/third_party/mindspore/mindspore/ops/composite/ |
D | math_ops.py | 111 def _int_to_tuple_conv(axes): argument 116 if isinstance(axes[x], int): 117 axes[x] = (axes[x],) 118 return axes 122 def _check_axes(axes, prim_name=None): argument 127 validator.check_value_type('axes', axes, [int, tuple, list], "tensor dot") 128 if not isinstance(axes, int): 129 axes = list(axes) # to avoid immutability issues 130 if len(axes) != 2: 132 axes = _int_to_tuple_conv(axes) # convert before length checks [all …]
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_batchdot_op.py | 27 def __init__(self, axes): argument 29 self.axes = axes 32 return C.batch_dot(x, y, self.axes) 36 def _reference_batch_dot(x, y, axes): argument 37 if isinstance(axes, int): 38 axes = [axes, axes] 39 elif isinstance(axes, tuple): 40 axes = list(axes) 41 if axes is None: 43 axes = [x.ndim - 1, y.ndim - 1] [all …]
|
/third_party/libinput/test/ |
D | test-tablet.c | 57 struct axis_replacement axes[] = { in START_TEST() local 64 litest_tablet_proximity_in(dev, 10, 10, axes); in START_TEST() 100 struct axis_replacement axes[] = { in START_TEST() local 118 litest_tablet_proximity_in(dev, 10, 10, axes); in START_TEST() 119 litest_tablet_proximity_in(dev2, 10, 10, axes); in START_TEST() 215 struct axis_replacement axes[] = { in START_TEST() local 221 litest_tablet_proximity_in(dev, 10, 10, axes); in START_TEST() 224 litest_axis_set_value(axes, ABS_DISTANCE, 0); in START_TEST() 225 litest_axis_set_value(axes, ABS_PRESSURE, 30); in START_TEST() 227 litest_tablet_motion(dev, 10, 10, axes); in START_TEST() [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_tensordot_op.py | 27 def __init__(self, axes): argument 29 self.axes = axes 32 return C.tensor_dot(x, y, self.axes) 54 axes = ((1, 3), (2, 1)) 60 network = NetTensorDot(axes) 62 np_result = np.tensordot(x1, x2, axes) 68 axes = 1 74 network = NetTensorDot(axes) 76 np_result = np.tensordot(x1, x2, axes) 82 axes = ([1], [0]) [all …]
|
/third_party/mindspore/mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/ |
D | reduce_fp32_tests.cc | 42 … float *output_data, ReduceMode mode, const int *axes, const int num_axes, bool reduce_to_end, 71 … float *output_data, ReduceMode mode, const int *axes, const int num_axes, in Prepare() argument 83 memcpy(param_.axes_, axes, num_axes * sizeof(int)); in Prepare() 112 int axes[1] = {1}; in TEST_F() local 119 …Prepare(in_shape, out_shape, in, out, ReduceMode_ReduceMean, axes, axis_num, reduce_to_end, coeff); in TEST_F() 139 int axes[1] = {1}; in TEST_F() local 146 …Prepare(in_shape, out_shape, in, out, ReduceMode_ReduceMean, axes, axis_num, reduce_to_end, coeff); in TEST_F() 167 int axes[1] = {1}; in TEST_F() local 174 …Prepare(in_shape, out_shape, in, out, ReduceMode_ReduceMean, axes, axis_num, reduce_to_end, coeff); in TEST_F() 194 int axes[4] = {0, 1, 2, 3}; in TEST_F() local [all …]
|
/third_party/mindspore/mindspore/lite/test/ut/src/runtime/kernel/arm/int8/ |
D | reduce_int8_tests.cc | 39 int8_t *output_data, ReduceMode mode, const int *axes, const int num_axes); 66 … int8_t *output_data, ReduceMode mode, const int *axes, const int num_axes) { in Prepare() argument 79 memcpy(param_.axes_, axes, num_axes * sizeof(int)); in Prepare() 98 int axes[] = {3}; in TEST_F() local 107 …Prepare(input_shape, output_shape, input_data, output_data, ReduceMode_ReduceMean, axes, num_axes); in TEST_F() 123 int axes[] = {0}; in TEST_F() local 130 …Prepare(input_shape, output_shape, input_data, output_data, ReduceMode_ReduceMean, axes, num_axes); in TEST_F() 146 int axes[] = {-1}; in TEST_F() local 154 Prepare(input_shape, output_shape, input_data, output_data, ReduceMode_ReduceSum, axes, num_axes); in TEST_F() 170 int axes[] = {0, 1, 2, 3}; in TEST_F() local [all …]
