lock.wq); \
1571 spin_lock_init(&(sk)->sk_lock.slock); \
1572 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1573 sizeof((sk)->sk_lock)); \
1574 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1575 (skey), (sname)); \
1576 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1577 } while (0)
1578
1579 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1580 static inline bool lockdep_sock_is_held(const struct sock *sk)
1581 {
1582 return lockdep_is_held(&sk->sk_lock) ||
1583 lockdep_is_held(&sk->sk_lock.slock);
1584 }
1585 #endif
1586
1587 void lock_sock_nested(struct sock *sk, int subclass);
1588
lock_sock(struct sock * sk)1589 static inline void lock_sock(struct sock *sk)
1590 {
1591 lock_sock_nested(sk, 0);
1592 }
1593
1594 void __release_sock(struct sock *sk);
1595 void release_sock(struct sock *sk);
1596
1597 /* BH context may only use the following locking interface. */
1598 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1599 #define bh_lock_sock_nested(__sk) \
1600 spin_lock_nested(&((__sk)->sk_lock.slock), \
1601 SINGLE_DEPTH_NESTING)
1602 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1603
1604 bool lock_sock_fast(struct sock *sk);
1605 /**
1606 * unlock_sock_fast - complement of lock_sock_fast
1607 * @sk: socket
1608 * @slow: slow mode
1609 *
1610 * fast unlock socket for user context.
1611 * If slow mode is on, we call regular release_sock()
1612 */
unlock_sock_fast(struct sock * sk,bool slow)1613 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1614 {
1615 if (slow)
1616 release_sock(sk);
1617 else
1618 spin_unlock_bh(&sk->sk_lock.slock);
1619 }
1620
1621 /* Used by processes to "lock" a socket state, so that
1622 * interrupts and bottom half handlers won't change it
1623 * from under us. It essentially blocks any incoming
1624 * packets, so that we won't get any new data or any
1625 * packets that change the state of the socket.
1626 *
1627 * While locked, BH processing will add new packets to
1628 * the backlog queue. This queue is processed by the
1629 * owner of the socket lock right before it is released.
1630 *
1631 * Since ~2.3.5 it is also exclusive sleep lock serializing
1632 * accesses from user process context.
1633 */
1634
sock_owned_by_me(const struct sock * sk)1635 static inline void sock_owned_by_me(const struct sock *sk)
1636 {
1637 #ifdef CONFIG_LOCKDEP
1638 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1639 #endif
1640 }
1641
sock_owned_by_user(const struct sock * sk)1642 static inline bool sock_owned_by_user(const struct sock *sk)
1643 {
1644 sock_owned_by_me(sk);
1645 return sk->sk_lock.owned;
1646 }
1647
sock_owned_by_user_nocheck(const struct sock * sk)1648 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1649 {
1650 return sk->sk_lock.owned;
1651 }
1652
1653 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1654 static inline bool sock_allow_reclassification(const struct sock *csk)
1655 {
1656 struct sock *sk = (struct sock *)csk;
1657
1658 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1659 }
1660
1661 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1662 struct proto *prot, int kern);
1663 void sk_free(struct sock *sk);
1664 void sk_destruct(struct sock *sk);
1665 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1666 void sk_free_unlock_clone(struct sock *sk);
1667
1668 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1669 gfp_t priority);
1670 void __sock_wfree(struct sk_buff *skb);
1671 void sock_wfree(struct sk_buff *skb);
1672 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1673 gfp_t priority);
1674 void skb_orphan_partial(struct sk_buff *skb);
1675 void sock_rfree(struct sk_buff *skb);
1676 void sock_efree(struct sk_buff *skb);
1677 #ifdef CONFIG_INET
1678 void sock_edemux(struct sk_buff *skb);
1679 void sock_pfree(struct sk_buff *skb);
1680 #else
1681 #define sock_edemux sock_efree
1682 #endif
1683
1684 int sock_setsockopt(struct socket *sock, int level, int op,
1685 sockptr_t optval, unsigned int optlen);
1686
1687 int sock_getsockopt(struct socket *sock, int level, int op,
1688 char __user *optval, int __user *optlen);
1689 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1690 bool timeval, bool time32);
1691 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1692 int noblock, int *errcode);
1693 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1694 unsigned long data_len, int noblock,
1695 int *errcode, int max_page_order);
1696 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1697 void sock_kfree_s(struct sock *sk, void *mem, int size);
1698 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1699 void sk_send_sigurg(struct sock *sk);
1700
1701 struct sockcm_cookie {
1702 u64 transmit_time;
1703 u32 mark;
1704 u16 tsflags;
1705 };
1706
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1707 static inline void sockcm_init(struct sockcm_cookie *sockc,
1708 const struct sock *sk)
1709 {
1710 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1711 }
1712
1713 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1714 struct sockcm_cookie *sockc);
1715 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1716 struct sockcm_cookie *sockc);
1717
1718 /*
1719 * Functions to fill in entries in struct proto_ops when a protocol
1720 * does not implement a particular function.
