• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_IA64_PROCESSOR_H
3 #define _ASM_IA64_PROCESSOR_H
4 
5 /*
6  * Copyright (C) 1998-2004 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
10  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
11  *
12  * 11/24/98	S.Eranian	added ia64_set_iva()
13  * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
14  * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
15  */
16 
17 
18 #include <asm/intrinsics.h>
19 #include <asm/kregs.h>
20 #include <asm/ptrace.h>
21 #include <asm/ustack.h>
22 
23 #define IA64_NUM_PHYS_STACK_REG	96
24 #define IA64_NUM_DBG_REGS	8
25 
26 #define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
27 #define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
28 
29 /*
30  * TASK_SIZE really is a mis-named.  It really is the maximum user
31  * space address (plus one).  On IA-64, there are five regions of 2TB
32  * each (assuming 8KB page size), for a total of 8TB of user virtual
33  * address space.
34  */
35 #define TASK_SIZE       	DEFAULT_TASK_SIZE
36 
37 /*
38  * This decides where the kernel will search for a free chunk of vm
39  * space during mmap's.
40  */
41 #define TASK_UNMAPPED_BASE	(current->thread.map_base)
42 
43 #define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
44 #define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
45 #define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
46 #define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
47 #define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
48 #define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
49 							   sync at ctx sw */
50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
51 #define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
52 
53 #define IA64_THREAD_UAC_SHIFT	3
54 #define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
55 #define IA64_THREAD_FPEMU_SHIFT	6
56 #define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
57 
58 
59 /*
60  * This shift should be large enough to be able to represent 1000000000/itc_freq with good
61  * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
62  * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
63  */
64 #define IA64_NSEC_PER_CYC_SHIFT	30
65 
66 #ifndef __ASSEMBLY__
67 
68 #include <linux/cache.h>
69 #include <linux/compiler.h>
70 #include <linux/threads.h>
71 #include <linux/types.h>
72 #include <linux/bitops.h>
73 
74 #include <asm/fpu.h>
75 #include <asm/page.h>
76 #include <asm/percpu.h>
77 #include <asm/rse.h>
78 #include <asm/unwind.h>
79 #include <linux/atomic.h>
80 #ifdef CONFIG_NUMA
81 #include <asm/nodedata.h>
82 #endif
83 
84 /* like above but expressed as bitfields for more efficient access: */
85 struct ia64_psr {
86 	__u64 reserved0 : 1;
87 	__u64 be : 1;
88 	__u64 up : 1;
89 	__u64 ac : 1;
90 	__u64 mfl : 1;
91 	__u64 mfh : 1;
92 	__u64 reserved1 : 7;
93 	__u64 ic : 1;
94 	__u64 i : 1;
95 	__u64 pk : 1;
96 	__u64 reserved2 : 1;
97 	__u64 dt : 1;
98 	__u64 dfl : 1;
99 	__u64 dfh : 1;
100 	__u64 sp : 1;
101 	__u64 pp : 1;
102 	__u64 di : 1;
103 	__u64 si : 1;
104 	__u64 db : 1;
105 	__u64 lp : 1;
106 	__u64 tb : 1;
107 	__u64 rt : 1;
108 	__u64 reserved3 : 4;
109 	__u64 cpl : 2;
110 	__u64 is : 1;
111 	__u64 mc : 1;
112 	__u64 it : 1;
113 	__u64 id : 1;
114 	__u64 da : 1;
115 	__u64 dd : 1;
116 	__u64 ss : 1;
117 	__u64 ri : 2;
