1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 *
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 *
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 *
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
14 */
15
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/gpio.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pinctrl/consumer.h>
37
38 /*
39 * This macro is used to define some register default values.
40 * reg is masked with mask, the OR:ed with an (again masked)
41 * val shifted sb steps to the left.
42 */
43 #define SSP_WRITE_BITS(reg, val, mask, sb) \
44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
45
46 /*
47 * This macro is also used to define some default values.
48 * It will just shift val by sb steps to the left and mask
49 * the result with mask.
50 */
51 #define GEN_MASK_BITS(val, mask, sb) \
52 (((val)<<(sb)) & (mask))
53
54 #define DRIVE_TX 0
55 #define DO_NOT_DRIVE_TX 1
56
57 #define DO_NOT_QUEUE_DMA 0
58 #define QUEUE_DMA 1
59
60 #define RX_TRANSFER 1
61 #define TX_TRANSFER 2
62
63 /*
64 * Macros to access SSP Registers with their offsets
65 */
66 #define SSP_CR0(r) (r + 0x000)
67 #define SSP_CR1(r) (r + 0x004)
68 #define SSP_DR(r) (r + 0x008)
69 #define SSP_SR(r) (r + 0x00C)
70 #define SSP_CPSR(r) (r + 0x010)
71 #define SSP_IMSC(r) (r + 0x014)
72 #define SSP_RIS(r) (r + 0x018)
73 #define SSP_MIS(r) (r + 0x01C)
74 #define SSP_ICR(r) (r + 0x020)
75 #define SSP_DMACR(r) (r + 0x024)
76 #define SSP_CSR(r) (r + 0x030) /* vendor extension */
77 #define SSP_ITCR(r) (r + 0x080)
78 #define SSP_ITIP(r) (r + 0x084)
79 #define SSP_ITOP(r) (r + 0x088)
80 #define SSP_TDR(r) (r + 0x08C)
81
82 #define SSP_PID0(r) (r + 0xFE0)
83 #define SSP_PID1(r) (r + 0xFE4)
84 #define SSP_PID2(r) (r + 0xFE8)
85 #define SSP_PID3(r) (r + 0xFEC)
86
87 #define SSP_CID0(r) (r + 0xFF0)
88 #define SSP_CID1(r) (r + 0xFF4)
89 #define SSP_CID2(r) (r + 0xFF8)
90 #define SSP_CID3(r) (r + 0xFFC)
91
92 /*
93 * SSP Control Register 0 - SSP_CR0
94 */
95 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
96 #define SSP_CR0_MASK_FRF (0x3UL << 4)
97 #define SSP_CR0_MASK_SPO (0x1UL << 6)
98 #define SSP_CR0_MASK_SPH (0x1UL << 7)
99 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
100
101 /*
102 * The ST version of this block moves som bits
103 * in SSP_CR0 and extends it to 32 bits
104 */
105 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
106 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
107 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
108 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
109
110 /*
111 * SSP Control Register 0 - SSP_CR1
112 */
113 #define SSP_CR1_MASK_LBM (0x1UL << 0)
114 #define SSP_CR1_MASK_SSE (0x1UL << 1)
115 #define SSP_CR1_MASK_MS (0x1UL << 2)
116 #define SSP_CR1_MASK_SOD (0x1UL << 3)
117
118 /*
119 * The ST version of this block adds some bits
120 * in SSP_CR1
121 */
122 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
123 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
124 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
125 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
126 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
127 /* This one is only in the PL023 variant */
128 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
129
130 /*
131 * SSP Status Register - SSP_SR
132 */
133 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
134 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
135 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
136 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
137 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
138
139 /*
140 * SSP Clock Prescale Register - SSP_CPSR
141 */
142 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
143
144 /*
145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
146 */
147 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
149 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
150 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
151
152 /*
153 * SSP Raw Interrupt Status Register - SSP_RIS
154 */
155 /* Receive Overrun Raw Interrupt status */
156 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
157 /* Receive Timeout Raw Interrupt status */
158 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
159 /* Receive FIFO Raw Interrupt status */
160 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
161 /* Transmit FIFO Raw Interrupt status */
162 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
163
164 /*
165 * SSP Masked Interrupt Status Register - SSP_MIS
166 */
167 /* Receive Overrun Masked Interrupt status */
168 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
169 /* Receive Timeout Masked Interrupt status */
170 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
171 /* Receive FIFO Masked Interrupt status */
172 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
173 /* Transmit FIFO Masked Interrupt status */
174 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
175
176 /*
177 * SSP Interrupt Clear Register - SSP_ICR
178 */
179 /* Receive Overrun Raw Clear Interrupt bit */
180 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
181 /* Receive Timeout Clear Interrupt bit */
182 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
183
184 /*
185 * SSP DMA Control Register - SSP_DMACR
186 */
187 /* Receive DMA Enable bit */
188 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
189 /* Transmit DMA Enable bit */
190 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
191
192 /*
193 * SSP Chip Select Control Register - SSP_CSR
194 * (vendor extension)
195 */
196 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
197
198 /*
199 * SSP Integration Test control Register - SSP_ITCR
200 */
201 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
203
204 /*
205 * SSP Integration Test Input Register - SSP_ITIP
206 */
207 #define ITIP_MASK_SSPRXD (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
213
214 /*
215 * SSP Integration Test output Register - SSP_ITOP
216 */
217 #define ITOP_MASK_SSPTXD (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222 #define ITOP_MASK_RORINTR (0x1UL << 5)
223 #define ITOP_MASK_RTINTR (0x1UL << 6)
224 #define ITOP_MASK_RXINTR (0x1UL << 7)
225 #define ITOP_MASK_TXINTR (0x1UL << 8)
226 #define ITOP_MASK_INTR (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
231
232 /*
233 * SSP Test Data Register - SSP_TDR
234 */
235 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
236
237 /*
238 * Message State
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
242 */
243 #define STATE_START ((void *) 0)
244 #define STATE_RUNNING ((void *) 1)
245 #define STATE_DONE ((void *) 2)
246 #define STATE_ERROR ((void *) -1)
247 #define STATE_TIMEOUT ((void *) -2)
248
249 /*
250 * SSP State - Whether Enabled or Disabled
251 */
252 #define SSP_DISABLED (0)
253 #define SSP_ENABLED (1)
254
255 /*
256 * SSP DMA State - Whether DMA Enabled or Disabled
257 */
258 #define SSP_DMA_DISABLED (0)
259 #define SSP_DMA_ENABLED (1)
260
261 /*
262 * SSP Clock Defaults
263 */
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
266
267 /*
268 * SSP Clock Parameter ranges
269 */
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
272 #define SCR_MIN 0x00
273 #define SCR_MAX 0xFF
274
275 /*
276 * SSP Interrupt related Macros
277 */
278 #define DEFAULT_SSP_REG_IMSC 0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS ( \
281 SSP_IMSC_MASK_RORIM | \
282 SSP_IMSC_MASK_RTIM | \
283 SSP_IMSC_MASK_RXIM | \
284 SSP_IMSC_MASK_TXIM \
285 )
286
287 #define CLEAR_ALL_INTERRUPTS 0x3
288
289 #define SPI_POLLING_TIMEOUT 1000
290
291 /*
292 * The type of reading going on on this chip
293 */
294 enum ssp_reading {
295 READING_NULL,
296 READING_U8,
297 READING_U16,
298 READING_U32
299 };
300
301 /*
302 * The type of writing going on on this chip
303 */
304 enum ssp_writing {
305 WRITING_NULL,
306 WRITING_U8,
307 WRITING_U16,
308 WRITING_U32
309 };
310
311 /**
312 * struct vendor_data - vendor-specific config parameters
313 * for PL022 derivates
314 * @fifodepth: depth of FIFOs (both)
315 * @max_bpw: maximum number of bits per word
316 * @unidir: supports unidirection transfers
317 * @extended_cr: 32 bit wide control register 0 with extra
318 * features and extra features in CR1 as found in the ST variants
319 * @pl023: supports a subset of the ST extensions called "PL023"
320 * @loopback: supports loopback mode
321 * @internal_cs_ctrl: supports chip select control register
322 */
323 struct vendor_data {
324 int fifodepth;
325 int max_bpw;
326 bool unidir;
327 bool extended_cr;
328 bool pl023;
329 bool loopback;
330 bool internal_cs_ctrl;
331 };
332
333 /**
334 * struct pl022 - This is the private SSP driver data structure
335 * @adev: AMBA device model hookup
336 * @vendor: vendor data for the IP block
337 * @phybase: the physical memory where the SSP device resides
338 * @virtbase: the virtual memory where the SSP is mapped
339 * @clk: outgoing clock "SPICLK" for the SPI bus
340 * @master: SPI framework hookup
341 * @master_info: controller-specific data from machine setup
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
349 * active already.