|
/third_party/boost/boost/histogram/detail/ |
D | axes.hpp | 94 auto make_empty_dynamic_axes(const T& axes) { in make_empty_dynamic_axes() argument 95 return make_default(axes); in make_empty_dynamic_axes() 121 T axes = make_default(old_axes); in axes_transform() local 122 axes.reserve(old_axes.size()); in axes_transform() 123 for_each_axis(old_axes, [&](const auto& a) { axes.emplace_back(f(axes.size(), a)); }); in axes_transform() 124 return axes; in axes_transform() 158 unsigned axes_rank(const T& axes) { in axes_rank() argument 161 return static_cast<unsigned>(std::distance(begin(axes), end(axes))); in axes_rank() 170 void throw_if_axes_is_too_large(const T& axes) { in throw_if_axes_is_too_large() argument 171 if (axes_rank(axes) > BOOST_HISTOGRAM_DETAIL_AXES_LIMIT) in throw_if_axes_is_too_large() [all …]
|
D | fill_n.hpp | 124 const std::size_t offset, S& storage, Axes& axes, const T* viter) { in fill_n_indices() argument 127 for_each_axis(axes, [eit = extents, sit = shifts](const auto& a) mutable { in fill_n_indices() 135 for_each_axis(axes, [&, stride = static_cast<std::size_t>(1), in fill_n_indices() 146 for_each_axis(axes, [&update_needed, eit = extents](const auto& a) mutable { in fill_n_indices() 150 storage_grower<Axes> g(axes); in fill_n_indices() 179 void fill_n_nd(const std::size_t offset, S& storage, A& axes, const std::size_t vsize, in fill_n_nd() argument 215 fill_n_indices(indices, start, n, offset, storage, axes, values); in fill_n_nd() 223 void fill_n_1(const std::size_t offset, S& storage, std::tuple<As...>& axes, in fill_n_1() argument 227 fill_n_nd<index_type>(offset, storage, axes, vsize, values, std::forward<Us>(us)...); in fill_n_1() 231 void fill_n_1(const std::size_t offset, S& storage, A& axes, const std::size_t vsize, in fill_n_1() argument [all …]
|
D | at.hpp | 23 optional_index at(const A& axes, const std::tuple<Us...>& args) noexcept { in at() argument 27 stride *= linearize_index(idx, stride, axis_get<i>(axes), in at() 34 optional_index at(const A& axes, const U& args) noexcept { in at() argument 37 for_each_axis(axes, [&, it = begin(args), in at()
|
D | fill.hpp | 61 storage_grower(const A& axes) noexcept : axes_(axes) {} in storage_grower() 240 const Axes& axes, const Args& args) { in fill_2() argument 243 idx, axes, args); in fill_2() 250 auto fill_2(ArgTraits, mp11::mp_true, const std::size_t, Storage& st, Axes& axes, in fill_2() argument 258 auto& ax = axis_get<i>(axes); in fill_2() 265 storage_grower<Axes> g(axes); in fill_2() 300 auto fill(std::true_type, ArgTraits, const std::size_t offset, S& storage, A& axes, in fill() argument 316 if (axes_rank(axes) == ArgTraits::nargs::value) in fill() 317 return fill_2(ArgTraits{}, growing{}, offset, storage, axes, args); in fill() 318 else if (axes_rank(axes) == 1 && in fill() [all …]
|
/third_party/libinput/src/ |
D | evdev-totem.c | 39 struct tablet_axes axes; member 133 mm = evdev_device_units_to_mm(totem->device, &slot->axes.point); in totem_set_touch_device_enabled() 269 struct tablet_axes axes = {0}; in totem_slot_fetch_axes() local 274 axes = slot->axes; in totem_slot_fetch_axes() 280 slot->axes.point.x = libevdev_get_slot_value(device->evdev, in totem_slot_fetch_axes() 283 slot->axes.point.y = libevdev_get_slot_value(device->evdev, in totem_slot_fetch_axes() 294 slot->axes.rotation = (360 - angle) % 360; in totem_slot_fetch_axes() 312 slot->axes.size.major = (double)major/rmajor; in totem_slot_fetch_axes() 313 slot->axes.size.minor = (double)minor/rminor; in totem_slot_fetch_axes() 316 axes.point = slot->axes.point; in totem_slot_fetch_axes() [all …]
|
