/third_party/typescript/tests/baselines/reference/ |
D | declarationEmitExportAliasVisibiilityMarking.types | 5 type Rank = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 'Jack' | 'Queen' | 'King'; 6 >Rank : Rank 8 export { Suit, Rank }; 10 >Rank : any 13 import { Suit, Rank } from './Types'; 15 >Rank : any 17 export default (suit: Suit, rank: Rank) => ({suit, rank}); 18 >(suit: Suit, rank: Rank) => ({suit, rank}) : (suit: Suit, rank: Rank) => { suit: Suit; rank: Rank;… 20 >rank : Rank 21 >({suit, rank}) : { suit: Suit; rank: Rank; } [all …]
|
D | declarationEmitExportAliasVisibiilityMarking.js | 5 type Rank = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 'Jack' | 'Queen' | 'King'; 6 export { Suit, Rank }; 9 import { Suit, Rank } from './Types'; 10 export default (suit: Suit, rank: Rank) => ({suit, rank}); 14 export { Suit, Rank } from './Types'; 34 declare type Rank = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 'Jack' | 'Queen' | 'King'; 35 export { Suit, Rank }; 37 import { Suit, Rank } from './Types'; 38 declare const _default: (suit: Suit, rank: Rank) => { 40 rank: Rank; [all …]
|
D | declarationEmitExportAliasVisibiilityMarking.symbols | 5 type Rank = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 'Jack' | 'Queen' | 'King'; 6 >Rank : Symbol(Rank, Decl(Types.ts, 0, 55)) 8 export { Suit, Rank }; 10 >Rank : Symbol(Rank, Decl(Types.ts, 2, 14)) 13 import { Suit, Rank } from './Types'; 15 >Rank : Symbol(Rank, Decl(Card.ts, 0, 14)) 17 export default (suit: Suit, rank: Rank) => ({suit, rank}); 21 >Rank : Symbol(Rank, Decl(Card.ts, 0, 14)) 36 export { Suit, Rank } from './Types'; 38 >Rank : Symbol(Rank, Decl(index.ts, 1, 14))
|
/third_party/typescript/tests/cases/compiler/ |
D | declarationEmitExportAliasVisibiilityMarking.ts | 5 type Rank = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 'Jack' | 'Queen' | 'King'; alias 6 export { Suit, Rank }; 9 import { Suit, Rank } from './Types'; 10 export default (suit: Suit, rank: Rank) => ({suit, rank}); 14 export { Suit, Rank } from './Types';
|
/third_party/mindspore/tests/ut/cpp/dataset/ |
D | tokenizer_op_test.cc | 54 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 74 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 88 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 97 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 106 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 116 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 129 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 140 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 149 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() 158 EXPECT_EQ(output[0]->Rank(), 1); in TEST_F() [all …]
|
/third_party/mindspore/mindspore/core/ops/ |
D | rank.h | 31 class MS_CORE_API Rank : public PrimitiveC { 34 Rank() : PrimitiveC(kNameRank) { auto prim_name = name(); } in Rank() function 36 ~Rank() = default; 37 MS_DECLARE_PARENT(Rank, PrimitiveC); 43 using PrimRankPtr = std::shared_ptr<Rank>;
|
/third_party/mindspore/mindspore/ccsrc/minddata/dataset/kernels/data/ |
D | concatenate_op.cc | 37 CHECK_FAIL_RETURN_UNEXPECTED(inputs.at(0).Rank() == 1, in OutputShape() 38 … "Concatenate: only 1D input supported, got rank:" + std::to_string(inputs.at(0).Rank())); in OutputShape() 44 …CHECK_FAIL_RETURN_UNEXPECTED(prepend_->shape().Rank() == 1, "Concatenate: only 1D prepend supporte… in OutputShape() 45 … std::to_string(prepend_->shape().Rank())); in OutputShape() 52 …CHECK_FAIL_RETURN_UNEXPECTED(append_->shape().Rank() == 1, "Concatenate: only 1D append supported,… in OutputShape() 53 … std::to_string(append_->shape().Rank())); in OutputShape()