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
358 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
359 * @dma_rx_channel: optional channel for RX DMA
360 * @dma_tx_channel: optional channel for TX DMA
361 * @sgt_rx: scattertable for the RX transfer
362 * @sgt_tx: scattertable for the TX transfer
363 * @dummypage: a dummy page used for driving data on the bus with DMA
364 * @dma_running: indicates whether DMA is in operation
365 * @cur_cs: current chip select (gpio)
366 * @chipselects: list of chipselects (gpios)
367 */
368 struct pl022 {
369 struct amba_device *adev;
370 struct vendor_data *vendor;
371 resource_size_t phybase;
372 void __iomem *virtbase;
373 struct clk *clk;
374 struct spi_master *master;
375 struct pl022_ssp_controller *master_info;
376 /* Message per-transfer pump */
377 struct tasklet_struct pump_transfers;
378 struct spi_message *cur_msg;
379 struct spi_transfer *cur_transfer;
380 struct chip_data *cur_chip;
381 bool next_msg_cs_active;
382 void *tx;
383 void *tx_end;
384 void *rx;
385 void *rx_end;
386 enum ssp_reading read;
387 enum ssp_writing write;
388 u32 exp_fifo_level;
389 enum ssp_rx_level_trig rx_lev_trig;
390 enum ssp_tx_level_trig tx_lev_trig;
391 /* DMA settings */
392 #ifdef CONFIG_DMA_ENGINE
393 struct dma_chan *dma_rx_channel;
394 struct dma_chan *dma_tx_channel;
395 struct sg_table sgt_rx;
396 struct sg_table sgt_tx;
397 char *dummypage;
398 bool dma_running;
399 #endif
400 int cur_cs;
401 int *chipselects;
402 };
403
404 /**
405 * struct chip_data - To maintain runtime state of SSP for each client chip
406 * @cr0: Value of control register CR0 of SSP - on later ST variants this
407 * register is 32 bits wide rather than just 16
408 * @cr1: Value of control register CR1 of SSP
409 * @dmacr: Value of DMA control Register of SSP
410 * @cpsr: Value of Clock prescale register
411 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
412 * @enable_dma: Whether to enable DMA or not
413 * @read: function ptr to be used to read when doing xfer for this chip
414 * @write: function ptr to be used to write when doing xfer for this chip
415 * @cs_control: chip select callback provided by chip
416 * @xfer_type: polling/interrupt/DMA
417 *
418 * Runtime state of the SSP controller, maintained per chip,
419 * This would be set according to the current message that would be served
420 */
421 struct chip_data {
422 u32 cr0;
423 u16 cr1;
424 u16 dmacr;
425 u16 cpsr;
426 u8 n_bytes;
427 bool enable_dma;
428 enum ssp_reading read;
429 enum ssp_writing write;
430 void (*cs_control) (u32 command);
431 int xfer_type;
432 };
433
434 /**
435 * null_cs_control - Dummy chip select function
436 * @command: select/delect the chip
437 *
438 * If no chip select function is provided by client this is used as dummy
439 * chip select
440 */
null_cs_control(u32 command)441 static void null_cs_control(u32 command)
442 {
443 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
444 }
445
446 /**
447 * internal_cs_control - Control chip select signals via SSP_CSR.
448 * @pl022: SSP driver private data structure
449 * @command: select/delect the chip
450 *
451 * Used on controller with internal chip select control via SSP_CSR register
452 * (vendor extension). Each of the 5 LSB in the register controls one chip
453 * select signal.
454 */
internal_cs_control(struct pl022 * pl022,u32 command)455 static void internal_cs_control(struct pl022 *pl022, u32 command)
456 {
457 u32 tmp;
458
459 tmp = readw(SSP_CSR(pl022->virtbase));
460 if (command == SSP_CHIP_SELECT)
461 tmp &= ~BIT(pl022->cur_cs);
462 else
463 tmp |= BIT(pl022->cur_cs);
464 writew(tmp, SSP_CSR(pl022->virtbase));
465 }
466
pl022_cs_control(struct pl022 * pl022,u32 command)467 static void pl022_cs_control(struct pl022 *pl022, u32 command)
468 {
469 if (pl022->vendor->internal_cs_ctrl)
470 internal_cs_control(pl022, command);
471 else if (gpio_is_valid(pl022->cur_cs))
472 gpio_set_value(pl022->cur_cs, command);
473 else
474 pl022->cur_chip->cs_control(command);
475 }
476
477 /**
478 * giveback - current spi_message is over, schedule next message and call
479 * callback of this message. Assumes that caller already
480 * set message->status; dma and pio irqs are blocked
481 * @pl022: SSP driver private data structure
482 */
giveback(struct pl022 * pl022)483 static void giveback(struct pl022 *pl022)
484 {
485 struct spi_transfer *last_transfer;
486 pl022->next_msg_cs_active = false;
487
488 last_transfer = list_last_entry(&pl022->cur_msg->transfers,
489 struct spi_transfer, transfer_list);
490
491 /* Delay if requested before any change in chip select */
492 /*
493 * FIXME: This runs in interrupt context.
494 * Is this really smart?
495 */
496 spi_transfer_delay_exec(last_transfer);
497
498 if (!last_transfer->cs_change) {
499 struct spi_message *next_msg;
500
501 /*
502 * cs_change was not set. We can keep the chip select
503 * enabled if there is message in the queue and it is
504 * for the same spi device.
505 *
506 * We cannot postpone this until pump_messages, because
507 * after calling msg->complete (below) the driver that
508 * sent the current message could be unloaded, which
509 * could invalidate the cs_control() callback...
510 */
511 /* get a pointer to the next message, if any */
512 next_msg = spi_get_next_queued_message(pl022->master);
513
514 /*
515 * see if the next and current messages point
516 * to the same spi device.
517 */
518 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
519 next_msg = NULL;
520 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
521 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
522 else
523 pl022->next_msg_cs_active = true;
524
525 }
526
527 pl022->cur_msg = NULL;
528 pl022->cur_transfer = NULL;
529 pl022->cur_chip = NULL;
530
531 /* disable the SPI/SSP operation */
532 writew((readw(SSP_CR1(pl022->virtbase)) &
533 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
534
535 spi_finalize_current_message(pl022->master);
536 }
537
538 /**
539 * flush - flush the FIFO to reach a clean state
540 * @pl022: SSP driver private data structure
541 */
flush(struct pl022 * pl022)542 static int flush(struct pl022 *pl022)
543 {
544 unsigned long limit = loops_per_jiffy << 1;
545
546 dev_dbg(&pl022->adev->dev, "flush\n");
547 do {
548 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
549 readw(SSP_DR(pl022->virtbase));
550 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
551
552 pl022->exp_fifo_level = 0;
553
554 return limit;
555 }
556
557 /**
558 * restore_state - Load configuration of current chip
559 * @pl022: SSP driver private data structure
560 */
restore_state(struct pl022 * pl022)561 static void restore_state(struct pl022 *pl022)
562 {
563 struct chip_data *chip = pl022->cur_chip;
564
565 if (pl022->vendor->extended_cr)
566 writel(chip->cr0, SSP_CR0(pl022->virtbase));
567 else
568 writew(chip->cr0, SSP_CR0(pl022->virtbase));
569 writew(chip->cr1, SSP_CR1(pl022->virtbase));
570 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
571 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
572 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
573 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
574 }
575
576 /*
577 * Default SSP Register Values
578 */
579 #define DEFAULT_SSP_REG_CR0 ( \
580 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
581 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
582 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
585 )
586
587 /* ST versions have slightly different bit layout */
588 #define DEFAULT_SSP_REG_CR0_ST ( \
589 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
590 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
591 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
592 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
593 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
594 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
595 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
596 )
597
598 /* The PL023 version is slightly different again */
599 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
600 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
601 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
602 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
603 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
604 )
605
606 #define DEFAULT_SSP_REG_CR1 ( \
607 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
608 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
609 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
610 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
611 )
612
613 /* ST versions extend this register to use all 16 bits */
614 #define DEFAULT_SSP_REG_CR1_ST ( \
615 DEFAULT_SSP_REG_CR1 | \
616 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
617 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
618 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
619 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
621 )
622
623 /*
624 * The PL023 variant has further differences: no loopback mode, no microwire
625 * support, and a new clock feedback delay setting.
626 */
627 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
628 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
629 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
630 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
631 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
632 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
633 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
634 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
635 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
636 )
637
638 #define DEFAULT_SSP_REG_CPSR ( \
639 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
640 )
641
642 #define DEFAULT_SSP_REG_DMACR (\
643 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
644 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
645 )
646
647 /**
648 * load_ssp_default_config - Load default configuration for SSP
649 * @pl022: SSP driver private data structure
650 */
load_ssp_default_config(struct pl022 * pl022)651 static void load_ssp_default_config(struct pl022 *pl022)
652 {
653 if (pl022->vendor->pl023) {
654 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
655 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
656 } else if (pl022->vendor->extended_cr) {
657 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
658 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
659 } else {
660 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
661 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
662 }
663 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
664 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
665 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
666 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
667 }
668
669 /*
670 * This will write to TX and read from RX according to the parameters
671 * set in pl022.
672 */
readwriter(struct pl022 * pl022)673 static void readwriter(struct pl022 *pl022)
674 {
675
676 /*
677 * The FIFO depth is different between primecell variants.
678 * I believe filling in too much in the FIFO might cause
679 * errons in 8bit wide transfers on ARM variants (just 8 words
680 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
681 *
682 * To prevent this issue, the TX FIFO is only filled to the
683 * unused RX FIFO fill length, regardless of what the TX
684 * FIFO status flag indicates.
685 */
686 dev_dbg(&pl022->adev->dev,
687 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
688 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
689
690 /* Read as much as you can */
691 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
692 && (pl022->rx < pl022->rx_end)) {
693 switch (pl022->read) {
694 case READING_NULL:
695 readw(SSP_DR(pl022->virtbase));
696 break;
697 case READING_U8:
698 *(u8 *) (pl022->rx) =
699 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
700 break;
701 case READING_U16:
702 *(u16 *) (pl022->rx) =
703 (u16) readw(SSP_DR(pl022->virtbase));
704 break;
705 case READING_U32:
706 *(u32 *) (pl022->rx) =
707 readl(SSP_DR(pl022->virtbase));
708 break;
709 }
710 pl022->rx += (pl022->cur_chip->n_bytes);
711 pl022->exp_fifo_level--;
712 }
713 /*
714 * Write as much as possible up to the RX FIFO size
715 */
716 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
717 && (pl022->tx < pl022->tx_end)) {
718 switch (pl022->write) {
719 case WRITING_NULL:
720 writew(0x0, SSP_DR(pl022->virtbase));
721 break;
722 case WRITING_U8:
723 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
724 break;
725 case WRITING_U16:
726 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
727 break;
728 case WRITING_U32:
729 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
730 break;
731 }
732 pl022->tx += (pl022->cur_chip->n_bytes);
733 pl022->exp_fifo_level++;
734 /*
735 * This inner reader takes care of things appearing in the RX
736 * FIFO as we're transmitting. This will happen a lot since the
737 * clock starts running when you put things into the TX FIFO,
738 * and then things are continuously clocked into the RX FIFO.
