• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 /*
19  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20  * so the code in this file is compiled twice, once per pte size.
21  */
22 
23 #if PTTYPE == 64
24 	#define pt_element_t u64
25 	#define guest_walker guest_walker64
26 	#define FNAME(name) paging##64_##name
27 	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
28 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35 	#ifdef CONFIG_X86_64
36 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37 	#define CMPXCHG "cmpxchgq"
38 	#else
39 	#define PT_MAX_FULL_LEVELS 2
40 	#endif
41 #elif PTTYPE == 32
42 	#define pt_element_t u32
43 	#define guest_walker guest_walker32
44 	#define FNAME(name) paging##32_##name
45 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
46 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
47 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
48 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
49 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
50 	#define PT_MAX_FULL_LEVELS 2
51 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
52 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
53 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
54 	#define CMPXCHG "cmpxchgl"
55 #elif PTTYPE == PTTYPE_EPT
56 	#define pt_element_t u64
57 	#define guest_walker guest_walkerEPT
58 	#define FNAME(name) ept_##name
59 	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
60 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
61 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
62 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
63 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
64 	#define PT_GUEST_DIRTY_SHIFT 9
65 	#define PT_GUEST_ACCESSED_SHIFT 8
66 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
67 	#ifdef CONFIG_X86_64
68 	#define CMPXCHG "cmpxchgq"
69 	#endif
70 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
71 #else
72 	#error Invalid PTTYPE value
73 #endif
74 
75 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
76 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
77 
78 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
79 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
80 
81 /*
82  * The guest_walker structure emulates the behavior of the hardware page
83  * table walker.
84  */
85 struct guest_walker {
86 	int level;
87 	unsigned max_level;
88 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
89 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
90 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
91 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
92 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
93 	bool pte_writable[PT_MAX_FULL_LEVELS];
94 	unsigned int pt_access[PT_MAX_FULL_LEVELS];
95 	unsigned int pte_access;
96 	gfn_t gfn;
97 	struct x86_exception fault;
98 };
99 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)100 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
101 {
102 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
103 }
104 
FNAME(protect_clean_gpte)105 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
106 					     unsigned gpte)
107 {
108 	unsigned mask;
109 
110 	/* dirty bit is not supported, so no need to track it */
111 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
112 		return;
113 
114 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
115 
116 	mask = (unsigned)~ACC_WRITE_MASK;
117 	/* Allow write access to dirty gptes */
118 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
119 		PT_WRITABLE_MASK;
120 	*access &= mask;
121 }
122 
FNAME(is_present_gpte)123 static inline int FNAME(is_present_gpte)(unsigned long pte)
124 {
125 #if PTTYPE != PTTYPE_EPT
126 	return pte & PT_PRESENT_MASK;
127 #else
128 	return pte & 7;
129 #endif
130 }
131 
FNAME(is_bad_mt_xwr)132 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
133 {
134 #if PTTYPE != PTTYPE_EPT
135 	return false;
136 #else
137 	return __is_bad_mt_xwr(rsvd_check, gpte);
138 #endif
139 }
140 
FNAME(is_rsvd_bits_set)141 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
142 {
143 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
144 	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
145 }
146 
FNAME(cmpxchg_gpte)147 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
148 			       pt_element_t __user *ptep_user, unsigned index,
149 			       pt_element_t orig_pte, pt_element_t new_pte)
