• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #ifdef CONFIG_NEWIP
72 #include <uapi/linux/nip_addr.h>
73 #endif
74 
75 /*
76  * This structure really needs to be cleaned up.
77  * Most of it is for TCP, and not used by any of
78  * the other protocols.
79  */
80 
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 					printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93 
94 /* This is the per-socket lock.  The spinlock provides a synchronization
95  * between user contexts and software interrupt processing, whereas the
96  * mini-semaphore synchronizes multiple users amongst themselves.
97  */
98 typedef struct {
99 	spinlock_t		slock;
100 	int			owned;
101 	wait_queue_head_t	wq;
102 	/*
103 	 * We express the mutex-alike socket_lock semantics
104 	 * to the lock validator by explicitly managing
105 	 * the slock as a lock variant (in addition to
106 	 * the slock itself):
107 	 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 	struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112 
113 struct sock;
114 struct proto;
115 struct net;
116 
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119 
120 /**
121  *	struct sock_common - minimal network layer representation of sockets
122  *	@skc_daddr: Foreign IPv4 addr
123  *	@skc_rcv_saddr: Bound local IPv4 addr
124  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
125  *	@skc_hash: hash value used with various protocol lookup tables
126  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127  *	@skc_dport: placeholder for inet_dport/tw_dport
128  *	@skc_num: placeholder for inet_num/tw_num
129  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_ipv6only: socket is IPV6 only
135  *	@skc_net_refcnt: socket is using net ref counting
136  *	@skc_bound_dev_if: bound device index if != 0
137  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
138  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
139  *	@skc_prot: protocol handlers inside a network family
140  *	@skc_net: reference to the network namespace of this socket
141  *	@skc_v6_daddr: IPV6 destination address
142  *	@skc_v6_rcv_saddr: IPV6 source address
143  *	@skc_cookie: socket's cookie value
144  *	@skc_node: main hash linkage for various protocol lookup tables
145  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
146  *	@skc_tx_queue_mapping: tx queue number for this connection
147  *	@skc_rx_queue_mapping: rx queue number for this connection
148  *	@skc_flags: place holder for sk_flags
149  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
150  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
151  *	@skc_listener: connection request listener socket (aka rsk_listener)
152  *		[union with @skc_flags]
153  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
154  *		[union with @skc_flags]
155  *	@skc_incoming_cpu: record/match cpu processing incoming packets
156  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
157  *		[union with @skc_incoming_cpu]
158  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
159  *		[union with @skc_incoming_cpu]
160  *	@skc_refcnt: reference count
161  *
162  *	This is the minimal network layer representation of sockets, the header
163  *	for struct sock and struct inet_timewait_sock.
164  */
165 struct sock_common {
166 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
167 	 * address on 64bit arches : cf INET_MATCH()
168 	 */
169 	union {
170 		__addrpair	skc_addrpair;
171 		struct {
172 			__be32	skc_daddr;
173 			__be32	skc_rcv_saddr;
174 		};
175 	};
176 	union  {
177 		unsigned int	skc_hash;
178 		__u16		skc_u16hashes[2];
179 	};
180 	/* skc_dport && skc_num must be grouped as well */
181 	union {
182 		__portpair	skc_portpair;
183 		struct {
184 			__be16	skc_dport;
185 			__u16	skc_num;
186 		};
187 	};
188 
189 	unsigned short		skc_family;
190 	volatile unsigned char	skc_state;
191 	unsigned char		skc_reuse:4;
192 	unsigned char		skc_reuseport:1;
193 	unsigned char		skc_ipv6only:1;
194 	unsigned char		skc_net_refcnt:1;
195 	int			skc_bound_dev_if;
196 	union {
197 		struct hlist_node	skc_bind_node;
198 		struct hlist_node	skc_portaddr_node;
199 	};
200 	struct proto		*skc_prot;
201 	possible_net_t		skc_net;
202 
203 #if IS_ENABLED(CONFIG_IPV6)
204 	struct in6_addr		skc_v6_daddr;
205 	struct in6_addr		skc_v6_rcv_saddr;
206 #endif
207 
208 #if IS_ENABLED(CONFIG_NEWIP)
209 	struct nip_addr		nip_daddr;	/* NIP */
210 	struct nip_addr		nip_rcv_saddr;	/* NIP */
211 #endif
212 
213 	atomic64_t		skc_cookie;
214 
215 	/* following fields are padding to force
216 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
217 	 * assuming IPV6 is enabled. We use this padding differently
218 	 * for different kind of 'sockets'
219 	 */
220 	union {
221 		unsigned long	skc_flags;
222 		struct sock	*skc_listener; /* request_sock */
223 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
224 	};
225 	/*
226 	 * fields between dontcopy_begin/dontcopy_end
227 	 * are not copied in sock_copy()
228 	 */
229 	/* private: */
230 	int			skc_dontcopy_begin[0];
231 	/* public: */
232 	union {
233 		struct hlist_node	skc_node;
234 		struct hlist_nulls_node skc_nulls_node;
235 	};
236 	unsigned short		skc_tx_queue_mapping;
237 #ifdef CONFIG_XPS
238 	unsigned short		skc_rx_queue_mapping;
239 #endif
240 	union {
241 		int		skc_incoming_cpu;
242 		u32		skc_rcv_wnd;
243 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
244 	};
245 
246 	refcount_t		skc_refcnt;
247 	/* private: */
248 	int                     skc_dontcopy_end[0];
249 	union {
250 		u32		skc_rxhash;
251 		u32		skc_window_clamp;
252 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
253 	};
254 	/* public: */
255 };
256 
257 struct bpf_local_storage;
258 
259 /**
260   *	struct sock - network layer representation of sockets
261   *	@__sk_common: shared layout with inet_timewait_sock
262   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
263   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
264   *	@sk_lock:	synchronizer
265   *	@sk_kern_sock: True if sock is using kernel lock classes
266   *	@sk_rcvbuf: size of receive buffer in bytes
267   *	@sk_wq: sock wait queue and async head
268   *	@sk_rx_dst: receive input route used by early demux
269   *	@sk_dst_cache: destination cache
270   *	@sk_dst_pending_confirm: need to confirm neighbour
271   *	@sk_policy: flow policy
272   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
273   *	@sk_receive_queue: incoming packets
274   *	@sk_wmem_alloc: transmit queue bytes committed
275   *	@sk_tsq_flags: TCP Small Queues flags
276   *	@sk_write_queue: Packet sending queue
277   *	@sk_omem_alloc: "o" is "option" or "other"
278   *	@sk_wmem_queued: persistent queue size
279   *	@sk_forward_alloc: space allocated forward
280   *	@sk_napi_id: id of the last napi context to receive data for sk
281   *	@sk_ll_usec: usecs to busypoll when there is no data
282   *	@sk_allocation: allocation mode
283   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
284   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
285   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
286   *	@sk_sndbuf: size of send buffer in bytes
287   *	@__sk_flags_offset: empty field used to determine location of bitfield
288   *	@sk_padding: unused element for alignment
289   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
290   *	@sk_no_check_rx: allow zero checksum in RX packets
291   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
292   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
293   *	@sk_route_forced_caps: static, forced route capabilities
294   *		(set in tcp_init_sock())
295   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
296   *	@sk_gso_max_size: Maximum GSO segment size to build
297   *	@sk_gso_max_segs: Maximum number of GSO segments
298   *	@sk_pacing_shift: scaling factor for TCP Small Queues
299   *	@sk_lingertime: %SO_LINGER l_linger setting
300   *	@sk_backlog: always used with the per-socket spinlock held
301   *	@sk_callback_lock: used with the callbacks in the end of this struct
302   *	@sk_error_queue: rarely used
303   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
304   *			  IPV6_ADDRFORM for instance)
305   *	@sk_err: last error
306   *	@sk_err_soft: errors that don't cause failure but are the cause of a
307   *		      persistent failure not just 'timed out'
308   *	@sk_drops: raw/udp drops counter
309   *	@sk_ack_backlog: current listen backlog
310   *	@sk_max_ack_backlog: listen backlog set in listen()
311   *	@sk_uid: user id of owner
312   *	@sk_priority: %SO_PRIORITY setting
313   *	@sk_type: socket type (%SOCK_STREAM, etc)
314   *	@sk_protocol: which protocol this socket belongs in this network family
315   *	@sk_peer_pid: &struct pid for this socket's peer
316   *	@sk_peer_cred: %SO_PEERCRED setting
317   *	@sk_rcvlowat: %SO_RCVLOWAT setting
318   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
319   *	@sk_sndtimeo: %SO_SNDTIMEO setting
320   *	@sk_txhash: computed flow hash for use on transmit
321   *	@sk_filter: socket filtering instructions
322   *	@sk_timer: sock cleanup timer
323   *	@sk_stamp: time stamp of last packet received
324   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
325   *	@sk_tsflags: SO_TIMESTAMPING socket options
326   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
327   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
328   *	@sk_socket: Identd and reporting IO signals
329   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
330   *	@sk_frag: cached page frag
331   *	@sk_peek_off: current peek_offset value
332   *	@sk_send_head: front of stuff to transmit
333   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
335   *	@sk_security: used by security modules
336   *	@sk_mark: generic packet mark
337   *	@sk_cgrp_data: cgroup data for this cgroup
338   *	@sk_memcg: this socket's memory cgroup association
339   *	@sk_write_pending: a write to stream socket waits to start
340   *	@sk_state_change: callback to indicate change in the state of the sock
341   *	@sk_data_ready: callback to indicate there is data to be processed
342   *	@sk_write_space: callback to indicate there is bf sending space available
343   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
344   *	@sk_backlog_rcv: callback to process the backlog
345   *	@sk_validate_xmit_skb: ptr to an optional validate function
346   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
347   *	@sk_reuseport_cb: reuseport group container
348   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
349   *	@sk_rcu: used during RCU grace period
350   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
351   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
352   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
353   *	@sk_txtime_unused: unused txtime flags
354   */
355 struct sock {
356 	/*
357 	 * Now struct inet_timewait_sock also uses sock_common, so please just
358 	 * don't add nothing before this first member (__sk_common) --acme
359 	 */
360 	struct sock_common	__sk_common;
361 #define sk_node			__sk_common.skc_node
362 #define sk_nulls_node		__sk_common.skc_nulls_node
363 #define sk_refcnt		__sk_common.skc_refcnt
364 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
365 #ifdef CONFIG_XPS
366 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
367 #endif
368 
369 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
370 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
371 #define sk_hash			__sk_common.skc_hash
372 #define sk_portpair		__sk_common.skc_portpair
373 #define sk_num			__sk_common.skc_num
374 #define sk_dport		__sk_common.skc_dport
375 #define sk_addrpair		__sk_common.skc_addrpair
376 #define sk_daddr		__sk_common.skc_daddr
377 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
378 #define sk_family		__sk_common.skc_family
379 #define sk_state		__sk_common.skc_state
380 #define sk_reuse		__sk_common.skc_reuse
381 #define sk_reuseport		__sk_common.skc_reuseport
382 #define sk_ipv6only		__sk_common.skc_ipv6only
383 #define sk_net_refcnt		__sk_common.skc_net_refcnt
384 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
385 #define sk_bind_node		__sk_common.skc_bind_node
386 #define sk_prot			__sk_common.skc_prot
387 #define sk_net			__sk_common.skc_net
388 #define sk_v6_daddr		__sk_common.skc_v6_daddr
389 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
390 #define sk_cookie		__sk_common.skc_cookie
391 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
392 #define sk_flags		__sk_common.skc_flags
393 #define sk_rxhash		__sk_common.skc_rxhash
394 
395 	socket_lock_t		sk_lock;
396 	atomic_t		sk_drops;
397 	int			sk_rcvlowat;
398 	struct sk_buff_head	sk_error_queue;
399 	struct sk_buff		*sk_rx_skb_cache;
400 	struct sk_buff_head	sk_receive_queue;
401 	/*
402 	 * The backlog queue is special, it is always used with
403 	 * the per-socket spinlock held and requires low latency
404 	 * access. Therefore we special case it's implementation.
