/third_party/mindspore/tests/st/networks/models/resnet50/src_thor/ |
D | resnet.py | 25 def _conv_variance_scaling_initializer(in_channel, out_channel, kernel_size): argument 31 …weight = truncnorm(-2, 2, loc=mu, scale=sigma).rvs(out_channel * in_channel * kernel_size * kernel… 32 weight = np.reshape(weight, (out_channel, in_channel, kernel_size, kernel_size)) 40 def _conv3x3(in_channel, out_channel, stride=1, use_se=False): argument 42 weight = _conv_variance_scaling_initializer(in_channel, out_channel, kernel_size=3) 44 weight_shape = (out_channel, in_channel, 3, 3) 46 return nn.Conv2d(in_channel, out_channel, 50 def _conv1x1(in_channel, out_channel, stride=1, use_se=False): argument 52 weight = _conv_variance_scaling_initializer(in_channel, out_channel, kernel_size=1) 54 weight_shape = (out_channel, in_channel, 1, 1) [all …]
|
/third_party/mindspore/tests/st/ps/multi_full_ps/ |
D | resnet.py | 27 def _conv3x3(in_channel, out_channel, stride=1): argument 28 weight_shape = (out_channel, in_channel, 3, 3) 30 return nn.Conv2d(in_channel, out_channel, 34 def _conv1x1(in_channel, out_channel, stride=1): argument 35 weight_shape = (out_channel, in_channel, 1, 1) 37 return nn.Conv2d(in_channel, out_channel, 41 def _conv7x7(in_channel, out_channel, stride=1): argument 42 weight_shape = (out_channel, in_channel, 7, 7) 44 return nn.Conv2d(in_channel, out_channel, 58 def _fc(in_channel, out_channel): argument [all …]
|
/third_party/mindspore/tests/ut/python/model/ |
D | resnet.py | 27 def _conv3x3(in_channel, out_channel, stride=1): argument 28 weight_shape = (out_channel, in_channel, 3, 3) 30 return nn.Conv2d(in_channel, out_channel, 34 def _conv1x1(in_channel, out_channel, stride=1): argument 35 weight_shape = (out_channel, in_channel, 1, 1) 37 return nn.Conv2d(in_channel, out_channel, 41 def _conv7x7(in_channel, out_channel, stride=1): argument 42 weight_shape = (out_channel, in_channel, 7, 7) 44 return nn.Conv2d(in_channel, out_channel, 58 def _fc(in_channel, out_channel): argument [all …]
|
/third_party/mindspore/tests/st/networks/models/resnet50/src/ |
D | resnet.py | 27 def _conv3x3(in_channel, out_channel, stride=1): argument 28 weight_shape = (out_channel, in_channel, 3, 3) 30 return nn.Conv2d(in_channel, out_channel, 34 def _conv1x1(in_channel, out_channel, stride=1): argument 35 weight_shape = (out_channel, in_channel, 1, 1) 37 return nn.Conv2d(in_channel, out_channel, 41 def _conv7x7(in_channel, out_channel, stride=1): argument 42 weight_shape = (out_channel, in_channel, 7, 7) 44 return nn.Conv2d(in_channel, out_channel, 58 def _fc(in_channel, out_channel): argument [all …]
|
/third_party/mindspore/tests/st/quantization/resnet50_quant/ |
D | resnet_quant_manual.py | 36 def _conv3x3(in_channel, out_channel, stride=1): argument 37 weight_shape = (out_channel, in_channel, 3, 3) 39 return nn.Conv2d(in_channel, out_channel, 43 def _conv1x1(in_channel, out_channel, stride=1): argument 44 weight_shape = (out_channel, in_channel, 1, 1) 46 return nn.Conv2d(in_channel, out_channel, 50 def _conv7x7(in_channel, out_channel, stride=1): argument 51 weight_shape = (out_channel, in_channel, 7, 7) 53 return nn.Conv2d(in_channel, out_channel, 67 def _fc(in_channel, out_channel): argument [all …]
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_conv2d.py | 26 … def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, dilation=1, group=1, argument 29 self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, 63 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strat… 71 net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=(2, 2, 1, 1), 81 net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, dilation=2, 90 net = Net(_w4, out_channel=8, kernel_size=2, pad_mode="same", stride=1, group=2, 99 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strat… 107 net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, dilation=2, 117 net = Net(_w4, out_channel=8, kernel_size=2, pad_mode="same", stride=1, group=2, 127 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strat… [all …]
