/third_party/mindspore/mindspore/ops/operations/ |
D | _quant_ops.py | 147 def __init__(self, ema=False, ema_decay=0.999, channel_axis=1): argument 159 …self.channel_axis = validator.check_int_range(channel_axis, 0, 1, Rel.INC_BOTH, 'channel_axis', se… 161 … self.channel_axis = validator.check_non_negative_int(channel_axis, 'channel_axis', self.name) 365 channel_axis=1): argument 377 …self.channel_axis = validator.check_int_range(channel_axis, 0, 1, Rel.INC_BOTH, 'channel_axis', se… 379 … self.channel_axis = validator.check_non_negative_int(channel_axis, 'channel_axis', self.name) 389 self.channel_axis = 0 391 …validator.check_equal_int(alpha_shape[0], input_x_shape[self.channel_axis], "alpha rank", self.nam… 423 channel_axis=1): argument 428 … self.channel_axis = validator.check_non_negative_int(channel_axis, 'channel axis', self.name) [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_fake_quant_perchannel.py | 28 def __init__(self, num_bits=8, symmetric=False, narrow_range=False, channel_axis=1): argument 33 channel_axis=channel_axis) 49 net = Net(num_bits=8, narrow_range=False, channel_axis=0) 70 net = Net(num_bits=8, narrow_range=False, channel_axis=0) 91 net = Net(num_bits=8, narrow_range=True, channel_axis=0) 113 net = Net(num_bits=8, narrow_range=False, channel_axis=0) 134 net = Net(num_bits=8, narrow_range=True, channel_axis=0) 156 net = Net(num_bits=8, narrow_range=False, channel_axis=1) 178 net = Net(num_bits=8, narrow_range=True, channel_axis=1) 201 net = Net(num_bits=8, narrow_range=False, channel_axis=1) [all …]
|
/third_party/mindspore/mindspore/ops/_op_impl/_custom_op/ |
D | fake_learned_scale_quant_perchannel_grad_reduce.py | 49 …ake_learned_scale_quant_perchannel_grad_d_reduce_compute(dout_alpha_data, dout_alpha, channel_axis, argument 55 axis.remove(channel_axis) 61 def fake_learned_scale_quant_perchannel_grad_d_reduce(dout_alpha, dalpha, channel_axis, argument 78 channel_axis, kernel_name)
|
D | minmax_update_perchannel.py | 52 ema, ema_decay, channel_axis): argument 60 if channel_axis == 0: 81 ema, ema_decay, channel_axis, argument 91 if channel_axis == 0 and x_shape[0] != min_shape[0] and x_shape[1] == min_shape[0]: 94 channel_axis_ = channel_axis
|
D | fake_learned_scale_quant_perchannel.py | 74 def fake_learned_scale_quant_perchannel_param(input_x, alpha, quant_max, channel_axis, argument 86 …if channel_axis == 0 and input_x_shape_[0] != alpha_shape[0] and input_x_shape_[1] == alpha_shape[… 89 channel_axis_ = channel_axis 119 def fake_learned_scale_quant_perchannel(input_x, alpha, quant_max, out, neg_trunc, channel_axis, argument 123 … fake_learned_scale_quant_perchannel_param(input_x, alpha, quant_max, channel_axis, kernel_name)
|
D | fake_quant_perchannel.py | 89 def fake_quant_perchannel_param(x, min_val, max_val, channel_axis, argument 101 if channel_axis == 0 and x_shape_[0] != min_shape[0] and x_shape_[1] == min_shape[0]: 104 channel_axis_ = channel_axis 130 symmetric, narrow_range, num_bits, channel_axis, argument 139 channel_axis, kernel_name)
|
D | fake_learned_scale_quant_perchannel_grad.py | 143 def fake_learned_scale_quant_perchannel_grad_d_param(input_x, alpha, quant_max, channel_axis, argument 155 …if channel_axis == 0 and input_x_shape_[0] != alpha_shape[0] and input_x_shape_[1] == alpha_shape[… 158 channel_axis_ = channel_axis 190 … channel_axis, kernel_name="fake_learned_scale_quant_perchannel_grad_d"): argument 193 …fake_learned_scale_quant_perchannel_grad_d_param(input_x, alpha, quant_max, channel_axis, kernel_n…
|
D | fake_quant_perchannel_grad.py | 113 def fake_quant_perchannel_grad_param(x, min_val, max_val, channel_axis, argument 125 if channel_axis == 0 and x_shape_[0] != min_shape[0] and x_shape_[1] == min_shape[0]: 128 channel_axis_ = channel_axis 154 symmetric, narrow_range, num_bits, channel_axis, argument 167 channel_axis, kernel_name)
|
/third_party/mindspore/mindspore/nn/layer/ |
D | quant.py | 376 channel_axis=1, argument 399 self.channel_axis = channel_axis 457 quant_fun = partial(Q.FakeQuantPerChannel, channel_axis=self.channel_axis) 458 ema_fun = partial(Q.MinMaxUpdatePerChannel, channel_axis=self.channel_axis) 508 quant_fun = partial(Q.FakeLearnedScaleQuantPerChannel, channel_axis=self.channel_axis) 552 … self.channel_axis, self.num_channels, self.quant_delay, 739 channel_axis = 0 740 self.channel_axis = channel_axis 756 channel_axis=channel_axis, 789 if self.channel_axis: [all …]
|
/third_party/mindspore/mindspore/ops/_grad/ |
D | grad_quant_ops.py | 71 channel_axis=self.channel_axis) 95 grad_dx = Q.CorrectionMulGrad(self.channel_axis) 96 grad_d_batch_std = Q.CorrectionMulGradReduce(self.channel_axis) 228 channel_axis=self.channel_axis)
|