Home
last modified time | relevance | path

Searched refs:input_channel (Results 1 – 25 of 43) sorted by relevance

12

/third_party/mindspore/mindspore/lite/micro/coder/wrapper/int8/
Dconv1x1_init_int8_wrapper.c21 int Conv1x1Init(int8_t *src_weight, int32_t *src_bias, int32_t *filter_zps, int32_t input_channel, in Conv1x1Init() argument
30 size_t size = UP_ROUND(input_channel, C16NUM) * UP_ROUND(output_channel, C2NUM) * sizeof(int8_t); in Conv1x1Init()
36 RowMajor2Row2x16MajorInt8(src_weight, packed_weight_, output_channel, input_channel); in Conv1x1Init()
51 …size_t size = support_optimize ? UP_ROUND(input_channel, C4NUM) * UP_ROUND(output_channel, C16NUM)… in Conv1x1Init()
52 … : UP_ROUND(input_channel, C16NUM) * UP_ROUND(output_channel, C4NUM) * sizeof(int8_t); in Conv1x1Init()
59 RowMajor2Row4x16MajorInt8(src_weight, packed_weight_, output_channel, input_channel); in Conv1x1Init()
61 RowMajor2Row16x4MajorInt8(src_weight, packed_weight_, output_channel, input_channel); in Conv1x1Init()
81 for (int ic = 0; ic < input_channel; ic++) { in Conv1x1Init()
82 weight_sum_value += src_weight[oc * input_channel + ic]; in Conv1x1Init()
84 bias_data_[oc] += filter_zp * input_zp * input_channel - weight_sum_value * input_zp; in Conv1x1Init()
Dconv_init_int8_wrapper.c23 … int kernel_w, int input_channel, int output_channel, int32_t input_zp, bool filter_peroc, in ConvInit() argument
32 up_round_deep = UP_ROUND(kernel_plane * input_channel, C16NUM); in ConvInit()
36 up_round_deep = UP_ROUND(kernel_plane * input_channel, C4NUM); in ConvInit()
39 up_round_deep = UP_ROUND(kernel_plane * input_channel, C16NUM); in ConvInit()
52 …RowMajor2Row2x16MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_pl… in ConvInit()
55 …RowMajor2Row8x4MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_pla… in ConvInit()
57 …RowMajor2Row16x4MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_pl… in ConvInit()
78 for (int i = 0; i < kernel_plane * input_channel; i++) { in ConvInit()
79 weight_sum_value += origin_weight[oc * kernel_plane * input_channel + i] - filter_zp; in ConvInit()
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/
Dpack_int8.c21 … size_t plane_size, size_t input_channel, size_t output_channel) { in PackInputSum16x4PerChannelArm32() argument
23 size_t ic16 = UP_ROUND(input_channel, C16NUM); in PackInputSum16x4PerChannelArm32()
37 for (int di = 0; di < input_channel; di++) { in PackInputSum16x4PerChannelArm32()
52 size_t plane_size, size_t input_channel, size_t output_channel) { in PackInputSum16x4PerChannel() argument
54 size_t ic16 = UP_ROUND(input_channel, C16NUM); in PackInputSum16x4PerChannel()
68 for (int di = 0; di < input_channel; di++) { in PackInputSum16x4PerChannel()
81 …reOptPeroc(const int8_t *src_input, int8_t *packed_input, int32_t *input_sum, size_t input_channel, in Conv1x1PreOptPeroc() argument
83 int ic4 = UP_ROUND(input_channel, C4NUM); in Conv1x1PreOptPeroc()
89 size_t ic_4div = input_channel / C4NUM * C4NUM; in Conv1x1PreOptPeroc()
100 size_t src_stride = input_channel; in Conv1x1PreOptPeroc()
[all …]
Dmatmul_int8.c436 size_t input_channel, size_t plane_size, int32_t filter_zp) { in PackInput4x4AndInputSumPert() argument
437 int ic4 = UP_ROUND(input_channel, C4NUM); in PackInput4x4AndInputSumPert()
440 size_t ic_4div = input_channel / C4NUM * C4NUM; in PackInput4x4AndInputSumPert()
450 size_t src_stride = input_channel; in PackInput4x4AndInputSumPert()
451 size_t ic_4res = input_channel - ic_4div; in PackInput4x4AndInputSumPert()
457 tmp_sum_value[i] += src_ic[0 + i * input_channel]; in PackInput4x4AndInputSumPert()
458 tmp_sum_value[i] += src_ic[1 + i * input_channel]; in PackInput4x4AndInputSumPert()
459 tmp_sum_value[i] += src_ic[2 + i * input_channel]; in PackInput4x4AndInputSumPert()
460 tmp_sum_value[i] += src_ic[3 + i * input_channel]; in PackInput4x4AndInputSumPert()
461 pack_ic[0 + i * C4NUM] = src_ic[0 + i * input_channel]; in PackInput4x4AndInputSumPert()
[all …]