118 	__u64 ed : 1;
119 	__u64 bn : 1;
120 	__u64 reserved4 : 19;
121 };
122 
123 union ia64_isr {
124 	__u64  val;
125 	struct {
126 		__u64 code : 16;
127 		__u64 vector : 8;
128 		__u64 reserved1 : 8;
129 		__u64 x : 1;
130 		__u64 w : 1;
131 		__u64 r : 1;
132 		__u64 na : 1;
133 		__u64 sp : 1;
134 		__u64 rs : 1;
135 		__u64 ir : 1;
136 		__u64 ni : 1;
137 		__u64 so : 1;
138 		__u64 ei : 2;
139 		__u64 ed : 1;
140 		__u64 reserved2 : 20;
141 	};
142 };
143 
144 union ia64_lid {
145 	__u64 val;
146 	struct {
147 		__u64  rv  : 16;
148 		__u64  eid : 8;
149 		__u64  id  : 8;
150 		__u64  ig  : 32;
151 	};
152 };
153 
154 union ia64_tpr {
155 	__u64 val;
156 	struct {
157 		__u64 ig0 : 4;
158 		__u64 mic : 4;
159 		__u64 rsv : 8;
160 		__u64 mmi : 1;
161 		__u64 ig1 : 47;
162 	};
163 };
164 
165 union ia64_itir {
166 	__u64 val;
167 	struct {
168 		__u64 rv3  :  2; /* 0-1 */
169 		__u64 ps   :  6; /* 2-7 */
170 		__u64 key  : 24; /* 8-31 */
171 		__u64 rv4  : 32; /* 32-63 */
172 	};
173 };
174 
175 union  ia64_rr {
176 	__u64 val;
177 	struct {
178 		__u64  ve	:  1;  /* enable hw walker */
179 		__u64  reserved0:  1;  /* reserved */
180 		__u64  ps	:  6;  /* log page size */
181 		__u64  rid	: 24;  /* region id */
182 		__u64  reserved1: 32;  /* reserved */
183 	};
184 };
185 
186 /*
187  * CPU type, hardware bug flags, and per-CPU state.  Frequently used
188  * state comes earlier:
189  */
190 struct cpuinfo_ia64 {
191 	unsigned int softirq_pending;
192 	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
193 	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
194 	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195 	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
196 	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
197 	unsigned long itc_freq;		/* frequency of ITC counter */
198 	unsigned long proc_freq;	/* frequency of processor */
199 	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
200 	unsigned long ptce_base;
201 	unsigned int ptce_count[2];
202 	unsigned int ptce_stride[2];
203 	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
204 
205 #ifdef CONFIG_SMP
206 	unsigned long loops_per_jiffy;
207 	int cpu;
208 	unsigned int socket_id;	/* physical processor socket id */
209 	unsigned short core_id;	/* core id */
210 	unsigned short thread_id; /* thread id */
211 	unsigned short num_log;	/* Total number of logical processors on
212 				 * this socket that were successfully booted */
213 	unsigned char cores_per_socket;	/* Cores per processor socket */
214 	unsigned char threads_per_core;	/* Threads per core */
215 #endif
216 
217 	/* CPUID-derived information: */
218 	unsigned long ppn;
219 	unsigned long features;
220 	unsigned char number;
221 	unsigned char revision;
222 	unsigned char model;
223 	unsigned char family;
224 	unsigned char archrev;
225 	char vendor[16];
226 	char *model_name;
227 
228 #ifdef CONFIG_NUMA
229 	struct ia64_node_data *node_data;
230 #endif
231 };
232 
233 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234 
235 /*
236  * The "local" data variable.  It refers to the per-CPU data of the currently executing
237  * CPU, much like "current" points to the per-task data of the currently executing task.
238  * Do not use the address of local_cpu_data, since it will be different from
239  * cpu_data(smp_processor_id())!
