• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Bernoulli Numbers</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../number_series.html" title="Number Series">
9<link rel="prev" href="../number_series.html" title="Number Series">
10<link rel="next" href="tangent_numbers.html" title="Tangent Numbers">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="../number_series.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../number_series.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="tangent_numbers.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.number_series.bernoulli_numbers"></a><a class="link" href="bernoulli_numbers.html" title="Bernoulli Numbers">Bernoulli
28      Numbers</a>
29</h3></div></div></div>
30<p>
31        <a href="https://en.wikipedia.org/wiki/Bernoulli_number" target="_top">Bernoulli numbers</a>
32        are a sequence of rational numbers useful for the Taylor series expansion,
33        Euler-Maclaurin formula, and the Riemann zeta function.
34      </p>
35<p>
36        Bernoulli numbers are used in evaluation of some Boost.Math functions, including
37        the <a class="link" href="../sf_gamma/tgamma.html" title="Gamma">tgamma</a>, <a class="link" href="../sf_gamma/lgamma.html" title="Log Gamma">lgamma</a>
38        and polygamma functions.
39      </p>
40<h5>
41<a name="math_toolkit.number_series.bernoulli_numbers.h0"></a>
42        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.single_bernoulli_number"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.single_bernoulli_number">Single
43        Bernoulli number</a>
44      </h5>
45<h5>
46<a name="math_toolkit.number_series.bernoulli_numbers.h1"></a>
47        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.synopsis"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.synopsis">Synopsis</a>
48      </h5>
49<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">bernoulli</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
50</pre>
51<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
52
53<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
54<span class="identifier">T</span> <span class="identifier">bernoulli_b2n</span><span class="special">(</span><span class="keyword">const</span> <span class="keyword">int</span> <span class="identifier">n</span><span class="special">);</span>  <span class="comment">// Single Bernoulli number (default policy).</span>
55
56<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Policy</span><span class="special">&gt;</span>
57<span class="identifier">T</span> <span class="identifier">bernoulli_b2n</span><span class="special">(</span><span class="keyword">const</span> <span class="keyword">int</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">Policy</span> <span class="special">&amp;</span><span class="identifier">pol</span><span class="special">);</span> <span class="comment">// User policy for errors etc.</span>
58
59<span class="special">}}</span> <span class="comment">// namespaces</span>
60</pre>
61<h5>
62<a name="math_toolkit.number_series.bernoulli_numbers.h2"></a>
63        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.description"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.description">Description</a>
64      </h5>
65<p>
66        Both return the (2 * n)<sup>th</sup> Bernoulli number B<sub>2n</sub>.
67      </p>
68<p>
69        Note that since all odd numbered Bernoulli numbers are zero (apart from B<sub>1</sub> which
70        is -½) the interface will only return the even numbered Bernoulli numbers.
71      </p>
72<p>
73        This function uses fast table lookup for low-indexed Bernoulli numbers, while
74        larger values are calculated as needed and then cached. The caching mechanism
75        requires a certain amount of thread safety code, so <code class="computeroutput"><span class="identifier">unchecked_bernoulli_b2n</span></code>
76        may provide a better interface for performance critical code.
77      </p>
78<p>
79        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
80        be used to control the behaviour of the function: how it handles errors,
81        what level of precision to use, etc.
82      </p>
83<p>
84        Refer to <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policies</a> for more details.
85      </p>
86<h5>
87<a name="math_toolkit.number_series.bernoulli_numbers.h3"></a>
88        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.examples"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.examples">Examples</a>
89      </h5>
90<p>
91        A simple example computes the value of B<sub>4</sub> where the return type is <code class="computeroutput"><span class="keyword">double</span></code>, note that the argument to bernoulli_b2n
92        is <span class="emphasis"><em>2</em></span> not <span class="emphasis"><em>4</em></span> since it computes B<sub>2N</sub>.
93      </p>
94<pre class="programlisting"><span class="keyword">try</span>
95<span class="special">{</span> <span class="comment">// It is always wise to use try'n'catch blocks around Boost.Math functions</span>
96  <span class="comment">// so that any informative error messages can be displayed in the catch block.</span>
97<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span>
98  <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">setprecision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">)</span>
99  <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">2</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
100</pre>
101<p>
102        So B<sub>4</sub> == -1/30 == -0.0333333333333333
103      </p>
104<p>
105        If we use Boost.Multiprecision and its 50 decimal digit floating-point type
106        <code class="computeroutput"><span class="identifier">cpp_dec_float_50</span></code>, we can
107        calculate the value of much larger numbers like B<sub>200</sub>
108and also obtain much
109        higher precision.
