/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/ps/ |
D | sparse_apply_adam_ps_kernel.cc | 39 const std::vector<size_t> &grad_shape = *(shape_vec[9]); in InitKernel() local 54 if (var_shape.size() != grad_shape.size()) { in InitKernel() 59 if (var_shape[i] != grad_shape[i]) { in InitKernel() 68 if (grad_shape[0] != indices_size_) { in InitKernel()
|
D | sparse_apply_lazy_adam_ps_kernel.cc | 40 const std::vector<size_t> &grad_shape = *(shape_vec[9]); in InitKernel() local 50 if (var_shape.size() != grad_shape.size()) { in InitKernel() 61 if (var_shape[i] != grad_shape[i]) { in InitKernel() 70 if (grad_shape[0] != indices_size_) { in InitKernel()
|
D | sparse_apply_ftrl_ps_kernel.cc | 37 std::vector<size_t> grad_shape = *(shape_vec[3]); in InitKernel() local 44 if (var_shape.size() != grad_shape.size()) { in InitKernel() 54 if (var_shape[i] != grad_shape[i]) { in InitKernel() 63 if (grad_shape[0] != indices_size_) { in InitKernel()
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/ |
D | avgpool_3d_grad_fusion.cc | 127 std::vector<int64_t> grad_shape; in ConstructMultiplier() local 128 …(void)std::transform(ori_shape.begin(), ori_shape.end(), std::back_inserter(grad_shape), SizeToLon… in ConstructMultiplier() 129 std::vector<int64_t> assist_shape = grad_shape; // NCDHW in ConstructMultiplier() 139 for (int64_t nn = 0; nn < grad_shape[kDim0]; nn++) { in ConstructMultiplier() 140 for (int64_t cc = 0; cc < grad_shape[kDim1]; cc++) { in ConstructMultiplier() 142 for (int64_t di = 0; di < grad_shape[kDim2]; di++) { in ConstructMultiplier() 144 for (int64_t hi = 0; hi < grad_shape[kDim3]; hi++) { in ConstructMultiplier() 146 for (int64_t wi = 0; wi < grad_shape[kDim4]; wi++) { in ConstructMultiplier()
|
/third_party/mindspore/mindspore/ccsrc/fl/server/kernel/ |
D | dense_grad_accum_kernel.h | 48 …std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, cnode_grad_idx); in InitKernel() local 49 …size_t grad_size = std::accumulate(grad_shape.begin(), grad_shape.end(), sizeof(T), std::multiplie… in InitKernel()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/ |
D | sparse_apply_proximal_adagrad_cpu_kernel.cc | 89 std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 5); in InitKernel() local 97 if (var_shape.size() != grad_shape.size()) { in InitKernel() 102 if (var_shape[i] != grad_shape[i]) { in InitKernel() 111 if (grad_shape[0] != indices_size_) { in InitKernel()
|
D | sparse_apply_ftrl_cpu_kernel.cc | 91 std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3); in InitKernel() local 102 if (var_shape.size() != grad_shape.size()) { in InitKernel() 108 if (var_shape[i] != grad_shape[i]) { in InitKernel() 117 if (grad_shape[0] != indices_size_) { in InitKernel()
|
D | sparse_apply_lazy_adam_cpu_kernel.cc | 87 std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 9); in InitKernel() local 98 if (var_shape.size() != grad_shape.size()) { in InitKernel() 104 if (var_shape[i] != grad_shape[i]) { in InitKernel() 113 if (grad_shape[0] != indices_size_) { in InitKernel()
|
D | sparse_apply_adam_cpu_kernel.cc | 108 std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 9); in InitKernel() local 119 if (var_shape.size() != grad_shape.size()) { in InitKernel() 124 if (var_shape[i] != grad_shape[i]) { in InitKernel() 133 if (grad_shape[0] != indices_size_) { in InitKernel()
|
D | adam_delta_cpu_kernel.cc | 66 std::vector<size_t> grad_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 8); in InitKernel() local 74 if (!IsSameShape(delta_shape, grad_shape)) { in InitKernel()
|
/third_party/mindspore/mindspore/core/ops/grad/ |
D | avg_pool_3d_grad.cc | 38 …auto grad_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[1]->GetShapeTrack())[… in InferShape() local 39 …(void)CheckAndConvertUtils::CheckInteger("grad_rank", SizeToLong(grad_shape.size()), kEqual, k5DIn… in InferShape()