1721 */
1722 int sock_no_bind(struct socket *, struct sockaddr *, int);
1723 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1724 int sock_no_socketpair(struct socket *, struct socket *);
1725 int sock_no_accept(struct socket *, struct socket *, int, bool);
1726 int sock_no_getname(struct socket *, struct sockaddr *, int);
1727 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1728 int sock_no_listen(struct socket *, int);
1729 int sock_no_shutdown(struct socket *, int);
1730 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1731 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1732 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1733 int sock_no_mmap(struct file *file, struct socket *sock,
1734 struct vm_area_struct *vma);
1735 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1736 size_t size, int flags);
1737 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1738 int offset, size_t size, int flags);
1739
1740 /*
1741 * Functions to fill in entries in struct proto_ops when a protocol
1742 * uses the inet style.
1743 */
1744 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1745 char __user *optval, int __user *optlen);
1746 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1747 int flags);
1748 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1749 sockptr_t optval, unsigned int optlen);
1750
1751 void sk_common_release(struct sock *sk);
1752
1753 /*
1754 * Default socket callbacks and setup code
1755 */
1756
1757 /* Initialise core socket variables using an explicit uid. */
1758 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1759
1760 /* Initialise core socket variables.
1761 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1762 */
1763 void sock_init_data(struct socket *sock, struct sock *sk);
1764
1765 /*
1766 * Socket reference counting postulates.
1767 *
1768 * * Each user of socket SHOULD hold a reference count.
1769 * * Each access point to socket (an hash table bucket, reference from a list,
1770 * running timer, skb in flight MUST hold a reference count.
1771 * * When reference count hits 0, it means it will never increase back.
1772 * * When reference count hits 0, it means that no references from
1773 * outside exist to this socket and current process on current CPU
1774 * is last user and may/should destroy this socket.
1775 * * sk_free is called from any context: process, BH, IRQ. When
1776 * it is called, socket has no references from outside -> sk_free
1777 * may release descendant resources allocated by the socket, but
1778 * to the time when it is called, socket is NOT referenced by any
1779 * hash tables, lists etc.
1780 * * Packets, delivered from outside (from network or from another process)
1781 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1782 * when they sit in queue. Otherwise, packets will leak to hole, when
1783 * socket is looked up by one cpu and unhasing is made by another CPU.
1784 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1785 * (leak to backlog). Packet socket does all the processing inside
1786 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1787 * use separate SMP lock, so that they are prone too.
1788 */
1789
1790 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1791 static inline void sock_put(struct sock *sk)
1792 {
1793 if (refcount_dec_and_test(&sk->sk_refcnt))
1794 sk_free(sk);
1795 }
1796 /* Generic version of sock_put(), dealing with all sockets
1797 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1798 */
1799 void sock_gen_put(struct sock *sk);
1800
1801 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1802 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1803 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1804 const int nested)
1805 {
1806 return __sk_receive_skb(sk, skb, nested, 1, true);
1807 }
1808
sk_tx_queue_set(struct sock * sk,int tx_queue)1809 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1810 {
1811 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1812 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1813 return;
1814 sk->sk_tx_queue_mapping = tx_queue;
1815 }
1816
1817 #define NO_QUEUE_MAPPING USHRT_MAX
1818
sk_tx_queue_clear(struct sock * sk)1819 static inline void sk_tx_queue_clear(struct sock *sk)
1820 {
1821 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1822 }
1823
sk_tx_queue_get(const struct sock * sk)1824 static inline int sk_tx_queue_get(const struct sock *sk)
1825 {
1826 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1827 return sk->sk_tx_queue_mapping;
1828
1829 return -1;
1830 }
1831
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1832 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1833 {
1834 #ifdef CONFIG_XPS
1835 if (skb_rx_queue_recorded(skb)) {
1836 u16 rx_queue = skb_get_rx_queue(skb);
1837
1838 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1839 return;
1840
1841 sk->sk_rx_queue_mapping = rx_queue;
1842 }
1843 #endif
1844 }
1845
sk_rx_queue_clear(struct sock * sk)1846 static inline void sk_rx_queue_clear(struct sock *sk)
1847 {
1848 #ifdef CONFIG_XPS
1849 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1850 #endif
1851 }
1852
1853 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1854 static inline int sk_rx_queue_get(const struct sock *sk)
1855 {
1856 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1857 return sk->sk_rx_queue_mapping;
1858
1859 return -1;
1860 }
1861 #endif
1862
sk_set_socket(struct sock * sk,struct socket * sock)1863 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1864 {
1865 sk->sk_socket = sock;
1866 }
1867
sk_sleep(struct sock * sk)1868 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1869 {
1870 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1871 return &rcu_dereference_raw(sk->sk_wq)->wait;
1872 }
1873 /* Detach socket from process context.