110      </p>
111<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span>
112  <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">setprecision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_dec_float_50</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">)</span>
113  <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">bernoulli_b2n</span><span class="special">&lt;</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_dec_float_50</span><span class="special">&gt;(</span><span class="number">100</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
114</pre>
115<pre class="programlisting"><span class="special">-</span><span class="number">3.6470772645191354362138308865549944904868234686191e+215</span>
116</pre>
117<h5>
118<a name="math_toolkit.number_series.bernoulli_numbers.h4"></a>
119        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.single_unchecked_bernoulli_numbe"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.single_unchecked_bernoulli_numbe">Single
120        (unchecked) Bernoulli number</a>
121      </h5>
122<h5>
123<a name="math_toolkit.number_series.bernoulli_numbers.h5"></a>
124        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.synopsis0"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.synopsis0">Synopsis</a>
125      </h5>
126<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">bernoulli</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
127</pre>
128<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;&gt;</span>
129<span class="keyword">struct</span> <span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;;</span>
130
131<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
132<span class="keyword">inline</span> <span class="identifier">T</span> <span class="identifier">unchecked_bernoulli_b2n</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">);</span>
133</pre>
134<p>
135        <code class="computeroutput"><span class="identifier">unchecked_bernoulli_b2n</span></code> provides
136        access to Bernoulli numbers <span class="bold"><strong>without any checks for
137        overflow or invalid parameters</strong></span>. It is implemented as a direct
138        (and very fast) table lookup, and while not recommended for general use it
139        can be useful inside inner loops where the ultimate performance is required,
140        and error checking is moved outside the loop.
141      </p>
142<p>
143        The largest value you can pass to <code class="computeroutput"><span class="identifier">unchecked_bernoulli_b2n</span><span class="special">&lt;&gt;</span></code> is <code class="computeroutput"><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;&gt;::</span><span class="identifier">value</span></code>:
144        passing values greater than that will result in a buffer overrun error, so
145        it's clearly important to place the error handling in your own code when
146        using this direct interface.
147      </p>
148<p>
149        The value of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">value</span></code> varies by the type T, for types
150        <code class="computeroutput"><span class="keyword">float</span></code>/<code class="computeroutput"><span class="keyword">double</span></code>/<code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
151        it's the largest value which doesn't overflow the target type: for example,
152        <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">value</span></code> is 129. However, for multiprecision
153        types, it's the largest value for which the result can be represented as
154        the ratio of two 64-bit integers, for example <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_dec_float_50</span><span class="special">&gt;::</span><span class="identifier">value</span></code>
155        is just 17. Of course larger indexes can be passed to <code class="computeroutput"><span class="identifier">bernoulli_b2n</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;(</span><span class="identifier">n</span><span class="special">)</span></code>, but
156        then you lose fast table lookup (i.e. values may need to be calculated).