405 	 * Note : rmem_alloc is in this structure to fill a hole
406 	 * on 64bit arches, not because its logically part of
407 	 * backlog.
408 	 */
409 	struct {
410 		atomic_t	rmem_alloc;
411 		int		len;
412 		struct sk_buff	*head;
413 		struct sk_buff	*tail;
414 	} sk_backlog;
415 #define sk_rmem_alloc sk_backlog.rmem_alloc
416 
417 	int			sk_forward_alloc;
418 #ifdef CONFIG_NET_RX_BUSY_POLL
419 	unsigned int		sk_ll_usec;
420 	/* ===== mostly read cache line ===== */
421 	unsigned int		sk_napi_id;
422 #endif
423 	int			sk_rcvbuf;
424 
425 	struct sk_filter __rcu	*sk_filter;
426 	union {
427 		struct socket_wq __rcu	*sk_wq;
428 		/* private: */
429 		struct socket_wq	*sk_wq_raw;
430 		/* public: */
431 	};
432 #ifdef CONFIG_XFRM
433 	struct xfrm_policy __rcu *sk_policy[2];
434 #endif
435 	struct dst_entry	*sk_rx_dst;
436 	struct dst_entry __rcu	*sk_dst_cache;
437 	atomic_t		sk_omem_alloc;
438 	int			sk_sndbuf;
439 
440 	/* ===== cache line for TX ===== */
441 	int			sk_wmem_queued;
442 	refcount_t		sk_wmem_alloc;
443 	unsigned long		sk_tsq_flags;
444 	union {
445 		struct sk_buff	*sk_send_head;
446 		struct rb_root	tcp_rtx_queue;
447 	};
448 	struct sk_buff		*sk_tx_skb_cache;
449 	struct sk_buff_head	sk_write_queue;
450 	__s32			sk_peek_off;
451 	int			sk_write_pending;
452 	__u32			sk_dst_pending_confirm;
453 	u32			sk_pacing_status; /* see enum sk_pacing */
454 	long			sk_sndtimeo;
455 	struct timer_list	sk_timer;
456 	__u32			sk_priority;
457 	__u32			sk_mark;
458 	unsigned long		sk_pacing_rate; /* bytes per second */
459 	unsigned long		sk_max_pacing_rate;
460 	struct page_frag	sk_frag;
461 	netdev_features_t	sk_route_caps;
462 	netdev_features_t	sk_route_nocaps;
463 	netdev_features_t	sk_route_forced_caps;
464 	int			sk_gso_type;
465 	unsigned int		sk_gso_max_size;
466 	gfp_t			sk_allocation;
467 	__u32			sk_txhash;
468 
469 	/*
470 	 * Because of non atomicity rules, all
471 	 * changes are protected by socket lock.
472 	 */
473 	u8			sk_padding : 1,
474 				sk_kern_sock : 1,
475 				sk_no_check_tx : 1,
476 				sk_no_check_rx : 1,
477 				sk_userlocks : 4;
478 	u8			sk_pacing_shift;
479 	u16			sk_type;
480 	u16			sk_protocol;
481 	u16			sk_gso_max_segs;
482 	unsigned long	        sk_lingertime;
483 	struct proto		*sk_prot_creator;
484 	rwlock_t		sk_callback_lock;
485 	int			sk_err,
486 				sk_err_soft;
487 	u32			sk_ack_backlog;
488 	u32			sk_max_ack_backlog;
489 	kuid_t			sk_uid;
490 	spinlock_t		sk_peer_lock;
491 	struct pid		*sk_peer_pid;
492 	const struct cred	*sk_peer_cred;
493 
494 	long			sk_rcvtimeo;
495 	ktime_t			sk_stamp;
496 #if BITS_PER_LONG==32
497 	seqlock_t		sk_stamp_seq;
498 #endif
499 	u16			sk_tsflags;
500 	u8			sk_shutdown;
501 	u32			sk_tskey;
502 	atomic_t		sk_zckey;
503 
504 	u8			sk_clockid;
505 	u8			sk_txtime_deadline_mode : 1,
506 				sk_txtime_report_errors : 1,
507 				sk_txtime_unused : 6;
508 
509 	struct socket		*sk_socket;
510 	void			*sk_user_data;
511 #ifdef CONFIG_SECURITY
512 	void			*sk_security;
513 #endif
514 	struct sock_cgroup_data	sk_cgrp_data;
515 	struct mem_cgroup	*sk_memcg;
516 	void			(*sk_state_change)(struct sock *sk);
517 	void			(*sk_data_ready)(struct sock *sk);
518 	void			(*sk_write_space)(struct sock *sk);
519 	void			(*sk_error_report)(struct sock *sk);
520 	int			(*sk_backlog_rcv)(struct sock *sk,
521 						  struct sk_buff *skb);
522 #ifdef CONFIG_SOCK_VALIDATE_XMIT
523 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
524 							struct net_device *dev,
525 							struct sk_buff *skb);
526 #endif
527 	void                    (*sk_destruct)(struct sock *sk);
528 	struct sock_reuseport __rcu	*sk_reuseport_cb;
529 #ifdef CONFIG_BPF_SYSCALL
530 	struct bpf_local_storage __rcu	*sk_bpf_storage;
531 #endif
532 	struct rcu_head		sk_rcu;
533 };
534 
535 enum sk_pacing {
536 	SK_PACING_NONE		= 0,
537 	SK_PACING_NEEDED	= 1,
538 	SK_PACING_FQ		= 2,
539 };
540 
541 /* Pointer stored in sk_user_data might not be suitable for copying
542  * when cloning the socket. For instance, it can point to a reference
543  * counted object. sk_user_data bottom bit is set if pointer must not
544  * be copied.
545  */
546 #define SK_USER_DATA_NOCOPY	1UL
547 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
548 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
549 
550 /**
551  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
552  * @sk: socket
553  */
sk_user_data_is_nocopy(const struct sock * sk)554 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
555 {
556 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
557 }
558 
559 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
560 
561 #define rcu_dereference_sk_user_data(sk)				\
562 ({									\
563 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
564 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
565 })
566 #define rcu_assign_sk_user_data(sk, ptr)				\
567 ({									\
568 	uintptr_t __tmp = (uintptr_t)(ptr);				\
569 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
570 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
571 })
572 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
573 ({									\
574 	uintptr_t __tmp = (uintptr_t)(ptr);				\
575 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
576 	rcu_assign_pointer(__sk_user_data((sk)),			\
577 			   __tmp | SK_USER_DATA_NOCOPY);		\
578 })
579 
580 /*
581  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
582  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
583  * on a socket means that the socket will reuse everybody else's port
584  * without looking at the other's sk_reuse value.
585  */
586 
587 #define SK_NO_REUSE	0
588 #define SK_CAN_REUSE	1
589 #define SK_FORCE_REUSE	2
590 
591 int sk_set_peek_off(struct sock *sk, int val);
592 
sk_peek_offset(struct sock * sk,int flags)593 static inline int sk_peek_offset(struct sock *sk, int flags)
594 {
595 	if (unlikely(flags & MSG_PEEK)) {
596 		return READ_ONCE(sk->sk_peek_off);
597 	}
598 
599 	return 0;
600 }
601 
sk_peek_offset_bwd(struct sock * sk,int val)602 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
603 {
604 	s32 off = READ_ONCE(sk->sk_peek_off);
605 
606 	if (unlikely(off >= 0)) {
607 		off = max_t(s32, off - val, 0);
608 		WRITE_ONCE(sk->sk_peek_off, off);
609 	}
610 }
611 
sk_peek_offset_fwd(struct sock * sk,int val)612 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
613 {
614 	sk_peek_offset_bwd(sk, -val);
615 }
616 
617 /*
618  * Hashed lists helper routines
619  */
sk_entry(const struct hlist_node * node)620 static inline struct sock *sk_entry(const struct hlist_node *node)
621 {
622 	return hlist_entry(node, struct sock, sk_node);
623 }
624 
__sk_head(const struct hlist_head * head)625 static inline struct sock *__sk_head(const struct hlist_head *head)
626 {
627 	return hlist_entry(head->first, struct sock, sk_node);
628 }
629 
sk_head(const struct hlist_head * head)630 static inline struct sock *sk_head(const struct hlist_head *head)
631 {
632 	return hlist_empty(head) ? NULL : __sk_head(head);
633 }
634 
__sk_nulls_head(const struct hlist_nulls_head * head)635 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
636 {
637 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
638 }
639 
sk_nulls_head(const struct hlist_nulls_head * head)640 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
641 {
642 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
643 }
644 
sk_next(const struct sock * sk)645 static inline struct sock *sk_next(const struct sock *sk)
646 {
647 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
648 }
649 
sk_nulls_next(const struct sock * sk)650 static inline struct sock *sk_nulls_next(const struct sock *sk)
651 {
652 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
653 		hlist_nulls_entry(sk->sk_nulls_node.next,
654 				  struct sock, sk_nulls_node) :
655 		NULL;
656 }
657 
sk_unhashed(const struct sock * sk)658 static inline bool sk_unhashed(const struct sock *sk)
659 {
660 	return hlist_unhashed(&sk->sk_node);
661 }
662 
sk_hashed(const struct sock * sk)663 static inline bool sk_hashed(const struct sock *sk)
664 {
665 	return !sk_unhashed(sk);
666 }
667 
sk_node_init(struct hlist_node * node)668 static inline void sk_node_init(struct hlist_node *node)
669 {
670 	node->pprev = NULL;
671 }
672 
sk_nulls_node_init(struct hlist_nulls_node * node)673 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
674 {
675 	node->pprev = NULL;
676 }
677 
__sk_del_node(struct sock * sk)678 static inline void __sk_del_node(struct sock *sk)
679 {
680 	__hlist_del(&sk->sk_node);
681 }
682 
683 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)684 static inline bool __sk_del_node_init(struct sock *sk)
685 {
686 	if (sk_hashed(sk)) {
687 		__sk_del_node(sk);
688 		sk_node_init(&sk->sk_node);
689 		return true;
690 	}
691 	return false;
692 }
693 
694 /* Grab socket reference count. This operation is valid only
695    when sk is ALREADY grabbed f.e. it is found in hash table
696    or a list and the lookup is made under lock preventing hash table
697    modifications.