|
D | data_utils.cc | 40 if (input->Rank() == 0) { in OneHotEncodingUnsigned() 66 if (input->Rank() == 0) { in OneHotEncodingSigned() 92 if (input->Rank() > 1) { // We expect the input to be int he first dimension in OneHotEncoding() 94 std::to_string(input->Rank())); in OneHotEncoding() 101 if (input->Rank() == 1) num_elements = input->shape()[0]; in OneHotEncoding() 404 if (src->Rank() == 0 || src->shape().AsVector() == pad_shape) { in PadEndNumeric() 407 CHECK_FAIL_RETURN_UNEXPECTED(src->Rank() == pad_shape.size(), in PadEndNumeric() 408 … "PadEnd: invalid pad shape, as rank of input is: " + std::to_string(src->Rank()) + in PadEndNumeric() 441 std::vector<dsize_t> cur_ind(src->Rank(), 0); in PadEndNumeric() 448 if (cur_dim == src->Rank() - 1) { // if this is the last dimension, copy the data in PadEndNumericHelper() [all …]
|
/third_party/mindspore/mindspore/ccsrc/minddata/dataset/kernels/image/ |
D | image_utils.cc | 100 if (tensor->Rank() != DEFAULT_IMAGE_RANK || in CheckTensorShape() 110 if (input_cv->Rank() == 1 || input_cv->mat().dims > 2) { in Flip() 112 std::to_string(input_cv->Rank())); in Flip() 145 RETURN_IF_NOT_OK(ValidateImageRank("Resize", input_cv->Rank())); in Resize() 180 if (input_cv->Rank() == DEFAULT_IMAGE_RANK) shape = shape.AppendDim(num_channels); in Resize() 451 RETURN_IF_NOT_OK(ValidateImageRank("Crop", input_cv->Rank())); in Crop() 470 if (input_cv->Rank() == DEFAULT_IMAGE_RANK) { in Crop() 488 RETURN_IF_NOT_OK(ValidateImageRank("ConvertColor", input_cv->Rank())); in ConvertColor() 492 if (input_cv->Rank() == DEFAULT_IMAGE_RANK) { in ConvertColor() 523 if (input_cv->Rank() == 2) { in HwcToChw() [all …]
|
D | posterize_op.cc | 34 if (input_cv->Rank() != 3 && input_cv->Rank() != 2) { in Compute() 36 std::to_string(input_cv->Rank())); in Compute() 52 RETURN_IF_NOT_OK(CVTensor::CreateFromMat(output_img, input_cv->Rank(), &result_tensor)); in Compute()
|
D | decode_op.cc | 40 if (input->Rank() != 1) { in Compute() 42 std::to_string(input->Rank())); in Compute() 54 if (inputs[0].Rank() == 1) outputs.emplace_back(out); in OutputShape() 58 …d input shape, expected 1D input, but got input dimension is:" + std::to_string(inputs[0].Rank())); in OutputShape()
|
D | random_crop_and_resize_op.cc | 52 if (input[i]->Rank() != 2 && input[i]->Rank() != 3) { in Compute() 54 std::to_string(input[i]->Rank()); in Compute() 85 if (inputs[0].Rank() == 2) { in OutputShape() 88 if (inputs[0].Rank() == 3) { in OutputShape() 96 std::to_string(inputs[0].Rank())); in OutputShape()
|
D | random_rotation_op.cc | 73 std::to_string(inputs[0].Rank())); in OutputShape() 79 if (inputs[0].Rank() == 2) outputs.emplace_back(out); in OutputShape() 80 if (inputs[0].Rank() == 3) outputs.emplace_back(out.AppendDim(inputs[0][2])); in OutputShape() 84 std::to_string(inputs[0].Rank())); in OutputShape()
|
D | center_crop_op.cc | 36 dsize_t rank = input->shape().Rank(); in Compute() 80 if (inputs[0].Rank() == 2) outputs.emplace_back(out); in OutputShape() 81 if (inputs[0].Rank() == 3) outputs.emplace_back(out.AppendDim(inputs[0][2])); in OutputShape() 85 std::to_string(inputs[0].Rank())); in OutputShape()
|