157      </p>
158<pre class="programlisting"><span class="comment">/*For example:
159*/</span>
160   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"boost::math::max_bernoulli_b2n&lt;float&gt;::value = "</span>  <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
161   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Maximum Bernoulli number using float is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;(</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;::</span><span class="identifier">value</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
162   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"boost::math::max_bernoulli_b2n&lt;double&gt;::value = "</span>  <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
163   <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Maximum Bernoulli number using double is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">value</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
164</pre>
165<pre class="programlisting"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">=</span> <span class="number">32</span>
166<span class="identifier">Maximum</span> <span class="identifier">Bernoulli</span> <span class="identifier">number</span> <span class="keyword">using</span> <span class="keyword">float</span> <span class="identifier">is</span> <span class="special">-</span><span class="number">2.0938e+038</span>
167<span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">max_bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">=</span> <span class="number">129</span>
168<span class="identifier">Maximum</span> <span class="identifier">Bernoulli</span> <span class="identifier">number</span> <span class="keyword">using</span> <span class="keyword">double</span> <span class="identifier">is</span> <span class="number">1.33528e+306</span>
169</pre>
170<h5>
171<a name="math_toolkit.number_series.bernoulli_numbers.h6"></a>
172        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.multiple_bernoulli_numbers"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.multiple_bernoulli_numbers">Multiple
173        Bernoulli Numbers</a>
174      </h5>
175<h5>
176<a name="math_toolkit.number_series.bernoulli_numbers.h7"></a>
177        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.synopsis1"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.synopsis1">Synopsis</a>
178      </h5>
179<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">bernoulli</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
180</pre>
181<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
182
183<span class="comment">// Multiple Bernoulli numbers (default policy).</span>
184<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">OutputIterator</span><span class="special">&gt;</span>
185<span class="identifier">OutputIterator</span> <span class="identifier">bernoulli_b2n</span><span class="special">(</span>
186  <span class="keyword">int</span> <span class="identifier">start_index</span><span class="special">,</span>
187  <span class="keyword">unsigned</span> <span class="identifier">number_of_bernoullis_b2n</span><span class="special">,</span>
188  <span class="identifier">OutputIterator</span> <span class="identifier">out_it</span><span class="special">);</span>
189
190<span class="comment">// Multiple Bernoulli numbers (user policy).</span>
191<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">OutputIterator</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Policy</span><span class="special">&gt;</span>
192<span class="identifier">OutputIterator</span> <span class="identifier">bernoulli_b2n</span><span class="special">(</span>
193  <span class="keyword">int</span> <span class="identifier">start_index</span><span class="special">,</span>
194  <span class="keyword">unsigned</span> <span class="identifier">number_of_bernoullis_b2n</span><span class="special">,</span>
195  <span class="identifier">OutputIterator</span> <span class="identifier">out_it</span><span class="special">,</span>
196  <span class="keyword">const</span> <span class="identifier">Policy</span><span class="special">&amp;</span> <span class="identifier">pol</span><span class="special">);</span>
197<span class="special">}}</span> <span class="comment">// namespaces</span>
198</pre>
199<h5>
200<a name="math_toolkit.number_series.bernoulli_numbers.h8"></a>
201        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.description0"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.description0">Description</a>
202      </h5>
203<p>
204        Two versions of the Bernoulli number function are provided to compute multiple
205        Bernoulli numbers with one call (one with default policy and the other allowing
206        a user-defined policy).
207      </p>
208<p>
209        These return a series of Bernoulli numbers:
210      </p>
211<div class="blockquote"><blockquote class="blockquote"><p>
212          <span class="serif_italic">[B<sub>2*start_index</sub>, B<sub>2*(start_index+1)</sub>, ..., B<sub>2*(start_index+number_of_bernoullis_b2n-1)</sub>]</span>
213        </p></blockquote></div>
214<h5>
215<a name="math_toolkit.number_series.bernoulli_numbers.h9"></a>
216        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.examples0"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.examples0">Examples</a>
217      </h5>
218<p>
219        We can compute and save all the float-precision Bernoulli numbers from one
220        call.
221      </p>
222<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;</span> <span class="identifier">bn</span><span class="special">;</span> <span class="comment">// Space for 32-bit `float` precision Bernoulli numbers.</span>
223
224<span class="comment">// Start with Bernoulli number 0.</span>
225<span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;(</span><span class="number">0</span><span class="special">,</span> <span class="number">32</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">back_inserter</span><span class="special">(</span><span class="identifier">bn</span><span class="special">));</span> <span class="comment">// Fill vector with even Bernoulli numbers.</span>
226
227<span class="keyword">for</span><span class="special">(</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="identifier">bn</span><span class="special">.</span><span class="identifier">size</span><span class="special">();</span> <span class="identifier">i</span><span class="special">++)</span>