|
D | test_resizebilinear.py | 28 def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, argument 31 self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, 46 def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, argument 49 self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, 63 def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, argument 66 self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, 94 net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, 103 net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, 112 net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, 119 net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1) [all …]
|
D | test_maxpool_avgpool.py | 26 …def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, pool_kernel_size, po… argument 29 self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, 41 …def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, pool_kernel_size, po… argument 44 self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, 74 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_s… 83 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_s… 92 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_s… 99 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_s… 107 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_s… 117 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_s… [all …]
|
D | test_conv2d_transpose.py | 26 def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, argument 29 self.conv2d_transpose = P.Conv2DTranspose(out_channel=out_channel, kernel_size=kernel_size, 41 def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, argument 44 self.conv2d_transpose = P.Conv2DTranspose(out_channel=out_channel, kernel_size=kernel_size, 76 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strat… 84 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strat… 92 net = Net2(_w2, out_channel=8, kernel_size=(4, 4), pad_mode="same", stride=2, 101 net = Net2(_w2, out_channel=8, kernel_size=(4, 4), pad_mode="same", stride=2, 110 net = Net2(_w1, out_channel=8, kernel_size=(2, 2), pad_mode="same", stride=2, 119 net = Net2(_w1, out_channel=8, kernel_size=(2, 2), pad_mode="pad", stride=2, [all …]
|
D | test_batchnorm.py | 25 def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, argument 28 self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, 58 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strat… 66 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strat… 74 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strat…
|
D | test_print.py | 25 def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, argument 28 self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, 61 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strat… 70 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strat… 79 …net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strat…
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/ |
D | conv_int8.c | 23 int out_channel = conv_param->output_channel_; in ConvInt8() local 33 up_round_oc = UP_ROUND(out_channel, C2NUM); in ConvInt8() 37 up_round_oc = UP_ROUND(out_channel, C8NUM); in ConvInt8() 40 up_round_oc = UP_ROUND(out_channel, C4NUM); in ConvInt8() 55 int out_batch_offset = b * out_channel * conv_param->output_h_ * conv_param->output_w_; in ConvInt8() 66 int out_offset = thread_id * tile_n * out_channel + out_batch_offset; in ConvInt8() 70 …gemm_input, packed_weight, gemm_output, real_cal_num, out_channel, unit_size, tmp_input_sum, bias_… in ConvInt8() 73 …->conv_quant_arg_.left_shift_, conv_param->conv_quant_arg_.right_shift_, out_channel, per_channel); in ConvInt8() 76 …mul_func(gemm_input, packed_weight, gemm_output, real_cal_num, out_channel, unit_size, out_channel, in ConvInt8() 83 UP_ROUND(out_channel, C4NUM), unit_size, tmp_input_sum, bias_data, in ConvInt8() [all …]