|
D | cdist_grad.cc | 32 …auto grad_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kSh… in InferShape() local 38 …CheckAndConvertUtils::Check("grad shape", grad_shape, kEqual, "cdist shape", cdist_shape, prim_nam… in InferShape()
|
/third_party/mindspore/mindspore/core/ops/ |
D | adam.cc | 34 …auto grad_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex9]->GetSha… in AdamInfer() local 37 CheckAndConvertUtils::Check("var_shape", var_shape, kEqual, "grad_shape", grad_shape, prim_name); in AdamInfer()
|
D | sparse_apply_r_m_s_prop.cc | 44 …auto grad_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[4]->BuildShape())[kSh… in InferShape() local 54 (void)same_shape_args_map.insert(std::make_pair("shape of grad ", grad_shape)); in InferShape()
|
/third_party/mindspore/mindspore/ops/operations/ |
D | nn_ops.py | 3128 …ape(self, var_shape, mean_square_shape, moment_shape, learning_rate_shape, grad_shape, decay_shape, argument 3132 validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name) 3245 … def infer_shape(self, var_shape, mean_gradient_shape, mean_square_shape, moment_shape, grad_shape, argument 3250 validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name) 4596 beta1_shape, beta2_shape, epsilon_shape, grad_shape): argument 4599 validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name) 4703 epsilon_shape, decay_shape, grad_shape): argument 4706 validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name) 4816 beta1_shape, beta2_shape, epsilon_shape, grad_shape): argument 4817 validator.check("grad_shape", grad_shape, "m_shape", m_shape, Rel.EQ, self.name) [all …]
|
D | inner_ops.py | 262 def infer_shape(self, grad_shape, v_shape, m_shape, var_shape, beta1_shape, sub1_shape, argument 266 validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name) 544 epsilon_shape, decay_shape, grad_shape): argument 547 validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
|
D | _grad_ops.py | 830 def infer_shape(self, x1_shape, x2_shape, grad_shape): argument 844 def infer_shape(self, x1_shape, grad_shape): argument 882 def infer_shape(self, x1_shape, x2_shape, grad_shape): argument 925 def infer_shape(self, x1_shape, x2_shape, grad_shape): argument 993 def infer_shape(self, x_shape, y_shape, grad_shape): argument 1019 def infer_shape(self, x_shape, y_shape, grad_shape): argument 1021 validator.check('x_shape', x_shape, 'grad_shape', grad_shape, prim_name=self.name) 1054 def infer_shape(self, x_shape, grad_shape, argmax_shape): argument 1055 if not grad_shape: 1100 def infer_shape(self, x_shape, grad_shape, argmax_shape): argument [all …]
|
/third_party/mindspore/mindspore/ops/_grad/ |
D | grad_inner_ops.py | 91 grad_shape = F.shape(dout) 93 assist = _get_matrix_diag_part_assist(grad_shape, grad_dtype)
|
/third_party/mindspore/mindspore/nn/optim/ |
D | optimizer.py | 687 grad_shape = F.shape(gradient) 689 for i in range(1, len(grad_shape)): 692 if grad_shape[1] % 16 != 0: 704 grad_shape = F.shape(gradient) 705 for i in range(1, len(grad_shape)): 708 if grad_shape[1] % 16 != 0:
|
D | thor.py | 1126 grad_shape = self.shape(g) 1128 if grad_shape[0] == 1001: 1145 … g = self.reshape(g, (grad_shape[0], grad_shape[1] * grad_shape[2] * grad_shape[3])) 1153 g = self.reshape(g, grad_shape) 1194 grad_shape = self.shape(g) 1196 if grad_shape[0] == 1001: 1216 g = self.reshape(g, (grad_shape[0], grad_shape[1] * grad_shape[2] * grad_shape[3])) 1224 g = self.reshape(g, grad_shape)
|
D | adafactor.py | 77 grad_shape = F.shape(grad) 85 factored = len(grad_shape) >= 2
|
/third_party/mindspore/mindspore/ccsrc/pybind_api/ir/ |
D | primitive_py.cc | 117 py::tuple grad_shape = grads[i].attr("shape"); in check_bprop_out() local 124 if (!grad_shape.equal(arg_shape)) { in check_bprop_out() 128 … << ", the gradient shape is: " << py::cast<py::str>(grad_shape) << "."; in check_bprop_out()
|