698  */
699 
sock_hold(struct sock * sk)700 static __always_inline void sock_hold(struct sock *sk)
701 {
702 	refcount_inc(&sk->sk_refcnt);
703 }
704 
705 /* Ungrab socket in the context, which assumes that socket refcnt
706    cannot hit zero, f.e. it is true in context of any socketcall.
707  */
__sock_put(struct sock * sk)708 static __always_inline void __sock_put(struct sock *sk)
709 {
710 	refcount_dec(&sk->sk_refcnt);
711 }
712 
sk_del_node_init(struct sock * sk)713 static inline bool sk_del_node_init(struct sock *sk)
714 {
715 	bool rc = __sk_del_node_init(sk);
716 
717 	if (rc) {
718 		/* paranoid for a while -acme */
719 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
720 		__sock_put(sk);
721 	}
722 	return rc;
723 }
724 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
725 
__sk_nulls_del_node_init_rcu(struct sock * sk)726 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
727 {
728 	if (sk_hashed(sk)) {
729 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
730 		return true;
731 	}
732 	return false;
733 }
734 
sk_nulls_del_node_init_rcu(struct sock * sk)735 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
736 {
737 	bool rc = __sk_nulls_del_node_init_rcu(sk);
738 
739 	if (rc) {
740 		/* paranoid for a while -acme */
741 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
742 		__sock_put(sk);
743 	}
744 	return rc;
745 }
746 
__sk_add_node(struct sock * sk,struct hlist_head * list)747 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
748 {
749 	hlist_add_head(&sk->sk_node, list);
750 }
751 
sk_add_node(struct sock * sk,struct hlist_head * list)752 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
753 {
754 	sock_hold(sk);
755 	__sk_add_node(sk, list);
756 }
757 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)758 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
759 {
760 	sock_hold(sk);
761 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
762 	    sk->sk_family == AF_INET6)
763 		hlist_add_tail_rcu(&sk->sk_node, list);
764 	else
765 		hlist_add_head_rcu(&sk->sk_node, list);
766 }
767 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)768 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
769 {
770 	sock_hold(sk);
771 	hlist_add_tail_rcu(&sk->sk_node, list);
772 }
773 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)774 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
775 {
776 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
777 }
778 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)779 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
780 {
781 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
782 }
783 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)784 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
785 {
786 	sock_hold(sk);
787 	__sk_nulls_add_node_rcu(sk, list);
788 }
789 
__sk_del_bind_node(struct sock * sk)790 static inline void __sk_del_bind_node(struct sock *sk)
791 {
792 	__hlist_del(&sk->sk_bind_node);
793 }
794 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)795 static inline void sk_add_bind_node(struct sock *sk,
796 					struct hlist_head *list)
797 {
798 	hlist_add_head(&sk->sk_bind_node, list);
799 }
800 
801 #define sk_for_each(__sk, list) \
802 	hlist_for_each_entry(__sk, list, sk_node)
803 #define sk_for_each_rcu(__sk, list) \
804 	hlist_for_each_entry_rcu(__sk, list, sk_node)
805 #define sk_nulls_for_each(__sk, node, list) \
806 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
807 #define sk_nulls_for_each_rcu(__sk, node, list) \
808 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
809 #define sk_for_each_from(__sk) \
810 	hlist_for_each_entry_from(__sk, sk_node)
811 #define sk_nulls_for_each_from(__sk, node) \
812 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
813 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
814 #define sk_for_each_safe(__sk, tmp, list) \
815 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
816 #define sk_for_each_bound(__sk, list) \
817 	hlist_for_each_entry(__sk, list, sk_bind_node)
818 
819 /**
820  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
821  * @tpos:	the type * to use as a loop cursor.
822  * @pos:	the &struct hlist_node to use as a loop cursor.
823  * @head:	the head for your list.
824  * @offset:	offset of hlist_node within the struct.
825  *
826  */
827 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
828 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
829 	     pos != NULL &&						       \
830 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
831 	     pos = rcu_dereference(hlist_next_rcu(pos)))
832 
sk_user_ns(struct sock * sk)833 static inline struct user_namespace *sk_user_ns(struct sock *sk)
834 {
835 	/* Careful only use this in a context where these parameters
836 	 * can not change and must all be valid, such as recvmsg from
837 	 * userspace.
838 	 */
839 	return sk->sk_socket->file->f_cred->user_ns;
840 }
841 
842 /* Sock flags */
843 enum sock_flags {
844 	SOCK_DEAD,
845 	SOCK_DONE,
846 	SOCK_URGINLINE,
847 	SOCK_KEEPOPEN,
848 	SOCK_LINGER,
849 	SOCK_DESTROY,
850 	SOCK_BROADCAST,
851 	SOCK_TIMESTAMP,
852 	SOCK_ZAPPED,
853 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
854 	SOCK_DBG, /* %SO_DEBUG setting */
855 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
856 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
857 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
858 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
859 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
860 	SOCK_FASYNC, /* fasync() active */
861 	SOCK_RXQ_OVFL,
862 	SOCK_ZEROCOPY, /* buffers from userspace */
863 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
864 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
865 		     * Will use last 4 bytes of packet sent from
866 		     * user-space instead.
867 		     */
868 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
869 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
870 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
871 	SOCK_TXTIME,
872 	SOCK_XDP, /* XDP is attached */
873 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
874 };
875 
876 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
877 
sock_copy_flags(struct sock * nsk,struct sock * osk)878 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
879 {
880 	nsk->sk_flags = osk->sk_flags;
881 }
882 
sock_set_flag(struct sock * sk,enum sock_flags flag)883 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
884 {
885 	__set_bit(flag, &sk->sk_flags);
886 }
887 
sock_reset_flag(struct sock * sk,enum sock_flags flag)888 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
889 {
890 	__clear_bit(flag, &sk->sk_flags);
891 }
892 
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)893 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
894 				     int valbool)
895 {
896 	if (valbool)
897 		sock_set_flag(sk, bit);
898 	else
899 		sock_reset_flag(sk, bit);
900 }
901 
sock_flag(const struct sock * sk,enum sock_flags flag)902 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
903 {
904 	return test_bit(flag, &sk->sk_flags);
905 }
906 
907 #ifdef CONFIG_NET
908 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)909 static inline int sk_memalloc_socks(void)
910 {
911 	return static_branch_unlikely(&memalloc_socks_key);
912 }
913 
914 void __receive_sock(struct file *file);
915 #else
916 
sk_memalloc_socks(void)917 static inline int sk_memalloc_socks(void)
918 {
919 	return 0;
920 }
921 
__receive_sock(struct file * file)922 static inline void __receive_sock(struct file *file)
923 { }
924 #endif
925 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)926 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
927 {
928 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
929 }
930 
sk_acceptq_removed(struct sock * sk)931 static inline void sk_acceptq_removed(struct sock *sk)
932 {
933 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
934 }
935 
sk_acceptq_added(struct sock * sk)936 static inline void sk_acceptq_added(struct sock *sk)
937 {
938 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
939 }
940 
sk_acceptq_is_full(const struct sock * sk)941 static inline bool sk_acceptq_is_full(const struct sock *sk)
942 {
943 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
944 }
945 
946 /*
947  * Compute minimal free write space needed to queue new packets.
948  */
sk_stream_min_wspace(const struct sock * sk)949 static inline int sk_stream_min_wspace(const struct sock *sk)
950 {
951 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
952 }
953 
sk_stream_wspace(const struct sock * sk)954 static inline int sk_stream_wspace(const struct sock *sk)
955 {
956 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
957 }
958 
sk_wmem_queued_add(struct sock * sk,int val)959 static inline void sk_wmem_queued_add(struct sock *sk, int val)
960 {
961 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
962 }
963 
964 void sk_stream_write_space(struct sock *sk);
965 
966 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)967 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
968 {
969 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
970 	skb_dst_force(skb);
971 
972 	if (!sk->sk_backlog.tail)
973 		WRITE_ONCE(sk->sk_backlog.head, skb);
974 	else
975 		sk->sk_backlog.tail->next = skb;
976 
977 	WRITE_ONCE(sk->sk_backlog.tail, skb);
978 	skb->next = NULL;
979 }
980 
981 /*
982  * Take into account size of receive queue and backlog queue
983  * Do not take into account this skb truesize,
984  * to allow even a single big packet to come.
985  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)986 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
987 {
988 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
989 
990 	return qsize > limit;
991 }
992 
993 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)994 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
995 					      unsigned int limit)
996 {
997 	if (sk_rcvqueues_full(sk, limit))
998 		return -ENOBUFS;
999 
1000 	/*
1001 	 * If the skb was allocated from pfmemalloc reserves, only
1002 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1003 	 * helping free memory
1004 	 */
1005 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1006 		return -ENOMEM;
1007 
1008 	__sk_add_backlog(sk, skb);
1009 	sk->sk_backlog.len += skb->truesize;
1010 	return 0;
1011 }
1012 
1013 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1014 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1015 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1016 {
1017 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1018 		return __sk_backlog_rcv(sk, skb);
1019 
1020 	return sk->sk_backlog_rcv(sk, skb);
1021 }
1022 
sk_incoming_cpu_update(struct sock * sk)1023 static inline void sk_incoming_cpu_update(struct sock *sk)
1024 {
1025 	int cpu = raw_smp_processor_id();
1026 
1027 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1028 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1029 }
1030 
sock_rps_record_flow_hash(__u32 hash)1031 static inline void sock_rps_record_flow_hash(__u32 hash)
1032 {
1033 #ifdef CONFIG_RPS
1034 	struct rps_sock_flow_table *sock_flow_table;
1035 
1036 	rcu_read_lock();
1037 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1038 	rps_record_sock_flow(sock_flow_table, hash);
1039 	rcu_read_unlock();
1040 #endif
1041 }
1042 
sock_rps_record_flow(const struct sock * sk)1043 static inline void sock_rps_record_flow(const struct sock *sk)
1044 {
1045 #ifdef CONFIG_RPS
1046 	if (static_branch_unlikely(&rfs_needed)) {
1047 		/* Reading sk->sk_rxhash might incur an expensive cache line
1048 		 * miss.