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/int8/
Dconvolution_int8.cc52 auto input_channel = filter_tensor->Channel(); in InitWeightBias() local
55 conv_param_->input_channel_ = input_channel; in InitWeightBias()
61 up_round_deep = UP_ROUND(kernel_plane * input_channel, C16NUM); in InitWeightBias()
65 up_round_deep = UP_ROUND(kernel_plane * input_channel, C4NUM); in InitWeightBias()
68 up_round_deep = UP_ROUND(kernel_plane * input_channel, C16NUM); in InitWeightBias()
85 …RowMajor2Row2x16MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_pl… in InitWeightBias()
88 …RowMajor2Row8x4MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_pla… in InitWeightBias()
90 …RowMajor2Row16x4MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_pl… in InitWeightBias()
124 for (int i = 0; i < kernel_plane * input_channel; i++) { in InitWeightBias()
125 weight_sum_value += origin_weight[oc * kernel_plane * input_channel + i] - filter_zp; in InitWeightBias()
Dconvolution_1x1_int8.cc154 int Convolution1x1Int8CPUKernel::InitBiasByzp(const void *src_weight, int input_channel, int output… in InitBiasByzp() argument
166 for (int ic = 0; ic < input_channel; ic++) { in InitBiasByzp()
167 weight_sum_value += weight[oc * input_channel + ic]; in InitBiasByzp()
169 bias_data[oc] += filter_zp * input_zp * input_channel - weight_sum_value * input_zp; in InitBiasByzp()
216 auto input_channel = filter_tensor->Channel(); in InitWeightBias() local
217 if (input_channel < 0) { in InitWeightBias()
227 …size_t size = support_optimize_ ? UP_ROUND(input_channel, C4NUM) * UP_ROUND(output_channel, C16NUM… in InitWeightBias()
228 … : UP_ROUND(input_channel, C16NUM) * UP_ROUND(output_channel, C4NUM) * sizeof(int8_t); in InitWeightBias()
238 input_channel); in InitWeightBias()
241 input_channel); in InitWeightBias()
[all …]
Dconvolution_3x3_int8.cc31 auto input_channel = conv_param->input_channel_; in ProcessFilterUint8() local
34 int iC8 = UP_DIV(input_channel, C8NUM); in ProcessFilterUint8()
83 auto input_channel = filter_tensor->Channel(); in InitWeightBias() local
84 if (input_channel < 0) { in InitWeightBias()
93 conv_param_->input_channel_ = input_channel; in InitWeightBias()
95 int iC8 = UP_DIV(input_channel, C8NUM); in InitWeightBias()
/third_party/mindspore/tests/ut/python/communication/
Dtest_comm.py48 def __init__(self, input_channel, out_channel, op): argument
50 self.dense = Dense(input_channel, out_channel)
63 def __init__(self, input_channel, out_channel): argument
65 self.dense = Dense(input_channel, out_channel)
77 def __init__(self, input_channel, out_channel): argument
79 self.dense = Dense(input_channel, out_channel)
98 def __init__(self, input_channel, out_channel, op): argument
100 self.dense = Dense(input_channel, out_channel)
113 def __init__(self, input_channel, out_channel): argument
115 self.dense = Dense(input_channel, out_channel)
[all …]
/third_party/mindspore/tests/st/fusion/
Dtest_conv_bn1_fusion.py25 input_channel = 2048 variable
60 self.conv = nn.Conv2d(input_channel, output_channel,
62 self.conv1 = nn.Conv2d(input_channel, output_channel,
82 input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
91 self.conv = nn.Conv2d(input_channel, output_channel,
109 input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
118 self.conv = nn.Conv2d(input_channel, output_channel,
134 input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp32/
Dpack_fp32.c162 …WCToNXHWCXFp32(int kernel_h, int kernel_w, int output_channel, int oc_block_num, int input_channel, in PackNHWCToNXHWCXFp32() argument
166 int ic8 = DOWN_ROUND(input_channel, C8NUM); in PackNHWCToNXHWCXFp32()
182 … Transpose8X8Fp32Avx(src + ic, tmp_weight + ic * oc_block + oc_tmp, input_channel, oc_block); in PackNHWCToNXHWCXFp32()
184 for (; ic < input_channel; ++ic) { in PackNHWCToNXHWCXFp32()
186 tmp_weight[ic * oc_block + oc_tmp + j] = src[ic + input_channel * j]; in PackNHWCToNXHWCXFp32()
189 src += C8NUM * input_channel; in PackNHWCToNXHWCXFp32()