|
/third_party/mindspore/tests/ut/python/communication/ |
D | test_comm.py | 48 def __init__(self, input_channel, out_channel, op): argument 50 self.dense = Dense(input_channel, out_channel) 63 def __init__(self, input_channel, out_channel): argument 65 self.dense = Dense(input_channel, out_channel) 77 def __init__(self, input_channel, out_channel): argument 79 self.dense = Dense(input_channel, out_channel) 98 def __init__(self, input_channel, out_channel, op): argument 100 self.dense = Dense(input_channel, out_channel) 113 def __init__(self, input_channel, out_channel): argument 115 self.dense = Dense(input_channel, out_channel) [all …]
|
/third_party/mindspore/tests/st/model_zoo_tests/yolov3_darknet53/src/ |
D | darknet.py | 138 out_channel=out_channels[0]) 142 out_channel=out_channels[1]) 146 out_channel=out_channels[2]) 150 out_channel=out_channels[3]) 154 out_channel=out_channels[4]) 156 def _make_layer(self, block, layer_num, in_channel, out_channel): argument 169 darkblk = block(in_channel, out_channel) 173 darkblk = block(out_channel, out_channel)
|
/third_party/mindspore/tests/ut/python/pynative_mode/ge/ops/ |
D | test_conv.py | 28 def get_me_conv_output(input_data, weight, in_channel, out_channel, kernel_size, argument 35 def __init__(self, weight, in_channel, out_channel, kernel_size, argument 39 out_channels=out_channel, 50 net = Net(weight, in_channel, out_channel, kernel_size, stride, padding, has_bias, bias) 61 out_channel=6, kernel_size=7, stride=7, padding=0) 72 out_channel=6, kernel_size=7, stride=7, padding=0)
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp32/ |
D | convolution_fp32.cc | 84 size_t out_channel = filter_tensor->Batch(); in Init() local 85 size_t oc_block_num = UP_ROUND(out_channel, OC_BLOCK); in Init() 177 int32_t out_channel = filter_tensor->Batch(); in PackWeight() local 178 if (out_channel < 0) { in PackWeight() 190 …r(reinterpret_cast<float *>(origin_weight), reinterpret_cast<float *>(packed_weight_), out_channel, in PackWeight() 193 …r(reinterpret_cast<float *>(origin_weight), reinterpret_cast<float *>(packed_weight_), out_channel, in PackWeight() 196 …r(reinterpret_cast<float *>(origin_weight), reinterpret_cast<float *>(packed_weight_), out_channel, in PackWeight() 204 size_t out_channel = filter_tensor->Batch(); in MallocWeightBiasData() local 206 conv_param_->output_channel_ = out_channel; in MallocWeightBiasData() 207 size_t oc_block_num = UP_ROUND(out_channel, OC_BLOCK); in MallocWeightBiasData()
|
D | convolution_winograd_fp32.cc | 110 int out_channel = filter_tensor->Batch(); in Init() local 112 input_unit_ * input_unit_ * in_channel * UP_ROUND(out_channel, oc_block_) * sizeof(float); in Init() 195 int out_channel = filter_tensor->Batch(); in MallocWeightBiasData() local 196 if (out_channel < 0) { in MallocWeightBiasData() 201 conv_param_->output_channel_ = out_channel; in MallocWeightBiasData() 205 input_unit_ * input_unit_ * in_channel * UP_ROUND(out_channel, oc_block_) * sizeof(float); in MallocWeightBiasData() 233 size_t new_bias_size = UP_ROUND(out_channel, C4NUM) * sizeof(float); in MallocWeightBiasData()
|
/third_party/mindspore/mindspore/lite/tools/optimizer/graph/ |
D | update_conv2d_param_pass.cc | 26 int64_t out_channel) { in SetConvAttr() argument 40 prim->AddAttr(ops::kOutChannel, MakeValue(out_channel)); in SetConvAttr() 83 int64_t out_channel = shape[0]; in UpdateConv2DAttr() local 87 prim->AddAttr(ops::kGroup, MakeValue(is_depth_wise ? out_channel : 1)); in UpdateConv2DAttr() 92 std::swap(in_channel, out_channel); in UpdateConv2DAttr() 97 out_channel *= group; in UpdateConv2DAttr() 100 SetConvAttr(prim, kernel_size, in_channel, out_channel); in UpdateConv2DAttr()