1049 		 *
1050 		 * TCP_ESTABLISHED does cover almost all states where RFS
1051 		 * might be useful, and is cheaper [1] than testing :
1052 		 *	IPv4: inet_sk(sk)->inet_daddr
1053 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1054 		 * OR	an additional socket flag
1055 		 * [1] : sk_state and sk_prot are in the same cache line.
1056 		 */
1057 		if (sk->sk_state == TCP_ESTABLISHED)
1058 			sock_rps_record_flow_hash(sk->sk_rxhash);
1059 	}
1060 #endif
1061 }
1062 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1063 static inline void sock_rps_save_rxhash(struct sock *sk,
1064 					const struct sk_buff *skb)
1065 {
1066 #ifdef CONFIG_RPS
1067 	if (unlikely(sk->sk_rxhash != skb->hash))
1068 		sk->sk_rxhash = skb->hash;
1069 #endif
1070 }
1071 
sock_rps_reset_rxhash(struct sock * sk)1072 static inline void sock_rps_reset_rxhash(struct sock *sk)
1073 {
1074 #ifdef CONFIG_RPS
1075 	sk->sk_rxhash = 0;
1076 #endif
1077 }
1078 
1079 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1080 	({	int __rc;						\
1081 		release_sock(__sk);					\
1082 		__rc = __condition;					\
1083 		if (!__rc) {						\
1084 			*(__timeo) = wait_woken(__wait,			\
1085 						TASK_INTERRUPTIBLE,	\
1086 						*(__timeo));		\
1087 		}							\
1088 		sched_annotate_sleep();					\
1089 		lock_sock(__sk);					\
1090 		__rc = __condition;					\
1091 		__rc;							\
1092 	})
1093 
1094 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1095 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1096 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1097 int sk_stream_error(struct sock *sk, int flags, int err);
1098 void sk_stream_kill_queues(struct sock *sk);
1099 void sk_set_memalloc(struct sock *sk);
1100 void sk_clear_memalloc(struct sock *sk);
1101 
1102 void __sk_flush_backlog(struct sock *sk);
1103 
sk_flush_backlog(struct sock * sk)1104 static inline bool sk_flush_backlog(struct sock *sk)
1105 {
1106 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1107 		__sk_flush_backlog(sk);
1108 		return true;
1109 	}
1110 	return false;
1111 }
1112 
1113 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1114 
1115 struct request_sock_ops;
1116 struct timewait_sock_ops;
1117 struct inet_hashinfo;
1118 struct raw_hashinfo;
1119 struct smc_hashinfo;
1120 struct module;
1121 
1122 /*
1123  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1124  * un-modified. Special care is taken when initializing object to zero.
1125  */
sk_prot_clear_nulls(struct sock * sk,int size)1126 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1127 {
1128 	if (offsetof(struct sock, sk_node.next) != 0)
1129 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1130 	memset(&sk->sk_node.pprev, 0,
1131 	       size - offsetof(struct sock, sk_node.pprev));
1132 }
1133 
1134 /* Networking protocol blocks we attach to sockets.
1135  * socket layer -> transport layer interface
1136  */
1137 struct proto {
1138 	void			(*close)(struct sock *sk,
1139 					long timeout);
1140 	int			(*pre_connect)(struct sock *sk,
1141 					struct sockaddr *uaddr,
1142 					int addr_len);
1143 	int			(*connect)(struct sock *sk,
1144 					struct sockaddr *uaddr,
1145 					int addr_len);
1146 	int			(*disconnect)(struct sock *sk, int flags);
1147 
1148 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1149 					  bool kern);
1150 
1151 	int			(*ioctl)(struct sock *sk, int cmd,
1152 					 unsigned long arg);
1153 	int			(*init)(struct sock *sk);
1154 	void			(*destroy)(struct sock *sk);
1155 	void			(*shutdown)(struct sock *sk, int how);
1156 	int			(*setsockopt)(struct sock *sk, int level,
1157 					int optname, sockptr_t optval,
1158 					unsigned int optlen);
1159 	int			(*getsockopt)(struct sock *sk, int level,
1160 					int optname, char __user *optval,
1161 					int __user *option);
1162 	void			(*keepalive)(struct sock *sk, int valbool);
1163 #ifdef CONFIG_COMPAT
1164 	int			(*compat_ioctl)(struct sock *sk,
1165 					unsigned int cmd, unsigned long arg);
1166 #endif
1167 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1168 					   size_t len);
1169 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1170 					   size_t len, int noblock, int flags,
1171 					   int *addr_len);
1172 	int			(*sendpage)(struct sock *sk, struct page *page,
1173 					int offset, size_t size, int flags);
1174 	int			(*bind)(struct sock *sk,
1175 					struct sockaddr *addr, int addr_len);
1176 	int			(*bind_add)(struct sock *sk,
1177 					struct sockaddr *addr, int addr_len);
1178 
1179 	int			(*backlog_rcv) (struct sock *sk,
1180 						struct sk_buff *skb);
1181 
1182 	void		(*release_cb)(struct sock *sk);
1183 
1184 	/* Keeping track of sk's, looking them up, and port selection methods. */
1185 	int			(*hash)(struct sock *sk);
1186 	void			(*unhash)(struct sock *sk);
1187 	void			(*rehash)(struct sock *sk);
1188 	int			(*get_port)(struct sock *sk, unsigned short snum);
1189 
1190 	/* Keeping track of sockets in use */
1191 #ifdef CONFIG_PROC_FS
1192 	unsigned int		inuse_idx;
1193 #endif
1194 
1195 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1196 	bool			(*stream_memory_read)(const struct sock *sk);
1197 	/* Memory pressure */
1198 	void			(*enter_memory_pressure)(struct sock *sk);
1199 	void			(*leave_memory_pressure)(struct sock *sk);
1200 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1201 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1202 	/*
1203 	 * Pressure flag: try to collapse.
1204 	 * Technical note: it is used by multiple contexts non atomically.
1205 	 * All the __sk_mem_schedule() is of this nature: accounting
1206 	 * is strict, actions are advisory and have some latency.
1207 	 */
1208 	unsigned long		*memory_pressure;
1209 	long			*sysctl_mem;
1210 
1211 	int			*sysctl_wmem;
1212 	int			*sysctl_rmem;
1213 	u32			sysctl_wmem_offset;
1214 	u32			sysctl_rmem_offset;
1215 
1216 	int			max_header;
1217 	bool			no_autobind;
1218 
1219 	struct kmem_cache	*slab;
1220 	unsigned int		obj_size;
1221 	slab_flags_t		slab_flags;
1222 	unsigned int		useroffset;	/* Usercopy region offset */
1223 	unsigned int		usersize;	/* Usercopy region size */
1224 
1225 	unsigned int __percpu	*orphan_count;
1226 
1227 	struct request_sock_ops	*rsk_prot;
1228 	struct timewait_sock_ops *twsk_prot;
1229 
1230 	union {
1231 		struct inet_hashinfo	*hashinfo;
1232 		struct udp_table	*udp_table;
1233 		struct raw_hashinfo	*raw_hash;
1234 		struct smc_hashinfo	*smc_hash;
1235 	} h;
1236 
1237 	struct module		*owner;
1238 
1239 	char			name[32];
1240 
1241 	struct list_head	node;
1242 #ifdef SOCK_REFCNT_DEBUG
1243 	atomic_t		socks;
1244 #endif
1245 	int			(*diag_destroy)(struct sock *sk, int err);
1246 } __randomize_layout;
1247 
1248 int proto_register(struct proto *prot, int alloc_slab);
1249 void proto_unregister(struct proto *prot);
1250 int sock_load_diag_module(int family, int protocol);
1251 
1252 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1253 static inline void sk_refcnt_debug_inc(struct sock *sk)
1254 {
1255 	atomic_inc(&sk->sk_prot->socks);
1256 }
1257 
sk_refcnt_debug_dec(struct sock * sk)1258 static inline void sk_refcnt_debug_dec(struct sock *sk)
1259 {
1260 	atomic_dec(&sk->sk_prot->socks);
1261 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1262 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1263 }
1264 
sk_refcnt_debug_release(const struct sock * sk)1265 static inline void sk_refcnt_debug_release(const struct sock *sk)
1266 {
1267 	if (refcount_read(&sk->sk_refcnt) != 1)
1268 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1269 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1270 }
1271 #else /* SOCK_REFCNT_DEBUG */
1272 #define sk_refcnt_debug_inc(sk) do { } while (0)
1273 #define sk_refcnt_debug_dec(sk) do { } while (0)
1274 #define sk_refcnt_debug_release(sk) do { } while (0)
1275 #endif /* SOCK_REFCNT_DEBUG */
1276 
__sk_stream_memory_free(const struct sock * sk,int wake)1277 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1278 {
1279 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1280 		return false;
1281 
1282 	return sk->sk_prot->stream_memory_free ?