150 {
151 	int r = -EFAULT;
152 
153 	if (!user_access_begin(ptep_user, sizeof(pt_element_t)))
154 		return -EFAULT;
155 
156 #ifdef CMPXCHG
157 	asm volatile("1:" LOCK_PREFIX CMPXCHG " %[new], %[ptr]\n"
158 		     "mov $0, %[r]\n"
159 		     "setnz %b[r]\n"
160 		     "2:"
161 		     _ASM_EXTABLE_UA(1b, 2b)
162 		     : [ptr] "+m" (*ptep_user),
163 		       [old] "+a" (orig_pte),
164 		       [r] "+q" (r)
165 		     : [new] "r" (new_pte)
166 		     : "memory");
167 #else
168 	asm volatile("1:" LOCK_PREFIX "cmpxchg8b %[ptr]\n"
169 		     "movl $0, %[r]\n"
170 		     "jz 2f\n"
171 		     "incl %[r]\n"
172 		     "2:"
173 		     _ASM_EXTABLE_UA(1b, 2b)
174 		     : [ptr] "+m" (*ptep_user),
175 		       [old] "+A" (orig_pte),
176 		       [r] "+rm" (r)
177 		     : [new_lo] "b" ((u32)new_pte),
178 		       [new_hi] "c" ((u32)(new_pte >> 32))
179 		     : "memory");
180 #endif
181 
182 	user_access_end();
183 	return r;
184 }
185 
FNAME(prefetch_invalid_gpte)186 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
187 				  struct kvm_mmu_page *sp, u64 *spte,
188 				  u64 gpte)
189 {
190 	if (!FNAME(is_present_gpte)(gpte))
191 		goto no_present;
192 
193 	/* if accessed bit is not supported prefetch non accessed gpte */
194 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
195 	    !(gpte & PT_GUEST_ACCESSED_MASK))
196 		goto no_present;
197 
198 	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
199 		goto no_present;
200 
201 	return false;
202 
203 no_present:
204 	drop_spte(vcpu->kvm, spte);
205 	return true;
206 }
207 
208 /*
209  * For PTTYPE_EPT, a page table can be executable but not readable
210  * on supported processors. Therefore, set_spte does not automatically
211  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
212  * to signify readability since it isn't used in the EPT case
213  */
FNAME(gpte_access)214 static inline unsigned FNAME(gpte_access)(u64 gpte)
215 {
216 	unsigned access;
217 #if PTTYPE == PTTYPE_EPT
218 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
219 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
220 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
221 #else
222 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
223 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
224 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
225 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
226 	access ^= (gpte >> PT64_NX_SHIFT);
227 #endif
228 
229 	return access;
230 }
231 
FNAME(update_accessed_dirty_bits)232 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
233 					     struct kvm_mmu *mmu,
234 					     struct guest_walker *walker,
235 					     gpa_t addr, int write_fault)
236 {
237 	unsigned level, index;
238 	pt_element_t pte, orig_pte;
239 	pt_element_t __user *ptep_user;
240 	gfn_t table_gfn;
241 	int ret;
242 
243 	/* dirty/accessed bits are not supported, so no need to update them */
244 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
245 		return 0;
246 
247 	for (level = walker->max_level; level >= walker->level; --level) {
248 		pte = orig_pte = walker->ptes[level - 1];
249 		table_gfn = walker->table_gfn[level - 1];
250 		ptep_user = walker->ptep_user[level - 1];
251 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
252 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
253 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
254 			pte |= PT_GUEST_ACCESSED_MASK;
255 		}
256 		if (level == walker->level && write_fault &&
257 				!(pte & PT_GUEST_DIRTY_MASK)) {
258 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
259 #if PTTYPE == PTTYPE_EPT
260 			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
261 				return -EINVAL;
262 #endif
263 			pte |= PT_GUEST_DIRTY_MASK;
264 		}
265 		if (pte == orig_pte)
266 			continue;
267 
268 		/*
269 		 * If the slot is read-only, simply do not process the accessed
270 		 * and dirty bits.  This is the correct thing to do if the slot
271 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
272 		 * are only supported if the accessed and dirty bits are already
273 		 * set in the ROM (so that MMIO writes are never needed).
274 		 *
275 		 * Note that NPT does not allow this at all and faults, since
276 		 * it always wants nested page table entries for the guest
277 		 * page tables to be writable.  And EPT works but will simply
278 		 * overwrite the read-only memory to set the accessed and dirty
279 		 * bits.