191 tmp_weight += oc_block * input_channel; in PackNHWCToNXHWCXFp32()
195 for (int ic = 0; ic < input_channel; ++ic) { in PackNHWCToNXHWCXFp32()
196 tmp_weight[oc_remainder + oc_remainder_step * ic] = src[ic + oc_remainder * input_channel]; in PackNHWCToNXHWCXFp32()
206 Transpose8X8Fp32Avx(src + hw * input_channel + ic, in PackNHWCToNXHWCXFp32()
[all …]
Ddeconv_fp32.c19 void PackDeConvWeightFp32(const float *weight, float *dst, int input_channel, int output_channel, i… in PackDeConvWeightFp32() argument
21 int ic_up4 = UP_ROUND(input_channel, C4NUM); in PackDeConvWeightFp32()
25 for (int ic = 0; ic < input_channel; ic++) { in PackDeConvWeightFp32()
Dpack_fp32.h64 …WCToNXHWCXFp32(int kernel_h, int kernel_w, int output_channel, int oc_block_num, int input_channel,
67 …WCToNXHWCXFp32(int kernel_h, int kernel_w, int output_channel, int oc_block_num, int input_channel,
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp32/
Dconvolution_slidewindow_fp32.cc42 auto input_channel = filter_tensor->Channel(); in Init() local
48 int pack_weight_size = oc_block_num * oc_tile_ * input_channel * kernel_plane; in Init()
190 auto input_channel = filter_tensor->Channel(); in PackWeight() local
197 PackNHWCToNXHWCXFp32(kernel_h, kernel_w, output_channel, oc_block_num, input_channel, in PackWeight()
203 auto input_channel = filter_tensor->Channel(); in MallocWeightBiasData() local
207 conv_param_->input_channel_ = input_channel; in MallocWeightBiasData()
211 int pack_weight_size = oc_block_num * oc_tile_ * input_channel * kernel_plane; in MallocWeightBiasData()
Dconvolution_1x1_fp32.cc122 auto input_channel = filter_tensor->Channel(); in Init() local
124 int size = input_channel * UP_ROUND(output_channel, col_tile_) * sizeof(float); in Init()
273 auto input_channel = filter_tensor->Channel(); in PackWeight() local
274 if (input_channel < 0) { in PackWeight()
288 output_channel, input_channel); in PackWeight()
291 output_channel, input_channel); in PackWeight()
294 output_channel, input_channel); in PackWeight()
300 auto input_channel = filter_tensor->Channel(); in MallocWeightBiasData() local
302 int size = input_channel * UP_ROUND(output_channel, col_tile_) * sizeof(float); in MallocWeightBiasData()
Ddeconvolution_fp32.cc58 auto input_channel = weight_tensor->Batch(); in MallocWeightBiasData() local
63 …size_t pack_weight_size = input_channel * kernel_w_ * kernel_h_ * output_aligned_size * sizeof(flo… in MallocWeightBiasData()
83 auto input_channel = weight_tensor->Batch(); in PackWeight() local
91 input_channel, kernel_w * kernel_h, output_channel); in PackWeight()
94 input_channel, kernel_w * kernel_h, output_channel); in PackWeight()
178 auto input_channel = weight_tensor->Batch(); in Init() local
183 …size_t pack_weight_size = input_channel * kernel_w_ * kernel_h_ * output_aligned_size * sizeof(flo… in Init()
/third_party/mindspore/tests/st/quantization/mobilenetv2_quant/
DmobilenetV2.py158 input_channel = 32
175 input_channel = _make_divisible(
176 input_channel * width_mult, round_nearest)
180 features = [ConvBNReLU(3, input_channel, stride=2)]
187 block(input_channel, output_channel, stride, expand_ratio=t))
188 input_channel = output_channel
191 input_channel, self.out_channels, kernel_size=1))
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/ascend/ir_fission/
Dspace_to_depth_split.cc38 int64_t input_channel = SizeToLong(x_shape[kDim1]); in CreateTensor() local
40 …std::vector<int64_t> assist_input_shape = {assist_input_channel, input_channel, block_size, block_… in CreateTensor()
41 int64_t dest_size = assist_input_channel * input_channel * block_size * block_size; in CreateTensor()
42 …<< "For SpaceToDepth op, assist input shape is: (" << assist_input_channel << ", " << input_channel in CreateTensor()
51 int64_t channel_size = input_channel; in CreateTensor()
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp16/
Dconvolution_1x1_fp16.cc85 auto input_channel = weight_tensor->Channel(); in MallocWeightBiasData() local
