Home
last modified time | relevance | path

Searched refs:C_1 (Results 1 – 17 of 17) sorted by relevance

/third_party/flutter/skia/site/dev/design/conical/
Dindex.md33 Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is the radius. For any
35 is on the linearly interpolated circle with center $C_t = (1-t) \cdot C_0 + t \cdot C_1$ and radius
41 1. $C_0 = C_1$ so the gradient is essentially a simple radial gradient.
46 They are easy to handle so we won't cover them here. From now on, we assume $C_0 \neq C_1$ and $r_0
49 As $r_0 \neq r_1$, we can find a focal point $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its
53 As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$. If $r_1 = 0$, we can
54 swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient $t_s$ as if $r_1 \neq 0$, and finally set
58 Assuming that we've done swapping if necessary so $C_1 \neq C_f$, we can then do a linear
59 transformation to map $C_f, C_1$ to $(0, 0), (1, 0)$. After the transformation:
68 always the bigger one (note that $f \neq 1$, otherwise we'll swap $C_0, r_0$ with $C_1, r_1$).
[all …]
/third_party/skia/site/docs/dev/design/conical/
D_index.md37 Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is
40 with center $C_t = (1-t) \cdot C_0 + t \cdot C_1$ and radius
47 1. $C_0 = C_1$ so the gradient is essentially a simple radial gradient.
53 $C_0 \neq C_1$ and $r_0
57 $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its corresponding linearly
61 As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$.
62 If $r_1 = 0$, we can swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient
67 Assuming that we've done swapping if necessary so $C_1 \neq C_f$, we can then do
68 a linear transformation to map $C_f, C_1$ to $(0, 0), (1, 0)$. After the
79 $f \neq 1$, otherwise we'll swap $C_0, r_0$ with $C_1, r_1$).
[all …]
/third_party/typescript/tests/baselines/reference/
DdecoratorOnClass5.es6.js19 var C_1; variable
20 let C = C_1 = class C {
21 static x() { return C_1.y; }
24 C = C_1 = __decorate([
DdecoratorOnClass6.es6.js19 var C_1; variable
20 let C = C_1 = class C {
21 static x() { return C_1.y; }
24 C = C_1 = __decorate([
DdecoratorOnClass7.es6.js19 var C_1; variable
20 let C = C_1 = class C {
21 static x() { return C_1.y; }
24 C = C_1 = __decorate([
Des6modulekindWithES5Target11.js22 C_1 = C;
23 C.x = function () { return C_1.y; };
25 var C_1;
27 C = C_1 = __decorate([
DesnextmodulekindWithES5Target11.js22 C_1 = C;
23 C.x = function () { return C_1.y; };
25 var C_1;
27 C = C_1 = __decorate([
DdecoratorReferences.js23 C_1 = C;
25 var C_1;
31 C = C_1 = __decorate([
32 …y(1, C_1) // <-- T should be resolved to the type alias, not the type parameter of the class; C sh…
DclassDeclarationBlockScoping2.js21 var C_1 = /** @class */ (function () { class
26 var c2 = C_1;
DcloduleWithRecursiveReference.js19 (function (C_1) { argument
20 C_1.C = M.C;
DrecursiveCloduleReference.js22 (function (C_1) { argument
23 C_1.C = M.C;
DdeclarationEmitShadowingInferNotRenamed.js39 …> : { [K in keyof D]: D[K] extends new (...args: any[]) => infer C_1 ? UpdatedClient<C_1> : never;…
DclassDeclarationBlockScoping1.js17 var C_1 = /** @class */ (function () { class
/third_party/ffmpeg/libavcodec/mips/
Dmpegaudiodsp_mips_fixed.c365 int const C_1 = 4229717092; /* cos(pi*1/18)*2 */ in imdct36_mips_fixed() local
580 [C_4] "r" (C_4), [C_3] "r" (C_3), [C_1] "r" (C_1), [C_7] "r" (C_7), in imdct36_mips_fixed()
/third_party/openssl/crypto/cast/
Dcast_local.h124 #define C_1 14L macro
143 CAST_S_table3+((t>>C_1)&C_M)))&0xffffffffL; \
160 v=w>>C_1; \
/third_party/skia/third_party/externals/spirv-cross/reference/opt/shaders-msl/vert/
Darray-component-io.vert52 float C_1 [[user(locn1_1)]];
96 out.C_1 = C[1];
/third_party/skia/third_party/externals/spirv-cross/reference/shaders-msl/vert/
Darray-component-io.vert52 float C_1 [[user(locn1_1)]];
96 out.C_1 = C[1];