D | random_crop_op.cc | 125 if (input[i]->Rank() != 2 && input[i]->Rank() != 3) { in Compute() 127 …domCropOp: image shape is not <H,W,C> or <H, W>, but got rank:" + std::to_string(input[i]->Rank()); in Compute() 169 if (inputs[0].Rank() == 2) { in OutputShape() 172 if (inputs[0].Rank() == 3) { in OutputShape() 180 std::to_string(inputs[0].Rank())); in OutputShape()
|
D | crop_op.cc | 44 if (inputs[0].Rank() == 2) { in OutputShape() 47 if (inputs[0].Rank() == 3) { in OutputShape() 55 std::to_string(inputs[0].Rank())); in OutputShape()
|
D | sharpness_op.cc | 37 if (input_cv->Rank() == 1 || input_cv->mat().dims > 2) { in Compute() 39 std::to_string(input_cv->Rank())); in Compute() 68 RETURN_IF_NOT_OK(CVTensor::CreateFromMat(result, input_cv->Rank(), &output_cv)); in Compute()
|
D | random_color_op.cc | 29 if (in->Rank() != 3 || in->shape()[2] != 3) { in Compute() 31 … std::to_string(in->Rank()) + ", and channel: " + std::to_string(in->shape()[2])); in Compute() 51 RETURN_IF_NOT_OK(CVTensor::CreateFromMat(cv_out, cvt_in->Rank(), &cvt_out)); in Compute()
|
D | resize_op.cc | 65 if (inputs[0].Rank() == 2) { in OutputShape() 68 if (inputs[0].Rank() == 3) { in OutputShape() 76 std::to_string(inputs[0].Rank())); in OutputShape()
|
D | rotate_op.cc | 77 if (inputs[0].Rank() == 2) outputs.emplace_back(out); in OutputShape() 78 if (inputs[0].Rank() == 3) outputs.emplace_back(out.AppendDim(inputs[0][2])); in OutputShape() 82 std::to_string(inputs[0].Rank())); in OutputShape()
|
/third_party/mindspore/mindspore/ccsrc/minddata/dataset/core/ |
D | cv_tensor.cc | 70 if (shape.Rank() <= 2 || (shape.Rank() == 3 && shape[2] <= CV_CN_MAX)) { in IsValidImage() 72 if (shape.Rank() == 3) { in IsValidImage() 75 if (shape.Rank() > 0) size[0] = static_cast<int>(shape[0]); in IsValidImage() 76 if (shape.Rank() > 1) size[1] = static_cast<int>(shape[1]); in IsValidImage() 110 *mat = cv::Mat(static_cast<int>(shape.Rank()), &sizes32[0], cv_type, data); in MatInit()
|
/third_party/boost/boost/graph/ |
D | kruskal_min_spanning_tree.hpp | 46 template < class Graph, class OutputIterator, class Rank, class Parent, 49 Rank rank, Parent parent, Weight weight) in kruskal_mst_impl() 58 BOOST_CONCEPT_ASSERT((ReadWritePropertyMapConcept< Rank, Vertex >)); in kruskal_mst_impl() 62 typedef typename property_traits< Rank >::value_type R_value; in kruskal_mst_impl() 68 disjoint_sets< Rank, Parent > dset(rank, parent); in kruskal_mst_impl()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/ |
D | rank_cpu_kernel.h | 92 MS_REG_CPU_KERNEL_T(Rank, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFl… 95 MS_REG_CPU_KERNEL_T(Rank, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFl… 98 MS_REG_CPU_KERNEL_T(Rank, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloa… 101 MS_REG_CPU_KERNEL_T(Rank, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloa…
|
/third_party/skia/third_party/externals/swiftshader/third_party/llvm-10.0/llvm/include/llvm/Transforms/Scalar/ |
D | Reassociate.h | 47 unsigned Rank; member 50 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} in ValueEntry() 54 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
|
/third_party/skia/third_party/externals/swiftshader/third_party/llvm-10.0/llvm/lib/Transforms/Instrumentation/ |
D | CFGMST.h | 69 if (BB1G->Rank < BB2G->Rank) in unionGroups() 74 if (BB1G->Rank == BB2G->Rank) in unionGroups() 75 BB1G->Rank++; in unionGroups()
|