88 size_t size = input_channel * UP_ROUND(output_channel, col_tile_) * sizeof(float16_t); in MallocWeightBiasData()
116 auto input_channel = weight_tensor->Channel(); in PackWeight() local
122 …jorFp16(weight_origin, reinterpret_cast<float16_t *>(packed_weight_), input_channel, output_channe… in PackWeight()
126 … reinterpret_cast<float16_t *>(packed_weight_), output_channel, input_channel); in PackWeight()
129 …jorFp16(weight_origin, reinterpret_cast<float16_t *>(packed_weight_), input_channel, output_channe… in PackWeight()
153 auto input_channel = weight_tensor->Channel(); in Init() local
155 size_t size = input_channel * UP_ROUND(output_channel, col_tile_) * sizeof(float16_t); in Init()
Ddeconvolution_fp16.cc58 auto input_channel = weight_tensor->Batch(); in PackWeight() local
65 input_channel, kernel_w * kernel_h, output_channel); in PackWeight()
70 auto input_channel = weight_tensor->Batch(); in MallocWeightBiasData() local
74 …size_t weight_pack_size = input_channel * kernel_w * kernel_h * UP_ROUND(output_channel, C8NUM) * … in MallocWeightBiasData()
192 auto input_channel = weight_tensor->Batch(); in Init() local
196 …size_t weight_pack_size = input_channel * kernel_w * kernel_h * UP_ROUND(output_channel, C8NUM) * … in Init()
/third_party/mindspore/mindspore/lite/micro/coder/opcoders/nnacl/int8/
Dconv2d_3x3_int8_coder.cc28 int input_channel = conv_param->input_channel_; in ProcessFilterUint8() local
31 int iC8 = UP_DIV(input_channel, C8NUM); in ProcessFilterUint8()
48 int input_channel = conv_param_->input_channel_; in InitWeightBias() local
50 MS_CHECK_TRUE(input_channel > 0, "invalid input_channel"); in InitWeightBias()
52 int iC8 = UP_DIV(input_channel, C8NUM); in InitWeightBias()
Dconv2d_1x1_int8_coder.cc152 int32_t input_channel = filter_tensor_->Channel(); in InitWeightBias() local
155 MS_CHECK_TRUE(input_channel > 0, "input_channel should be positive"); in InitWeightBias()
176 …de.CodeFunctionWithCheck("Conv1x1Init", filter_tensor_, bias_tensor_, filter_zp_str, input_channel, in InitWeightBias()
180 …de.CodeFunctionWithCheck("Conv1x1Init", filter_tensor_, bias_tensor_, filter_zp_str, input_channel, in InitWeightBias()
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/infer/
Ddepthwise_conv2d_infer.c39 int input_channel = input->shape_[3]; in DepthwiseConv2dInferShape() local
41 param->input_channel_ = input_channel; in DepthwiseConv2dInferShape()
77 out_shape[3] = input_channel; // in_channel * out_channel in DepthwiseConv2dInferShape()
/third_party/mindspore/mindspore/lite/test/ut/src/runtime/kernel/opencl/
Ddepthwise_conv2d_tests.cc27 … int pad_r, int dilation_h, int dilation_w, ActType act_type, int input_channel) { in CreateParameter() argument
37 param->input_channel_ = input_channel; in CreateParameter()
38 param->output_channel_ = input_channel; in CreateParameter()
39 param->group_ = input_channel; in CreateParameter()
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp16/
Dpack_fp16.c98 int input_channel = conv_param->input_channel_; in PackWeightToC8Fp16() local
99 int ic8 = UP_DIV(input_channel, C8NUM); in PackWeightToC8Fp16()
104 int src_kernel_offset = k * input_channel; in PackWeightToC8Fp16()
107 int src_oc_offset = src_kernel_offset + o * kernel_plane * input_channel; in PackWeightToC8Fp16()
109 for (int i = 0; i < input_channel; i++) { in PackWeightToC8Fp16()
123 int input_channel = conv_param->input_channel_; in PackWeightToC4Fp16() local
124 int ic8 = UP_DIV(input_channel, C8NUM); in PackWeightToC4Fp16()
130 int src_kernel_offset = k * input_channel; in PackWeightToC4Fp16()
133 int src_oc_offset = src_kernel_offset + o * kernel_plane * input_channel; in PackWeightToC4Fp16()
135 for (int i = 0; i < input_channel; i++) { in PackWeightToC4Fp16()
/third_party/mindspore/tests/ut/python/parallel/
Dtest_optimizer.py30 def __init__(self, input_channel, out_channel): argument
37 self.dense = Dense(input_channel, out_channel)

12