1874 * Announce socket dead, detach it from wait queue and inode.
1875 * Note that parent inode held reference count on this struct sock,
1876 * we do not release it in this function, because protocol
1877 * probably wants some additional cleanups or even continuing
1878 * to work with this socket (TCP).
1879 */
sock_orphan(struct sock * sk)1880 static inline void sock_orphan(struct sock *sk)
1881 {
1882 write_lock_bh(&sk->sk_callback_lock);
1883 sock_set_flag(sk, SOCK_DEAD);
1884 sk_set_socket(sk, NULL);
1885 sk->sk_wq = NULL;
1886 write_unlock_bh(&sk->sk_callback_lock);
1887 }
1888
sock_graft(struct sock * sk,struct socket * parent)1889 static inline void sock_graft(struct sock *sk, struct socket *parent)
1890 {
1891 WARN_ON(parent->sk);
1892 write_lock_bh(&sk->sk_callback_lock);
1893 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1894 parent->sk = sk;
1895 sk_set_socket(sk, parent);
1896 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1897 security_sock_graft(sk, parent);
1898 write_unlock_bh(&sk->sk_callback_lock);
1899 }
1900
1901 kuid_t sock_i_uid(struct sock *sk);
1902 unsigned long sock_i_ino(struct sock *sk);
1903
sock_net_uid(const struct net * net,const struct sock * sk)1904 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1905 {
1906 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1907 }
1908
net_tx_rndhash(void)1909 static inline u32 net_tx_rndhash(void)
1910 {
1911 u32 v = prandom_u32();
1912
1913 return v ?: 1;
1914 }
1915
sk_set_txhash(struct sock * sk)1916 static inline void sk_set_txhash(struct sock *sk)
1917 {
1918 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1919 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1920 }
1921
sk_rethink_txhash(struct sock * sk)1922 static inline bool sk_rethink_txhash(struct sock *sk)
1923 {
1924 if (sk->sk_txhash) {
1925 sk_set_txhash(sk);
1926 return true;
1927 }
1928 return false;
1929 }
1930
1931 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1932 __sk_dst_get(struct sock *sk)
1933 {
1934 return rcu_dereference_check(sk->sk_dst_cache,
1935 lockdep_sock_is_held(sk));
1936 }
1937
1938 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1939 sk_dst_get(struct sock *sk)
1940 {
1941 struct dst_entry *dst;
1942
1943 rcu_read_lock();
1944 dst = rcu_dereference(sk->sk_dst_cache);
1945 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1946 dst = NULL;
1947 rcu_read_unlock();
1948 return dst;
1949 }
1950
__dst_negative_advice(struct sock * sk)1951 static inline void __dst_negative_advice(struct sock *sk)
1952 {
1953 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1954
1955 if (dst && dst->ops->negative_advice) {
1956 ndst = dst->ops->negative_advice(dst);
1957
1958 if (ndst != dst) {
1959 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1960 sk_tx_queue_clear(sk);
1961 sk->sk_dst_pending_confirm = 0;
1962 }
1963 }
1964 }
1965
dst_negative_advice(struct sock * sk)1966 static inline void dst_negative_advice(struct sock *sk)
1967 {
1968 sk_rethink_txhash(sk);
1969 __dst_negative_advice(sk);
1970 }
1971
1972 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1973 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1974 {
1975 struct dst_entry *old_dst;
1976
1977 sk_tx_queue_clear(sk);
1978 sk->sk_dst_pending_confirm = 0;
1979 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1980 lockdep_sock_is_held(sk));
1981 rcu_assign_pointer(sk->sk_dst_cache, dst);
1982 dst_release(old_dst);
1983 }
1984
1985 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1986 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1987 {
1988 struct dst_entry *old_dst;
1989
1990 sk_tx_queue_clear(sk);
1991 sk->sk_dst_pending_confirm = 0;
1992 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1993 dst_release(old_dst);
1994 }
1995
1996 static inline void
__sk_dst_reset(struct sock * sk)1997 __sk_dst_reset(struct sock *sk)
1998 {
1999 __sk_dst_set(sk, NULL);
2000 }
2001
2002 static inline void
sk_dst_reset(struct sock * sk)2003 sk_dst_reset(struct sock *sk)
2004 {
2005 sk_dst_set(sk, NULL);
2006 }
2007
