/third_party/mindspore/tests/ut/cpp/parallel/ops_info/ |
D | reshape_test.cc | 31 ReshapeInfoPtr reshape; variable 66 reshape = std::make_shared<ReshapeInfo>("reshape_info", inputs_shape, outputs_shape, attr); in SetUp() 67 reshape->set_input_value(val); in SetUp() 74 reshape->Init(strategy); in TEST_F() 75 Shape dev_matrix_shape = reshape->dev_matrix_shape(); in TEST_F() 85 reshape->Init(strategy); in TEST_F() 86 Shape dev_matrix_shape = reshape->dev_matrix_shape(); in TEST_F() 96 reshape->Init(strategy); in TEST_F() 97 std::vector<TensorInfo> inputs = reshape->inputs_tensor_info(); in TEST_F() 98 std::vector<TensorInfo> outputs = reshape->outputs_tensor_info(); in TEST_F() [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_fake_quant_perlayer.py | 52 x = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).reshape(2, 3).astype(np.float32) 53 min_val = np.array([0]).reshape(1).astype(np.float32) 54 max_val = np.array([0]).reshape(1).astype(np.float32) 74 x = np.array([-10.1, -10.0, -9.9, -9.75, 53.75, 53.8]).reshape(2, 3).astype(np.float32) 75 min_val = np.array([-10.0]).reshape(1).astype(np.float32) 76 max_val = np.array([53.75]).reshape(1).astype(np.float32) 94 x = np.array([-10.1, -10.0, -9.90, -9.75, 53.5, 53.6]).reshape(2, 3).astype(np.float32) 95 min_val = np.array([-10.0]).reshape(1).astype(np.float32) 96 max_val = np.array([53.5]).reshape(1).astype(np.float32) 114 x = np.array([-0.1, 0.0, 0.1, 0.25, 63.75, 63.8]).reshape(2, 3).astype(np.float32) [all …]
|
D | test_lstm_op.py | 82 … -6.1343e-01, -5.8236e-02, -3.7682e-01, 4.8338e-01, -2.1551e-01]]).astype(np.float32).reshape( 92 [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1]) 94 …y([-0.2862, 0.0034, 0.2059, -0.6544, 0.3244, -0.2472, 0.0852, -0.3050]).astype(np.float32).reshape( 97 np.float32).reshape([1, -1]) 99 w_np = np.concatenate((wih, whh, bih, bhh), axis=1).reshape([-1, 1, 1]) 207 np.float32).reshape([1, -1]) 216 [0.1152, -0.3124]]).astype(np.float32).reshape([1, -1]) 219 np.float32).reshape([1, -1]) 221 np.float32).reshape([1, -1]) 232 0.4230]]).astype(np.float32).reshape([1, -1]) [all …]
|
D | test_fake_quant_perchannel.py | 151 ).reshape(2, 3).astype(np.float32) 153 min_val = np.array([-0.1, -0.1, -0.1]).reshape(3).astype(np.float32) 154 max_val = np.array([63.65, 63.65, 63.65]).reshape(3).astype(np.float32) 173 ).reshape(2, 3).astype(np.float32) 175 min_val = np.array([-0.1, -0.1, -0.1]).reshape(3).astype(np.float32) 176 max_val = np.array([63.4, 63.4, 63.4]).reshape(3).astype(np.float32) 195 ).reshape(2, 3).astype(np.float32) 198 min_val = np.array([-0.125, -0.125, -0.125]).reshape(3).astype(np.float32) 199 max_val = np.array([63.625, 63.625, 63.625]).reshape(3).astype(np.float32) 218 ).reshape(2, 3).astype(np.float32) [all …]
|
D | test_cast_op.py | 60 x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32)) 62 x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16)) 78 x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32)) 80 x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool)) 95 x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16)) 97 x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16)) 112 x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64)) 114 x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32)) 129 x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32)) 131 x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32)) [all …]
|
D | test_addn_op.py | 41 x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32) 42 y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32) 43 z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32) 64 x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) 65 y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) 66 z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) 81 x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) 82 y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) 83 z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) 103 x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.int64) [all …]