|
/third_party/mindspore/tests/st/model_zoo_tests/yolov3/src/ |
D | yolov3.py | 54 out_channel, argument 65 out_channel, 71 nn.BatchNorm2d(out_channel, momentum=momentum), 174 out_channel=out_channels[0], 179 out_channel=out_channels[1], 184 out_channel=out_channels[2], 189 out_channel=out_channels[3], 200 def _make_layer(self, block, layer_num, in_channel, out_channel, stride): argument 219 resblk = block(in_channel, out_channel, stride=stride) 223 resblk = block(out_channel, out_channel, stride=1) [all …]
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp16/ |
D | convolution_fp16.cc | 33 int out_channel = filter_tensor->Batch(); in PackWeight() local 37 RowMajor2Col8MajorFp16(weight_origin, reinterpret_cast<float16_t *>(packed_weight_), out_channel, in PackWeight() 44 int out_channel = filter_tensor->Batch(); in MallocWeightBiasData() local 46 conv_param_->output_channel_ = out_channel; in MallocWeightBiasData() 47 int oc8 = UP_ROUND(out_channel, col_tile_); in MallocWeightBiasData() 103 int out_channel = filter_tensor->Batch(); in Init() local 104 int oc8 = UP_ROUND(out_channel, col_tile_); in Init()
|
/third_party/mindspore/tests/st/fl/cross_silo_faster_rcnn/src/FasterRcnn/ |
D | resnet.py | 95 out_channel=out_channels[0], 102 out_channel=out_channels[1], 109 out_channel=out_channels[2], 116 out_channel=out_channels[3], 121 …def _make_layer(self, block, layer_num, in_channel, out_channel, stride, training=False, weights_u… argument 125 if stride != 1 or in_channel != out_channel: 128 out_channel, 136 …resblk = block(out_channel, out_channel, stride=1, training=training, weights_update=weights_updat…
|
D | resnet50v1.py | 95 out_channel=out_channels[0], 102 out_channel=out_channels[1], 109 out_channel=out_channels[2], 116 out_channel=out_channels[3], 121 …def _make_layer(self, block, layer_num, in_channel, out_channel, stride, training=False, weights_u… argument 125 if stride != 1 or in_channel != out_channel: 128 out_channel, 136 …resblk = block(out_channel, out_channel, stride=1, training=training, weights_update=weights_updat…
|
/third_party/mindspore/tests/st/gnn/ |
D | aggregator.py | 256 out_channel, argument 264 self.out_channel = Validator.check_positive_int(out_channel) 270 out_channels=self.out_channel, 274 in_channels=self.out_channel, 277 in_channels=self.out_channel, 284 self.bias = Parameter(initializer('zeros', self.out_channel), name='bias') 287 if in_channel != out_channel: 291 out_channels=self.out_channel)
|
/third_party/mindspore/mindspore/lite/tools/optimizer/fusion/ |
D | conv_biasadd_fusion.cc | 45 int out_channel) { in FuseBias() argument 51 if (out_channel <= 0) { in FuseBias() 59 fusion_bias->resize(static_cast<size_t>(out_channel), 0); in FuseBias() 62 conv_bias.data_.size() != static_cast<size_t>(out_channel) * sizeof(float)) { in FuseBias() 137 auto out_channel = GetValue<int64_t>(prim_conv->GetAttr(ops::kOutChannel)); in CheckCanFusion() local 148 return out_channel % element_num == 0; in CheckCanFusion() 189 int out_channel = GetValue<int64_t>(prim->GetAttr(ops::kOutChannel)); in DoFuison() local 191 if (!FuseBias(add_bias_info, conv_bias_info, &fusion_data, out_channel)) { in DoFuison() 196 …AddNewBiasNode(fusion_data.data(), func_graph, out_channel, static_cast<TypeId>(add_bias_info.data… in DoFuison()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp32/ |
D | adder_fp32.c | 55 int out_channel = conv_param->output_channel_; in AdderFp32() local 70 int out_batch_offset = b * out_channel * output_count; in AdderFp32() 81 int out_offset = thread_id * cal_num * out_channel + out_batch_offset; in AdderFp32() 89 out_channel, out_channel); in AdderFp32()
|