228<span class="special">{</span> <span class="comment">// Show vector of even Bernoulli numbers, showing all significant decimal digits.</span>
229    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">setprecision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">)</span>
230        <span class="special">&lt;&lt;</span> <span class="identifier">i</span><span class="special">*</span><span class="number">2</span> <span class="special">&lt;&lt;</span> <span class="char">' '</span>
231        <span class="special">&lt;&lt;</span> <span class="identifier">bn</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
232        <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
233<span class="special">}</span>
234</pre>
235<pre class="programlisting"><span class="number">0</span> <span class="number">1</span>
236<span class="number">2</span> <span class="number">0.166667</span>
237<span class="number">4</span> <span class="special">-</span><span class="number">0.0333333</span>
238<span class="number">6</span> <span class="number">0.0238095</span>
239<span class="number">8</span> <span class="special">-</span><span class="number">0.0333333</span>
240<span class="number">10</span> <span class="number">0.0757576</span>
241<span class="number">12</span> <span class="special">-</span><span class="number">0.253114</span>
242<span class="number">14</span> <span class="number">1.16667</span>
243<span class="number">16</span> <span class="special">-</span><span class="number">7.09216</span>
244<span class="number">18</span> <span class="number">54.9712</span>
245<span class="number">20</span> <span class="special">-</span><span class="number">529.124</span>
246<span class="number">22</span> <span class="number">6192.12</span>
247<span class="number">24</span> <span class="special">-</span><span class="number">86580.3</span>
248<span class="number">26</span> <span class="number">1.42552e+006</span>
249<span class="number">28</span> <span class="special">-</span><span class="number">2.72982e+007</span>
250<span class="number">30</span> <span class="number">6.01581e+008</span>
251<span class="number">32</span> <span class="special">-</span><span class="number">1.51163e+010</span>
252<span class="number">34</span> <span class="number">4.29615e+011</span>
253<span class="number">36</span> <span class="special">-</span><span class="number">1.37117e+013</span>
254<span class="number">38</span> <span class="number">4.88332e+014</span>
255<span class="number">40</span> <span class="special">-</span><span class="number">1.92966e+016</span>
256<span class="number">42</span> <span class="number">8.41693e+017</span>
257<span class="number">44</span> <span class="special">-</span><span class="number">4.03381e+019</span>
258<span class="number">46</span> <span class="number">2.11507e+021</span>
259<span class="number">48</span> <span class="special">-</span><span class="number">1.20866e+023</span>
260<span class="number">50</span> <span class="number">7.50087e+024</span>
261<span class="number">52</span> <span class="special">-</span><span class="number">5.03878e+026</span>
262<span class="number">54</span> <span class="number">3.65288e+028</span>
263<span class="number">56</span> <span class="special">-</span><span class="number">2.84988e+030</span>
264<span class="number">58</span> <span class="number">2.38654e+032</span>
265<span class="number">60</span> <span class="special">-</span><span class="number">2.14e+034</span>
266<span class="number">62</span> <span class="number">2.0501e+036</span>
267</pre>
268<p>
269        Of course, for any floating-point type, there is a maximum Bernoulli number
270        that can be computed before it overflows the exponent. By default policy,
271        if we try to compute too high a Bernoulli number, an exception will be thrown.
272      </p>
273<pre class="programlisting"><span class="keyword">try</span>
274<span class="special">{</span>
275  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span>
276  <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">setprecision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">)</span>
277  <span class="special">&lt;&lt;</span> <span class="string">"Bernoulli number "</span> <span class="special">&lt;&lt;</span> <span class="number">33</span> <span class="special">*</span> <span class="number">2</span> <span class="special">&lt;&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
278
279  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;(</span><span class="number">33</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
280<span class="special">}</span>
281<span class="keyword">catch</span> <span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">exception</span> <span class="identifier">ex</span><span class="special">)</span>
282<span class="special">{</span>
283  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Thrown Exception caught: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">ex</span><span class="special">.</span><span class="identifier">what</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
284<span class="special">}</span>
285</pre>
286<p>
287        and we will get a helpful error message (provided try'n'catch blocks are
288        used).
289      </p>
290<pre class="programlisting"><span class="identifier">Bernoulli</span> <span class="identifier">number</span> <span class="number">66</span>
291<span class="identifier">Thrown</span> <span class="identifier">Exception</span> <span class="identifier">caught</span><span class="special">:</span> <span class="identifier">Error</span> <span class="identifier">in</span> <span class="identifier">function</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">bernoulli_b2n</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;(</span><span class="identifier">n</span><span class="special">):</span>
292<span class="identifier">Overflow</span> <span class="identifier">evaluating</span> <span class="identifier">function</span> <span class="identifier">at</span> <span class="number">33</span>
293</pre>
294<p>
295        The source of this example is at <a href="../../../../example/bernoulli_example.cpp" target="_top">bernoulli_example.cpp</a>
296      </p>
297<h5>
298<a name="math_toolkit.number_series.bernoulli_numbers.h10"></a>
299        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.accuracy"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.accuracy">Accuracy</a>
300      </h5>
301<p>
302        All the functions usually return values within one ULP (unit in the last
303        place) for the floating-point type.