739 */
740 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
741 && (pl022->rx < pl022->rx_end)) {
742 switch (pl022->read) {
743 case READING_NULL:
744 readw(SSP_DR(pl022->virtbase));
745 break;
746 case READING_U8:
747 *(u8 *) (pl022->rx) =
748 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
749 break;
750 case READING_U16:
751 *(u16 *) (pl022->rx) =
752 (u16) readw(SSP_DR(pl022->virtbase));
753 break;
754 case READING_U32:
755 *(u32 *) (pl022->rx) =
756 readl(SSP_DR(pl022->virtbase));
757 break;
758 }
759 pl022->rx += (pl022->cur_chip->n_bytes);
760 pl022->exp_fifo_level--;
761 }
762 }
763 /*
764 * When we exit here the TX FIFO should be full and the RX FIFO
765 * should be empty
766 */
767 }
768
769 /**
770 * next_transfer - Move to the Next transfer in the current spi message
771 * @pl022: SSP driver private data structure
772 *
773 * This function moves though the linked list of spi transfers in the
774 * current spi message and returns with the state of current spi
775 * message i.e whether its last transfer is done(STATE_DONE) or
776 * Next transfer is ready(STATE_RUNNING)
777 */
next_transfer(struct pl022 * pl022)778 static void *next_transfer(struct pl022 *pl022)
779 {
780 struct spi_message *msg = pl022->cur_msg;
781 struct spi_transfer *trans = pl022->cur_transfer;
782
783 /* Move to next transfer */
784 if (trans->transfer_list.next != &msg->transfers) {
785 pl022->cur_transfer =
786 list_entry(trans->transfer_list.next,
787 struct spi_transfer, transfer_list);
788 return STATE_RUNNING;
789 }
790 return STATE_DONE;
791 }
792
793 /*
794 * This DMA functionality is only compiled in if we have
795 * access to the generic DMA devices/DMA engine.
796 */
797 #ifdef CONFIG_DMA_ENGINE
unmap_free_dma_scatter(struct pl022 * pl022)798 static void unmap_free_dma_scatter(struct pl022 *pl022)
799 {
800 /* Unmap and free the SG tables */
801 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
802 pl022->sgt_tx.nents, DMA_TO_DEVICE);
803 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
804 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
805 sg_free_table(&pl022->sgt_rx);
806 sg_free_table(&pl022->sgt_tx);
807 }
808
dma_callback(void * data)809 static void dma_callback(void *data)
810 {
811 struct pl022 *pl022 = data;
812 struct spi_message *msg = pl022->cur_msg;
813
814 BUG_ON(!pl022->sgt_rx.sgl);
815
816 #ifdef VERBOSE_DEBUG
817 /*
818 * Optionally dump out buffers to inspect contents, this is
819 * good if you want to convince yourself that the loopback
820 * read/write contents are the same, when adopting to a new
821 * DMA engine.
822 */
823 {
824 struct scatterlist *sg;
825 unsigned int i;
826
827 dma_sync_sg_for_cpu(&pl022->adev->dev,
828 pl022->sgt_rx.sgl,
829 pl022->sgt_rx.nents,
830 DMA_FROM_DEVICE);
831
832 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
833 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
834 print_hex_dump(KERN_ERR, "SPI RX: ",
835 DUMP_PREFIX_OFFSET,
836 16,
837 1,
838 sg_virt(sg),
839 sg_dma_len(sg),
840 1);
841 }
842 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
843 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
844 print_hex_dump(KERN_ERR, "SPI TX: ",
845 DUMP_PREFIX_OFFSET,
846 16,
847 1,
848 sg_virt(sg),
849 sg_dma_len(sg),
850 1);
851 }
852 }
853 #endif
854
855 unmap_free_dma_scatter(pl022);
856
857 /* Update total bytes transferred */
858 msg->actual_length += pl022->cur_transfer->len;
859 /* Move to next transfer */
860 msg->state = next_transfer(pl022);
861 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
862 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
863 tasklet_schedule(&pl022->pump_transfers);
864 }
865
setup_dma_scatter(struct pl022 * pl022,void * buffer,unsigned int length,struct sg_table * sgtab)866 static void setup_dma_scatter(struct pl022 *pl022,
867 void *buffer,
868 unsigned int length,
869 struct sg_table *sgtab)
870 {
871 struct scatterlist *sg;
872 int bytesleft = length;
873 void *bufp = buffer;
874 int mapbytes;
875 int i;
876
877 if (buffer) {
878 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
879 /*
880 * If there are less bytes left than what fits
881 * in the current page (plus page alignment offset)
882 * we just feed in this, else we stuff in as much
883 * as we can.
884 */
885 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
886 mapbytes = bytesleft;
887 else
888 mapbytes = PAGE_SIZE - offset_in_page(bufp);
889 sg_set_page(sg, virt_to_page(bufp),
890 mapbytes, offset_in_page(bufp));
891 bufp += mapbytes;
892 bytesleft -= mapbytes;
893 dev_dbg(&pl022->adev->dev,
894 "set RX/TX target page @ %p, %d bytes, %d left\n",
895 bufp, mapbytes, bytesleft);
896 }
897 } else {
898 /* Map the dummy buffer on every page */
899 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
900 if (bytesleft < PAGE_SIZE)
901 mapbytes = bytesleft;
902 else
903 mapbytes = PAGE_SIZE;
904 sg_set_page(sg, virt_to_page(pl022->dummypage),
905 mapbytes, 0);
906 bytesleft -= mapbytes;
907 dev_dbg(&pl022->adev->dev,
908 "set RX/TX to dummy page %d bytes, %d left\n",
909 mapbytes, bytesleft);
910
911 }
912 }
913 BUG_ON(bytesleft);
914 }
915
916 /**
917 * configure_dma - configures the channels for the next transfer
918 * @pl022: SSP driver's private data structure
919 */
configure_dma(struct pl022 * pl022)920 static int configure_dma(struct pl022 *pl022)
921 {
922 struct dma_slave_config rx_conf = {
923 .src_addr = SSP_DR(pl022->phybase),
924 .direction = DMA_DEV_TO_MEM,
925 .device_fc = false,
926 };
927 struct dma_slave_config tx_conf = {
928 .dst_addr = SSP_DR(pl022->phybase),
929 .direction = DMA_MEM_TO_DEV,
930 .device_fc = false,
931 };
932 unsigned int pages;
933 int ret;
934 int rx_sglen, tx_sglen;
935 struct dma_chan *rxchan = pl022->dma_rx_channel;
936 struct dma_chan *txchan = pl022->dma_tx_channel;
937 struct dma_async_tx_descriptor *rxdesc;
938 struct dma_async_tx_descriptor *txdesc;
939
940 /* Check that the channels are available */
941 if (!rxchan || !txchan)
942 return -ENODEV;
943
944 /*
945 * If supplied, the DMA burstsize should equal the FIFO trigger level.
946 * Notice that the DMA engine uses one-to-one mapping. Since we can
947 * not trigger on 2 elements this needs explicit mapping rather than
948 * calculation.