280 		 */
281 		if (unlikely(!walker->pte_writable[level - 1]))
282 			continue;
283 
284 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
285 		if (ret)
286 			return ret;
287 
288 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
289 		walker->ptes[level - 1] = pte;
290 	}
291 	return 0;
292 }
293 
FNAME(gpte_pkeys)294 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
295 {
296 	unsigned pkeys = 0;
297 #if PTTYPE == 64
298 	pte_t pte = {.pte = gpte};
299 
300 	pkeys = pte_flags_pkey(pte_flags(pte));
301 #endif
302 	return pkeys;
303 }
304 
305 /*
306  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
307  */
FNAME(walk_addr_generic)308 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
309 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
310 				    gpa_t addr, u32 access)
311 {
312 	int ret;
313 	pt_element_t pte;
314 	pt_element_t __user *ptep_user;
315 	gfn_t table_gfn;
316 	u64 pt_access, pte_access;
317 	unsigned index, accessed_dirty, pte_pkey;
318 	unsigned nested_access;
319 	gpa_t pte_gpa;
320 	bool have_ad;
321 	int offset;
322 	u64 walk_nx_mask = 0;
323 	const int write_fault = access & PFERR_WRITE_MASK;
324 	const int user_fault  = access & PFERR_USER_MASK;
325 	const int fetch_fault = access & PFERR_FETCH_MASK;
326 	u16 errcode = 0;
327 	gpa_t real_gpa;
328 	gfn_t gfn;
329 
330 	trace_kvm_mmu_pagetable_walk(addr, access);
331 retry_walk:
332 	walker->level = mmu->root_level;
333 	pte           = mmu->get_guest_pgd(vcpu);
334 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
335 
336 #if PTTYPE == 64
337 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
338 	if (walker->level == PT32E_ROOT_LEVEL) {
339 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
340 		trace_kvm_mmu_paging_element(pte, walker->level);
341 		if (!FNAME(is_present_gpte)(pte))
342 			goto error;
343 		--walker->level;
344 	}
345 #endif
346 	walker->max_level = walker->level;
347 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
348 
349 	/*
350 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
351 	 * by the MOV to CR instruction are treated as reads and do not cause the
352 	 * processor to set the dirty flag in any EPT paging-structure entry.
353 	 */
354 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
355 
356 	pte_access = ~0;
357 	++walker->level;
358 
359 	do {
360 		unsigned long host_addr;
361 
362 		pt_access = pte_access;
363 		--walker->level;
364 
365 		index = PT_INDEX(addr, walker->level);
366 		table_gfn = gpte_to_gfn(pte);
367 		offset    = index * sizeof(pt_element_t);
368 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
369 
370 		BUG_ON(walker->level < 1);
371 		walker->table_gfn[walker->level - 1] = table_gfn;
372 		walker->pte_gpa[walker->level - 1] = pte_gpa;
373 
374 		real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
375 					      nested_access,
376 					      &walker->fault);
377 
378 		/*
379 		 * FIXME: This can happen if emulation (for of an INS/OUTS
380 		 * instruction) triggers a nested page fault.  The exit
381 		 * qualification / exit info field will incorrectly have
382 		 * "guest page access" as the nested page fault's cause,
383 		 * instead of "guest page structure access".  To fix this,
384 		 * the x86_exception struct should be augmented with enough
385 		 * information to fix the exit_qualification or exit_info_1
386 		 * fields.
387 		 */
388 		if (unlikely(real_gpa == UNMAPPED_GVA))
389 			return 0;
390 
391 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
392 					    &walker->pte_writable[walker->level - 1]);
393 		if (unlikely(kvm_is_error_hva(host_addr)))
394 			goto error;
395 
396 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
397 		if (unlikely(__get_user(pte, ptep_user)))
398 			goto error;
399 		walker->ptep_user[walker->level - 1] = ptep_user;
400 
401 		trace_kvm_mmu_paging_element(pte, walker->level);
402 
403 		/*
404 		 * Inverting the NX it lets us AND it like other
405 		 * permission bits.