304      </p>
305<h5>
306<a name="math_toolkit.number_series.bernoulli_numbers.h11"></a>
307        <span class="phrase"><a name="math_toolkit.number_series.bernoulli_numbers.implementation"></a></span><a class="link" href="bernoulli_numbers.html#math_toolkit.number_series.bernoulli_numbers.implementation">Implementation</a>
308      </h5>
309<p>
310        The implementation details are in <a href="../../../../include/boost/math/special_functions/detail/bernoulli_details.hpp" target="_top">bernoulli_details.hpp</a>
311        and <a href="../../../../include/boost/math/special_functions/detail/unchecked_bernoulli.hpp" target="_top">unchecked_bernoulli.hpp</a>.
312      </p>
313<p>
314        For <code class="computeroutput"><span class="identifier">i</span> <span class="special">&lt;=</span>
315        <span class="identifier">max_bernoulli_index</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">value</span></code> this is implemented by simple table
316        lookup from a statically initialized table; for larger values of <code class="computeroutput"><span class="identifier">i</span></code>, this is implemented by the Tangent Numbers
317        algorithm as described in the paper: Fast Computation of Bernoulli, Tangent
318        and Secant Numbers, Richard P. Brent and David Harvey, <a href="http://arxiv.org/pdf/1108.0286v3.pdf" target="_top">http://arxiv.org/pdf/1108.0286v3.pdf</a>
319        (2011).
320      </p>
321<p>
322        <a href="http://mathworld.wolfram.com/TangentNumber.html" target="_top">Tangent (or
323        Zag) numbers</a> (an even alternating permutation number) are defined
324        and their generating function is also given therein.
325      </p>
326<p>
327        The relation of Tangent numbers with Bernoulli numbers <span class="emphasis"><em>B<sub>i</sub></em></span>
328        is given by Brent and Harvey's equation 14:
329      </p>
330<p>
331          
332      </p>
333<div class="blockquote"><blockquote class="blockquote"><p>
334          <span class="inlinemediaobject"><img src="../../../equations/tangent_numbers.svg"></span>
335
336        </p></blockquote></div>
337<p>
338        Their relation with Bernoulli numbers <span class="emphasis"><em>B<sub>i</sub></em></span> are defined
339        by
340      </p>
341<p>
342        if i &gt; 0 and i is even then
343      </p>
344<div class="blockquote"><blockquote class="blockquote"><p>
345          <span class="inlinemediaobject"><img src="../../../equations/bernoulli_numbers.svg"></span>
346
347        </p></blockquote></div>
348<p>
349        <br> elseif i == 0 then <span class="emphasis"><em>B<sub>i</sub></em></span> = 1 <br> elseif i ==
350        1 then <span class="emphasis"><em>B<sub>i</sub></em></span> = -1/2 <br> elseif i &lt; 0 or i is odd
351        then <span class="emphasis"><em>B<sub>i</sub></em></span> = 0
352      </p>
353<p>
354        Note that computed values are stored in a fixed-size table, access is thread
355        safe via atomic operations (i.e. lock free programming), this imparts a much
356        lower overhead on access to cached values than might otherwise be expected
357        - typically for multiprecision types the cost of thread synchronisation is
358        negligible, while for built in types this code is not normally executed anyway.
359        For very large arguments which cannot be reasonably computed or stored in
360        our cache, an asymptotic expansion <a href="http://www.luschny.de/math/primes/bernincl.html" target="_top">due
361        to Luschny</a> is used:
362      </p>
363<div class="blockquote"><blockquote class="blockquote"><p>
364          <span class="inlinemediaobject"><img src="../../../equations/bernoulli_numbers2.svg"></span>
365
366        </p></blockquote></div>
367</div>
368<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
369<td align="left"></td>
370<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
371      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
372      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
373      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
374      Daryle Walker and Xiaogang Zhang<p>
375        Distributed under the Boost Software License, Version 1.0. (See accompanying
376        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
377      </p>
378</div></td>
379</tr></table>
380<hr>
381<div class="spirit-nav">
382<a accesskey="p" href="../number_series.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../number_series.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="tangent_numbers.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
383</div>
384</body>
385</html>
386