949 */
950 switch (pl022->rx_lev_trig) {
951 case SSP_RX_1_OR_MORE_ELEM:
952 rx_conf.src_maxburst = 1;
953 break;
954 case SSP_RX_4_OR_MORE_ELEM:
955 rx_conf.src_maxburst = 4;
956 break;
957 case SSP_RX_8_OR_MORE_ELEM:
958 rx_conf.src_maxburst = 8;
959 break;
960 case SSP_RX_16_OR_MORE_ELEM:
961 rx_conf.src_maxburst = 16;
962 break;
963 case SSP_RX_32_OR_MORE_ELEM:
964 rx_conf.src_maxburst = 32;
965 break;
966 default:
967 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
968 break;
969 }
970
971 switch (pl022->tx_lev_trig) {
972 case SSP_TX_1_OR_MORE_EMPTY_LOC:
973 tx_conf.dst_maxburst = 1;
974 break;
975 case SSP_TX_4_OR_MORE_EMPTY_LOC:
976 tx_conf.dst_maxburst = 4;
977 break;
978 case SSP_TX_8_OR_MORE_EMPTY_LOC:
979 tx_conf.dst_maxburst = 8;
980 break;
981 case SSP_TX_16_OR_MORE_EMPTY_LOC:
982 tx_conf.dst_maxburst = 16;
983 break;
984 case SSP_TX_32_OR_MORE_EMPTY_LOC:
985 tx_conf.dst_maxburst = 32;
986 break;
987 default:
988 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
989 break;
990 }
991
992 switch (pl022->read) {
993 case READING_NULL:
994 /* Use the same as for writing */
995 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
996 break;
997 case READING_U8:
998 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
999 break;
1000 case READING_U16:
1001 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1002 break;
1003 case READING_U32:
1004 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1005 break;
1006 }
1007
1008 switch (pl022->write) {
1009 case WRITING_NULL:
1010 /* Use the same as for reading */
1011 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1012 break;
1013 case WRITING_U8:
1014 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1015 break;
1016 case WRITING_U16:
1017 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1018 break;
1019 case WRITING_U32:
1020 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1021 break;
1022 }
1023
1024 /* SPI pecularity: we need to read and write the same width */
1025 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1026 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1027 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1028 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1029 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1030
1031 dmaengine_slave_config(rxchan, &rx_conf);
1032 dmaengine_slave_config(txchan, &tx_conf);
1033
1034 /* Create sglists for the transfers */
1035 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1036 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1037
1038 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1039 if (ret)
1040 goto err_alloc_rx_sg;
1041
1042 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1043 if (ret)
1044 goto err_alloc_tx_sg;
1045
1046 /* Fill in the scatterlists for the RX+TX buffers */
1047 setup_dma_scatter(pl022, pl022->rx,
1048 pl022->cur_transfer->len, &pl022->sgt_rx);
1049 setup_dma_scatter(pl022, pl022->tx,
1050 pl022->cur_transfer->len, &pl022->sgt_tx);
1051
1052 /* Map DMA buffers */
1053 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1054 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1055 if (!rx_sglen)
1056 goto err_rx_sgmap;
1057
1058 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1059 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1060 if (!tx_sglen)
1061 goto err_tx_sgmap;
1062
1063 /* Send both scatterlists */
1064 rxdesc = dmaengine_prep_slave_sg(rxchan,
1065 pl022->sgt_rx.sgl,
1066 rx_sglen,
1067 DMA_DEV_TO_MEM,
1068 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1069 if (!rxdesc)
1070 goto err_rxdesc;
1071
1072 txdesc = dmaengine_prep_slave_sg(txchan,
1073 pl022->sgt_tx.sgl,
1074 tx_sglen,
1075 DMA_MEM_TO_DEV,
1076 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1077 if (!txdesc)
1078 goto err_txdesc;
1079
1080 /* Put the callback on the RX transfer only, that should finish last */
1081 rxdesc->callback = dma_callback;
1082 rxdesc->callback_param = pl022;
1083
1084 /* Submit and fire RX and TX with TX last so we're ready to read! */
1085 dmaengine_submit(rxdesc);
1086 dmaengine_submit(txdesc);
1087 dma_async_issue_pending(rxchan);
1088 dma_async_issue_pending(txchan);
1089 pl022->dma_running = true;
1090
1091 return 0;
1092
1093 err_txdesc:
1094 dmaengine_terminate_all(txchan);
1095 err_rxdesc:
1096 dmaengine_terminate_all(rxchan);
1097 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1098 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1099 err_tx_sgmap:
1100 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1101 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1102 err_rx_sgmap:
1103 sg_free_table(&pl022->sgt_tx);
1104 err_alloc_tx_sg:
1105 sg_free_table(&pl022->sgt_rx);
1106 err_alloc_rx_sg:
1107 return -ENOMEM;
1108 }
1109
pl022_dma_probe(struct pl022 * pl022)1110 static int pl022_dma_probe(struct pl022 *pl022)
1111 {
1112 dma_cap_mask_t mask;
1113
1114 /* Try to acquire a generic DMA engine slave channel */
1115 dma_cap_zero(mask);
1116 dma_cap_set(DMA_SLAVE, mask);
1117 /*
1118 * We need both RX and TX channels to do DMA, else do none
1119 * of them.
1120 */
1121 pl022->dma_rx_channel = dma_request_channel(mask,
1122 pl022->master_info->dma_filter,
1123 pl022->master_info->dma_rx_param);
1124 if (!pl022->dma_rx_channel) {
1125 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1126 goto err_no_rxchan;
1127 }
1128
1129 pl022->dma_tx_channel = dma_request_channel(mask,
1130 pl022->master_info->dma_filter,
1131 pl022->master_info->dma_tx_param);
1132 if (!pl022->dma_tx_channel) {
1133 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1134 goto err_no_txchan;
1135 }
1136
1137 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1138 if (!pl022->dummypage)
1139 goto err_no_dummypage;
1140
1141 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1142 dma_chan_name(pl022->dma_rx_channel),
1143 dma_chan_name(pl022->dma_tx_channel));
1144
1145 return 0;
1146
1147 err_no_dummypage:
1148 dma_release_channel(pl022->dma_tx_channel);
1149 err_no_txchan:
1150 dma_release_channel(pl022->dma_rx_channel);
1151 pl022->dma_rx_channel = NULL;
1152 err_no_rxchan:
1153 dev_err(&pl022->adev->dev,
1154 "Failed to work in dma mode, work without dma!\n");
1155 return -ENODEV;
1156 }
1157
pl022_dma_autoprobe(struct pl022 * pl022)1158 static int pl022_dma_autoprobe(struct pl022 *pl022)
1159 {
1160 struct device *dev = &pl022->adev->dev;
1161 struct dma_chan *chan;
1162 int err;
1163
1164 /* automatically configure DMA channels from platform, normally using DT */
1165 chan = dma_request_chan(dev, "rx");
1166 if (IS_ERR(chan)) {
1167 err = PTR_ERR(chan);
1168 goto err_no_rxchan;
1169 }
1170
1171 pl022->dma_rx_channel = chan;
1172
1173 chan = dma_request_chan(dev, "tx");
1174 if (IS_ERR(chan)) {
1175 err = PTR_ERR(chan);
1176 goto err_no_txchan;
1177 }
1178
1179 pl022->dma_tx_channel = chan;
1180
1181 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1182 if (!pl022->dummypage) {
1183 err = -ENOMEM;
1184 goto err_no_dummypage;
1185 }
1186
1187 return 0;
1188
1189 err_no_dummypage:
1190 dma_release_channel(pl022->dma_tx_channel);
1191 pl022->dma_tx_channel = NULL;
1192 err_no_txchan:
1193 dma_release_channel(pl022->dma_rx_channel);
1194 pl022->dma_rx_channel = NULL;
1195 err_no_rxchan:
1196 return err;
1197 }
1198
terminate_dma(struct pl022 * pl022)1199 static void terminate_dma(struct pl022 *pl022)
1200 {
1201 struct dma_chan *rxchan = pl022->dma_rx_channel;
1202 struct dma_chan *txchan = pl022->dma_tx_channel;
1203
1204 dmaengine_terminate_all(rxchan);
1205 dmaengine_terminate_all(txchan);
1206 unmap_free_dma_scatter(pl022);
1207 pl022->dma_running = false;
1208 }
1209
pl022_dma_remove(struct pl022 * pl022)1210 static void pl022_dma_remove(struct pl022 *pl022)
1211 {
1212 if (pl022->dma_running)
1213 terminate_dma(pl022);
1214 if (pl022->dma_tx_channel)
1215 dma_release_channel(pl022->dma_tx_channel);
1216 if (pl022->dma_rx_channel)
1217 dma_release_channel(pl022->dma_rx_channel);
1218 kfree(pl022->dummypage);
1219 }
1220
1221 #else
configure_dma(struct pl022 * pl022)1222 static inline int configure_dma(struct pl022 *pl022)
1223 {
1224 return -ENODEV;
1225 }
1226
pl022_dma_autoprobe(struct pl022 * pl022)1227 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1228 {
1229 return 0;
1230 }
1231
pl022_dma_probe(struct pl022 * pl022)1232 static inline int pl022_dma_probe(struct pl022 *pl022)
1233 {
1234 return 0;
1235 }
1236
pl022_dma_remove(struct pl022 * pl022)1237 static inline void pl022_dma_remove(struct pl022 *pl022)
1238 {
1239 }
1240 #endif
1241
1242 /**
1243 * pl022_interrupt_handler - Interrupt handler for SSP controller
1244 * @irq: IRQ number
1245 * @dev_id: Local device data
1246 *
1247 * This function handles interrupts generated for an interrupt based transfer.
1248 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1249 * current message's state as STATE_ERROR and schedule the tasklet
1250 * pump_transfers which will do the postprocessing of the current message by
1251 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1252 * more data, and writes data in TX FIFO till it is not full. If we complete
1253 * the transfer we move to the next transfer and schedule the tasklet.
1254 */
pl022_interrupt_handler(int irq,void * dev_id)1255 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1256 {
1257 struct pl022 *pl022 = dev_id;
1258 struct spi_message *msg = pl022->cur_msg;
1259 u16 irq_status = 0;
1260
1261 if (unlikely(!msg)) {
1262 dev_err(&pl022->adev->dev,
1263 "bad message state in interrupt handler");
1264 /* Never fail */
1265 return IRQ_HANDLED;
1266 }
1267
1268 /* Read the Interrupt Status Register */
1269 irq_status = readw(SSP_MIS(pl022->virtbase));
1270
1271 if (unlikely(!irq_status))
1272 return IRQ_NONE;
1273
1274 /*
1275 * This handles the FIFO interrupts, the timeout
1276 * interrupts are flatly ignored, they cannot be
1277 * trusted.
1278 */
1279 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1280 /*
1281 * Overrun interrupt - bail out since our Data has been
1282 * corrupted
1283 */
1284 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1285 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1286 dev_err(&pl022->adev->dev,
1287 "RXFIFO is full\n");
1288
1289 /*
1290 * Disable and clear interrupts, disable SSP,
1291 * mark message with bad status so it can be
1292 * retried.
1293 */
1294 writew(DISABLE_ALL_INTERRUPTS,
1295 SSP_IMSC(pl022->virtbase));
1296 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1297 writew((readw(SSP_CR1(pl022->virtbase)) &
1298 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1299 msg->state = STATE_ERROR;
1300
1301 /* Schedule message queue handler */
1302 tasklet_schedule(&pl022->pump_transfers);
1303 return IRQ_HANDLED;
1304 }
1305
1306 readwriter(pl022);
1307
1308 if (pl022->tx == pl022->tx_end) {
1309 /* Disable Transmit interrupt, enable receive interrupt */
1310 writew((readw(SSP_IMSC(pl022->virtbase)) &
1311 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1312 SSP_IMSC(pl022->virtbase));
1313 }
1314
1315 /*
1316 * Since all transactions must write as much as shall be read,
1317 * we can conclude the entire transaction once RX is complete.
1318 * At this point, all TX will always be finished.