1283 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1284 }
1285 
sk_stream_memory_free(const struct sock * sk)1286 static inline bool sk_stream_memory_free(const struct sock *sk)
1287 {
1288 	return __sk_stream_memory_free(sk, 0);
1289 }
1290 
__sk_stream_is_writeable(const struct sock * sk,int wake)1291 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1292 {
1293 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1294 	       __sk_stream_memory_free(sk, wake);
1295 }
1296 
sk_stream_is_writeable(const struct sock * sk)1297 static inline bool sk_stream_is_writeable(const struct sock *sk)
1298 {
1299 	return __sk_stream_is_writeable(sk, 0);
1300 }
1301 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1302 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1303 					    struct cgroup *ancestor)
1304 {
1305 #ifdef CONFIG_SOCK_CGROUP_DATA
1306 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1307 				    ancestor);
1308 #else
1309 	return -ENOTSUPP;
1310 #endif
1311 }
1312 
sk_has_memory_pressure(const struct sock * sk)1313 static inline bool sk_has_memory_pressure(const struct sock *sk)
1314 {
1315 	return sk->sk_prot->memory_pressure != NULL;
1316 }
1317 
sk_under_memory_pressure(const struct sock * sk)1318 static inline bool sk_under_memory_pressure(const struct sock *sk)
1319 {
1320 	if (!sk->sk_prot->memory_pressure)
1321 		return false;
1322 
1323 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1324 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1325 		return true;
1326 
1327 	return !!*sk->sk_prot->memory_pressure;
1328 }
1329 
1330 static inline long
sk_memory_allocated(const struct sock * sk)1331 sk_memory_allocated(const struct sock *sk)
1332 {
1333 	return atomic_long_read(sk->sk_prot->memory_allocated);
1334 }
1335 
1336 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1337 sk_memory_allocated_add(struct sock *sk, int amt)
1338 {
1339 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1340 }
1341 
1342 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1343 sk_memory_allocated_sub(struct sock *sk, int amt)
1344 {
1345 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1346 }
1347 
sk_sockets_allocated_dec(struct sock * sk)1348 static inline void sk_sockets_allocated_dec(struct sock *sk)
1349 {
1350 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1351 }
1352 
sk_sockets_allocated_inc(struct sock * sk)1353 static inline void sk_sockets_allocated_inc(struct sock *sk)
1354 {
1355 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1356 }
1357 
1358 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1359 sk_sockets_allocated_read_positive(struct sock *sk)
1360 {
1361 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1362 }
1363 
1364 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1365 proto_sockets_allocated_sum_positive(struct proto *prot)
1366 {
1367 	return percpu_counter_sum_positive(prot->sockets_allocated);
1368 }
1369 
1370 static inline long
proto_memory_allocated(struct proto * prot)1371 proto_memory_allocated(struct proto *prot)
1372 {
1373 	return atomic_long_read(prot->memory_allocated);
1374 }
1375 
1376 static inline bool
proto_memory_pressure(struct proto * prot)1377 proto_memory_pressure(struct proto *prot)
1378 {
1379 	if (!prot->memory_pressure)
1380 		return false;
1381 	return !!*prot->memory_pressure;
1382 }
1383 
1384 
1385 #ifdef CONFIG_PROC_FS
1386 /* Called with local bh disabled */
1387 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1388 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1389 int sock_inuse_get(struct net *net);
1390 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1391 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1392 		int inc)
1393 {
1394 }
1395 #endif
1396 
1397 
1398 /* With per-bucket locks this operation is not-atomic, so that
1399  * this version is not worse.
1400  */
__sk_prot_rehash(struct sock * sk)1401 static inline int __sk_prot_rehash(struct sock *sk)
1402 {
1403 	sk->sk_prot->unhash(sk);
1404 	return sk->sk_prot->hash(sk);
1405 }
1406 
1407 /* About 10 seconds */
1408 #define SOCK_DESTROY_TIME (10*HZ)
1409 
1410 /* Sockets 0-1023 can't be bound to unless you are superuser */
1411 #define PROT_SOCK	1024
1412 
1413 #define SHUTDOWN_MASK	3
1414 #define RCV_SHUTDOWN	1
1415 #define SEND_SHUTDOWN	2
1416 
1417 #define SOCK_SNDBUF_LOCK	1
1418 #define SOCK_RCVBUF_LOCK	2
1419 #define SOCK_BINDADDR_LOCK	4
1420 #define SOCK_BINDPORT_LOCK	8
1421 
1422 struct socket_alloc {
1423 	struct socket socket;
1424 	struct inode vfs_inode;
1425 };
1426 
SOCKET_I(struct inode * inode)1427 static inline struct socket *SOCKET_I(struct inode *inode)
1428 {
1429 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1430 }
1431 
SOCK_INODE(struct socket * socket)1432 static inline struct inode *SOCK_INODE(struct socket *socket)
1433 {
1434 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1435 }
1436 
1437 /*
1438  * Functions for memory accounting
1439  */
1440 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1441 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1442 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1443 void __sk_mem_reclaim(struct sock *sk, int amount);
1444 
1445 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1446  * do not necessarily have 16x time more memory than 4KB ones.
1447  */
1448 #define SK_MEM_QUANTUM 4096
1449 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1450 #define SK_MEM_SEND	0
1451 #define SK_MEM_RECV	1
1452 
1453 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1454 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1455 {
1456 	long val = sk->sk_prot->sysctl_mem[index];
1457 
1458 #if PAGE_SIZE > SK_MEM_QUANTUM
1459 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1460 #elif PAGE_SIZE < SK_MEM_QUANTUM
1461 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1462 #endif
1463 	return val;
1464 }
1465 
sk_mem_pages(int amt)1466 static inline int sk_mem_pages(int amt)
1467 {
1468 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1469 }
1470 
sk_has_account(struct sock * sk)1471 static inline bool sk_has_account(struct sock *sk)
1472 {
1473 	/* return true if protocol supports memory accounting */
1474 	return !!sk->sk_prot->memory_allocated;
1475 }
1476 
sk_wmem_schedule(struct sock * sk,int size)1477 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1478 {
1479 	if (!sk_has_account(sk))
1480 		return true;
1481 	return size <= sk->sk_forward_alloc ||
1482 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1483 }
1484 
1485 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1486 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1487 {
1488 	if (!sk_has_account(sk))
1489 		return true;
1490 	return size <= sk->sk_forward_alloc ||
1491 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1492 		skb_pfmemalloc(skb);
1493 }
1494 
sk_mem_reclaim(struct sock * sk)1495 static inline void sk_mem_reclaim(struct sock *sk)
1496 {
1497 	if (!sk_has_account(sk))
1498 		return;
1499 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1500 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1501 }
1502 
sk_mem_reclaim_partial(struct sock * sk)1503 static inline void sk_mem_reclaim_partial(struct sock *sk)
1504 {
1505 	if (!sk_has_account(sk))
1506 		return;
1507 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1508 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1509 }
1510 
sk_mem_charge(struct sock * sk,int size)1511 static inline void sk_mem_charge(struct sock *sk, int size)
1512 {
1513 	if (!sk_has_account(sk))
1514 		return;
1515 	sk->sk_forward_alloc -= size;
1516 }
1517 
sk_mem_uncharge(struct sock * sk,int size)1518 static inline void sk_mem_uncharge(struct sock *sk, int size)
1519 {
1520 	if (!sk_has_account(sk))
1521 		return;
1522 	sk->sk_forward_alloc += size;
1523 
1524 	/* Avoid a possible overflow.
1525 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1526 	 * is not called and more than 2 GBytes are released at once.
1527 	 *
1528 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1529 	 * no need to hold that much forward allocation anyway.
1530 	 */
1531 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1532 		__sk_mem_reclaim(sk, 1 << 20);
1533 }
1534 
1535 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1536 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1537 {
1538 	sk_wmem_queued_add(sk, -skb->truesize);
1539 	sk_mem_uncharge(sk, skb->truesize);
1540 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1541 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1542 		skb_ext_reset(skb);
1543 		skb_zcopy_clear(skb, true);
1544 		sk->sk_tx_skb_cache = skb;
1545 		return;
1546 	}
1547 	__kfree_skb(skb);
1548 }
1549 
sock_release_ownership(struct sock * sk)1550 static inline void sock_release_ownership(struct sock *sk)
1551 {
1552 	if (sk->sk_lock.owned) {
1553 		sk->sk_lock.owned = 0;
1554 
1555 		/* The sk_lock has mutex_unlock() semantics: */
1556 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1557 	}
1558 }
1559 
1560 /*
1561  * Macro so as to not evaluate some arguments when
1562  * lockdep is not enabled.
1563  *
1564  * Mark both the sk_lock and the sk_lock.slock as a
1565  * per-address-family lock class.
1566  */
1567 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1568 do {									\
1569 	sk->sk_lock.owned = 0;						\
1570 	init_waitqueue_head(&sk->sk_lock.wq);				\
1571 	spin_lock_init(&(sk)->sk_lock.slock);				\
1572 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1573 			sizeof((sk)->sk_lock));				\
1574 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1575 				(skey), (sname));				\
1576 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1577 } while (0)
1578 
1579 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1580 static inline bool lockdep_sock_is_held(const struct sock *sk)
1581 {
1582 	return lockdep_is_held(&sk->sk_lock) ||
1583 	       lockdep_is_held(&sk->sk_lock.slock);
1584 }
1585 #endif
1586 
1587 void lock_sock_nested(struct sock *sk, int subclass);
1588 
lock_sock(struct sock * sk)1589 static inline void lock_sock(struct sock *sk)
1590 {
1591 	lock_sock_nested(sk, 0);
1592 }
1593 
1594 void __release_sock(struct sock *sk);
1595 void release_sock(struct sock *sk);
1596 
1597 /* BH context may only use the following locking interface. */
1598 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1599 #define bh_lock_sock_nested(__sk) \
1600 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1601 				SINGLE_DEPTH_NESTING)
1602 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1603 
1604 bool lock_sock_fast(struct sock *sk);
1605 /**
1606  * unlock_sock_fast - complement of lock_sock_fast
1607  * @sk: socket
1608  * @slow: slow mode
1609  *
1610  * fast unlock socket for user context.
1611  * If slow mode is on, we call regular release_sock()
1612  */
unlock_sock_fast(struct sock * sk,bool slow)1613 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1614 {
1615 	if (slow)
1616 		release_sock(sk);
1617 	else
1618 		spin_unlock_bh(&sk->sk_lock.slock);
1619 }
1620 
1621 /* Used by processes to "lock" a socket state, so that
1622  * interrupts and bottom half handlers won't change it
1623  * from under us. It essentially blocks any incoming
1624  * packets, so that we won't get any new data or any
1625  * packets that change the state of the socket.
1626  *
1627  * While locked, BH processing will add new packets to
1628  * the backlog queue.  This queue is processed by the
1629  * owner of the socket lock right before it is released.
1630  *
1631  * Since ~2.3.5 it is also exclusive sleep lock serializing
1632  * accesses from user process context.
