Home
last modified time | relevance | path

Searched refs:concentration1 (Results 1 – 3 of 3) sorted by relevance

/third_party/mindspore/mindspore/nn/probability/distribution/
Dbeta.py139 concentration1=None, argument
148 param['param_dict'] = {'concentration1': concentration1, 'concentration0': concentration0}
156 if isinstance(concentration1, float):
161 self._concentration1 = self._add_parameter(concentration1, 'concentration1')
192 def concentration1(self): member in Beta
210 def _get_dist_args(self, concentration1=None, concentration0=None): argument
211 if concentration1 is not None:
212 self.checktensor(concentration1, 'concentration1')
214 concentration1 = self._concentration1
219 return concentration1, concentration0
[all …]
/third_party/mindspore/tests/ut/python/nn/probability/distribution/
Dtest_beta.py104 def construct(self, value, concentration1, concentration0): argument
105 prob = self.gamma.prob(value, concentration1, concentration0)
106 log_prob = self.gamma.log_prob(value, concentration1, concentration0)
115 concentration1 = Tensor([2.0, 3.0], dtype=dtype.float32)
117 ans = net(value, concentration1, concentration0)
203 def construct(self, value, concentration1, concentration0): argument
205 prob1 = self.gamma('prob', value, concentration1, concentration0)
206 prob2 = self.gamma1('prob', value, concentration1, concentration0)
215 concentration1 = Tensor([0.0], dtype=dtype.float32)
217 ans = net(value, concentration1, concentration0)
/third_party/mindspore/tests/st/probability/distribution/
Dtest_beta.py102 concentration1 = Tensor(concentration1_b, dtype=dtype.float32)
104 output = kl_loss(concentration1, concentration0)
143 def construct(self, concentration1=None, concentration0=None): argument
144 return self.b.sample(self.shape, concentration1, concentration0)
152 concentration1 = Tensor([2.0], dtype=dtype.float32)
155 output = sample(concentration1, concentration0)
200 concentration1 = Tensor([3.0], dtype=dtype.float32)
202 diff = cross_entropy(concentration1, concentration0)