406 		 */
407 		pte_access = pt_access & (pte ^ walk_nx_mask);
408 
409 		if (unlikely(!FNAME(is_present_gpte)(pte)))
410 			goto error;
411 
412 		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
413 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
414 			goto error;
415 		}
416 
417 		walker->ptes[walker->level - 1] = pte;
418 
419 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
420 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
421 	} while (!is_last_gpte(mmu, walker->level, pte));
422 
423 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
424 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
425 
426 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
427 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
428 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
429 	if (unlikely(errcode))
430 		goto error;
431 
432 	gfn = gpte_to_gfn_lvl(pte, walker->level);
433 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
434 
435 	if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
436 		gfn += pse36_gfn_delta(pte);
437 
438 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
439 	if (real_gpa == UNMAPPED_GVA)
440 		return 0;
441 
442 	walker->gfn = real_gpa >> PAGE_SHIFT;
443 
444 	if (!write_fault)
445 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
446 	else
447 		/*
448 		 * On a write fault, fold the dirty bit into accessed_dirty.
449 		 * For modes without A/D bits support accessed_dirty will be
450 		 * always clear.
451 		 */
452 		accessed_dirty &= pte >>
453 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
454 
455 	if (unlikely(!accessed_dirty)) {
456 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
457 							addr, write_fault);
458 		if (unlikely(ret < 0))
459 			goto error;
460 		else if (ret)
461 			goto retry_walk;
462 	}
463 
464 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
465 		 __func__, (u64)pte, walker->pte_access,
466 		 walker->pt_access[walker->level - 1]);
467 	return 1;
468 
469 error:
470 	errcode |= write_fault | user_fault;
471 	if (fetch_fault && (mmu->nx || mmu->mmu_role.ext.cr4_smep))
472 		errcode |= PFERR_FETCH_MASK;
473 
474 	walker->fault.vector = PF_VECTOR;
475 	walker->fault.error_code_valid = true;
476 	walker->fault.error_code = errcode;
477 
478 #if PTTYPE == PTTYPE_EPT
479 	/*
480 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
481 	 * misconfiguration requires to be injected. The detection is
482 	 * done by is_rsvd_bits_set() above.
483 	 *
484 	 * We set up the value of exit_qualification to inject:
485 	 * [2:0] - Derive from the access bits. The exit_qualification might be
486 	 *         out of date if it is serving an EPT misconfiguration.
487 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
488 	 * [7:8] - Derived from [7:8] of real exit_qualification
489 	 *
490 	 * The other bits are set to 0.
491 	 */
492 	if (!(errcode & PFERR_RSVD_MASK)) {
493 		vcpu->arch.exit_qualification &= 0x180;
494 		if (write_fault)
495 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
496 		if (user_fault)
497 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
498 		if (fetch_fault)
499 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
500 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
501 	}
502 #endif
503 	walker->fault.address = addr;
504 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
505 
506 	trace_kvm_mmu_walker_error(walker->fault.error_code);
507 	return 0;
508 }
509 
FNAME(walk_addr)510 static int FNAME(walk_addr)(struct guest_walker *walker,
511 			    struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
512 {
513 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
514 					access);
515 }
516 
517 #if PTTYPE != PTTYPE_EPT
FNAME(walk_addr_nested)518 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
519 				   struct kvm_vcpu *vcpu, gva_t addr,
520 				   u32 access)
521 {
522 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
523 					addr, access);
524 }
525 #endif
526 
527 static bool
FNAME(prefetch_gpte)528 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
529 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
530 {
531 	unsigned pte_access;
532 	gfn_t gfn;
533 	kvm_pfn_t pfn;
534 
535 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
536 		return false;
537 
538 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
539 
540 	gfn = gpte_to_gfn(gpte);
541 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
542 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
543 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
544 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
545 	if (is_error_pfn(pfn))
546 		return false;
547 
548 	/*
549 	 * we call mmu_set_spte() with host_writable = true because
550 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
551 	 */
552 	mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn,
553 		     true, true);
554 
555 	kvm_release_pfn_clean(pfn);
556 	return true;
557 }
558 
FNAME(update_pte)559 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
560 			      u64 *spte, const void *pte)
561 {
562 	pt_element_t gpte = *(const pt_element_t *)pte;
563 
564 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
565 }
566 
FNAME(gpte_changed)567 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
568 				struct guest_walker *gw, int level)
569 {
570 	pt_element_t curr_pte;
571 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
572 	u64 mask;
573 	int r, index;
574 
575 	if (level == PG_LEVEL_4K) {
576 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
577 		base_gpa = pte_gpa & ~mask;
578 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
579 
580 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
581 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
582 		curr_pte = gw->prefetch_ptes[index];
583 	} else
584 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
585 				  &curr_pte, sizeof(curr_pte));
586 
587 	return r || curr_pte != gw->ptes[level - 1];
588 }
589 
FNAME(pte_prefetch)590 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
591 				u64 *sptep)
592 {
593 	struct kvm_mmu_page *sp;
594 	pt_element_t *gptep = gw->prefetch_ptes;
595 	u64 *spte;
596 	int i;
597 
598 	sp = sptep_to_sp(sptep);
599 
600 	if (sp->role.level > PG_LEVEL_4K)
601 		return;
602 
603 	if (sp->role.direct)
604 		return __direct_pte_prefetch(vcpu, sp, sptep);
605 
606 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
607 	spte = sp->spt + i;
608 
609 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
610 		if (spte == sptep)
611 			continue;
612 
613 		if (is_shadow_present_pte(*spte))
614 			continue;
615 
616 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
617 			break;
618 	}
619 }
620 
621 /*
622  * Fetch a shadow pte for a specific level in the paging hierarchy.