1319 */
1320 if (pl022->rx >= pl022->rx_end) {
1321 writew(DISABLE_ALL_INTERRUPTS,
1322 SSP_IMSC(pl022->virtbase));
1323 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1324 if (unlikely(pl022->rx > pl022->rx_end)) {
1325 dev_warn(&pl022->adev->dev, "read %u surplus "
1326 "bytes (did you request an odd "
1327 "number of bytes on a 16bit bus?)\n",
1328 (u32) (pl022->rx - pl022->rx_end));
1329 }
1330 /* Update total bytes transferred */
1331 msg->actual_length += pl022->cur_transfer->len;
1332 /* Move to next transfer */
1333 msg->state = next_transfer(pl022);
1334 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1335 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1336 tasklet_schedule(&pl022->pump_transfers);
1337 return IRQ_HANDLED;
1338 }
1339
1340 return IRQ_HANDLED;
1341 }
1342
1343 /*
1344 * This sets up the pointers to memory for the next message to
1345 * send out on the SPI bus.
1346 */
set_up_next_transfer(struct pl022 * pl022,struct spi_transfer * transfer)1347 static int set_up_next_transfer(struct pl022 *pl022,
1348 struct spi_transfer *transfer)
1349 {
1350 int residue;
1351
1352 /* Sanity check the message for this bus width */
1353 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1354 if (unlikely(residue != 0)) {
1355 dev_err(&pl022->adev->dev,
1356 "message of %u bytes to transmit but the current "
1357 "chip bus has a data width of %u bytes!\n",
1358 pl022->cur_transfer->len,
1359 pl022->cur_chip->n_bytes);
1360 dev_err(&pl022->adev->dev, "skipping this message\n");
1361 return -EIO;
1362 }
1363 pl022->tx = (void *)transfer->tx_buf;
1364 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1365 pl022->rx = (void *)transfer->rx_buf;
1366 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1367 pl022->write =
1368 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1369 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1370 return 0;
1371 }
1372
1373 /**
1374 * pump_transfers - Tasklet function which schedules next transfer
1375 * when running in interrupt or DMA transfer mode.
1376 * @data: SSP driver private data structure
1377 *
1378 */
pump_transfers(unsigned long data)1379 static void pump_transfers(unsigned long data)
1380 {
1381 struct pl022 *pl022 = (struct pl022 *) data;
1382 struct spi_message *message = NULL;
1383 struct spi_transfer *transfer = NULL;
1384 struct spi_transfer *previous = NULL;
1385
1386 /* Get current state information */
1387 message = pl022->cur_msg;
1388 transfer = pl022->cur_transfer;
1389
1390 /* Handle for abort */
1391 if (message->state == STATE_ERROR) {
1392 message->status = -EIO;
1393 giveback(pl022);
1394 return;
1395 }
1396
1397 /* Handle end of message */
1398 if (message->state == STATE_DONE) {
1399 message->status = 0;
1400 giveback(pl022);
1401 return;
1402 }
1403
1404 /* Delay if requested at end of transfer before CS change */
1405 if (message->state == STATE_RUNNING) {
1406 previous = list_entry(transfer->transfer_list.prev,
1407 struct spi_transfer,
1408 transfer_list);
1409 /*
1410 * FIXME: This runs in interrupt context.
1411 * Is this really smart?
1412 */
1413 spi_transfer_delay_exec(previous);
1414
1415 /* Reselect chip select only if cs_change was requested */
1416 if (previous->cs_change)
1417 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1418 } else {
1419 /* STATE_START */
1420 message->state = STATE_RUNNING;
1421 }
1422
1423 if (set_up_next_transfer(pl022, transfer)) {
1424 message->state = STATE_ERROR;
1425 message->status = -EIO;
1426 giveback(pl022);
1427 return;
1428 }
1429 /* Flush the FIFOs and let's go! */
1430 flush(pl022);
1431
1432 if (pl022->cur_chip->enable_dma) {
1433 if (configure_dma(pl022)) {
1434 dev_dbg(&pl022->adev->dev,
1435 "configuration of DMA failed, fall back to interrupt mode\n");
1436 goto err_config_dma;
1437 }
1438 return;
1439 }
1440
1441 err_config_dma:
1442 /* enable all interrupts except RX */
1443 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1444 }
1445
do_interrupt_dma_transfer(struct pl022 * pl022)1446 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1447 {
1448 /*
1449 * Default is to enable all interrupts except RX -
1450 * this will be enabled once TX is complete
1451 */
1452 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1453
1454 /* Enable target chip, if not already active */
1455 if (!pl022->next_msg_cs_active)
1456 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457
1458 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1459 /* Error path */
1460 pl022->cur_msg->state = STATE_ERROR;
1461 pl022->cur_msg->status = -EIO;
1462 giveback(pl022);
1463 return;
1464 }
1465 /* If we're using DMA, set up DMA here */
1466 if (pl022->cur_chip->enable_dma) {
1467 /* Configure DMA transfer */
1468 if (configure_dma(pl022)) {
1469 dev_dbg(&pl022->adev->dev,
1470 "configuration of DMA failed, fall back to interrupt mode\n");
1471 goto err_config_dma;
1472 }
1473 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1474 irqflags = DISABLE_ALL_INTERRUPTS;
1475 }
1476 err_config_dma:
1477 /* Enable SSP, turn on interrupts */
1478 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1479 SSP_CR1(pl022->virtbase));
1480 writew(irqflags, SSP_IMSC(pl022->virtbase));
1481 }
1482
print_current_status(struct pl022 * pl022)1483 static void print_current_status(struct pl022 *pl022)
1484 {
1485 u32 read_cr0;
1486 u16 read_cr1, read_dmacr, read_sr;
1487
1488 if (pl022->vendor->extended_cr)
1489 read_cr0 = readl(SSP_CR0(pl022->virtbase));
1490 else
1491 read_cr0 = readw(SSP_CR0(pl022->virtbase));
1492 read_cr1 = readw(SSP_CR1(pl022->virtbase));
1493 read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1494 read_sr = readw(SSP_SR(pl022->virtbase));
1495
1496 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1497 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1498 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1499 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1500 dev_warn(&pl022->adev->dev,
1501 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1502 pl022->exp_fifo_level,
1503 pl022->vendor->fifodepth);
1504
1505 }
1506
do_polling_transfer(struct pl022 * pl022)1507 static void do_polling_transfer(struct pl022 *pl022)
1508 {
1509 struct spi_message *message = NULL;
1510 struct spi_transfer *transfer = NULL;
1511 struct spi_transfer *previous = NULL;
1512 unsigned long time, timeout;
1513
1514 message = pl022->cur_msg;
1515
1516 while (message->state != STATE_DONE) {
1517 /* Handle for abort */
1518 if (message->state == STATE_ERROR)
1519 break;
1520 transfer = pl022->cur_transfer;
1521
1522 /* Delay if requested at end of transfer */
1523 if (message->state == STATE_RUNNING) {
1524 previous =
1525 list_entry(transfer->transfer_list.prev,
1526 struct spi_transfer, transfer_list);
1527 spi_transfer_delay_exec(previous);
1528 if (previous->cs_change)
1529 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1530 } else {
1531 /* STATE_START */
1532 message->state = STATE_RUNNING;
1533 if (!pl022->next_msg_cs_active)
1534 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1535 }
1536
1537 /* Configuration Changing Per Transfer */
1538 if (set_up_next_transfer(pl022, transfer)) {
1539 /* Error path */
1540 message->state = STATE_ERROR;
1541 break;
1542 }
1543 /* Flush FIFOs and enable SSP */
1544 flush(pl022);
1545 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1546 SSP_CR1(pl022->virtbase));
1547
1548 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1549
1550 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1551 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1552 time = jiffies;
1553 readwriter(pl022);
1554 if (time_after(time, timeout)) {
1555 dev_warn(&pl022->adev->dev,
1556 "%s: timeout!\n", __func__);
1557 message->state = STATE_TIMEOUT;
1558 print_current_status(pl022);
1559 goto out;
1560 }
1561 cpu_relax();
1562 }
1563
1564 /* Update total byte transferred */
1565 message->actual_length += pl022->cur_transfer->len;
1566 /* Move to next transfer */
1567 message->state = next_transfer(pl022);
1568 if (message->state != STATE_DONE
1569 && pl022->cur_transfer->cs_change)
1570 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1571 }
1572 out:
1573 /* Handle end of message */
1574 if (message->state == STATE_DONE)
1575 message->status = 0;
1576 else if (message->state == STATE_TIMEOUT)
1577 message->status = -EAGAIN;
1578 else
1579 message->status = -EIO;
1580
1581 giveback(pl022);
1582 return;
1583 }
1584
pl022_transfer_one_message(struct spi_master * master,struct spi_message * msg)1585 static int pl022_transfer_one_message(struct spi_master *master,