2008 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2009
2010 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2011
sk_dst_confirm(struct sock * sk)2012 static inline void sk_dst_confirm(struct sock *sk)
2013 {
2014 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2015 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2016 }
2017
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2018 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2019 {
2020 if (skb_get_dst_pending_confirm(skb)) {
2021 struct sock *sk = skb->sk;
2022 unsigned long now = jiffies;
2023
2024 /* avoid dirtying neighbour */
2025 if (READ_ONCE(n->confirmed) != now)
2026 WRITE_ONCE(n->confirmed, now);
2027 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2028 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2029 }
2030 }
2031
2032 bool sk_mc_loop(struct sock *sk);
2033
sk_can_gso(const struct sock * sk)2034 static inline bool sk_can_gso(const struct sock *sk)
2035 {
2036 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2037 }
2038
2039 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2040
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2041 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2042 {
2043 sk->sk_route_nocaps |= flags;
2044 sk->sk_route_caps &= ~flags;
2045 }
2046
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2047 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2048 struct iov_iter *from, char *to,
2049 int copy, int offset)
2050 {
2051 if (skb->ip_summed == CHECKSUM_NONE) {
2052 __wsum csum = 0;
2053 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2054 return -EFAULT;
2055 skb->csum = csum_block_add(skb->csum, csum, offset);
2056 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2057 if (!copy_from_iter_full_nocache(to, copy, from))
2058 return -EFAULT;
2059 } else if (!copy_from_iter_full(to, copy, from))
2060 return -EFAULT;
2061
2062 return 0;
2063 }
2064
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2065 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2066 struct iov_iter *from, int copy)
2067 {
2068 int err, offset = skb->len;
2069
2070 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2071 copy, offset);
2072 if (err)
2073 __skb_trim(skb, offset);
2074
2075 return err;
2076 }
2077
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2078 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2079 struct sk_buff *skb,
2080 struct page *page,
2081 int off, int copy)
2082 {
2083 int err;
2084
2085 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2086 copy, skb->len);
2087 if (err)
2088 return err;
2089
2090 skb->len += copy;
2091 skb->data_len += copy;
2092 skb->truesize += copy;
2093 sk_wmem_queued_add(sk, copy);
2094 sk_mem_charge(sk, copy);
2095 return 0;
2096 }
2097
2098 /**
2099 * sk_wmem_alloc_get - returns write allocations
2100 * @sk: socket
2101 *
2102 * Return: sk_wmem_alloc minus initial offset of one
2103 */
sk_wmem_alloc_get(const struct sock * sk)2104 static inline int sk_wmem_alloc_get(const struct sock *sk)
2105 {
2106 return refcount_read(&sk->sk_wmem_alloc) - 1;
2107 }
2108
2109 /**
2110 * sk_rmem_alloc_get - returns read allocations
2111 * @sk: socket
2112 *
2113 * Return: sk_rmem_alloc
2114 */
sk_rmem_alloc_get(const struct sock * sk)2115 static inline int sk_rmem_alloc_get(const struct sock *sk)
2116 {
2117 return atomic_read(&sk->sk_rmem_alloc);
2118 }
2119
2120 /**
2121 * sk_has_allocations - check if allocations are outstanding
2122 * @sk: socket
2123 *
2124 * Return: true if socket has write or read allocations
2125 */
sk_has_allocations(const struct sock * sk)2126 static inline bool sk_has_allocations(const struct sock *sk)
2127 {
2128 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2129 }
2130
2131 /**
2132 * skwq_has_sleeper - check if there are any waiting processes
2133 * @wq: struct socket_wq
2134 *
2135 * Return: true if socket_wq has waiting processes
2136 *
2137 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2138 * barrier call. They were added due to the race found within the tcp code.