D | evdev-tablet.c | 103 const struct tablet_axes *axes) in tablet_history_push() argument 108 tablet->history.samples[index] = *axes; in tablet_history_push() 114 tablet_history_push(tablet, axes); in tablet_history_push() 429 x = tablet->axes.tilt.x; in convert_tilt_to_rotation() 430 y = tablet->axes.tilt.y; in convert_tilt_to_rotation() 438 tablet->axes.rotation = angle; in convert_tilt_to_rotation() 477 tablet->axes.point.x = value; in tablet_update_xy() 486 tablet->axes.point.y = value; in tablet_update_xy() 488 evdev_transform_absolute(device, &tablet->axes.point); in tablet_update_xy() 496 struct tablet_axes *axes, in tablet_tool_process_delta() argument [all …]
|
/third_party/boost/boost/histogram/algorithm/ |
D | project.hpp | 42 const auto& old_axes = unsafe_access::axes(h); in project() 43 auto axes = detail::static_if<detail::is_tuple<A>>( in project() local 53 using A2 = decltype(axes); in project() 54 auto result = histogram<A2, S>(std::move(axes), detail::make_default(old_storage)); in project() 55 auto idx = detail::make_stack_buffer<int>(unsafe_access::axes(result)); in project() 73 const auto& old_axes = unsafe_access::axes(h); in project() 76 auto axes = detail::make_empty_dynamic_axes(old_axes); in project() local 77 axes.reserve(c.size()); in project() 84 axes.emplace_back(detail::axis_get(old_axes, d)); in project() 89 histogram<decltype(axes), S>(std::move(axes), detail::make_default(old_storage)); in project() [all …]
|
/third_party/mindspore/mindspore/ |
D | _checkparam.py | 651 def check_transpose_axis(axes, ndim): argument 653 if not axes or (len(axes) == 1 and axes[0] is None): 656 if len(axes) == 1: 657 perm = axes[0] 667 if len(axes) != ndim: 669 return axes 700 def check_swapaxes_axis(axes, ndim): argument 702 if isinstance(axes, int): 703 Validator.check_axis_in_range(axes, ndim) 704 return axes % ndim [all …]
|
/third_party/boost/libs/histogram/test/ |
D | utility_histogram.hpp | 38 auto make(static_tag, const Axes&... axes) { in make() argument 39 return make_histogram(axes...); in make() 43 auto make_s(static_tag, S&& s, const Axes&... axes) { in make_s() argument 44 return make_histogram_with(s, axes...); in make_s() 48 auto make(dynamic_tag, const Axes&... axes) { in make() argument 49 return make_histogram(make_axis_vector(axes...)); in make() 53 auto make_s(dynamic_tag, S&& s, const Axes&... axes) { in make_s() argument 54 return make_histogram_with(s, make_axis_vector(axes...)); in make_s()
|
D | axis_variant_test.cpp | 158 std::vector<variant> axes; in main() local 159 axes.push_back(axis::regular<>{2, -1, 1}); in main() 160 axes.push_back(axis::regular<double, tr::pow>{tr::pow{0.5}, 2, 1, 4}); in main() 161 axes.push_back(axis::category<>{A, B, C}); in main() 162 axes.push_back(axis::integer<>{-1, 1}); in main() 163 axes.push_back(axis::boolean<>{}); in main() 164 for (const auto& a : axes) { in main() 168 BOOST_TEST_NE(axes, std::vector<variant>{}); in main() 169 BOOST_TEST(axes == std::vector<variant>(axes)); in main() 216 axes_type axes(a); in main() local [all …]
|
/third_party/mindspore/mindspore/lite/src/ops/populate/ |
D | slice_populate.cc | 39 auto axes = value->axes(); in PopulateSliceParameter() local 41 if (axes != nullptr) { in PopulateSliceParameter() 42 if (axes->size() > DIMENSION_8D) { in PopulateSliceParameter() 43 MS_LOG(ERROR) << "Invalid axes size: " << axes->size(); in PopulateSliceParameter() 47 for (size_t i = 0; i < axes->size(); ++i) { in PopulateSliceParameter() 48 param->axis_[i] = axes->Get(i); in PopulateSliceParameter()
|
/third_party/mindspore/mindspore/numpy/ |
D | utils_const.py | 91 def _check_axes_range(axes, ndim): argument 106 _check_axis_type(axes, True, True, True) 107 if isinstance(axes, (list, tuple)): 108 _check_element_int(axes) 109 axes = _canonicalize_axis(axes, ndim) 110 return axes 159 def _check_axis_valid(axes, ndim): argument 164 if axes is None: 165 axes = F.make_range(ndim) 166 return axes [all …]
