/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/ |
D | momentum_impl.cu | 20 … const G *gradient, const S *momentum, bool use_nesterov) { in MomentumUpdateVariableKernel() argument 23 accumulation[i] = momentum[0] * accumulation[i] + gradient[i]; in MomentumUpdateVariableKernel() 24 … variable[i] -= gradient[i] * learning_rate[0] + accumulation[i] * momentum[0] * learning_rate[0]; in MomentumUpdateVariableKernel() 28 accumulation[i] = momentum[0] * accumulation[i] + gradient[i]; in MomentumUpdateVariableKernel() 35 … const float *learning_rate, const half *gradient, const float *momentum, in MomentumUpdateVariableKernel() argument 39 accumulation[i] = __float2half(momentum[0]) * accumulation[i] + gradient[i]; in MomentumUpdateVariableKernel() 41 accumulation[i] * __float2half(momentum[0]) * __float2half(learning_rate[0]); in MomentumUpdateVariableKernel() 45 accumulation[i] = __float2half(momentum[0]) * accumulation[i] + gradient[i]; in MomentumUpdateVariableKernel() 52 … const float *learning_rate, const half *gradient, const float *momentum, in MomentumUpdateVariableKernel() argument 56 accumulation[i] = momentum[0] * accumulation[i] + __half2float(gradient[i]); in MomentumUpdateVariableKernel() [all …]
|
D | rmsprop_impl.cu | 22 __global__ void RmsPropKernel(const T* learning_rate, const T decay, const T momentum, const T epsi… in RmsPropKernel() argument 26 …moment[i] = momentum * moment[i] + learning_rate[0] * rsqrt(mean_square[i] + epsilon) * gradients[… in RmsPropKernel() 32 void RmsProp(const T* learning_rate, const T decay, const T momentum, const T epsilon, in RmsProp() argument 34 …RmsPropKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(learning_rate, decay, momentum, e… in RmsProp() 39 __global__ void RmsPropCenterKernel(const T* learning_rate, const T* decay, const T* momentum, cons… in RmsPropCenterKernel() argument 45 moment[i] = momentum[0] * moment[i] + learning_rate[0] * in RmsPropCenterKernel() 52 void RmsPropCenter(const T* learning_rate, const T* decay, const T* momentum, const T* epsilon, T* … in RmsPropCenter() argument 55 …rKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(learning_rate, decay, momentum, epsilon, in RmsPropCenter() 61 void RmsProp(const float* learning_rate, const float decay, const float momentum, const float epsil… 66 void RmsPropCenter(const float* learning_rate, const float* decay, const float* momentum, const flo…
|
D | sgd_impl.cu | 22 const T *momentum, const T *lr, T *param, T *accum, T *stat) { in SGDKernel() argument 29 if (momentum[0] > static_cast<T>(0)) { in SGDKernel() 34 accum[i] = accum[i] * momentum[0] + (1.0 - dampening) * grad_new; in SGDKernel() 38 grad_new += accum[i] * momentum[0]; in SGDKernel() 49 …size, const T dampening, const T weight_decay, const bool nesterov, const T *lr, const T *momentum, in SGD() argument 51 …OCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dampening, weight_decay, nesterov, grad, momentum, in SGD() 56 const float *momentum, const float *grad, float *param, float *accum, float *stat,
|
D | momentum_impl.cuh | 23 const S *momentum, bool use_nesterov, cudaStream_t cuda_stream); 26 const T *learning_rate, const S *gradient, const T *momentum, 30 … const T *learning_rate, const S *gradient, const T *momentum, cudaStream_t cuda_stream); 33 const S *gradient, const T *momentum, cudaStream_t cuda_stream); 37 T **momentum, cudaStream_t cuda_stream); 40 T **accumulation, T **learning_rate, S **gradient, T **momentum,
|