1586 struct spi_message *msg)
1587 {
1588 struct pl022 *pl022 = spi_master_get_devdata(master);
1589
1590 /* Initial message state */
1591 pl022->cur_msg = msg;
1592 msg->state = STATE_START;
1593
1594 pl022->cur_transfer = list_entry(msg->transfers.next,
1595 struct spi_transfer, transfer_list);
1596
1597 /* Setup the SPI using the per chip configuration */
1598 pl022->cur_chip = spi_get_ctldata(msg->spi);
1599 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1600
1601 restore_state(pl022);
1602 flush(pl022);
1603
1604 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1605 do_polling_transfer(pl022);
1606 else
1607 do_interrupt_dma_transfer(pl022);
1608
1609 return 0;
1610 }
1611
pl022_unprepare_transfer_hardware(struct spi_master * master)1612 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1613 {
1614 struct pl022 *pl022 = spi_master_get_devdata(master);
1615
1616 /* nothing more to do - disable spi/ssp and power off */
1617 writew((readw(SSP_CR1(pl022->virtbase)) &
1618 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1619
1620 return 0;
1621 }
1622
verify_controller_parameters(struct pl022 * pl022,struct pl022_config_chip const * chip_info)1623 static int verify_controller_parameters(struct pl022 *pl022,
1624 struct pl022_config_chip const *chip_info)
1625 {
1626 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1627 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1628 dev_err(&pl022->adev->dev,
1629 "interface is configured incorrectly\n");
1630 return -EINVAL;
1631 }
1632 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1633 (!pl022->vendor->unidir)) {
1634 dev_err(&pl022->adev->dev,
1635 "unidirectional mode not supported in this "
1636 "hardware version\n");
1637 return -EINVAL;
1638 }
1639 if ((chip_info->hierarchy != SSP_MASTER)
1640 && (chip_info->hierarchy != SSP_SLAVE)) {
1641 dev_err(&pl022->adev->dev,
1642 "hierarchy is configured incorrectly\n");
1643 return -EINVAL;
1644 }
1645 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1646 && (chip_info->com_mode != DMA_TRANSFER)
1647 && (chip_info->com_mode != POLLING_TRANSFER)) {
1648 dev_err(&pl022->adev->dev,
1649 "Communication mode is configured incorrectly\n");
1650 return -EINVAL;
1651 }
1652 switch (chip_info->rx_lev_trig) {
1653 case SSP_RX_1_OR_MORE_ELEM:
1654 case SSP_RX_4_OR_MORE_ELEM:
1655 case SSP_RX_8_OR_MORE_ELEM:
1656 /* These are always OK, all variants can handle this */
1657 break;
1658 case SSP_RX_16_OR_MORE_ELEM:
1659 if (pl022->vendor->fifodepth < 16) {
1660 dev_err(&pl022->adev->dev,
1661 "RX FIFO Trigger Level is configured incorrectly\n");
1662 return -EINVAL;
1663 }
1664 break;
1665 case SSP_RX_32_OR_MORE_ELEM:
1666 if (pl022->vendor->fifodepth < 32) {
1667 dev_err(&pl022->adev->dev,
1668 "RX FIFO Trigger Level is configured incorrectly\n");
1669 return -EINVAL;
1670 }
1671 break;
1672 default:
1673 dev_err(&pl022->adev->dev,
1674 "RX FIFO Trigger Level is configured incorrectly\n");
1675 return -EINVAL;
1676 }
1677 switch (chip_info->tx_lev_trig) {
1678 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1679 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1680 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1681 /* These are always OK, all variants can handle this */
1682 break;
1683 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1684 if (pl022->vendor->fifodepth < 16) {
1685 dev_err(&pl022->adev->dev,
1686 "TX FIFO Trigger Level is configured incorrectly\n");
1687 return -EINVAL;
1688 }
1689 break;
1690 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1691 if (pl022->vendor->fifodepth < 32) {
1692 dev_err(&pl022->adev->dev,
1693 "TX FIFO Trigger Level is configured incorrectly\n");
1694 return -EINVAL;
1695 }
1696 break;
1697 default:
1698 dev_err(&pl022->adev->dev,
1699 "TX FIFO Trigger Level is configured incorrectly\n");
1700 return -EINVAL;
1701 }
1702 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1703 if ((chip_info->ctrl_len < SSP_BITS_4)
1704 || (chip_info->ctrl_len > SSP_BITS_32)) {
1705 dev_err(&pl022->adev->dev,
1706 "CTRL LEN is configured incorrectly\n");
1707 return -EINVAL;
1708 }
1709 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1710 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1711 dev_err(&pl022->adev->dev,
1712 "Wait State is configured incorrectly\n");
1713 return -EINVAL;
1714 }
1715 /* Half duplex is only available in the ST Micro version */
1716 if (pl022->vendor->extended_cr) {
1717 if ((chip_info->duplex !=
1718 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1719 && (chip_info->duplex !=
1720 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1721 dev_err(&pl022->adev->dev,
1722 "Microwire duplex mode is configured incorrectly\n");
1723 return -EINVAL;
1724 }
1725 } else {
1726 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1727 dev_err(&pl022->adev->dev,
1728 "Microwire half duplex mode requested,"
1729 " but this is only available in the"
1730 " ST version of PL022\n");
1731 return -EINVAL;
1732 }
1733 }
1734 }
1735 return 0;
1736 }
1737
spi_rate(u32 rate,u16 cpsdvsr,u16 scr)1738 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1739 {
1740 return rate / (cpsdvsr * (1 + scr));
1741 }
1742
calculate_effective_freq(struct pl022 * pl022,int freq,struct ssp_clock_params * clk_freq)1743 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1744 ssp_clock_params * clk_freq)
1745 {
1746 /* Lets calculate the frequency parameters */
1747 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1748 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1749 best_scr = 0, tmp, found = 0;
1750
1751 rate = clk_get_rate(pl022->clk);
1752 /* cpsdvscr = 2 & scr 0 */
1753 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1754 /* cpsdvsr = 254 & scr = 255 */
1755 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1756
1757 if (freq > max_tclk)
1758 dev_warn(&pl022->adev->dev,
1759 "Max speed that can be programmed is %d Hz, you requested %d\n",
1760 max_tclk, freq);
1761
1762 if (freq < min_tclk) {
1763 dev_err(&pl022->adev->dev,
1764 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1765 freq, min_tclk);
1766 return -EINVAL;
1767 }
1768
1769 /*
1770 * best_freq will give closest possible available rate (<= requested
1771 * freq) for all values of scr & cpsdvsr.
1772 */
1773 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1774 while (scr <= SCR_MAX) {
1775 tmp = spi_rate(rate, cpsdvsr, scr);
1776
1777 if (tmp > freq) {
1778 /* we need lower freq */
1779 scr++;
1780 continue;
1781 }
1782
1783 /*
1784 * If found exact value, mark found and break.
1785 * If found more closer value, update and break.
1786 */
1787 if (tmp > best_freq) {
1788 best_freq = tmp;
1789 best_cpsdvsr = cpsdvsr;
1790 best_scr = scr;
1791
1792 if (tmp == freq)
1793 found = 1;
1794 }
1795 /*
1796 * increased scr will give lower rates, which are not
1797 * required
1798 */
1799 break;
1800 }
1801 cpsdvsr += 2;
1802 scr = SCR_MIN;
1803 }
1804
1805 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1806 freq);
1807
1808 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1809 clk_freq->scr = (u8) (best_scr & 0xFF);
1810 dev_dbg(&pl022->adev->dev,
1811 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1812 freq, best_freq);
1813 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1814 clk_freq->cpsdvsr, clk_freq->scr);
1815
1816 return 0;
1817 }
1818
1819 /*
1820 * A piece of default chip info unless the platform
1821 * supplies it.
1822 */
1823 static const struct pl022_config_chip pl022_default_chip_info = {
1824 .com_mode = POLLING_TRANSFER,
1825 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1826 .hierarchy = SSP_SLAVE,
1827 .slave_tx_disable = DO_NOT_DRIVE_TX,
1828 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1829 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1830 .ctrl_len = SSP_BITS_8,
1831 .wait_state = SSP_MWIRE_WAIT_ZERO,
1832 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1833 .cs_control = null_cs_control,
1834 };
1835
1836 /**
1837 * pl022_setup - setup function registered to SPI master framework
1838 * @spi: spi device which is requesting setup
1839 *
1840 * This function is registered to the SPI framework for this SPI master
1841 * controller. If it is the first time when setup is called by this device,
1842 * this function will initialize the runtime state for this chip and save
1843 * the same in the device structure. Else it will update the runtime info
1844 * with the updated chip info. Nothing is really being written to the
1845 * controller hardware here, that is not done until the actual transfer
1846 * commence.