2139 *
2140 * Consider following tcp code paths::
2141 *
2142 * CPU1 CPU2
2143 * sys_select receive packet
2144 * ... ...
2145 * __add_wait_queue update tp->rcv_nxt
2146 * ... ...
2147 * tp->rcv_nxt check sock_def_readable
2148 * ... {
2149 * schedule rcu_read_lock();
2150 * wq = rcu_dereference(sk->sk_wq);
2151 * if (wq && waitqueue_active(&wq->wait))
2152 * wake_up_interruptible(&wq->wait)
2153 * ...
2154 * }
2155 *
2156 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2157 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2158 * could then endup calling schedule and sleep forever if there are no more
2159 * data on the socket.
2160 *
2161 */
skwq_has_sleeper(struct socket_wq * wq)2162 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2163 {
2164 return wq && wq_has_sleeper(&wq->wait);
2165 }
2166
2167 /**
2168 * sock_poll_wait - place memory barrier behind the poll_wait call.
2169 * @filp: file
2170 * @sock: socket to wait on
2171 * @p: poll_table
2172 *
2173 * See the comments in the wq_has_sleeper function.
2174 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2175 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2176 poll_table *p)
2177 {
2178 if (!poll_does_not_wait(p)) {
2179 poll_wait(filp, &sock->wq.wait, p);
2180 /* We need to be sure we are in sync with the
2181 * socket flags modification.
2182 *
2183 * This memory barrier is paired in the wq_has_sleeper.
2184 */
2185 smp_mb();
2186 }
2187 }
2188
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2189 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2190 {
2191 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2192 u32 txhash = READ_ONCE(sk->sk_txhash);
2193
2194 if (txhash) {
2195 skb->l4_hash = 1;
2196 skb->hash = txhash;
2197 }
2198 }
2199
2200 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2201
2202 /*
2203 * Queue a received datagram if it will fit. Stream and sequenced
2204 * protocols can't normally use this as they need to fit buffers in
2205 * and play with them.
2206 *
2207 * Inlined as it's very short and called for pretty much every
2208 * packet ever received.
2209 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2210 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2211 {
2212 skb_orphan(skb);
2213 skb->sk = sk;
2214 skb->destructor = sock_rfree;
2215 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2216 sk_mem_charge(sk, skb->truesize);
2217 }
2218
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2219 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2220 {
2221 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2222 skb_orphan(skb);
2223 skb->destructor = sock_efree;
2224 skb->sk = sk;
2225 return true;
2226 }
2227 return false;
2228 }
2229
2230 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2231 unsigned long expires);
2232
2233 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2234
2235 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2236
2237 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2238 struct sk_buff *skb, unsigned int flags,
2239 void (*destructor)(struct sock *sk,
2240 struct sk_buff *skb));
2241 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2242 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2243
2244 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2245 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2246
2247 /*
2248 * Recover an error report and clear atomically
2249 */
2250
sock_error(struct sock * sk)2251 static inline int sock_error(struct sock *sk)
2252 {
2253 int err;
2254
2255 /* Avoid an atomic operation for the common case.
2256 * This is racy since another cpu/thread can change sk_err under us.
2257 */
2258 if (likely(data_race(!sk->sk_err)))
2259 return 0;
2260
2261 err = xchg(&sk->sk_err, 0);
2262 return -err;
2263 }
2264
sock_wspace(struct sock * sk)2265 static inline unsigned long sock_wspace(struct sock *sk)
2266 {
2267 int amt = 0;
2268
2269 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2270 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2271 if (amt < 0)
2272 amt = 0;
2273 }
2274 return amt;
2275 }
2276
2277 /* Note:
2278 * We use sk->sk_wq_raw, from contexts knowing this
2279 * pointer is not NULL and cannot disappear/change.