1633  */
1634 
sock_owned_by_me(const struct sock * sk)1635 static inline void sock_owned_by_me(const struct sock *sk)
1636 {
1637 #ifdef CONFIG_LOCKDEP
1638 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1639 #endif
1640 }
1641 
sock_owned_by_user(const struct sock * sk)1642 static inline bool sock_owned_by_user(const struct sock *sk)
1643 {
1644 	sock_owned_by_me(sk);
1645 	return sk->sk_lock.owned;
1646 }
1647 
sock_owned_by_user_nocheck(const struct sock * sk)1648 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1649 {
1650 	return sk->sk_lock.owned;
1651 }
1652 
1653 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1654 static inline bool sock_allow_reclassification(const struct sock *csk)
1655 {
1656 	struct sock *sk = (struct sock *)csk;
1657 
1658 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1659 }
1660 
1661 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1662 		      struct proto *prot, int kern);
1663 void sk_free(struct sock *sk);
1664 void sk_destruct(struct sock *sk);
1665 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1666 void sk_free_unlock_clone(struct sock *sk);
1667 
1668 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1669 			     gfp_t priority);
1670 void __sock_wfree(struct sk_buff *skb);
1671 void sock_wfree(struct sk_buff *skb);
1672 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1673 			     gfp_t priority);
1674 void skb_orphan_partial(struct sk_buff *skb);
1675 void sock_rfree(struct sk_buff *skb);
1676 void sock_efree(struct sk_buff *skb);
1677 #ifdef CONFIG_INET
1678 void sock_edemux(struct sk_buff *skb);
1679 void sock_pfree(struct sk_buff *skb);
1680 #else
1681 #define sock_edemux sock_efree
1682 #endif
1683 
1684 int sock_setsockopt(struct socket *sock, int level, int op,
1685 		    sockptr_t optval, unsigned int optlen);
1686 
1687 int sock_getsockopt(struct socket *sock, int level, int op,
1688 		    char __user *optval, int __user *optlen);
1689 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1690 		   bool timeval, bool time32);
1691 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1692 				    int noblock, int *errcode);
1693 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1694 				     unsigned long data_len, int noblock,
1695 				     int *errcode, int max_page_order);
1696 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1697 void sock_kfree_s(struct sock *sk, void *mem, int size);
1698 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1699 void sk_send_sigurg(struct sock *sk);
1700 
1701 struct sockcm_cookie {
1702 	u64 transmit_time;
1703 	u32 mark;
1704 	u16 tsflags;
1705 };
1706 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1707 static inline void sockcm_init(struct sockcm_cookie *sockc,
1708 			       const struct sock *sk)
1709 {
1710 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1711 }
1712 
1713 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1714 		     struct sockcm_cookie *sockc);
1715 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1716 		   struct sockcm_cookie *sockc);
1717 
1718 /*
1719  * Functions to fill in entries in struct proto_ops when a protocol
1720  * does not implement a particular function.
1721  */
1722 int sock_no_bind(struct socket *, struct sockaddr *, int);
1723 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1724 int sock_no_socketpair(struct socket *, struct socket *);
1725 int sock_no_accept(struct socket *, struct socket *, int, bool);
1726 int sock_no_getname(struct socket *, struct sockaddr *, int);
1727 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1728 int sock_no_listen(struct socket *, int);
1729 int sock_no_shutdown(struct socket *, int);
1730 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1731 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1732 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1733 int sock_no_mmap(struct file *file, struct socket *sock,
1734 		 struct vm_area_struct *vma);
1735 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1736 			 size_t size, int flags);
1737 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1738 				int offset, size_t size, int flags);
1739 
1740 /*
1741  * Functions to fill in entries in struct proto_ops when a protocol
1742  * uses the inet style.
1743  */
1744 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1745 				  char __user *optval, int __user *optlen);
1746 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1747 			int flags);
1748 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1749 			   sockptr_t optval, unsigned int optlen);
1750 
1751 void sk_common_release(struct sock *sk);
1752 
1753 /*
1754  *	Default socket callbacks and setup code
1755  */
1756 
1757 /* Initialise core socket variables using an explicit uid. */
1758 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1759 
1760 /* Initialise core socket variables.
1761  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1762  */
1763 void sock_init_data(struct socket *sock, struct sock *sk);
1764 
1765 /*
1766  * Socket reference counting postulates.
1767  *
1768  * * Each user of socket SHOULD hold a reference count.
1769  * * Each access point to socket (an hash table bucket, reference from a list,
1770  *   running timer, skb in flight MUST hold a reference count.
1771  * * When reference count hits 0, it means it will never increase back.
1772  * * When reference count hits 0, it means that no references from
1773  *   outside exist to this socket and current process on current CPU
1774  *   is last user and may/should destroy this socket.
1775  * * sk_free is called from any context: process, BH, IRQ. When
1776  *   it is called, socket has no references from outside -> sk_free
1777  *   may release descendant resources allocated by the socket, but
1778  *   to the time when it is called, socket is NOT referenced by any
1779  *   hash tables, lists etc.
1780  * * Packets, delivered from outside (from network or from another process)
1781  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1782  *   when they sit in queue. Otherwise, packets will leak to hole, when
1783  *   socket is looked up by one cpu and unhasing is made by another CPU.
1784  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1785  *   (leak to backlog). Packet socket does all the processing inside
1786  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1787  *   use separate SMP lock, so that they are prone too.
1788  */
1789 
1790 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1791 static inline void sock_put(struct sock *sk)
1792 {
1793 	if (refcount_dec_and_test(&sk->sk_refcnt))
1794 		sk_free(sk);
1795 }
1796 /* Generic version of sock_put(), dealing with all sockets
1797  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1798  */
1799 void sock_gen_put(struct sock *sk);
1800 
1801 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1802 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1803 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1804 				 const int nested)
1805 {
1806 	return __sk_receive_skb(sk, skb, nested, 1, true);
1807 }
1808 
sk_tx_queue_set(struct sock * sk,int tx_queue)1809 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1810 {
1811 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1812 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1813 		return;
1814 	sk->sk_tx_queue_mapping = tx_queue;
1815 }
1816 
1817 #define NO_QUEUE_MAPPING	USHRT_MAX
1818 
sk_tx_queue_clear(struct sock * sk)1819 static inline void sk_tx_queue_clear(struct sock *sk)
1820 {
1821 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1822 }
1823 
sk_tx_queue_get(const struct sock * sk)1824 static inline int sk_tx_queue_get(const struct sock *sk)
1825 {
1826 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1827 		return sk->sk_tx_queue_mapping;
1828 
1829 	return -1;
1830 }
1831 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1832 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1833 {
1834 #ifdef CONFIG_XPS
1835 	if (skb_rx_queue_recorded(skb)) {
1836 		u16 rx_queue = skb_get_rx_queue(skb);
1837 
1838 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1839 			return;
1840 
1841 		sk->sk_rx_queue_mapping = rx_queue;
1842 	}
1843 #endif
1844 }
1845 
sk_rx_queue_clear(struct sock * sk)1846 static inline void sk_rx_queue_clear(struct sock *sk)
1847 {
1848 #ifdef CONFIG_XPS
1849 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1850 #endif
1851 }
1852 
1853 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1854 static inline int sk_rx_queue_get(const struct sock *sk)
1855 {
1856 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1857 		return sk->sk_rx_queue_mapping;
1858 
1859 	return -1;
1860 }
1861 #endif
1862 
sk_set_socket(struct sock * sk,struct socket * sock)1863 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1864 {
1865 	sk->sk_socket = sock;
1866 }
1867 
sk_sleep(struct sock * sk)1868 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1869 {
1870 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1871 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1872 }
1873 /* Detach socket from process context.
1874  * Announce socket dead, detach it from wait queue and inode.
1875  * Note that parent inode held reference count on this struct sock,
1876  * we do not release it in this function, because protocol
1877  * probably wants some additional cleanups or even continuing
1878  * to work with this socket (TCP).
1879  */
sock_orphan(struct sock * sk)1880 static inline void sock_orphan(struct sock *sk)
1881 {
1882 	write_lock_bh(&sk->sk_callback_lock);
1883 	sock_set_flag(sk, SOCK_DEAD);
1884 	sk_set_socket(sk, NULL);
1885 	sk->sk_wq  = NULL;
1886 	write_unlock_bh(&sk->sk_callback_lock);
1887 }
1888 
sock_graft(struct sock * sk,struct socket * parent)1889 static inline void sock_graft(struct sock *sk, struct socket *parent)
1890 {
1891 	WARN_ON(parent->sk);
1892 	write_lock_bh(&sk->sk_callback_lock);
1893 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1894 	parent->sk = sk;
1895 	sk_set_socket(sk, parent);
1896 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1897 	security_sock_graft(sk, parent);
1898 	write_unlock_bh(&sk->sk_callback_lock);
1899 }
1900 
1901 kuid_t sock_i_uid(struct sock *sk);
1902 unsigned long sock_i_ino(struct sock *sk);
1903 
sock_net_uid(const struct net * net,const struct sock * sk)1904 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1905 {
1906 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1907 }
1908 
net_tx_rndhash(void)1909 static inline u32 net_tx_rndhash(void)
1910 {
1911 	u32 v = prandom_u32();
1912 
1913 	return v ?: 1;
1914 }
1915 
sk_set_txhash(struct sock * sk)1916 static inline void sk_set_txhash(struct sock *sk)
1917 {
1918 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1919 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1920 }
1921 
sk_rethink_txhash(struct sock * sk)1922 static inline bool sk_rethink_txhash(struct sock *sk)
1923 {
1924 	if (sk->sk_txhash) {
1925 		sk_set_txhash(sk);
1926 		return true;
1927 	}
1928 	return false;
1929 }
1930 
1931 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1932 __sk_dst_get(struct sock *sk)
1933 {
1934 	return rcu_dereference_check(sk->sk_dst_cache,
1935 				     lockdep_sock_is_held(sk));
1936 }
1937 
1938 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1939 sk_dst_get(struct sock *sk)
1940 {
1941 	struct dst_entry *dst;
1942 
1943 	rcu_read_lock();
1944 	dst = rcu_dereference(sk->sk_dst_cache);
1945 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1946 		dst = NULL;
1947 	rcu_read_unlock();
1948 	return dst;
1949 }
1950 
__dst_negative_advice(struct sock * sk)1951 static inline void __dst_negative_advice(struct sock *sk)
1952 {
1953 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1954 
1955 	if (dst && dst->ops->negative_advice) {
1956 		ndst = dst->ops->negative_advice(dst);
1957 
1958 		if (ndst != dst) {
1959 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1960 			sk_tx_queue_clear(sk);
1961 			sk->sk_dst_pending_confirm = 0;
1962 		}
1963 	}
1964 }
1965 
dst_negative_advice(struct sock * sk)1966 static inline void dst_negative_advice(struct sock *sk)
1967 {
1968 	sk_rethink_txhash(sk);
1969 	__dst_negative_advice(sk);
1970 }
1971 
1972 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1973 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1974 {
1975 	struct dst_entry *old_dst;
1976 
1977 	sk_tx_queue_clear(sk);
1978 	sk->sk_dst_pending_confirm = 0;
1979 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1980 					    lockdep_sock_is_held(sk));
1981 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1982 	dst_release(old_dst);
1983 }
1984 
1985 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1986 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1987 {
1988 	struct dst_entry *old_dst;
1989 
1990 	sk_tx_queue_clear(sk);
1991 	sk->sk_dst_pending_confirm = 0;
1992 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1993 	dst_release(old_dst);