240  */
241 #define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
242 #define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
243 
244 extern void print_cpu_info (struct cpuinfo_ia64 *);
245 
246 typedef struct {
247 	unsigned long seg;
248 } mm_segment_t;
249 
250 #define SET_UNALIGN_CTL(task,value)								\
251 ({												\
252 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
253 				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
254 	0;											\
255 })
256 #define GET_UNALIGN_CTL(task,addr)								\
257 ({												\
258 	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
259 		 (int __user *) (addr));							\
260 })
261 
262 #define SET_FPEMU_CTL(task,value)								\
263 ({												\
264 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
265 			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
266 	0;											\
267 })
268 #define GET_FPEMU_CTL(task,addr)								\
269 ({												\
270 	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
271 		 (int __user *) (addr));							\
272 })
273 
274 struct thread_struct {
275 	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
276 	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
277 	__u8 on_ustack;			/* executing on user-stacks? */
278 	__u8 pad[3];
279 	__u64 ksp;			/* kernel stack pointer */
280 	__u64 map_base;			/* base address for get_unmapped_area() */
281 	__u64 rbs_bot;			/* the base address for the RBS */
282 	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
283 	unsigned long dbr[IA64_NUM_DBG_REGS];
284 	unsigned long ibr[IA64_NUM_DBG_REGS];
285 	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
286 };
287 
288 #define INIT_THREAD {						\
289 	.flags =	0,					\
290 	.on_ustack =	0,					\
291 	.ksp =		0,					\
292 	.map_base =	DEFAULT_MAP_BASE,			\
293 	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
294 	.last_fph_cpu =  -1,					\
295 	.dbr =		{0, },					\
296 	.ibr =		{0, },					\
297 	.fph =		{{{{0}}}, }				\
298 }
299 
300 #define start_thread(regs,new_ip,new_sp) do {							\
301 	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
302 			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
303 	regs->cr_iip = new_ip;									\
304 	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
305 	regs->ar_rnat = 0;									\
306 	regs->ar_bspstore = current->thread.rbs_bot;						\
307 	regs->ar_fpsr = FPSR_DEFAULT;								\
308 	regs->loadrs = 0;									\
309 	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
310 	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
311 	if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) {	\
312 		/*										\
313 		 * Zap scratch regs to avoid leaking bits between processes with different	\
314 		 * uid/privileges.								\
315 		 */										\
316 		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
317 		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
318 	}											\
319 } while (0)
320 
321 /* Forward declarations, a strange C thing... */
322 struct mm_struct;
323 struct task_struct;
324 
325 /*
326  * Free all resources held by a thread. This is called after the
327  * parent of DEAD_TASK has collected the exit status of the task via
328  * wait().
329  */
330 #define release_thread(dead_task)
331 
332 /* Get wait channel for task P.  */
333 extern unsigned long get_wchan (struct task_struct *p);
334 
335 /* Return instruction pointer of blocked task TSK.  */
336 #define KSTK_EIP(tsk)					\
337   ({							\
338 	struct pt_regs *_regs = task_pt_regs(tsk);	\
339 	_regs->cr_iip + ia64_psr(_regs)->ri;		\
340   })
341 
342 /* Return stack pointer of blocked task TSK.  */
343 #define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
344 
345 extern void ia64_getreg_unknown_kr (void);
346 extern void ia64_setreg_unknown_kr (void);
347 
348 #define ia64_get_kr(regnum)					\
349 ({								\
350 	unsigned long r = 0;					\
351 								\
352 	switch (regnum) {					\
353 	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
354 	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
355 	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
356 	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
357 	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
358 	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
359 	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
360 	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
361 	    default: ia64_getreg_unknown_kr(); break;		\
362 	}							\
363 	r;							\
364 })
365 
366 #define ia64_set_kr(regnum, r) 					\
367 ({								\
368 	switch (regnum) {					\
369 	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
370 	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
371 	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
372 	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
373 	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
374 	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
375 	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
376 	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
377 	    default: ia64_setreg_unknown_kr(); break;		\
378 	}							\
379 })
380 
381 /*
382  * The following three macros can't be inline functions because we don't have struct
383  * task_struct at this point.
384  */
385 
386 /*
387  * Return TRUE if task T owns the fph partition of the CPU we're running on.
388  * Must be called from code that has preemption disabled.
389  */
390 #define ia64_is_local_fpu_owner(t)								\
391 ({												\
392 	struct task_struct *__ia64_islfo_task = (t);						\
393 	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
394 	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
395 })
396 
397 /*
398  * Mark task T as owning the fph partition of the CPU we're running on.
399  * Must be called from code that has preemption disabled.