2280 */
sk_set_bit(int nr,struct sock * sk)2281 static inline void sk_set_bit(int nr, struct sock *sk)
2282 {
2283 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2284 !sock_flag(sk, SOCK_FASYNC))
2285 return;
2286
2287 set_bit(nr, &sk->sk_wq_raw->flags);
2288 }
2289
sk_clear_bit(int nr,struct sock * sk)2290 static inline void sk_clear_bit(int nr, struct sock *sk)
2291 {
2292 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2293 !sock_flag(sk, SOCK_FASYNC))
2294 return;
2295
2296 clear_bit(nr, &sk->sk_wq_raw->flags);
2297 }
2298
sk_wake_async(const struct sock * sk,int how,int band)2299 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2300 {
2301 if (sock_flag(sk, SOCK_FASYNC)) {
2302 rcu_read_lock();
2303 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2304 rcu_read_unlock();
2305 }
2306 }
2307
2308 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2309 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2310 * Note: for send buffers, TCP works better if we can build two skbs at
2311 * minimum.
2312 */
2313 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2314
2315 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2316 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2317
sk_stream_moderate_sndbuf(struct sock * sk)2318 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2319 {
2320 u32 val;
2321
2322 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2323 return;
2324
2325 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2326
2327 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2328 }
2329
2330 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2331 bool force_schedule);
2332
2333 /**
2334 * sk_page_frag - return an appropriate page_frag
2335 * @sk: socket
2336 *
2337 * Use the per task page_frag instead of the per socket one for
2338 * optimization when we know that we're in process context and own
2339 * everything that's associated with %current.
2340 *
2341 * Both direct reclaim and page faults can nest inside other
2342 * socket operations and end up recursing into sk_page_frag()
2343 * while it's already in use: explicitly avoid task page_frag
2344 * usage if the caller is potentially doing any of them.
2345 * This assumes that page fault handlers use the GFP_NOFS flags.
2346 *
2347 * Return: a per task page_frag if context allows that,
2348 * otherwise a per socket one.
2349 */
sk_page_frag(struct sock * sk)2350 static inline struct page_frag *sk_page_frag(struct sock *sk)
2351 {
2352 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2353 (__GFP_DIRECT_RECLAIM | __GFP_FS))
2354 return ¤t->task_frag;
2355
2356 return &sk->sk_frag;
2357 }
2358
2359 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2360
2361 /*
2362 * Default write policy as shown to user space via poll/select/SIGIO
2363 */
sock_writeable(const struct sock * sk)2364 static inline bool sock_writeable(const struct sock *sk)
2365 {
2366 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2367 }
2368
gfp_any(void)2369 static inline gfp_t gfp_any(void)
2370 {
2371 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2372 }
2373
sock_rcvtimeo(const struct sock * sk,bool noblock)2374 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2375 {
2376 return noblock ? 0 : sk->sk_rcvtimeo;
2377 }
2378
sock_sndtimeo(const struct sock * sk,bool noblock)2379 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2380 {
2381 return noblock ? 0 : sk->sk_sndtimeo;
2382 }
2383
sock_rcvlowat(const struct sock * sk,int waitall,int len)2384 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2385 {
2386 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2387
2388 return v ?: 1;
2389 }
2390
2391 /* Alas, with timeout socket operations are not restartable.
2392 * Compare this to poll().
2393 */
sock_intr_errno(long timeo)2394 static inline int sock_intr_errno(long timeo)
2395 {
2396 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2397 }
2398
2399 struct sock_skb_cb {
2400 u32 dropcount;
2401 };
2402
2403 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2404 * using skb->cb[] would keep using it directly and utilize its
2405 * alignement guarantee.