D | sync_batch_norm_impl.cu | 113 … G *running_var_input, float epsilon, float momentum, size_t group_rank, in SyncBatchNormGather() argument 133 …HalfFloatOutputAssign(((1 - momentum) * HalfFloatInputConvert(running_mean_input[C_ix]) + momentum… in SyncBatchNormGather() 139 …HalfFloatOutputAssign(((1 - momentum) * HalfFloatInputConvert(running_var_input[C_ix]) + momentum … in SyncBatchNormGather() 182 float epsilon, float momentum, size_t group_rank, size_t group_size, in CalSyncBatchNormGather() argument 186 …n_output, running_var_output, running_mean_input, running_var_input, epsilon, momentum, group_rank, in CalSyncBatchNormGather() 212 … float *running_var_input, float epsilon, float momentum, 218 … half *running_var_input, float epsilon, float momentum, 224 … float *running_var_input, float epsilon, float momentum, 230 … half *running_var_input, float epsilon, float momentum,
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/sponge/common/ |
D | mdtemperature_impl.cu | 23 VECTOR momentum = {0., 0., 0.}; in MDTemperatureKernel() local 31 momentum.x = momentum.x + mass_lin * atom_vel[atom_i].x; in MDTemperatureKernel() 32 momentum.y = momentum.y + mass_lin * atom_vel[atom_i].y; in MDTemperatureKernel() 33 momentum.z = momentum.z + mass_lin * atom_vel[atom_i].z; in MDTemperatureKernel() 36 …ek[residue_i] = 0.5 * (momentum.x * momentum.x + momentum.y * momentum.y + momentum.z * momentum.z… in MDTemperatureKernel()
|
/third_party/mindspore/mindspore/nn/optim/ |
D | sgd.py | 28 def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, accum, stat): argument 31 success = F.depend(success, opt(weight, gradient, learning_rate, accum, momentum, stat)) 139 …def __init__(self, params, learning_rate=0.1, momentum=0.0, dampening=0.0, weight_decay=0.0, neste… argument 144 if isinstance(momentum, int): 145 momentum = float(momentum) 146 if not isinstance(momentum, float): 149 if isinstance(momentum, float) and momentum < 0.0: 150 … raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum)) 166 if nesterov and (momentum <= 0.0 or dampening != 0.0): 168 "but got momentum {}, dampening {}".format(momentum, dampening)) [all …]
|
D | momentum.py | 28 def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, moment, ps_parameter, cache… argument 34 shapes = (op_shape(learning_rate), op_shape(gradient), op_shape(momentum)) 35 … success = F.depend(True, _ps_pull(_ps_push((learning_rate, gradient, momentum), shapes), weight)) 37 success = F.depend(True, opt(weight, moment, learning_rate, gradient, momentum)) 151 …def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0, use_nesterov… argument 153 Validator.check_value_type("momentum", momentum, [float], self.cls_name) 154 if isinstance(momentum, float) and momentum < 0.0: 155 … raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum)) 156 self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum") 170 success = self.hyper_map_reverse(F.partial(_momentum_opt, self.opt, self.momentum), [all …]
|
D | rmsprop.py | 26 def _rmsprop_opt_(opt, decay, epsilon, momentum, learning_rate, weight, ms, mom, grad): argument 29 success = F.depend(success, opt(weight, ms, mom, learning_rate, grad, decay, momentum, epsilon)) 35 def _centered_rmsprop_opt_(opt, decay, epsilon, momentum, learning_rate, weight, mg, ms, mom, grad): argument 38 …success = F.depend(success, opt(weight, mg, ms, mom, grad, learning_rate, decay, momentum, epsilon… 181 def __init__(self, params, learning_rate=0.1, decay=0.9, momentum=0.0, epsilon=1e-10, argument 186 validator.check_value_type("momentum", momentum, [float], self.cls_name) 187 validator.check_non_negative_float(momentum, "momentum", self.cls_name) 200 self.momentum = momentum 215 self.momentum), 219 self.momentum, lr), [all …]