400  */
401 #define ia64_set_local_fpu_owner(t) do {						\
402 	struct task_struct *__ia64_slfo_task = (t);					\
403 	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
404 	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
405 } while (0)
406 
407 /* Mark the fph partition of task T as being invalid on all CPUs.  */
408 #define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
409 
410 extern void __ia64_init_fpu (void);
411 extern void __ia64_save_fpu (struct ia64_fpreg *fph);
412 extern void __ia64_load_fpu (struct ia64_fpreg *fph);
413 extern void ia64_save_debug_regs (unsigned long *save_area);
414 extern void ia64_load_debug_regs (unsigned long *save_area);
415 
416 #define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
417 #define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
418 
419 /* load fp 0.0 into fph */
420 static inline void
ia64_init_fpu(void)421 ia64_init_fpu (void) {
422 	ia64_fph_enable();
423 	__ia64_init_fpu();
424 	ia64_fph_disable();
425 }
426 
427 /* save f32-f127 at FPH */
428 static inline void
ia64_save_fpu(struct ia64_fpreg * fph)429 ia64_save_fpu (struct ia64_fpreg *fph) {
430 	ia64_fph_enable();
431 	__ia64_save_fpu(fph);
432 	ia64_fph_disable();
433 }
434 
435 /* load f32-f127 from FPH */
436 static inline void
ia64_load_fpu(struct ia64_fpreg * fph)437 ia64_load_fpu (struct ia64_fpreg *fph) {
438 	ia64_fph_enable();
439 	__ia64_load_fpu(fph);
440 	ia64_fph_disable();
441 }
442 
443 static inline __u64
ia64_clear_ic(void)444 ia64_clear_ic (void)
445 {
446 	__u64 psr;
447 	psr = ia64_getreg(_IA64_REG_PSR);
448 	ia64_stop();
449 	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
450 	ia64_srlz_i();
451 	return psr;
452 }
453 
454 /*
455  * Restore the psr.
456  */
457 static inline void
ia64_set_psr(__u64 psr)458 ia64_set_psr (__u64 psr)
459 {
460 	ia64_stop();
461 	ia64_setreg(_IA64_REG_PSR_L, psr);
462 	ia64_srlz_i();
463 }
464 
465 /*
466  * Insert a translation into an instruction and/or data translation
467  * register.
468  */
469 static inline void
ia64_itr(__u64 target_mask,__u64 tr_num,__u64 vmaddr,__u64 pte,__u64 log_page_size)470 ia64_itr (__u64 target_mask, __u64 tr_num,
471 	  __u64 vmaddr, __u64 pte,
472 	  __u64 log_page_size)
473 {
474 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
475 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
476 	ia64_stop();
477 	if (target_mask & 0x1)
478 		ia64_itri(tr_num, pte);
479 	if (target_mask & 0x2)
480 		ia64_itrd(tr_num, pte);
481 }
482 
483 /*
484  * Insert a translation into the instruction and/or data translation
485  * cache.
486  */
487 static inline void
ia64_itc(__u64 target_mask,__u64 vmaddr,__u64 pte,__u64 log_page_size)488 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
489 	  __u64 log_page_size)
490 {
491 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
492 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
493 	ia64_stop();
494 	/* as per EAS2.6, itc must be the last instruction in an instruction group */
495 	if (target_mask & 0x1)
496 		ia64_itci(pte);
497 	if (target_mask & 0x2)
498 		ia64_itcd(pte);
499 }
500 
501 /*
502  * Purge a range of addresses from instruction and/or data translation
503  * register(s).
504  */
505 static inline void
ia64_ptr(__u64 target_mask,__u64 vmaddr,__u64 log_size)506 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
507 {
508 	if (target_mask & 0x1)
509 		ia64_ptri(vmaddr, (log_size << 2));
510 	if (target_mask & 0x2)
511 		ia64_ptrd(vmaddr, (log_size << 2));
512 }
513 
514 /* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
515 static inline void
ia64_set_iva(void * ivt_addr)516 ia64_set_iva (void *ivt_addr)
517 {
518 	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
519 	ia64_srlz_i();
520 }
521 
522 /* Set the page table address and control bits.  */
523 static inline void
ia64_set_pta(__u64 pta)524 ia64_set_pta (__u64 pta)
525 {
526 	/* Note: srlz.i implies srlz.d */
527 	ia64_setreg(_IA64_REG_CR_PTA, pta);
528 	ia64_srlz_i();
529 }
530 
531 static inline void
ia64_eoi(void)532 ia64_eoi (void)
533 {
534 	ia64_setreg(_IA64_REG_CR_EOI, 0);
535 	ia64_srlz_d();
536 }
537 
538 #define cpu_relax()	ia64_hint(ia64_hint_pause)
539 
540 static inline int
ia64_get_irr(unsigned int vector)541 ia64_get_irr(unsigned int vector)
542 {
543 	unsigned int reg = vector / 64;
544 	unsigned int bit = vector % 64;
545 	u64 irr;
546 
547 	switch (reg) {
548 	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
549 	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
550 	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
551 	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
552 	}
553 
554 	return test_bit(bit, &irr);
555 }
556 
557 static inline void
ia64_set_lrr0(unsigned long val)558 ia64_set_lrr0 (unsigned long val)
559 {
560 	ia64_setreg(_IA64_REG_CR_LRR0, val);
561 	ia64_srlz_d();
562 }
563 
564 static inline void
ia64_set_lrr1(unsigned long val)565 ia64_set_lrr1 (unsigned long val)
566 {
567 	ia64_setreg(_IA64_REG_CR_LRR1, val);
568 	ia64_srlz_d();
569 }
570 
571 
572 /*
573  * Given the address to which a spill occurred, return the unat bit
574  * number that corresponds to this address.