1847 */
pl022_setup(struct spi_device * spi)1848 static int pl022_setup(struct spi_device *spi)
1849 {
1850 struct pl022_config_chip const *chip_info;
1851 struct pl022_config_chip chip_info_dt;
1852 struct chip_data *chip;
1853 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1854 int status = 0;
1855 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1856 unsigned int bits = spi->bits_per_word;
1857 u32 tmp;
1858 struct device_node *np = spi->dev.of_node;
1859
1860 if (!spi->max_speed_hz)
1861 return -EINVAL;
1862
1863 /* Get controller_state if one is supplied */
1864 chip = spi_get_ctldata(spi);
1865
1866 if (chip == NULL) {
1867 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1868 if (!chip)
1869 return -ENOMEM;
1870 dev_dbg(&spi->dev,
1871 "allocated memory for controller's runtime state\n");
1872 }
1873
1874 /* Get controller data if one is supplied */
1875 chip_info = spi->controller_data;
1876
1877 if (chip_info == NULL) {
1878 if (np) {
1879 chip_info_dt = pl022_default_chip_info;
1880
1881 chip_info_dt.hierarchy = SSP_MASTER;
1882 of_property_read_u32(np, "pl022,interface",
1883 &chip_info_dt.iface);
1884 of_property_read_u32(np, "pl022,com-mode",
1885 &chip_info_dt.com_mode);
1886 of_property_read_u32(np, "pl022,rx-level-trig",
1887 &chip_info_dt.rx_lev_trig);
1888 of_property_read_u32(np, "pl022,tx-level-trig",
1889 &chip_info_dt.tx_lev_trig);
1890 of_property_read_u32(np, "pl022,ctrl-len",
1891 &chip_info_dt.ctrl_len);
1892 of_property_read_u32(np, "pl022,wait-state",
1893 &chip_info_dt.wait_state);
1894 of_property_read_u32(np, "pl022,duplex",
1895 &chip_info_dt.duplex);
1896
1897 chip_info = &chip_info_dt;
1898 } else {
1899 chip_info = &pl022_default_chip_info;
1900 /* spi_board_info.controller_data not is supplied */
1901 dev_dbg(&spi->dev,
1902 "using default controller_data settings\n");
1903 }
1904 } else
1905 dev_dbg(&spi->dev,
1906 "using user supplied controller_data settings\n");
1907
1908 /*
1909 * We can override with custom divisors, else we use the board
1910 * frequency setting
1911 */
1912 if ((0 == chip_info->clk_freq.cpsdvsr)
1913 && (0 == chip_info->clk_freq.scr)) {
1914 status = calculate_effective_freq(pl022,
1915 spi->max_speed_hz,
1916 &clk_freq);
1917 if (status < 0)
1918 goto err_config_params;
1919 } else {
1920 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1921 if ((clk_freq.cpsdvsr % 2) != 0)
1922 clk_freq.cpsdvsr =
1923 clk_freq.cpsdvsr - 1;
1924 }
1925 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1926 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1927 status = -EINVAL;
1928 dev_err(&spi->dev,
1929 "cpsdvsr is configured incorrectly\n");
1930 goto err_config_params;
1931 }
1932
1933 status = verify_controller_parameters(pl022, chip_info);
1934 if (status) {
1935 dev_err(&spi->dev, "controller data is incorrect");
1936 goto err_config_params;
1937 }
1938
1939 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1940 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1941
1942 /* Now set controller state based on controller data */
1943 chip->xfer_type = chip_info->com_mode;
1944 if (!chip_info->cs_control) {
1945 chip->cs_control = null_cs_control;
1946 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1947 dev_warn(&spi->dev,
1948 "invalid chip select\n");
1949 } else
1950 chip->cs_control = chip_info->cs_control;
1951
1952 /* Check bits per word with vendor specific range */
1953 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1954 status = -ENOTSUPP;
1955 dev_err(&spi->dev, "illegal data size for this controller!\n");
1956 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1957 pl022->vendor->max_bpw);
1958 goto err_config_params;
1959 } else if (bits <= 8) {
1960 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1961 chip->n_bytes = 1;
1962 chip->read = READING_U8;
1963 chip->write = WRITING_U8;
1964 } else if (bits <= 16) {
1965 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1966 chip->n_bytes = 2;
1967 chip->read = READING_U16;
1968 chip->write = WRITING_U16;
1969 } else {
1970 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1971 chip->n_bytes = 4;
1972 chip->read = READING_U32;
1973 chip->write = WRITING_U32;
1974 }
1975
1976 /* Now Initialize all register settings required for this chip */
1977 chip->cr0 = 0;
1978 chip->cr1 = 0;
1979 chip->dmacr = 0;
1980 chip->cpsr = 0;
1981 if ((chip_info->com_mode == DMA_TRANSFER)
1982 && ((pl022->master_info)->enable_dma)) {
1983 chip->enable_dma = true;
1984 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1985 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1986 SSP_DMACR_MASK_RXDMAE, 0);
1987 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1988 SSP_DMACR_MASK_TXDMAE, 1);
1989 } else {
1990 chip->enable_dma = false;
1991 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1992 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1993 SSP_DMACR_MASK_RXDMAE, 0);
1994 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1995 SSP_DMACR_MASK_TXDMAE, 1);
1996 }
1997
1998 chip->cpsr = clk_freq.cpsdvsr;
1999
2000 /* Special setup for the ST micro extended control registers */
2001 if (pl022->vendor->extended_cr) {
2002 u32 etx;
2003
2004 if (pl022->vendor->pl023) {
2005 /* These bits are only in the PL023 */
2006 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2007 SSP_CR1_MASK_FBCLKDEL_ST, 13);
2008 } else {
2009 /* These bits are in the PL022 but not PL023 */
2010 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2011 SSP_CR0_MASK_HALFDUP_ST, 5);
2012 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2013 SSP_CR0_MASK_CSS_ST, 16);
2014 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2015 SSP_CR0_MASK_FRF_ST, 21);
2016 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2017 SSP_CR1_MASK_MWAIT_ST, 6);
2018 }
2019 SSP_WRITE_BITS(chip->cr0, bits - 1,
2020 SSP_CR0_MASK_DSS_ST, 0);
2021
2022 if (spi->mode & SPI_LSB_FIRST) {
2023 tmp = SSP_RX_LSB;
2024 etx = SSP_TX_LSB;
2025 } else {
2026 tmp = SSP_RX_MSB;
2027 etx = SSP_TX_MSB;
2028 }
2029 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2030 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2031 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2032 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2033 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2034 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2035 } else {
2036 SSP_WRITE_BITS(chip->cr0, bits - 1,
2037 SSP_CR0_MASK_DSS, 0);
2038 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2039 SSP_CR0_MASK_FRF, 4);
2040 }
2041
2042 /* Stuff that is common for all versions */
2043 if (spi->mode & SPI_CPOL)
2044 tmp = SSP_CLK_POL_IDLE_HIGH;
2045 else
2046 tmp = SSP_CLK_POL_IDLE_LOW;
2047 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2048
2049 if (spi->mode & SPI_CPHA)
2050 tmp = SSP_CLK_SECOND_EDGE;
2051 else
2052 tmp = SSP_CLK_FIRST_EDGE;
2053 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2054
2055 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2056 /* Loopback is available on all versions except PL023 */
2057 if (pl022->vendor->loopback) {
2058 if (spi->mode & SPI_LOOP)
2059 tmp = LOOPBACK_ENABLED;
2060 else
2061 tmp = LOOPBACK_DISABLED;
2062 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2063 }
2064 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2065 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2066 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2067 3);
2068
2069 /* Save controller_state */
2070 spi_set_ctldata(spi, chip);
2071 return status;
2072 err_config_params:
2073 spi_set_ctldata(spi, NULL);
2074 kfree(chip);
2075 return status;
2076 }
2077
2078 /**
2079 * pl022_cleanup - cleanup function registered to SPI master framework
2080 * @spi: spi device which is requesting cleanup
2081 *
2082 * This function is registered to the SPI framework for this SPI master
2083 * controller. It will free the runtime state of chip.
2084 */
pl022_cleanup(struct spi_device * spi)2085 static void pl022_cleanup(struct spi_device *spi)
2086 {
2087 struct chip_data *chip = spi_get_ctldata(spi);
2088
2089 spi_set_ctldata(spi, NULL);
2090 kfree(chip);
2091 }
2092
2093 static struct pl022_ssp_controller *
pl022_platform_data_dt_get(struct device * dev)2094 pl022_platform_data_dt_get(struct device *dev)
2095 {
2096 struct device_node *np = dev->of_node;
2097 struct pl022_ssp_controller *pd;
2098 u32 tmp = 0;
2099
2100 if (!np) {
2101 dev_err(dev, "no dt node defined\n");
2102 return NULL;
2103 }
2104
2105 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2106 if (!pd)
2107 return NULL;
2108
2109 pd->bus_id = -1;
2110 pd->enable_dma = 1;
2111 of_property_read_u32(np, "num-cs", &tmp);
2112 pd->num_chipselect = tmp;
2113 of_property_read_u32(np, "pl022,autosuspend-delay",
2114 &pd->autosuspend_delay);
2115 pd->rt = of_property_read_bool(np, "pl022,rt");
2116
2117 return pd;
2118 }
2119
pl022_probe(struct amba_device * adev,const struct amba_id * id)2120 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2121 {
2122 struct device *dev = &adev->dev;
2123 struct pl022_ssp_controller *platform_info =
2124 dev_get_platdata(&adev->dev);
2125 struct spi_master *master;
2126 struct pl022 *pl022 = NULL; /*Data for this driver */
2127 struct device_node *np = adev->dev.of_node;
2128 int status = 0, i, num_cs;
2129
2130 dev_info(&adev->dev,
2131 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2132 if (!platform_info && IS_ENABLED(CONFIG_OF))
2133 platform_info = pl022_platform_data_dt_get(dev);
2134
2135 if (!platform_info) {
2136 dev_err(dev, "probe: no platform data defined\n");
2137 return -ENODEV;
2138 }
2139
2140 if (platform_info->num_chipselect) {
2141 num_cs = platform_info->num_chipselect;
2142 } else {
2143 dev_err(dev, "probe: no chip select defined\n");
2144 return -ENODEV;
2145 }
2146
2147 /* Allocate master with space for data */
2148 master = spi_alloc_master(dev, sizeof(struct pl022));
2149 if (master == NULL) {
2150 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2151 return -ENOMEM;
2152 }
2153
2154 pl022 = spi_master_get_devdata(master);
2155 pl022->master = master;
2156 pl022->master_info = platform_info;
2157 pl022->adev = adev;
2158 pl022->vendor = id->data;
2159 pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2160 GFP_KERNEL);
2161 if (!pl022->chipselects) {
2162 status = -ENOMEM;
2163 goto err_no_mem;
2164 }
2165
2166 /*
2167 * Bus Number Which has been Assigned to this SSP controller
2168 * on this board
2169 */
2170 master->bus_num = platform_info->bus_id;
2171 master->num_chipselect = num_cs;
2172 master->cleanup = pl022_cleanup;
2173 master->setup = pl022_setup;
2174 master->auto_runtime_pm = true;
2175 master->transfer_one_message = pl022_transfer_one_message;
2176 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2177 master->rt = platform_info->rt;
2178 master->dev.of_node = dev->of_node;
2179
2180 if (platform_info->num_chipselect && platform_info->chipselects) {
2181 for (i = 0; i < num_cs; i++)
2182 pl022->chipselects[i] = platform_info->chipselects[i];
2183 } else if (pl022->vendor->internal_cs_ctrl) {
2184 for (i = 0; i < num_cs; i++)
2185 pl022->chipselects[i] = i;
2186 } else if (IS_ENABLED(CONFIG_OF)) {
2187 for (i = 0; i < num_cs; i++) {
2188 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2189
2190 if (cs_gpio == -EPROBE_DEFER) {
2191 status = -EPROBE_DEFER;
2192 goto err_no_gpio;
2193 }
2194
2195 pl022->chipselects[i] = cs_gpio;
2196
2197 if (gpio_is_valid(cs_gpio)) {
2198 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2199 dev_err(&adev->dev,
2200 "could not request %d gpio\n",
2201 cs_gpio);
2202 else if (gpio_direction_output(cs_gpio, 1))
2203 dev_err(&adev->dev,
2204 "could not set gpio %d as output\n",
2205 cs_gpio);
2206 }
2207 }
2208 }
2209
2210 /*
2211 * Supports mode 0-3, loopback, and active low CS. Transfers are
2212 * always MS bit first on the original pl022.