1994 }
1995 
1996 static inline void
__sk_dst_reset(struct sock * sk)1997 __sk_dst_reset(struct sock *sk)
1998 {
1999 	__sk_dst_set(sk, NULL);
2000 }
2001 
2002 static inline void
sk_dst_reset(struct sock * sk)2003 sk_dst_reset(struct sock *sk)
2004 {
2005 	sk_dst_set(sk, NULL);
2006 }
2007 
2008 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2009 
2010 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2011 
sk_dst_confirm(struct sock * sk)2012 static inline void sk_dst_confirm(struct sock *sk)
2013 {
2014 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2015 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2016 }
2017 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2018 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2019 {
2020 	if (skb_get_dst_pending_confirm(skb)) {
2021 		struct sock *sk = skb->sk;
2022 		unsigned long now = jiffies;
2023 
2024 		/* avoid dirtying neighbour */
2025 		if (READ_ONCE(n->confirmed) != now)
2026 			WRITE_ONCE(n->confirmed, now);
2027 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2028 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2029 	}
2030 }
2031 
2032 bool sk_mc_loop(struct sock *sk);
2033 
sk_can_gso(const struct sock * sk)2034 static inline bool sk_can_gso(const struct sock *sk)
2035 {
2036 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2037 }
2038 
2039 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2040 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2041 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2042 {
2043 	sk->sk_route_nocaps |= flags;
2044 	sk->sk_route_caps &= ~flags;
2045 }
2046 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2047 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2048 					   struct iov_iter *from, char *to,
2049 					   int copy, int offset)
2050 {
2051 	if (skb->ip_summed == CHECKSUM_NONE) {
2052 		__wsum csum = 0;
2053 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2054 			return -EFAULT;
2055 		skb->csum = csum_block_add(skb->csum, csum, offset);
2056 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2057 		if (!copy_from_iter_full_nocache(to, copy, from))
2058 			return -EFAULT;
2059 	} else if (!copy_from_iter_full(to, copy, from))
2060 		return -EFAULT;
2061 
2062 	return 0;
2063 }
2064 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2065 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2066 				       struct iov_iter *from, int copy)
2067 {
2068 	int err, offset = skb->len;
2069 
2070 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2071 				       copy, offset);
2072 	if (err)
2073 		__skb_trim(skb, offset);
2074 
2075 	return err;
2076 }
2077 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2078 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2079 					   struct sk_buff *skb,
2080 					   struct page *page,
2081 					   int off, int copy)
2082 {
2083 	int err;
2084 
2085 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2086 				       copy, skb->len);
2087 	if (err)
2088 		return err;
2089 
2090 	skb->len	     += copy;
2091 	skb->data_len	     += copy;
2092 	skb->truesize	     += copy;
2093 	sk_wmem_queued_add(sk, copy);
2094 	sk_mem_charge(sk, copy);
2095 	return 0;
2096 }
2097 
2098 /**
2099  * sk_wmem_alloc_get - returns write allocations
2100  * @sk: socket
2101  *
2102  * Return: sk_wmem_alloc minus initial offset of one
2103  */
sk_wmem_alloc_get(const struct sock * sk)2104 static inline int sk_wmem_alloc_get(const struct sock *sk)
2105 {
2106 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2107 }
2108 
2109 /**
2110  * sk_rmem_alloc_get - returns read allocations
2111  * @sk: socket
2112  *
2113  * Return: sk_rmem_alloc
2114  */
sk_rmem_alloc_get(const struct sock * sk)2115 static inline int sk_rmem_alloc_get(const struct sock *sk)
2116 {
2117 	return atomic_read(&sk->sk_rmem_alloc);
2118 }
2119 
2120 /**
2121  * sk_has_allocations - check if allocations are outstanding
2122  * @sk: socket
2123  *
2124  * Return: true if socket has write or read allocations
2125  */
sk_has_allocations(const struct sock * sk)2126 static inline bool sk_has_allocations(const struct sock *sk)
2127 {
2128 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2129 }
2130 
2131 /**
2132  * skwq_has_sleeper - check if there are any waiting processes
2133  * @wq: struct socket_wq
2134  *
2135  * Return: true if socket_wq has waiting processes
2136  *
2137  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2138  * barrier call. They were added due to the race found within the tcp code.
2139  *
2140  * Consider following tcp code paths::
2141  *
2142  *   CPU1                CPU2
2143  *   sys_select          receive packet
2144  *   ...                 ...
2145  *   __add_wait_queue    update tp->rcv_nxt
2146  *   ...                 ...
2147  *   tp->rcv_nxt check   sock_def_readable
2148  *   ...                 {
2149  *   schedule               rcu_read_lock();
2150  *                          wq = rcu_dereference(sk->sk_wq);
2151  *                          if (wq && waitqueue_active(&wq->wait))
2152  *                              wake_up_interruptible(&wq->wait)
2153  *                          ...
2154  *                       }
2155  *
2156  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2157  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2158  * could then endup calling schedule and sleep forever if there are no more
2159  * data on the socket.
2160  *
2161  */
skwq_has_sleeper(struct socket_wq * wq)2162 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2163 {
2164 	return wq && wq_has_sleeper(&wq->wait);
2165 }
2166 
2167 /**
2168  * sock_poll_wait - place memory barrier behind the poll_wait call.
2169  * @filp:           file
2170  * @sock:           socket to wait on
2171  * @p:              poll_table
2172  *
2173  * See the comments in the wq_has_sleeper function.
2174  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2175 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2176 				  poll_table *p)
2177 {
2178 	if (!poll_does_not_wait(p)) {
2179 		poll_wait(filp, &sock->wq.wait, p);
2180 		/* We need to be sure we are in sync with the
2181 		 * socket flags modification.
2182 		 *
2183 		 * This memory barrier is paired in the wq_has_sleeper.
2184 		 */
2185 		smp_mb();
2186 	}
2187 }
2188 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2189 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2190 {
2191 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2192 	u32 txhash = READ_ONCE(sk->sk_txhash);
2193 
2194 	if (txhash) {
2195 		skb->l4_hash = 1;
2196 		skb->hash = txhash;
2197 	}
2198 }
2199 
2200 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2201 
2202 /*
2203  *	Queue a received datagram if it will fit. Stream and sequenced
2204  *	protocols can't normally use this as they need to fit buffers in
2205  *	and play with them.
2206  *
2207  *	Inlined as it's very short and called for pretty much every
2208  *	packet ever received.
2209  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2210 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2211 {
2212 	skb_orphan(skb);
2213 	skb->sk = sk;
2214 	skb->destructor = sock_rfree;
2215 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2216 	sk_mem_charge(sk, skb->truesize);
2217 }
2218 
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2219 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2220 {
2221 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2222 		skb_orphan(skb);
2223 		skb->destructor = sock_efree;
2224 		skb->sk = sk;
2225 		return true;
2226 	}
2227 	return false;
2228 }
2229 
2230 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2231 		    unsigned long expires);
2232 
2233 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2234 
2235 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2236 
2237 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2238 			struct sk_buff *skb, unsigned int flags,
2239 			void (*destructor)(struct sock *sk,
2240 					   struct sk_buff *skb));
2241 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2242 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2243 
2244 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2245 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2246 
2247 /*
2248  *	Recover an error report and clear atomically
2249  */
2250 
sock_error(struct sock * sk)2251 static inline int sock_error(struct sock *sk)
2252 {
2253 	int err;
2254 
2255 	/* Avoid an atomic operation for the common case.
2256 	 * This is racy since another cpu/thread can change sk_err under us.
2257 	 */
2258 	if (likely(data_race(!sk->sk_err)))
2259 		return 0;
2260 
2261 	err = xchg(&sk->sk_err, 0);
2262 	return -err;
2263 }
2264 
sock_wspace(struct sock * sk)2265 static inline unsigned long sock_wspace(struct sock *sk)
2266 {
2267 	int amt = 0;
2268 
2269 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2270 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2271 		if (amt < 0)
2272 			amt = 0;
2273 	}
2274 	return amt;
2275 }
2276 
2277 /* Note:
2278  *  We use sk->sk_wq_raw, from contexts knowing this
2279  *  pointer is not NULL and cannot disappear/change.
2280  */
sk_set_bit(int nr,struct sock * sk)2281 static inline void sk_set_bit(int nr, struct sock *sk)
2282 {
2283 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2284 	    !sock_flag(sk, SOCK_FASYNC))
2285 		return;
2286 
2287 	set_bit(nr, &sk->sk_wq_raw->flags);
2288 }
2289 
sk_clear_bit(int nr,struct sock * sk)2290 static inline void sk_clear_bit(int nr, struct sock *sk)
2291 {
2292 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2293 	    !sock_flag(sk, SOCK_FASYNC))
2294 		return;
2295 
2296 	clear_bit(nr, &sk->sk_wq_raw->flags);
2297 }
2298 
sk_wake_async(const struct sock * sk,int how,int band)2299 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2300 {
2301 	if (sock_flag(sk, SOCK_FASYNC)) {
2302 		rcu_read_lock();
2303 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2304 		rcu_read_unlock();
2305 	}
2306 }
2307 
2308 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2309  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2310  * Note: for send buffers, TCP works better if we can build two skbs at
2311  * minimum.
2312  */
2313 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2314 
2315 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2316 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2317 
sk_stream_moderate_sndbuf(struct sock * sk)2318 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2319 {
2320 	u32 val;
2321 
2322 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2323 		return;
2324 
2325 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2326 
2327 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2328 }
2329 
2330 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2331 				    bool force_schedule);
2332 
2333 /**
2334  * sk_page_frag - return an appropriate page_frag
2335  * @sk: socket
2336  *
2337  * Use the per task page_frag instead of the per socket one for
2338  * optimization when we know that we're in process context and own
2339  * everything that's associated with %current.
2340  *
2341  * Both direct reclaim and page faults can nest inside other
2342  * socket operations and end up recursing into sk_page_frag()
2343  * while it's already in use: explicitly avoid task page_frag
2344  * usage if the caller is potentially doing any of them.
2345  * This assumes that page fault handlers use the GFP_NOFS flags.
2346  *
2347  * Return: a per task page_frag if context allows that,
2348  * otherwise a per socket one.
2349  */
sk_page_frag(struct sock * sk)2350 static inline struct page_frag *sk_page_frag(struct sock *sk)
2351 {
2352 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2353 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2354 		return &current->task_frag;
2355 
2356 	return &sk->sk_frag;
2357 }
2358 
2359 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2360 
2361 /*
2362  *	Default write policy as shown to user space via poll/select/SIGIO
2363  */
sock_writeable(const struct sock * sk)2364 static inline bool sock_writeable(const struct sock *sk)
2365 {
2366 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2367 }
2368 
gfp_any(void)2369 static inline gfp_t gfp_any(void)
2370 {
2371 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2372 }
2373 
sock_rcvtimeo(const struct sock * sk,bool noblock)2374 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2375 {
2376 	return noblock ? 0 : sk->sk_rcvtimeo;
2377 }
2378 
sock_sndtimeo(const struct sock * sk,bool noblock)2379 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2380 {
2381 	return noblock ? 0 : sk->sk_sndtimeo;
2382 }
2383 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2384 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2385 {
2386 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2387 
2388 	return v ?: 1;
2389 }
2390 
2391 /* Alas, with timeout socket operations are not restartable.