|
/third_party/mindspore/mindspore/lite/tools/converter/parser/onnx/ |
D | onnx_slice_parser.cc | 36 std::vector<int32_t> axes; in Parse() local 49 axes.clear(); in Parse() 51 axes.push_back(static_cast<int>(std::min(onnx_node_attr.ints()[i], int_32_max))); in Parse() 72 } else if (!axes.empty()) { in Parse() 73 size = static_cast<int>(axes.size()); in Parse() 80 if (axes.empty()) { in Parse() 82 axes.push_back(i); in Parse() 90 prim->AddAttr("axes", MakeValue(axes)); in Parse()
|
/third_party/libinput/tools/ |
D | libinput-measure-fuzz.py | 108 axes = { 115 if axes[0x35] is not None: 116 if axes[0x35] != axes[0x00]: 117 …rint_bold('WARNING: fuzz mismatch ABS_X: {}, ABS_MT_POSITION_X: {}'.format(axes[0x00], axes[0x35])) 119 if axes[0x36] is not None: 120 if axes[0x36] != axes[0x01]: 121 …rint_bold('WARNING: fuzz mismatch ABS_Y: {}, ABS_MT_POSITION_Y: {}'.format(axes[0x01], axes[0x36])) 123 xfuzz = axes[0x35] or axes[0x00] 124 yfuzz = axes[0x36] or axes[0x01]
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/infer/ |
D | reduce_infer.c | 92 int *axes = (int *)axes_input->data_; in ReduceInferShape() local 93 NNACL_CHECK_NULL_RETURN_ERR(axes); in ReduceInferShape() 112 ShapeSet(actual_axes, &actual_axes_size, axes, num_axes); in ReduceInferShape() 119 if (axes[0] < -1 * rank || axes[0] >= rank) { in ReduceInferShape() 123 begin_axis = axes[0] < 0 ? axes[0] + rank : axes[0]; in ReduceInferShape()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp32_grad/ |
D | reduce_grad.c | 21 … const int *axes, int num_axes, float *output_data, const int *output_dims, int output_num_dims) { in ReduceMeanByAxes() argument 35 size_t output_offset = GetOutputOffset(input_num_dims, input_dims, input_iter, num_axes, axes); in ReduceMeanByAxes() 42 size_t current = (size_t)(input_dims[axes[idx]]); in ReduceMeanByAxes() 74 int axes[5] = {0}; in ReduceSumByAxes() local 78 axes[num_axes++] = i; in ReduceSumByAxes() 85 size_t output_offset = GetOutputOffset(num_dims, input_dims, input_iter, num_axes, axes); in ReduceSumByAxes()
|
/third_party/boost/libs/histogram/examples/ |
D | getting_started_listing_02.cpp | 30 std::vector<variant> axes; in main() local 31 axes.emplace_back(cat({"red", "blue"})); in main() 32 axes.emplace_back(reg(3, 0.0, 1.0, "x")); in main() 33 axes.emplace_back(reg(3, 0.0, 1.0, "y")); in main() 35 auto h = make_histogram(std::move(axes)); in main()
|
/third_party/boost/boost/histogram/ |
D | make_histogram.hpp | 36 auto make_histogram_with(Storage&& storage, Axis&& axis, Axes&&... axes) { in make_histogram_with() argument 37 auto a = std::make_tuple(std::forward<Axis>(axis), std::forward<Axes>(axes)...); in make_histogram_with() 49 auto make_histogram(Axis&& axis, Axes&&... axes) { in make_histogram() argument 51 std::forward<Axes>(axes)...); in make_histogram() 60 auto make_weighted_histogram(Axis&& axis, Axes&&... axes) { in make_weighted_histogram() argument 62 std::forward<Axes>(axes)...); in make_weighted_histogram()
|
/third_party/mindspore/mindspore/ccsrc/transform/graph_ir/op_declare/ |
D | reduce_ops_declare.cc | 58 {2, ATTR_DESC(axes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}}; 66 {2, ATTR_DESC(axes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}}; 74 {2, ATTR_DESC(axes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}}; 82 {2, ATTR_DESC(axes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}}; 90 {2, ATTR_DESC(axes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}}; 98 {2, ATTR_DESC(axes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}}; 106 {2, ATTR_DESC(axes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
|