|
D | test_batch_matmul.py | 39 input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32) 40 input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32) 61 input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float64) 62 input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float64) 83 input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32) 84 input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32) 105 input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32) 106 input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32) 127 input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32) 128 input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32) [all …]
|
D | test_sparse_apply_proximal_adagrad_op.py | 48 var = Tensor(np.arange(9).reshape(3, 3).astype(np.float32)) 49 accum = Tensor(np.zeros(9).reshape(3, 3).astype(np.float32)) 53 grad = Tensor(np.ones(9).reshape(3, 3).astype(np.float32) * 8) 69 var = Tensor(np.arange(9).reshape(3, 3).astype(np.float32)) 70 accum = Tensor(np.zeros(9).reshape(3, 3).astype(np.float32)) 74 grad = Tensor(np.ones(9).reshape(3, 3).astype(np.float32) * 8) 91 var = Tensor(np.arange(9).reshape(3, 3).astype(np.float32)) 92 accum = Tensor(np.zeros(9).reshape(3, 3).astype(np.float32)) 96 grad = Tensor(np.ones(9).reshape(3, 3).astype(np.float32) * 8) 112 var = Tensor(np.arange(9).reshape(3, 3).astype(np.float32)) [all …]
|
D | test_extract_image_patches_op.py | 40 input_tensor = Tensor(np.arange(360).reshape(3, 2, 6, 10).astype(np.float32)) 48 … 261., 266., 321., 326., 262., 267., 322., 327., 263., 268., 323., 328.]).reshape((3, 16, 1, 2)) 53 input_tensor = Tensor(np.arange(360).reshape(3, 2, 6, 10).astype(np.float32)) 61 … 261., 266., 321., 326., 262., 267., 322., 327., 263., 268., 323., 328.]).reshape((3, 16, 1, 2)) 71 input_tensor = Tensor(np.arange(6).reshape(1, 1, 2, 3).astype(np.float32)) 74 0., 0., 0., 0., 0., 0., 0.]).reshape((1, 10, 1, 2)) 79 input_tensor = Tensor(np.arange(6).reshape(1, 1, 2, 3).astype(np.float32)) 82 0., 0., 0., 0., 0., 0.]).reshape((1, 10, 1, 2))
|
D | test_fake_quant_perlayer_grad.py | 42 min_val = np.array([-0.125]).reshape(1).astype(np.float32) 43 max_val = np.array([63.625]).reshape(1).astype(np.float32) 63 min_val = np.array([-0.125]).reshape(1).astype(np.float32) 64 max_val = np.array([63.375]).reshape(1).astype(np.float32) 84 min_val = np.array([-0.4]).reshape(1).astype(np.float32) 85 max_val = np.array([7.1]).reshape(1).astype(np.float32) 105 min_val = np.array([-0.4]).reshape(1).astype(np.float32) 106 max_val = np.array([6.6]).reshape(1).astype(np.float32) 126 min_val = np.array([0.0]).reshape(1).astype(np.float32) 127 max_val = np.array([0.0]).reshape(1).astype(np.float32) [all …]
|
D | test_batchnorm_fold2_op.py | 72 expect = (x + beta.reshape(-1, 1, 73 1) - (gamma * running_mean / running_std).reshape(-1, 1, 75 …x * (running_std / batch_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(… 85 expect = (x + beta.reshape(-1, 1, 86 1) - (gamma * running_mean / running_std).reshape(-1, 1, 88 …x * (batch_std / running_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(…
|
D | test_apply_gradient_descent_op.py | 40 var = Tensor(np.arange(10).reshape(2, 5).astype(np.float32) / 10) 43 delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float32)) 51 var = Tensor(np.arange(10).reshape(2, 5).astype(np.float32) / 10) 54 delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float32)) 67 var = Tensor(np.arange(10).reshape(2, 5).astype(np.float16) / 10) 70 delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float16)) 78 var = Tensor(np.arange(10).reshape(2, 5).astype(np.float16) / 10) 81 delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float16))
|
/third_party/mindspore/tests/st/ops/ascend/test_aicpu_ops/ |