623  * If the guest tries to write a write-protected page, we need to
624  * emulate this operation, return 1 to indicate this case.
625  */
FNAME(fetch)626 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
627 			 struct guest_walker *gw, u32 error_code,
628 			 int max_level, kvm_pfn_t pfn, bool map_writable,
629 			 bool prefault)
630 {
631 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
632 	bool write_fault = error_code & PFERR_WRITE_MASK;
633 	bool exec = error_code & PFERR_FETCH_MASK;
634 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
635 	struct kvm_mmu_page *sp = NULL;
636 	struct kvm_shadow_walk_iterator it;
637 	unsigned int direct_access, access;
638 	int top_level, level, req_level, ret;
639 	gfn_t base_gfn = gw->gfn;
640 
641 	direct_access = gw->pte_access;
642 
643 	top_level = vcpu->arch.mmu->root_level;
644 	if (top_level == PT32E_ROOT_LEVEL)
645 		top_level = PT32_ROOT_LEVEL;
646 	/*
647 	 * Verify that the top-level gpte is still there.  Since the page
648 	 * is a root page, it is either write protected (and cannot be
649 	 * changed from now on) or it is invalid (in which case, we don't
650 	 * really care if it changes underneath us after this point).
651 	 */
652 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
653 		goto out_gpte_changed;
654 
655 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
656 		goto out_gpte_changed;
657 
658 	for (shadow_walk_init(&it, vcpu, addr);
659 	     shadow_walk_okay(&it) && it.level > gw->level;
660 	     shadow_walk_next(&it)) {
661 		gfn_t table_gfn;
662 
663 		clear_sp_write_flooding_count(it.sptep);
664 		drop_large_spte(vcpu, it.sptep);
665 
666 		sp = NULL;
667 		if (!is_shadow_present_pte(*it.sptep)) {
668 			table_gfn = gw->table_gfn[it.level - 2];
669 			access = gw->pt_access[it.level - 2];
670 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
671 					      false, access);
672 		}
673 
674 		/*
675 		 * Verify that the gpte in the page we've just write
676 		 * protected is still there.
677 		 */
678 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
679 			goto out_gpte_changed;
680 
681 		if (sp)
682 			link_shadow_page(vcpu, it.sptep, sp);
683 	}
684 
685 	level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn,
686 					huge_page_disallowed, &req_level);
687 
688 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
689 
690 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
691 		clear_sp_write_flooding_count(it.sptep);
692 
693 		/*
694 		 * We cannot overwrite existing page tables with an NX
695 		 * large page, as the leaf could be executable.