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_rmsprop.py | 30 def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom): argument 35 self.momentum = momentum 44 …urn self.rms_opt(self.var, self.mg, self.rms, self.mom, self.g, self.lr, self.decay, self.momentum, 49 def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom): argument 53 self.momentum = momentum 63 …elf.rms_opt(self.var, self.rms, self.mom, self.lr, self.g, self.decay, self.momentum, self.epsilon) 67 learning_rate, decay, momentum, epsilon): argument 69 moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients 75 learning_rate, decay, momentum, epsilon): argument 78 moment = momentum * moment + learning_rate / np.sqrt( [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_rmsprop.py | 30 def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom): argument 35 self.momentum = momentum 44 …urn self.rms_opt(self.var, self.mg, self.rms, self.mom, self.g, self.lr, self.decay, self.momentum, 49 def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom): argument 53 self.momentum = momentum 63 …elf.rms_opt(self.var, self.rms, self.mom, self.lr, self.g, self.decay, self.momentum, self.epsilon) 67 learning_rate, decay, momentum, epsilon): argument 69 moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients 75 learning_rate, decay, momentum, epsilon): argument 78 moment = momentum * moment + learning_rate / np.sqrt( [all …]
|
/third_party/mindspore/mindspore/nn/layer/ |
D | normalization.py | 50 momentum=0.9, argument 67 if momentum < 0 or momentum > 1: 132 self.momentum = 1.0 - momentum 140 momentum=self.momentum, 144 momentum=self.momentum, 239 …self.num_features, self.eps, self.momentum, self.gamma, self.beta, self.moving_mean, self.moving_v… 353 momentum=0.9, argument 363 momentum, 461 momentum=0.9, argument 472 momentum, [all …]
|
/third_party/mindspore/tests/st/fl/cross_silo_faster_rcnn/src/FasterRcnn/ |
D | resnet.py | 38 def _BatchNorm2dInit(out_chls, momentum=0.1, affine=True, use_batch_statistics=True): argument 45 return nn.BatchNorm2d(out_chls, momentum=momentum, affine=affine, gamma_init=gamma_init, 193 momentum=0.1, argument 202 …self.bn1 = _BatchNorm2dInit(out_chls, momentum=momentum, affine=self.affine, use_batch_statistics=… 205 …self.bn2 = _BatchNorm2dInit(out_chls, momentum=momentum, affine=self.affine, use_batch_statistics=… 208 …self.bn3 = _BatchNorm2dInit(out_channels, momentum=momentum, affine=self.affine, use_batch_statist… 224 … self.bn_down_sample = _BatchNorm2dInit(out_channels, momentum=momentum, affine=self.affine,
|
D | resnet50v1.py | 38 def _BatchNorm2dInit(out_chls, momentum=0.1, affine=True, use_batch_statistics=True): argument 45 return nn.BatchNorm2d(out_chls, momentum=momentum, affine=affine, gamma_init=gamma_init, 193 momentum=0.1, argument 203 …self.bn1 = _BatchNorm2dInit(out_chls, momentum=momentum, affine=self.affine, use_batch_statistics=… 207 …self.bn2 = _BatchNorm2dInit(out_chls, momentum=momentum, affine=self.affine, use_batch_statistics=… 210 …self.bn3 = _BatchNorm2dInit(out_channels, momentum=momentum, affine=self.affine, use_batch_statist… 226 … self.bn_down_sample = _BatchNorm2dInit(out_channels, momentum=momentum, affine=self.affine,
|
/third_party/mindspore/mindspore/core/ops/grad/ |
D | bn_grad.cc | 24 void BNGrad::Init(const float eps, const float momentum) { in Init() argument 26 this->set_momentum(momentum); in Init() 37 void BNGrad::set_momentum(const float momentum) { (void)this->AddAttr(kMomentum, MakeValue(momentum… in set_momentum() argument
|
/third_party/mindspore/mindspore/core/ops/ |
D | fused_batch_norm.cc | 24 void FusedBatchNorm::Init(const int64_t mode, const float epsilon, const float momentum) { in Init() argument 27 this->set_momentum(momentum); in Init() 34 void FusedBatchNorm::set_momentum(const float momentum) { (void)this->AddAttr(kMomentum, MakeValue(… in set_momentum() argument
|
/third_party/boost/libs/units/example/ |