575  */
576 static inline __u64
ia64_unat_pos(void * spill_addr)577 ia64_unat_pos (void *spill_addr)
578 {
579 	return ((__u64) spill_addr >> 3) & 0x3f;
580 }
581 
582 /*
583  * Set the NaT bit of an integer register which was spilled at address
584  * SPILL_ADDR.  UNAT is the mask to be updated.
585  */
586 static inline void
ia64_set_unat(__u64 * unat,void * spill_addr,unsigned long nat)587 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
588 {
589 	__u64 bit = ia64_unat_pos(spill_addr);
590 	__u64 mask = 1UL << bit;
591 
592 	*unat = (*unat & ~mask) | (nat << bit);
593 }
594 
595 static inline __u64
ia64_get_ivr(void)596 ia64_get_ivr (void)
597 {
598 	__u64 r;
599 	ia64_srlz_d();
600 	r = ia64_getreg(_IA64_REG_CR_IVR);
601 	ia64_srlz_d();
602 	return r;
603 }
604 
605 static inline void
ia64_set_dbr(__u64 regnum,__u64 value)606 ia64_set_dbr (__u64 regnum, __u64 value)
607 {
608 	__ia64_set_dbr(regnum, value);
609 #ifdef CONFIG_ITANIUM
610 	ia64_srlz_d();
611 #endif
612 }
613 
614 static inline __u64
ia64_get_dbr(__u64 regnum)615 ia64_get_dbr (__u64 regnum)
616 {
617 	__u64 retval;
618 
619 	retval = __ia64_get_dbr(regnum);
620 #ifdef CONFIG_ITANIUM
621 	ia64_srlz_d();
622 #endif
623 	return retval;
624 }
625 
626 static inline __u64
ia64_rotr(__u64 w,__u64 n)627 ia64_rotr (__u64 w, __u64 n)
628 {
629 	return (w >> n) | (w << (64 - n));
630 }
631 
632 #define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
633 
634 /*
635  * Take a mapped kernel address and return the equivalent address
636  * in the region 7 identity mapped virtual area.
637  */
638 static inline void *
ia64_imva(void * addr)639 ia64_imva (void *addr)
640 {
641 	void *result;
642 	result = (void *) ia64_tpa(addr);
643 	return __va(result);
644 }
645 
646 #define ARCH_HAS_PREFETCH
647 #define ARCH_HAS_PREFETCHW
648 #define ARCH_HAS_SPINLOCK_PREFETCH
649 #define PREFETCH_STRIDE			L1_CACHE_BYTES
650 
651 static inline void
prefetch(const void * x)652 prefetch (const void *x)
653 {
654 	 ia64_lfetch(ia64_lfhint_none, x);
655 }
656 
657 static inline void
prefetchw(const void * x)658 prefetchw (const void *x)
659 {
660 	ia64_lfetch_excl(ia64_lfhint_none, x);
661 }
662 
663 #define spin_lock_prefetch(x)	prefetchw(x)
664 
665 extern unsigned long boot_option_idle_override;
666 
667 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
668 			 IDLE_NOMWAIT, IDLE_POLL};
669 
670 void default_idle(void);
671 
672 #endif /* !__ASSEMBLY__ */
673 
674 #endif /* _ASM_IA64_PROCESSOR_H */
675