696 		 */
697 		if (nx_huge_page_workaround_enabled)
698 			disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level,
699 						   &pfn, &level);
700 
701 		base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
702 		if (it.level == level)
703 			break;
704 
705 		validate_direct_spte(vcpu, it.sptep, direct_access);
706 
707 		drop_large_spte(vcpu, it.sptep);
708 
709 		if (!is_shadow_present_pte(*it.sptep)) {
710 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
711 					      it.level - 1, true, direct_access);
712 			link_shadow_page(vcpu, it.sptep, sp);
713 			if (huge_page_disallowed && req_level >= it.level)
714 				account_huge_nx_page(vcpu->kvm, sp);
715 		}
716 	}
717 
718 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
719 			   it.level, base_gfn, pfn, prefault, map_writable);
720 	if (ret == RET_PF_SPURIOUS)
721 		return ret;
722 
723 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
724 	++vcpu->stat.pf_fixed;
725 	return ret;
726 
727 out_gpte_changed:
728 	return RET_PF_RETRY;
729 }
730 
731  /*
732  * To see whether the mapped gfn can write its page table in the current
733  * mapping.
734  *
735  * It is the helper function of FNAME(page_fault). When guest uses large page
736  * size to map the writable gfn which is used as current page table, we should
737  * force kvm to use small page size to map it because new shadow page will be
738  * created when kvm establishes shadow page table that stop kvm using large
739  * page size. Do it early can avoid unnecessary #PF and emulation.
740  *
741  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
742  * currently used as its page table.
743  *
744  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
745  * since the PDPT is always shadowed, that means, we can not use large page
746  * size to map the gfn which is used as PDPT.
747  */
748 static bool
FNAME(is_self_change_mapping)749 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
750 			      struct guest_walker *walker, bool user_fault,
751 			      bool *write_fault_to_shadow_pgtable)
752 {
753 	int level;
754 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
755 	bool self_changed = false;
756 
757 	if (!(walker->pte_access & ACC_WRITE_MASK ||
758 	      (!is_write_protection(vcpu) && !user_fault)))
759 		return false;
760 
761 	for (level = walker->level; level <= walker->max_level; level++) {
762 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
763 
764 		self_changed |= !(gfn & mask);
765 		*write_fault_to_shadow_pgtable |= !gfn;
766 	}
767 
768 	return self_changed;
769 }
770 
771 /*
772  * Page fault handler.  There are several causes for a page fault:
773  *   - there is no shadow pte for the guest pte
774  *   - write access through a shadow pte marked read only so that we can set
775  *     the dirty bit
776  *   - write access to a shadow pte marked read only so we can update the page
777  *     dirty bitmap, when userspace requests it
778  *   - mmio access; in this case we will never install a present shadow pte
779  *   - normal guest page fault due to the guest pte marked not present, not
780  *     writable, or not executable
781  *
782  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
783  *           a negative value on error.
784  */
FNAME(page_fault)785 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
786 			     bool prefault)
787 {
788 	bool write_fault = error_code & PFERR_WRITE_MASK;
789 	bool user_fault = error_code & PFERR_USER_MASK;
790 	struct guest_walker walker;
791 	int r;
792 	kvm_pfn_t pfn;
793 	unsigned long mmu_seq;
794 	bool map_writable, is_self_change_mapping;
795 	int max_level;
796 
797 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
798 
799 	/*
800 	 * If PFEC.RSVD is set, this is a shadow page fault.
801 	 * The bit needs to be cleared before walking guest page tables.
802 	 */
803 	error_code &= ~PFERR_RSVD_MASK;
804 
805 	/*
806 	 * Look up the guest pte for the faulting address.
807 	 */
808 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
809 
810 	/*
811 	 * The page is not mapped by the guest.  Let the guest handle it.
812 	 */
813 	if (!r) {
814 		pgprintk("%s: guest page fault\n", __func__);
815 		if (!prefault)
816 			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
817 
818 		return RET_PF_RETRY;
819 	}
820 
821 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
822 		shadow_page_table_clear_flood(vcpu, addr);
823 		return RET_PF_EMULATE;
824 	}
825 
826 	r = mmu_topup_memory_caches(vcpu, true);
827 	if (r)
828 		return r;
829 
830 	vcpu->arch.write_fault_to_shadow_pgtable = false;
831 
832 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
833 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
834 
835 	if (is_self_change_mapping)
836 		max_level = PG_LEVEL_4K;
837 	else
838 		max_level = walker.level;
839 
840 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
841 	smp_rmb();
842 
843 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
844 			 &map_writable))
845 		return RET_PF_RETRY;
846 
847 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
848 		return r;
849 
850 	/*
851 	 * Do not change pte_access if the pfn is a mmio page, otherwise
852 	 * we will cache the incorrect access into mmio spte.