D | conversion_factor.cpp | 62 conversion_factor(cgs::momentum(),si::momentum()); in main() 66 conversion_factor(si::momentum()/si::mass(),cgs::momentum()/cgs::gram); in main()
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_auto_parallel_resnet_sharding_propagation2.py | 27 from mindspore.nn.optim.momentum import Momentum 67 def _fused_bn(channels, momentum=0.9): argument 69 return nn.BatchNorm2d(channels, momentum=momentum) 79 momentum=0.9): argument 84 self.bn1 = _fused_bn(out_chls, momentum=momentum) 87 self.bn2 = _fused_bn(out_chls, momentum=momentum) 90 self.bn3 = _fused_bn(out_channels, momentum=momentum) 98 self.bn_down_sample = _fused_bn(out_channels, momentum=momentum)
|
D | test_auto_parallel_resnet_sharding_propagation.py | 27 from mindspore.nn.optim.momentum import Momentum 68 def _fused_bn(channels, momentum=0.9): argument 70 return nn.BatchNorm2d(channels, momentum=momentum) 80 momentum=0.9): argument 85 self.bn1 = _fused_bn(out_chls, momentum=momentum) 88 self.bn2 = _fused_bn(out_chls, momentum=momentum) 91 self.bn3 = _fused_bn(out_channels, momentum=momentum) 99 self.bn_down_sample = _fused_bn(out_channels, momentum=momentum)
|
D | test_full_batch.py | 24 from mindspore.nn.optim.momentum import Momentum 69 momentum = 0.9 84 opt = Momentum(net.trainable_params(), learning_rate, momentum) 97 momentum = 0.9 107 opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/ |
D | sgd_cpu_kernel.cc | 45 auto momentum = reinterpret_cast<T *>(inputs[MOMENTUM]->addr); in Launch() local 50 …auto task = [this, ¶m, &grad, &lr, &accum, &momentum, &stat, &output_param](size_t start, size… in Launch() 58 if (momentum[0] > ZERO) { in Launch() 63 accum[i] = accum[i] * momentum[0] + (ONE - static_cast<T>(dampening_)) * grad_new; in Launch() 66 grad_new += accum[i] * momentum[0]; in Launch()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp32/ |
D | batchnorm_fp32.c | 67 const float momentum = (1.0f - param->momentum_); in FusedBatchNormFp32MeanVar() local 87 save_mean[c] = momentum * save_mean[c] + (1.0f - momentum) * run_mean[c]; in FusedBatchNormFp32MeanVar() 88 save_var[c] = momentum * save_var[c] + (1.0f - momentum) * unbiased_var; in FusedBatchNormFp32MeanVar()
|
D | rmsprop_fp32.c | 31 …useCenterFp32(float *variable, float *mean_square, float *moment, float *gradients, float momentum, in RMSPropUnuseCenterFp32() argument 42 __m256 momentum_r = _mm256_set1_ps(momentum); in RMSPropUnuseCenterFp32() 74 …moment[c1] = moment[c1] * momentum + (gradients[c1] * learning_rate) / sqrt(mean_square[c1] + epsi… in RMSPropUnuseCenterFp32() 81 … float momentum, float learning_rate, float decay, float epsilon, size_t start, size_t end) { in RMSPropUseCenterFp32() argument 92 __m256 momentum_r = _mm256_set1_ps(momentum); in RMSPropUseCenterFp32() 141 moment[c1] = moment[c1] * momentum + (gradients[c1] * learning_rate) / sqrt(denom); in RMSPropUseCenterFp32()
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/gpu/ |
D | combine_momentum_fusion.cc | 26 std::vector<AnfNodePtr> momentum; in GetDealList() local 31 momentum.push_back(momentum_node); in GetDealList() 37 if (momentum.size() <= 1 && momentum_decay.size() <= 1) { in GetDealList() 40 if (momentum.size() > 1) { in GetDealList() 41 deal_list->push_back(momentum); in GetDealList()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp16/ |
D | batchnorm_fp16.c | 66 const float momentum = (1.0f - param->momentum_); in FusedBatchNormFp16MeanVar() local 86 …save_mean[c] = (float16_t)(momentum * (float)save_mean[c] + (1.0f - momentum) * (float)run_mean[c]… in FusedBatchNormFp16MeanVar() 87 save_var[c] = (float16_t)(momentum * (float)save_var[c] + (1.0f - momentum) * unbiased_var); in FusedBatchNormFp16MeanVar()
|