• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020-2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <memory>
18 #include <string>
19 
20 #include "common/common.h"
21 #include "gtest/gtest.h"
22 #include "minddata/dataset/core/client.h"
23 #include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
24 #include "minddata/dataset/engine/ir/datasetops/map_node.h"
25 #include "minddata/dataset/engine/opt/optional/tensor_op_fusion_pass.h"
26 #include "minddata/dataset/engine/opt/post/auto_worker_pass.h"
27 #include "minddata/dataset/include/dataset/transforms.h"
28 #include "minddata/dataset/include/dataset/vision.h"
29 #include "minddata/dataset/include/dataset/vision_lite.h"
30 #include "minddata/dataset/kernels/ir/data/transforms_ir.h"
31 #include "minddata/dataset/kernels/ir/vision/decode_ir.h"
32 #include "minddata/dataset/kernels/ir/vision/random_crop_decode_resize_ir.h"
33 #include "minddata/dataset/kernels/ir/vision/random_resized_crop_ir.h"
34 
35 using namespace mindspore::dataset;
36 using mindspore::LogStream;
37 using mindspore::MsLogLevel::INFO;
38 
39 class MindDataTestOptimizationPass : public UT::DatasetOpTesting {};
40 
TEST_F(MindDataTestOptimizationPass,MindDataTestAutoWorkerPass)41 TEST_F(MindDataTestOptimizationPass, MindDataTestAutoWorkerPass) {
42   MS_LOG(INFO) << "Doing MindDataTestOptimizationPass-MindDataTestAutoWorkerPass.";
43 
44   std::shared_ptr<SchemaObj> schema = std::make_shared<SchemaObj>();
45   ASSERT_OK(schema->add_column("label", "uint32", {}));
46   std::shared_ptr<Dataset> map_leaf = ImageFolder("dir")->SetNumWorkers(0);
47   std::shared_ptr<Dataset> nonmap_leaf = RandomData(44, schema)->SetNumWorkers(0);
48   std::shared_ptr<Dataset> batch = Zip({map_leaf, nonmap_leaf})->Batch(1)->SetNumWorkers(0);
49   std::shared_ptr<Dataset> map = batch->Map({std::shared_ptr<TensorTransform>()})->SetNumWorkers(0);
50   //  {ImageFolder, RandomData} -> zip -> batch
51   EXPECT_EQ(map_leaf->IRNode()->NumWorkers(), 0);
52   EXPECT_EQ(nonmap_leaf->IRNode()->NumWorkers(), 0);
53   EXPECT_EQ(batch->IRNode()->NumWorkers(), 0);
54   EXPECT_EQ(map->IRNode()->NumWorkers(), 0);
55 
56   std::unique_ptr<IRPass> pass = std::make_unique<AutoWorkerPass>();
57   bool m = false;
58   ASSERT_OK(pass->Run(map->IRNode(), &m));
59 
60   // checking that after this pass, num_workers are set correctly (aka a positive number)
61   // It is hard to test a exact value because num_threads are different for different machine
62   // however, this will for sure succeed bc regardless of the total threads on cpu, this would always be >= 1
63   EXPECT_NE(map_leaf->IRNode()->NumWorkers(), 0);
64   EXPECT_NE(nonmap_leaf->IRNode()->NumWorkers(), 0);
65   EXPECT_NE(batch->IRNode()->NumWorkers(), 0);
66   EXPECT_NE(map->IRNode()->NumWorkers(), 0);
67   MS_LOG(DEBUG) << map_leaf->IRNode()->Name() << ": num_worker=" << map_leaf->IRNode()->NumWorkers();
68   MS_LOG(DEBUG) << nonmap_leaf->IRNode()->Name() << ": num_worker=" << nonmap_leaf->IRNode()->NumWorkers();
69   MS_LOG(DEBUG) << batch->IRNode()->Name() << ": num_worker=" << batch->IRNode()->NumWorkers();
70   MS_LOG(DEBUG) << map->IRNode()->Name() << ": num_worker=" << map->IRNode()->NumWorkers();
71 }
72 
TEST_F(MindDataTestOptimizationPass,MindDataTestTensorFusionPass)73 TEST_F(MindDataTestOptimizationPass, MindDataTestTensorFusionPass) {
74   MS_LOG(INFO) << "Doing MindDataTestOptimizationPass-MindDataTestTensorFusionPass.";
75   std::string folder_path = datasets_root_path_ + "/testPK/data/";
76   auto decode_op = vision::Decode();
77   auto random_resized_crop_op = vision::RandomResizedCrop({100});
78   std::shared_ptr<Dataset> root = ImageFolder(folder_path, false)->Map({decode_op, random_resized_crop_op}, {"image"});
79 
80   TensorOpFusionPass fusion_pass;
81   bool modified = false;
82   std::shared_ptr<MapNode> map_node = std::dynamic_pointer_cast<MapNode>(root->IRNode());
83   // no deepcopy is performed because this doesn't go through tree_adapter
84   fusion_pass.Run(root->IRNode(), &modified);
85   EXPECT_EQ(modified, true);
86   ASSERT_NE(map_node, nullptr);
87   auto fused_ops = map_node->operations();
88   ASSERT_EQ(fused_ops.size(), 1);
89   ASSERT_EQ(fused_ops[0]->Name(), vision::kRandomCropDecodeResizeOperation);
90 }
91 
TEST_F(MindDataTestOptimizationPass,MindDataTestTensorFusionPassPreBuiltTensorOperation)92 TEST_F(MindDataTestOptimizationPass, MindDataTestTensorFusionPassPreBuiltTensorOperation) {
93   MS_LOG(INFO) << "Doing MindDataTestOptimizationPass-MindDataTestTensorFusionPassPreBuiltTensorOperation.";
94   std::string folder_path = datasets_root_path_ + "/testPK/data/";
95   // make prebuilt tensor operation
96   auto decode = std::make_shared<transforms::PreBuiltOperation>(vision::DecodeOperation(true).Build());
97   auto resize = std::make_shared<transforms::PreBuiltOperation>(
98     vision::RandomResizedCropOperation({100, 100}, {0.5, 1.0}, {0.1, 0.2}, InterpolationMode::kNearestNeighbour, 5).Build());
99   std::vector<std::shared_ptr<TensorOperation>> op_list = {decode, resize};
100   std::vector<std::string> op_name = {"image"};
101   std::shared_ptr<DatasetNode> root = ImageFolder(folder_path, false)->IRNode();
102   std::shared_ptr<MapNode> map_node = std::make_shared<MapNode>(root, op_list, op_name);
103 
104   TensorOpFusionPass fusion_pass;
105   bool modified = false;
106   // no deepcopy is performed because this doesn't go through tree_adapter
107   fusion_pass.Run(map_node, &modified);
108   EXPECT_EQ(modified, true);
109   ASSERT_NE(map_node, nullptr);
110   auto fused_ops = map_node->operations();
111   ASSERT_EQ(fused_ops.size(), 1);
112   ASSERT_EQ(fused_ops[0]->Name(), kRandomCropDecodeResizeOp);
113 }
114