D | test_reshape.py | 28 self.reshape = P.Reshape() 31 return self.reshape(tensor, (4, 4)) 39 assert np.all(output.asnumpy() == np.reshape(x, (4, 4))) 47 assert np.all(output.asnumpy() == np.reshape(x, (4, 4))) 55 assert np.all(output.asnumpy() == np.reshape(x, (4, 4))) 63 assert np.all(output.asnumpy() == np.reshape(x, (4, 4))) 71 assert np.all(output.asnumpy() == np.reshape(x, (4, 4))) 79 assert np.all(output.asnumpy() == np.reshape(x, (4, 4))) 87 assert np.all(output.asnumpy() == np.reshape(x, (4, 4))) 95 assert np.all(output.asnumpy() == np.reshape(x, (4, 4))) [all …]
|
/third_party/mindspore/tests/vm_impl/ |
D | vm_me.py | 40 col = col.reshape(-1, pool_h * pool_w) 43 out = out.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2) 113 x = x.reshape(batch_num, -1) 118 return out.reshape(*input_shape), np.array(scale), np.array(shift), running_mean, running_var 126 x = x.reshape(batch_num, -1) 147 dy = dy.reshape(batch_size, -1) 151 dx = dx.reshape(*input_shape) 189 col = col.reshape(batch_num, out_h, out_w, channel, filter_h, filter_w) \ 276 col_w = np.reshape(weight, (filter_num, -1)).T 278 out = out.reshape((batch_num, out_h, out_w, -1)).transpose(0, 3, 1, 2) [all …]
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_batch_matmul.py | 45 input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape((2, 4, 1, 3)), mstype.float32) 46 input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape((2, 4, 3, 4)), mstype.float32) 66 input_x = Tensor(np.arange(2 * 3 * 2 * 3).reshape((2, 3, 2, 3)), mstype.float32) 67 input_y = Tensor(np.arange(2 * 3 * 3 * 4).reshape((2, 3, 3, 4)), mstype.float32) 91 input_x = Tensor(np.arange(2 * 3 * 3 * 2).reshape((2, 3, 3, 2)), mstype.float32) 92 input_y = Tensor(np.arange(2 * 3 * 3 * 4).reshape((2, 3, 3, 4)), mstype.float32) 116 input_x = Tensor(np.arange(2 * 3 * 2 * 3).reshape((2, 3, 2, 3)), mstype.float32) 117 input_y = Tensor(np.arange(2 * 3 * 4 * 3).reshape((2, 3, 4, 3)), mstype.float32) 141 input_x = Tensor(np.arange(2 * 3 * 3 * 2).reshape((2, 3, 3, 2)), mstype.float16) 142 input_y = Tensor(np.arange(2 * 3 * 4 * 3).reshape((2, 3, 4, 3)), mstype.float16)
|
D | test_matmul.py | 43 input_x = Tensor(np.arange(1 * 3).reshape((1, 3)), mstype.float32) 44 input_y = Tensor(np.arange(3 * 5).reshape((3, 5)), mstype.float32) 57 input_x = Tensor(np.arange(4 * 3).reshape((4, 3)), mstype.float32) 58 input_y = Tensor(np.arange(3 * 5).reshape((3, 5)), mstype.float32) 74 input_x = Tensor(np.arange(3 * 2).reshape((3, 2)), mstype.float32) 75 input_y = Tensor(np.arange(3 * 4).reshape((3, 4)), mstype.float32) 89 input_x = Tensor(np.arange(2 * 3).reshape((2, 3)), mstype.float32) 90 input_y = Tensor(np.arange(5 * 3).reshape((5, 3)), mstype.float32) 104 input_x = Tensor(np.arange(3 * 5).reshape((3, 5)), mstype.float16) 105 input_y = Tensor(np.arange(4 * 3).reshape((4, 3)), mstype.float16)
|
D | test_transpose_op.py | 34 …self.x_2D = Parameter(initializer(Tensor(np.arange(5 * 6).reshape(5, 6).astype(np.float32)), [5, 6… 38 …self.x_3D = Parameter(initializer(Tensor(np.arange(2 * 2 * 4).reshape(2, 2, 4).astype(np.float32))… 43 initializer(Tensor(np.arange(2 * 3 * 4 * 5).reshape(2, 49 … initializer(Tensor(np.arange(1 * 2 * 3 * 4 * 5).reshape(1, 2, 3, 4, 5).astype(np.float32)), 156 …self.x_2D = Parameter(initializer(Tensor(np.arange(5 * 6).reshape(5, 6).astype(np.int64)), [5, 6]), 160 …self.x_3D = Parameter(initializer(Tensor(np.arange(2 * 2 * 4).reshape(2, 2, 4).astype(np.int64)), … 165 initializer(Tensor(np.arange(2 * 3 * 4 * 5).reshape(2, 171 … initializer(Tensor(np.arange(1 * 2 * 3 * 4 * 5).reshape(1, 2, 3, 4, 5).astype(np.int64)), 278 …self.x_2D = Parameter(initializer(Tensor(np.arange(5 * 6).reshape(5, 6).astype(np.uint8)), [5, 6]), 282 …self.x_3D = Parameter(initializer(Tensor(np.arange(2 * 2 * 4).reshape(2, 2, 4).astype(np.uint8)), … [all …]
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_reshape_unexpand.py | 54 self.reshape = P.Reshape() 59 weight = self.reshape(self.mul_weight, (1, 128, 96)) 77 self.reshape = P.Reshape() 82 x = self.reshape(self.mul_weight, (1, 128, 96)) 100 self.reshape = P.Reshape() 105 x = self.reshape(self.mul_weight, (1, 128, 96)) 123 self.reshape = P.Reshape() 129 x = self.reshape(x, (3, 4)) 147 self.reshape = P.Reshape() 153 x = self.reshape(x, (3, 2, 2)) [all …]