853 	 */
854 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
855 	     !is_write_protection(vcpu) && !user_fault &&
856 	      !is_noslot_pfn(pfn)) {
857 		walker.pte_access |= ACC_WRITE_MASK;
858 		walker.pte_access &= ~ACC_USER_MASK;
859 
860 		/*
861 		 * If we converted a user page to a kernel page,
862 		 * so that the kernel can write to it when cr0.wp=0,
863 		 * then we should prevent the kernel from executing it
864 		 * if SMEP is enabled.
865 		 */
866 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
867 			walker.pte_access &= ~ACC_EXEC_MASK;
868 	}
869 
870 	r = RET_PF_RETRY;
871 	spin_lock(&vcpu->kvm->mmu_lock);
872 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
873 		goto out_unlock;
874 
875 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
876 	r = make_mmu_pages_available(vcpu);
877 	if (r)
878 		goto out_unlock;
879 	r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn,
880 			 map_writable, prefault);
881 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
882 
883 out_unlock:
884 	spin_unlock(&vcpu->kvm->mmu_lock);
885 	kvm_release_pfn_clean(pfn);
886 	return r;
887 }
888 
FNAME(get_level1_sp_gpa)889 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
890 {
891 	int offset = 0;
892 
893 	WARN_ON(sp->role.level != PG_LEVEL_4K);
894 
895 	if (PTTYPE == 32)
896 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
897 
898 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
899 }
900 
FNAME(invlpg)901 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
902 {
903 	struct kvm_shadow_walk_iterator iterator;
904 	struct kvm_mmu_page *sp;
905 	u64 old_spte;
906 	int level;
907 	u64 *sptep;
908 
909 	vcpu_clear_mmio_info(vcpu, gva);
910 
911 	/*
912 	 * No need to check return value here, rmap_can_add() can
913 	 * help us to skip pte prefetch later.
914 	 */
915 	mmu_topup_memory_caches(vcpu, true);
916 
917 	if (!VALID_PAGE(root_hpa)) {
918 		WARN_ON(1);
919 		return;
920 	}
921 
922 	spin_lock(&vcpu->kvm->mmu_lock);
923 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
924 		level = iterator.level;
925 		sptep = iterator.sptep;
926 
927 		sp = sptep_to_sp(sptep);
928 		old_spte = *sptep;
929 		if (is_last_spte(old_spte, level)) {
930 			pt_element_t gpte;
931 			gpa_t pte_gpa;
932 
933 			if (!sp->unsync)
934 				break;
935 
936 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
937 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
938 
939 			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
940 			if (is_shadow_present_pte(old_spte))
941 				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
942 					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
943 
944 			if (!rmap_can_add(vcpu))
945 				break;
946 
947 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
948 						       sizeof(pt_element_t)))
949 				break;
950 
951 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
952 		}
953 
954 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
955 			break;
956 	}
957 	spin_unlock(&vcpu->kvm->mmu_lock);
958 }
959 
960 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
FNAME(gva_to_gpa)961 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
962 			       struct x86_exception *exception)
963 {
964 	struct guest_walker walker;
965 	gpa_t gpa = UNMAPPED_GVA;
966 	int r;
967 
968 	r = FNAME(walk_addr)(&walker, vcpu, addr, access);
969 
970 	if (r) {
971 		gpa = gfn_to_gpa(walker.gfn);
972 		gpa |= addr & ~PAGE_MASK;
973 	} else if (exception)
974 		*exception = walker.fault;
975 
976 	return gpa;
977 }
978 
979 #if PTTYPE != PTTYPE_EPT
980 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
FNAME(gva_to_gpa_nested)981 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
982 				      u32 access,
983 				      struct x86_exception *exception)
984 {
985 	struct guest_walker walker;
986 	gpa_t gpa = UNMAPPED_GVA;
987 	int r;
988 
989 #ifndef CONFIG_X86_64
990 	/* A 64-bit GVA should be impossible on 32-bit KVM. */
991 	WARN_ON_ONCE(vaddr >> 32);
992 #endif
993 
994 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
995 
996 	if (r) {
997 		gpa = gfn_to_gpa(walker.gfn);
998 		gpa |= vaddr & ~PAGE_MASK;
999 	} else if (exception)
1000 		*exception = walker.fault;
1001 
1002 	return gpa;
1003 }
1004 #endif
1005 
1006 /*
1007  * Using the cached information from sp->gfns is safe because:
1008  * - The spte has a reference to the struct page, so the pfn for a given gfn
1009  *   can't change unless all sptes pointing to it are nuked first.