2213 */
2214 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2215 if (pl022->vendor->extended_cr)
2216 master->mode_bits |= SPI_LSB_FIRST;
2217
2218 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2219
2220 status = amba_request_regions(adev, NULL);
2221 if (status)
2222 goto err_no_ioregion;
2223
2224 pl022->phybase = adev->res.start;
2225 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2226 resource_size(&adev->res));
2227 if (pl022->virtbase == NULL) {
2228 status = -ENOMEM;
2229 goto err_no_ioremap;
2230 }
2231 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2232 &adev->res.start, pl022->virtbase);
2233
2234 pl022->clk = devm_clk_get(&adev->dev, NULL);
2235 if (IS_ERR(pl022->clk)) {
2236 status = PTR_ERR(pl022->clk);
2237 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2238 goto err_no_clk;
2239 }
2240
2241 status = clk_prepare_enable(pl022->clk);
2242 if (status) {
2243 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2244 goto err_no_clk_en;
2245 }
2246
2247 /* Initialize transfer pump */
2248 tasklet_init(&pl022->pump_transfers, pump_transfers,
2249 (unsigned long)pl022);
2250
2251 /* Disable SSP */
2252 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2253 SSP_CR1(pl022->virtbase));
2254 load_ssp_default_config(pl022);
2255
2256 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2257 0, "pl022", pl022);
2258 if (status < 0) {
2259 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2260 goto err_no_irq;
2261 }
2262
2263 /* Get DMA channels, try autoconfiguration first */
2264 status = pl022_dma_autoprobe(pl022);
2265 if (status == -EPROBE_DEFER) {
2266 dev_dbg(dev, "deferring probe to get DMA channel\n");
2267 goto err_no_irq;
2268 }
2269
2270 /* If that failed, use channels from platform_info */
2271 if (status == 0)
2272 platform_info->enable_dma = 1;
2273 else if (platform_info->enable_dma) {
2274 status = pl022_dma_probe(pl022);
2275 if (status != 0)
2276 platform_info->enable_dma = 0;
2277 }
2278
2279 /* Register with the SPI framework */
2280 amba_set_drvdata(adev, pl022);
2281 status = devm_spi_register_master(&adev->dev, master);
2282 if (status != 0) {
2283 dev_err(&adev->dev,
2284 "probe - problem registering spi master\n");
2285 goto err_spi_register;
2286 }
2287 dev_dbg(dev, "probe succeeded\n");
2288
2289 /* let runtime pm put suspend */
2290 if (platform_info->autosuspend_delay > 0) {
2291 dev_info(&adev->dev,
2292 "will use autosuspend for runtime pm, delay %dms\n",
2293 platform_info->autosuspend_delay);
2294 pm_runtime_set_autosuspend_delay(dev,
2295 platform_info->autosuspend_delay);
2296 pm_runtime_use_autosuspend(dev);
2297 }
2298 pm_runtime_put(dev);
2299
2300 return 0;
2301
2302 err_spi_register:
2303 if (platform_info->enable_dma)
2304 pl022_dma_remove(pl022);
2305 err_no_irq:
2306 clk_disable_unprepare(pl022->clk);
2307 err_no_clk_en:
2308 err_no_clk:
2309 err_no_ioremap:
2310 amba_release_regions(adev);
2311 err_no_ioregion:
2312 err_no_gpio:
2313 err_no_mem:
2314 spi_master_put(master);
2315 return status;
2316 }
2317
2318 static int
pl022_remove(struct amba_device * adev)2319 pl022_remove(struct amba_device *adev)
2320 {
2321 struct pl022 *pl022 = amba_get_drvdata(adev);
2322
2323 if (!pl022)
2324 return 0;
2325
2326 /*
2327 * undo pm_runtime_put() in probe. I assume that we're not
2328 * accessing the primecell here.
2329 */
2330 pm_runtime_get_noresume(&adev->dev);
2331
2332 load_ssp_default_config(pl022);
2333 if (pl022->master_info->enable_dma)
2334 pl022_dma_remove(pl022);
2335
2336 clk_disable_unprepare(pl022->clk);
2337 amba_release_regions(adev);
2338 tasklet_disable(&pl022->pump_transfers);
2339 return 0;
2340 }
2341
2342 #ifdef CONFIG_PM_SLEEP
pl022_suspend(struct device * dev)2343 static int pl022_suspend(struct device *dev)
2344 {
2345 struct pl022 *pl022 = dev_get_drvdata(dev);
2346 int ret;
2347
2348 ret = spi_master_suspend(pl022->master);
2349 if (ret)
2350 return ret;
2351
2352 ret = pm_runtime_force_suspend(dev);
2353 if (ret) {
2354 spi_master_resume(pl022->master);
2355 return ret;
2356 }
2357
2358 pinctrl_pm_select_sleep_state(dev);
2359
2360 dev_dbg(dev, "suspended\n");
2361 return 0;
2362 }
2363
pl022_resume(struct device * dev)2364 static int pl022_resume(struct device *dev)
2365 {
2366 struct pl022 *pl022 = dev_get_drvdata(dev);
2367 int ret;
2368
2369 ret = pm_runtime_force_resume(dev);
2370 if (ret)
2371 dev_err(dev, "problem resuming\n");
2372
2373 /* Start the queue running */
2374 ret = spi_master_resume(pl022->master);
2375 if (!ret)
2376 dev_dbg(dev, "resumed\n");
2377
2378 return ret;
2379 }
2380 #endif
2381
2382 #ifdef CONFIG_PM
pl022_runtime_suspend(struct device * dev)2383 static int pl022_runtime_suspend(struct device *dev)
2384 {
2385 struct pl022 *pl022 = dev_get_drvdata(dev);
2386
2387 clk_disable_unprepare(pl022->clk);
2388 pinctrl_pm_select_idle_state(dev);
2389
2390 return 0;
2391 }
2392
pl022_runtime_resume(struct device * dev)2393 static int pl022_runtime_resume(struct device *dev)
2394 {
2395 struct pl022 *pl022 = dev_get_drvdata(dev);
2396
2397 pinctrl_pm_select_default_state(dev);
2398 clk_prepare_enable(pl022->clk);
2399
2400 return 0;
2401 }
2402 #endif
2403
2404 static const struct dev_pm_ops pl022_dev_pm_ops = {
2405 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2406 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2407 };
2408
2409 static struct vendor_data vendor_arm = {
2410 .fifodepth = 8,
2411 .max_bpw = 16,
2412 .unidir = false,
2413 .extended_cr = false,
2414 .pl023 = false,
2415 .loopback = true,
2416 .internal_cs_ctrl = false,
2417 };
2418
2419 static struct vendor_data vendor_st = {
2420 .fifodepth = 32,
2421 .max_bpw = 32,
2422 .unidir = false,
2423 .extended_cr = true,
2424 .pl023 = false,
2425 .loopback = true,
2426 .internal_cs_ctrl = false,
2427 };
2428
2429 static struct vendor_data vendor_st_pl023 = {
2430 .fifodepth = 32,
2431 .max_bpw = 32,
2432 .unidir = false,
2433 .extended_cr = true,
2434 .pl023 = true,
2435 .loopback = false,
2436 .internal_cs_ctrl = false,
2437 };
2438
2439 static struct vendor_data vendor_lsi = {
2440 .fifodepth = 8,
2441 .max_bpw = 16,
2442 .unidir = false,
2443 .extended_cr = false,
2444 .pl023 = false,
2445 .loopback = true,
2446 .internal_cs_ctrl = true,
2447 };
2448
2449 static const struct amba_id pl022_ids[] = {
2450 {
2451 /*
2452 * ARM PL022 variant, this has a 16bit wide
2453 * and 8 locations deep TX/RX FIFO
2454 */
2455 .id = 0x00041022,
2456 .mask = 0x000fffff,
2457 .data = &vendor_arm,
2458 },
2459 {
2460 /*
2461 * ST Micro derivative, this has 32bit wide
2462 * and 32 locations deep TX/RX FIFO
2463 */
2464 .id = 0x01080022,
2465 .mask = 0xffffffff,
2466 .data = &vendor_st,
2467 },
2468 {
2469 /*
2470 * ST-Ericsson derivative "PL023" (this is not
2471 * an official ARM number), this is a PL022 SSP block
2472 * stripped to SPI mode only, it has 32bit wide
2473 * and 32 locations deep TX/RX FIFO but no extended
2474 * CR0/CR1 register
2475 */
2476 .id = 0x00080023,
2477 .mask = 0xffffffff,
2478 .data = &vendor_st_pl023,
2479 },
2480 {
2481 /*
2482 * PL022 variant that has a chip select control register whih
2483 * allows control of 5 output signals nCS[0:4].
2484 */
2485 .id = 0x000b6022,
2486 .mask = 0x000fffff,
2487 .data = &vendor_lsi,
2488 },
2489 { 0, 0 },
2490 };
2491
2492 MODULE_DEVICE_TABLE(amba, pl022_ids);
2493
2494 static struct amba_driver pl022_driver = {
2495 .drv = {
2496 .name = "ssp-pl022",
2497 .pm = &pl022_dev_pm_ops,
2498 },
2499 .id_table = pl022_ids,
2500 .probe = pl022_probe,
2501 .remove = pl022_remove,
2502 };
2503
pl022_init(void)2504 static int __init pl022_init(void)
2505 {
2506 return amba_driver_register(&pl022_driver);
2507 }
2508 subsys_initcall(pl022_init);
2509
pl022_exit(void)2510 static void __exit pl022_exit(void)
2511 {
2512 amba_driver_unregister(&pl022_driver);
2513 }
2514 module_exit(pl022_exit);
2515
2516 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2517 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2518 MODULE_LICENSE("GPL");
2519