2392  * Compare this to poll().
2393  */
sock_intr_errno(long timeo)2394 static inline int sock_intr_errno(long timeo)
2395 {
2396 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2397 }
2398 
2399 struct sock_skb_cb {
2400 	u32 dropcount;
2401 };
2402 
2403 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2404  * using skb->cb[] would keep using it directly and utilize its
2405  * alignement guarantee.
2406  */
2407 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2408 			    sizeof(struct sock_skb_cb)))
2409 
2410 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2411 			    SOCK_SKB_CB_OFFSET))
2412 
2413 #define sock_skb_cb_check_size(size) \
2414 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2415 
2416 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2417 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2418 {
2419 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2420 						atomic_read(&sk->sk_drops) : 0;
2421 }
2422 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2423 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2424 {
2425 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2426 
2427 	atomic_add(segs, &sk->sk_drops);
2428 }
2429 
sock_read_timestamp(struct sock * sk)2430 static inline ktime_t sock_read_timestamp(struct sock *sk)
2431 {
2432 #if BITS_PER_LONG==32
2433 	unsigned int seq;
2434 	ktime_t kt;
2435 
2436 	do {
2437 		seq = read_seqbegin(&sk->sk_stamp_seq);
2438 		kt = sk->sk_stamp;
2439 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2440 
2441 	return kt;
2442 #else
2443 	return READ_ONCE(sk->sk_stamp);
2444 #endif
2445 }
2446 
sock_write_timestamp(struct sock * sk,ktime_t kt)2447 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2448 {
2449 #if BITS_PER_LONG==32
2450 	write_seqlock(&sk->sk_stamp_seq);
2451 	sk->sk_stamp = kt;
2452 	write_sequnlock(&sk->sk_stamp_seq);
2453 #else
2454 	WRITE_ONCE(sk->sk_stamp, kt);
2455 #endif
2456 }
2457 
2458 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2459 			   struct sk_buff *skb);
2460 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2461 			     struct sk_buff *skb);
2462 
2463 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2464 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2465 {
2466 	ktime_t kt = skb->tstamp;
2467 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2468 
2469 	/*
2470 	 * generate control messages if
2471 	 * - receive time stamping in software requested
2472 	 * - software time stamp available and wanted
2473 	 * - hardware time stamps available and wanted
2474 	 */
2475 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2476 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2477 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2478 	    (hwtstamps->hwtstamp &&
2479 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2480 		__sock_recv_timestamp(msg, sk, skb);
2481 	else
2482 		sock_write_timestamp(sk, kt);
2483 
2484 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2485 		__sock_recv_wifi_status(msg, sk, skb);
2486 }
2487 
2488 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2489 			      struct sk_buff *skb);
2490 
2491 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2492 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2493 					  struct sk_buff *skb)
2494 {
2495 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2496 			   (1UL << SOCK_RCVTSTAMP))
2497 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2498 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2499 
2500 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2501 		__sock_recv_ts_and_drops(msg, sk, skb);
2502 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2503 		sock_write_timestamp(sk, skb->tstamp);
2504 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2505 		sock_write_timestamp(sk, 0);
2506 }
2507 
2508 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2509 
2510 /**
2511  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2512  * @sk:		socket sending this packet
2513  * @tsflags:	timestamping flags to use
2514  * @tx_flags:	completed with instructions for time stamping
2515  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2516  *
2517  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2518  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2519 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2520 				      __u8 *tx_flags, __u32 *tskey)
2521 {
2522 	if (unlikely(tsflags)) {
2523 		__sock_tx_timestamp(tsflags, tx_flags);
2524 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2525 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2526 			*tskey = sk->sk_tskey++;
2527 	}
2528 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2529 		*tx_flags |= SKBTX_WIFI_STATUS;
2530 }
2531 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2532 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2533 				     __u8 *tx_flags)
2534 {
2535 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2536 }
2537 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2538 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2539 {
2540 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2541 			   &skb_shinfo(skb)->tskey);
2542 }
2543 
2544 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2545 /**
2546  * sk_eat_skb - Release a skb if it is no longer needed
2547  * @sk: socket to eat this skb from
2548  * @skb: socket buffer to eat
2549  *
2550  * This routine must be called with interrupts disabled or with the socket
2551  * locked so that the sk_buff queue operation is ok.
2552 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2553 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2554 {
2555 	__skb_unlink(skb, &sk->sk_receive_queue);
2556 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2557 	    !sk->sk_rx_skb_cache) {
2558 		sk->sk_rx_skb_cache = skb;
2559 		skb_orphan(skb);
2560 		return;
2561 	}
2562 	__kfree_skb(skb);
2563 }
2564 
2565 static inline
sock_net(const struct sock * sk)2566 struct net *sock_net(const struct sock *sk)
2567 {
2568 	return read_pnet(&sk->sk_net);
2569 }
2570 
2571 static inline
sock_net_set(struct sock * sk,struct net * net)2572 void sock_net_set(struct sock *sk, struct net *net)
2573 {
2574 	write_pnet(&sk->sk_net, net);
2575 }
2576 
2577 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2578 skb_sk_is_prefetched(struct sk_buff *skb)
2579 {
2580 #ifdef CONFIG_INET
2581 	return skb->destructor == sock_pfree;
2582 #else
2583 	return false;
2584 #endif /* CONFIG_INET */
2585 }
2586 
2587 /* This helper checks if a socket is a full socket,
2588  * ie _not_ a timewait or request socket.
2589  */
sk_fullsock(const struct sock * sk)2590 static inline bool sk_fullsock(const struct sock *sk)
2591 {
2592 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2593 }
2594 
2595 static inline bool
sk_is_refcounted(struct sock * sk)2596 sk_is_refcounted(struct sock *sk)
2597 {
2598 	/* Only full sockets have sk->sk_flags. */
2599 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2600 }
2601 
2602 /**
2603  * skb_steal_sock - steal a socket from an sk_buff
2604  * @skb: sk_buff to steal the socket from
2605  * @refcounted: is set to true if the socket is reference-counted
2606  */
2607 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2608 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2609 {
2610 	if (skb->sk) {
2611 		struct sock *sk = skb->sk;
2612 
2613 		*refcounted = true;
2614 		if (skb_sk_is_prefetched(skb))
2615 			*refcounted = sk_is_refcounted(sk);
2616 		skb->destructor = NULL;
2617 		skb->sk = NULL;
2618 		return sk;
2619 	}
2620 	*refcounted = false;
2621 	return NULL;
2622 }
2623 
2624 /* Checks if this SKB belongs to an HW offloaded socket
2625  * and whether any SW fallbacks are required based on dev.
2626  * Check decrypted mark in case skb_orphan() cleared socket.
2627  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2628 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2629 						   struct net_device *dev)
2630 {
2631 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2632 	struct sock *sk = skb->sk;
2633 
2634 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2635 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2636 #ifdef CONFIG_TLS_DEVICE
2637 	} else if (unlikely(skb->decrypted)) {
2638 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2639 		kfree_skb(skb);
2640 		skb = NULL;
2641 #endif
2642 	}
2643 #endif
2644 
2645 	return skb;
2646 }
2647 
2648 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2649  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2650  */
sk_listener(const struct sock * sk)2651 static inline bool sk_listener(const struct sock *sk)
2652 {
2653 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2654 }
2655 
2656 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2657 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2658 		       int type);
2659 
2660 bool sk_ns_capable(const struct sock *sk,
2661 		   struct user_namespace *user_ns, int cap);
2662 bool sk_capable(const struct sock *sk, int cap);
2663 bool sk_net_capable(const struct sock *sk, int cap);
2664 
2665 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2666 
2667 /* Take into consideration the size of the struct sk_buff overhead in the
2668  * determination of these values, since that is non-constant across
2669  * platforms.  This makes socket queueing behavior and performance
2670  * not depend upon such differences.
2671  */
2672 #define _SK_MEM_PACKETS		256
2673 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2674 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2675 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2676 
2677 extern __u32 sysctl_wmem_max;
2678 extern __u32 sysctl_rmem_max;
2679 
2680 extern int sysctl_tstamp_allow_data;
2681 extern int sysctl_optmem_max;
2682 
2683 extern __u32 sysctl_wmem_default;
2684 extern __u32 sysctl_rmem_default;
2685 
2686 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2687 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2688 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2689 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2690 {
2691 	/* Does this proto have per netns sysctl_wmem ? */
2692 	if (proto->sysctl_wmem_offset)
2693 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2694 
2695 	return *proto->sysctl_wmem;
2696 }
2697 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2698 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2699 {
2700 	/* Does this proto have per netns sysctl_rmem ? */
2701 	if (proto->sysctl_rmem_offset)
2702 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2703 
2704 	return *proto->sysctl_rmem;
2705 }
2706 
2707 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2708  * Some wifi drivers need to tweak it to get more chunks.
2709  * They can use this helper from their ndo_start_xmit()
2710  */
sk_pacing_shift_update(struct sock * sk,int val)2711 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2712 {
2713 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2714 		return;
2715 	WRITE_ONCE(sk->sk_pacing_shift, val);
2716 }
2717 
2718 /* if a socket is bound to a device, check that the given device
2719  * index is either the same or that the socket is bound to an L3
2720  * master device and the given device index is also enslaved to
2721  * that L3 master
2722  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2723 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2724 {
2725 	int mdif;
2726 
2727 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2728 		return true;
2729 
2730 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2731 	if (mdif && mdif == sk->sk_bound_dev_if)
2732 		return true;
2733 
2734 	return false;
2735 }
2736 
2737 void sock_def_readable(struct sock *sk);
2738 
2739 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2740 void sock_enable_timestamps(struct sock *sk);
2741 void sock_no_linger(struct sock *sk);
2742 void sock_set_keepalive(struct sock *sk);
2743 void sock_set_priority(struct sock *sk, u32 priority);
2744 void sock_set_rcvbuf(struct sock *sk, int val);
2745 void sock_set_mark(struct sock *sk, u32 val);
2746 void sock_set_reuseaddr(struct sock *sk);
2747 void sock_set_reuseport(struct sock *sk);
2748 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2749 
2750 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2751 
2752 #endif	/* _SOCK_H */
2753