2406 */
2407 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2408 sizeof(struct sock_skb_cb)))
2409
2410 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2411 SOCK_SKB_CB_OFFSET))
2412
2413 #define sock_skb_cb_check_size(size) \
2414 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2415
2416 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2417 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2418 {
2419 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2420 atomic_read(&sk->sk_drops) : 0;
2421 }
2422
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2423 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2424 {
2425 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2426
2427 atomic_add(segs, &sk->sk_drops);
2428 }
2429
sock_read_timestamp(struct sock * sk)2430 static inline ktime_t sock_read_timestamp(struct sock *sk)
2431 {
2432 #if BITS_PER_LONG==32
2433 unsigned int seq;
2434 ktime_t kt;
2435
2436 do {
2437 seq = read_seqbegin(&sk->sk_stamp_seq);
2438 kt = sk->sk_stamp;
2439 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2440
2441 return kt;
2442 #else
2443 return READ_ONCE(sk->sk_stamp);
2444 #endif
2445 }
2446
sock_write_timestamp(struct sock * sk,ktime_t kt)2447 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2448 {
2449 #if BITS_PER_LONG==32
2450 write_seqlock(&sk->sk_stamp_seq);
2451 sk->sk_stamp = kt;
2452 write_sequnlock(&sk->sk_stamp_seq);
2453 #else
2454 WRITE_ONCE(sk->sk_stamp, kt);
2455 #endif
2456 }
2457
2458 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2459 struct sk_buff *skb);
2460 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2461 struct sk_buff *skb);
2462
2463 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2464 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2465 {
2466 ktime_t kt = skb->tstamp;
2467 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2468
2469 /*
2470 * generate control messages if
2471 * - receive time stamping in software requested
2472 * - software time stamp available and wanted
2473 * - hardware time stamps available and wanted
2474 */
2475 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2476 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2477 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2478 (hwtstamps->hwtstamp &&
2479 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2480 __sock_recv_timestamp(msg, sk, skb);
2481 else
2482 sock_write_timestamp(sk, kt);
2483
2484 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2485 __sock_recv_wifi_status(msg, sk, skb);
2486 }
2487
2488 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2489 struct sk_buff *skb);
2490
2491 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2492 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2493 struct sk_buff *skb)
2494 {
2495 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2496 (1UL << SOCK_RCVTSTAMP))
2497 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2498 SOF_TIMESTAMPING_RAW_HARDWARE)
2499
2500 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2501 __sock_recv_ts_and_drops(msg, sk, skb);
2502 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2503 sock_write_timestamp(sk, skb->tstamp);
2504 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2505 sock_write_timestamp(sk, 0);
2506 }
2507
2508 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2509
2510 /**
2511 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2512 * @sk: socket sending this packet
2513 * @tsflags: timestamping flags to use
2514 * @tx_flags: completed with instructions for time stamping
2515 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2516 *
2517 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2518 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2519 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2520 __u8 *tx_flags, __u32 *tskey)
2521 {
2522 if (unlikely(tsflags)) {
2523 __sock_tx_timestamp(tsflags, tx_flags);
2524 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2525 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2526 *tskey = sk->sk_tskey++;
2527 }
2528 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2529 *tx_flags |= SKBTX_WIFI_STATUS;
2530 }
2531
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2532 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2533 __u8 *tx_flags)
2534 {
2535 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2536 }
2537
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2538 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2539 {
2540 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2541 &skb_shinfo(skb)->tskey);
2542 }
2543
2544 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2545 /**
2546 * sk_eat_skb - Release a skb if it is no longer needed
2547 * @sk: socket to eat this skb from
2548 * @skb: socket buffer to eat
2549 *
2550 * This routine must be called with interrupts disabled or with the socket
2551 * locked so that the sk_buff queue operation is ok.
2552 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2553 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2554 {
2555 __skb_unlink(skb, &sk->sk_receive_queue);
2556 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2557 !sk->sk_rx_skb_cache) {
2558 sk->sk_rx_skb_cache = skb;
2559 skb_orphan(skb);
2560 return;
2561 }
2562 __kfree_skb(skb);
2563 }
2564
2565 static inline
sock_net(const struct sock * sk)2566 struct net *sock_net(const struct sock *sk)
2567 {
2568 return read_pnet(&sk->sk_net);
2569 }
2570
2571 static inline
sock_net_set(struct sock * sk,struct net * net)2572 void sock_net_set(struct sock *sk, struct net *net)
2573 {
2574 write_pnet(&sk->sk_net, net);
2575 }
2576
2577 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2578 skb_sk_is_prefetched(struct sk_buff *skb)
2579 {
2580 #ifdef CONFIG_INET
2581 return skb->destructor == sock_pfree;
2582 #else
2583 return false;
2584 #endif /* CONFIG_INET */
2585 }
2586
2587 /* This helper checks if a socket is a full socket,
2588 * ie _not_ a timewait or request socket.