1010  *
1011  * Note:
1012  *   We should flush all tlbs if spte is dropped even though guest is
1013  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1014  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1015  *   used by guest then tlbs are not flushed, so guest is allowed to access the
1016  *   freed pages.
1017  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1018  */
FNAME(sync_page)1019 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1020 {
1021 	int i, nr_present = 0;
1022 	bool host_writable;
1023 	gpa_t first_pte_gpa;
1024 	int set_spte_ret = 0;
1025 
1026 	/* direct kvm_mmu_page can not be unsync. */
1027 	BUG_ON(sp->role.direct);
1028 
1029 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1030 
1031 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1032 		unsigned pte_access;
1033 		pt_element_t gpte;
1034 		gpa_t pte_gpa;
1035 		gfn_t gfn;
1036 
1037 		if (!sp->spt[i])
1038 			continue;
1039 
1040 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1041 
1042 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1043 					       sizeof(pt_element_t)))
1044 			return 0;
1045 
1046 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1047 			/*
1048 			 * Update spte before increasing tlbs_dirty to make
1049 			 * sure no tlb flush is lost after spte is zapped; see
1050 			 * the comments in kvm_flush_remote_tlbs().
1051 			 */
1052 			smp_wmb();
1053 			vcpu->kvm->tlbs_dirty++;
1054 			continue;
1055 		}
1056 
1057 		gfn = gpte_to_gfn(gpte);
1058 		pte_access = sp->role.access;
1059 		pte_access &= FNAME(gpte_access)(gpte);
1060 		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1061 
1062 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1063 		      &nr_present))
1064 			continue;
1065 
1066 		if (gfn != sp->gfns[i]) {
1067 			drop_spte(vcpu->kvm, &sp->spt[i]);
1068 			/*
1069 			 * The same as above where we are doing
1070 			 * prefetch_invalid_gpte().
1071 			 */
1072 			smp_wmb();
1073 			vcpu->kvm->tlbs_dirty++;
1074 			continue;
1075 		}
1076 
1077 		nr_present++;
1078 
1079 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1080 
1081 		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1082 					 pte_access, PG_LEVEL_4K,
1083 					 gfn, spte_to_pfn(sp->spt[i]),
1084 					 true, false, host_writable);
1085 	}
1086 
1087 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1088 		kvm_flush_remote_tlbs(vcpu->kvm);
1089 
1090 	return nr_present;
1091 }
1092 
1093 #undef pt_element_t
1094 #undef guest_walker
1095 #undef FNAME
1096 #undef PT_BASE_ADDR_MASK
1097 #undef PT_INDEX
1098 #undef PT_LVL_ADDR_MASK
1099 #undef PT_LVL_OFFSET_MASK
1100 #undef PT_LEVEL_BITS
1101 #undef PT_MAX_FULL_LEVELS
1102 #undef gpte_to_gfn
1103 #undef gpte_to_gfn_lvl
1104 #undef CMPXCHG
1105 #undef PT_GUEST_ACCESSED_MASK
1106 #undef PT_GUEST_DIRTY_MASK
1107 #undef PT_GUEST_DIRTY_SHIFT
1108 #undef PT_GUEST_ACCESSED_SHIFT
1109 #undef PT_HAVE_ACCESSED_DIRTY
1110