|
D | test_auto_parallel_reshape.py | 55 self.reshape = P.Reshape() 60 out = self.reshape(x, (64, 28)) 78 self.reshape = P.Reshape() 83 out = self.reshape(x, (64, 28)) 84 out = self.reshape(out, (64, 28, 1)) 103 self.reshape = P.Reshape() 109 out = self.reshape(out, (64, 28)) 129 self.reshape = P.Reshape() 136 out = self.reshape(out, (64, 28)) 138 out = self.reshape(out, (128, 32)) [all …]
|
/third_party/mindspore/tests/st/fl/cross_silo_faster_rcnn/src/FasterRcnn/ |
D | anchor_generator.py | 43 ws = (w * w_ratios[:, None] * self.scales[None, :]).reshape(-1) 44 hs = (h * h_ratios[:, None] * self.scales[None, :]).reshape(-1) 46 ws = (w * self.scales[:, None] * w_ratios[None, :]).reshape(-1) 47 hs = (h * self.scales[:, None] * h_ratios[None, :]).reshape(-1) 60 xx = np.repeat(x.reshape(1, len(x)), len(y), axis=0).reshape(-1) 82 all_anchors = all_anchors.reshape(-1, 4)
|
/third_party/mindspore/tests/ut/python/dataset/ |
D | test_rgb_hsv.py | 41 rgb_np = rgb_flat.reshape((8, 8, 3)) 47 hsv_base = hsv_base.reshape((8, 8, 3)) 52 hsv_flat = hsv_base.reshape(64, 3) 58 rgb_base = rgb_base.reshape((8, 8, 3)) 66 rgb_np = rgb_flat.reshape((4, 2, 8, 3)) 72 hsv_base = hsv_base.reshape((4, 2, 8, 3)) 77 hsv_flat = hsv_base.reshape((64, 3)) 83 rgb_base = rgb_base.reshape((4, 2, 8, 3)) 91 rgb_np = rgb_flat.reshape((3, 8, 8)) 96 hsv_base = hsv_base.reshape((3, 8, 8)) [all …]
|
D | test_magphase.py | 52 input_number = np.array([41, 67, 34, 0, 69, 24, 78, 58]).reshape((2, 2, 2)).astype("double") 53 mag = np.array([78.54934755, 34., 73.05477397, 97.20082304]).reshape((2, 2)).astype("double") 54 phase = np.array([1.02164342, 0, 0.33473684, 0.63938591]).reshape((2, 2)).astype("double") 70 input_number = np.array([1, 2, 3, 4]).reshape(4,).astype("double") 77 input_number = np.array([1, 2, 3, 4]).reshape(1, 4).astype("double") 84 input_number = np.array(['test', 'test']).reshape(1, 2) 91 input_number = np.array([1, 2, 3, 4]).reshape(2, 2).astype("double")
|
/third_party/mindspore/tests/ut/python/pipeline/parse/ |
D | test_partial.py | 38 x = Tensor(np.arange(3).reshape((3,)).astype(np.float32)) 39 y = Tensor(np.arange(3 * 4).reshape((3, 4)).astype(np.float32)) 40 z = Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)).astype(np.float32)) 57 x = Tensor(np.arange(3).reshape((3,)).astype(np.float32)) 58 y = Tensor(np.arange(3 * 4).reshape((3, 4)).astype(np.float32)) 59 z = Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)).astype(np.float32)) 76 x = Tensor(np.arange(3).reshape((3,)).astype(np.float32)) 77 y = Tensor(np.arange(3 * 4).reshape((3, 4)).astype(np.float32)) 78 z = Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)).astype(np.float32)) 96 x = Tensor(np.arange(3).reshape((3,)).astype(np.float32)) [all …]
|
/third_party/mindspore/mindspore/lite/tools/converter/parser/onnx/ |
D | onnx_pad_adjust.cc | 72 auto reshape = func_graph->NewCNode(op_inputs); in NewReshapeOpNode() local 73 MS_CHECK_TRUE_MSG(reshape != nullptr, nullptr, "create cnode return nullptr"); in NewReshapeOpNode() 74 reshape->set_fullname_with_scope(input_node->fullname_with_scope() + "_reshape"); in NewReshapeOpNode() 75 return reshape; in NewReshapeOpNode() 94 auto reshape = func_graph->NewCNode(op_inputs); in NewTransposeOpNode() local 95 MS_CHECK_TRUE_MSG(reshape != nullptr, nullptr, "create cnode return nullptr"); in NewTransposeOpNode() 96 reshape->set_fullname_with_scope(input_node->fullname_with_scope() + "_transpose"); in NewTransposeOpNode() 97 return reshape; in NewTransposeOpNode()
|
/third_party/boost/libs/multi_array/test/ |
D | reshape.cpp | 47 A.reshape(new_dims); in main() 48 B.reshape(new_dims); in main() 49 C.reshape(new_dims); in main() 75 A.reshape(new_dims); in main() 76 B.reshape(new_dims); in main() 77 C.reshape(new_dims); in main()
|