2589 */
sk_fullsock(const struct sock * sk)2590 static inline bool sk_fullsock(const struct sock *sk)
2591 {
2592 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2593 }
2594
2595 static inline bool
sk_is_refcounted(struct sock * sk)2596 sk_is_refcounted(struct sock *sk)
2597 {
2598 /* Only full sockets have sk->sk_flags. */
2599 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2600 }
2601
2602 /**
2603 * skb_steal_sock - steal a socket from an sk_buff
2604 * @skb: sk_buff to steal the socket from
2605 * @refcounted: is set to true if the socket is reference-counted
2606 */
2607 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2608 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2609 {
2610 if (skb->sk) {
2611 struct sock *sk = skb->sk;
2612
2613 *refcounted = true;
2614 if (skb_sk_is_prefetched(skb))
2615 *refcounted = sk_is_refcounted(sk);
2616 skb->destructor = NULL;
2617 skb->sk = NULL;
2618 return sk;
2619 }
2620 *refcounted = false;
2621 return NULL;
2622 }
2623
2624 /* Checks if this SKB belongs to an HW offloaded socket
2625 * and whether any SW fallbacks are required based on dev.
2626 * Check decrypted mark in case skb_orphan() cleared socket.
2627 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2628 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2629 struct net_device *dev)
2630 {
2631 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2632 struct sock *sk = skb->sk;
2633
2634 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2635 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2636 #ifdef CONFIG_TLS_DEVICE
2637 } else if (unlikely(skb->decrypted)) {
2638 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2639 kfree_skb(skb);
2640 skb = NULL;
2641 #endif
2642 }
2643 #endif
2644
2645 return skb;
2646 }
2647
2648 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2649 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2650 */
sk_listener(const struct sock * sk)2651 static inline bool sk_listener(const struct sock *sk)
2652 {
2653 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2654 }
2655
2656 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2657 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2658 int type);
2659
2660 bool sk_ns_capable(const struct sock *sk,
2661 struct user_namespace *user_ns, int cap);
2662 bool sk_capable(const struct sock *sk, int cap);
2663 bool sk_net_capable(const struct sock *sk, int cap);
2664
2665 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2666
2667 /* Take into consideration the size of the struct sk_buff overhead in the
2668 * determination of these values, since that is non-constant across
2669 * platforms. This makes socket queueing behavior and performance
2670 * not depend upon such differences.
2671 */
2672 #define _SK_MEM_PACKETS 256
2673 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2674 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2675 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2676
2677 extern __u32 sysctl_wmem_max;
2678 extern __u32 sysctl_rmem_max;
2679
2680 extern int sysctl_tstamp_allow_data;
2681 extern int sysctl_optmem_max;
2682
2683 extern __u32 sysctl_wmem_default;
2684 extern __u32 sysctl_rmem_default;
2685
2686 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2687 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2688
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2689 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2690 {
2691 /* Does this proto have per netns sysctl_wmem ? */
2692 if (proto->sysctl_wmem_offset)
2693 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2694
2695 return *proto->sysctl_wmem;
2696 }
2697
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2698 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2699 {
2700 /* Does this proto have per netns sysctl_rmem ? */
2701 if (proto->sysctl_rmem_offset)
2702 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2703
2704 return *proto->sysctl_rmem;
2705 }
2706
2707 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2708 * Some wifi drivers need to tweak it to get more chunks.
2709 * They can use this helper from their ndo_start_xmit()
2710 */
sk_pacing_shift_update(struct sock * sk,int val)2711 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2712 {
2713 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2714 return;
2715 WRITE_ONCE(sk->sk_pacing_shift, val);
2716 }
2717
2718 /* if a socket is bound to a device, check that the given device
2719 * index is either the same or that the socket is bound to an L3
2720 * master device and the given device index is also enslaved to
2721 * that L3 master
2722 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2723 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2724 {
2725 int mdif;
2726
2727 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2728 return true;
2729
2730 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2731 if (mdif && mdif == sk->sk_bound_dev_if)
2732 return true;
2733
2734 return false;
2735 }
2736
2737 void sock_def_readable(struct sock *sk);
2738
2739 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2740 void sock_enable_timestamps(struct sock *sk);
2741 void sock_no_linger(struct sock *sk);
2742 void sock_set_keepalive(struct sock *sk);
2743 void sock_set_priority(struct sock *sk, u32 priority);
2744 void sock_set_rcvbuf(struct sock *sk, int val);
2745 void sock_set_mark(struct sock *sk, u32 val);
2746 void sock_set_reuseaddr(struct sock *sk);
2747 void sock_set_reuseport(struct sock *sk);
2748 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2749
2750 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2751
2752 #endif /* _SOCK_H */
2753