/third_party/selinux/libsepol/include/sepol/policydb/ |
D | mls_types.h | 45 uint32_t sens; /* sensitivity */ member 55 if (r1->level[1].sens < r2->level[0].sens || r2->level[1].sens < r1->level[0].sens) { in mls_range_glblub() 61 dst->level[0].sens = MAX(r1->level[0].sens, r2->level[0].sens); in mls_range_glblub() 63 dst->level[1].sens = MIN(r1->level[1].sens, r2->level[1].sens); in mls_range_glblub() 80 dst->sens = src->sens; in mls_level_cpy() 104 return ((l1->sens == l2->sens) && ebitmap_cmp(&l1->cat, &l2->cat)); in mls_level_eq() 109 return ((l1->sens >= l2->sens) && ebitmap_contains(&l1->cat, &l2->cat)); in mls_level_dom() 165 uint32_t sens; member
|
D | context.h | 62 dst->range.level[0].sens = src->range.level[0].sens; in mls_context_cpy_low() 67 dst->range.level[1].sens = src->range.level[0].sens; in mls_context_cpy_low() 82 dst->range.level[0].sens = src->range.level[1].sens; in mls_context_cpy_high() 87 dst->range.level[1].sens = src->range.level[1].sens; in mls_context_cpy_high()
|
/third_party/mindspore/tests/ut/python/pynative_mode/ |
D | test_user_define_bprop_check.py | 45 def construct(self, x, sens): argument 46 return grad_all_with_sens(self.net)(x, sens) 49 sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32)) 53 ret = grad_net(x, sens) 77 def construct(self, x, sens): argument 78 return grad_all_with_sens(self.net)(x, sens) 81 sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32)) 85 ret = grad_net(x, sens) 109 def construct(self, x, sens): argument 110 return grad_all_with_sens(self.net)(x, sens) [all …]
|
D | test_implicit_conversion.py | 146 def construct(self, x, y, sens): argument 147 return grad_all_with_sens(self.net)(x, y, sens) 151 sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32)) 154 ret = grad_net(x, y, sens) 157 assert (ret[0].asnumpy() == sens.asnumpy()).all() 158 assert (ret[1].asnumpy() == sens.asnumpy().astype(np.bool_)).all() 174 def construct(self, x, y, sens): argument 175 return grad_all_with_sens(self.net)(x, y, sens) 179 sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32)) 182 ret = grad_net(x, y, sens) [all …]
|
D | test_multi_grad.py | 97 sens = Tensor(np.ones([32]), dtype=mstype.float32) 104 grad_mul(x, y, sens) 105 grad_add(x, y, sens) 130 sens = Tensor(np.ones([32]), dtype=mstype.float32) 137 grad_mul(x, y, sens) 138 grad_add(x, y, sens) 165 sens = Tensor(np.ones([32]), dtype=mstype.float32) 172 grad_mul(x, y, sens) 173 grad_add(x, y, sens) 203 sens = Tensor(np.ones([32]), dtype=mstype.float32) [all …]
|
D | test_kw_and_kwarg.py | 79 sens = Tensor(np.ones([1, 2, 3], np.float64)) 87 ret_grad = grad_kw_net(x, y, z, u=u, v=v, w=w, sens=sens) 117 def construct(self, x, y, z, sens): argument 118 return self.grad_all_wit_sense(self.net)(x, y, z, sens) 124 sens = Tensor(np.ones([1, 2, 3], np.float32)) 132 ret_grad = grad_net(x, y, z, sens)
|
/third_party/mindspore/tests/ut/python/pynative_mode/ops/ |
D | test_grad.py | 61 sens = Tensor(np.ones_like(out.asnumpy())) 62 args = [input_tensor, sens] 82 sens = Tensor(np.ones_like(out.asnumpy())) 83 args = [input_x, sens] 102 sens = Tensor(np.ones_like(out.asnumpy())) 103 args = [input_tensor, sens] 121 sens = Tensor(np.ones_like(out.asnumpy())) 122 args = [input_tensor, sens] 141 sens = Tensor(np.ones_like(out.asnumpy()).astype(np.float32)) 142 args = [cond, x, y, sens] [all …]
|
/third_party/mindspore/tests/ut/python/parameter_feature/ |
D | test_var_grad.py | 47 sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32)) 49 _ = grad_all_with_sens(net, net.trainable_params())(x, y, sens) 77 def __init__(self, func, wrt_params, params, grad_op, sens=None): argument 86 self.sens = sens 87 if not sens is None: 88 self.sens = sens if isinstance(sens, Tensor) else Tensor(sens, dtype=mstype.float32) 95 return self.grad(self.func, self.params)(*inputs, self.sens) 99 return self.grad(self.func)(*inputs, self.sens) 118 sens = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) 121 _ = grad_net(x, y, sens) [all …]
|
/third_party/mindspore/mindspore/nn/wrap/ |
D | cell_wrapper.py | 166 def __init__(self, network, loss_fn=None, sens=None): argument 171 self.grad = C.GradOperation(get_by_list=True, sens_param=(sens is not None)) 172 self.sens = sens 181 if self.sens is None: 184 grads = self.grad(self.network_with_loss, weights)(*inputs, self.sens) 335 def __init__(self, network, optimizer, sens=1.0): argument 342 self.sens = sens 354 sens = F.fill(loss.dtype, loss.shape, self.sens) 355 grads = self.grad(self.network, self.weights)(*inputs, sens) 504 def __init__(self, network, optimizer, sens=1.0): argument [all …]
|
/third_party/mindspore/tests/mindspore_test_framework/utils/ |
D | bprop_util.py | 30 def __init__(self, func, wrt_params, params, grad_op, sens): argument 38 self.sens = sens 40 if sens is not None: 47 return self.grad(self.func, self.params)(*inputs, self.sens) 51 return self.grad(self.func)(*inputs, self.sens)
|
/third_party/selinux/libsepol/src/ |
D | mls.c | 124 p_sens_val_to_name[context->range.level[l].sens - in mls_compute_context_len() 188 sens - 1]); in mls_sid_to_context() 191 p_sens_val_to_name[context->range.level[l].sens - in mls_sid_to_context() 280 if (!c->range.level[l].sens in mls_context_isvalid() 281 || c->range.level[l].sens > p->p_levels.nprim) in mls_context_isvalid() 284 key = p->p_sens_val_to_name[c->range.level[l].sens - 1]; in mls_context_isvalid() 363 context->range.level[l].sens = levdatum->level->sens; in mls_context_to_sid() 460 dst->range.level[l].sens = src->range.level[l].sens; in mls_copy_context() 480 dst->range.level[l].sens = src->range.level[0].sens; in mls_scopy_context() 499 context->range.level[l].sens = range->level[l].sens; in mls_range_set() [all …]
|
/third_party/mindspore/tests/st/fl/cross_silo_lenet/src/ |
D | cell_wrapper.py | 24 def __init__(self, network, optimizer, sens=1.0, batch_size=32): argument 25 super(TrainOneStepCellForFLWorker, self).__init__(network, optimizer, sens) 37 sens = F.fill(loss.dtype, loss.shape, self.sens) 38 grads = self.grad(self.network, self.weights)(*inputs, sens)
|
/third_party/mindspore/tests/ |
D | train_step_wrap.py | 67 def __init__(self, network, sens): argument 75 self.sens = sens 79 grads = self.grad(self.network, weights)(x, self.sens) 83 def train_step_with_sens(network, sens): argument 84 return TrainStepWrap2(network, sens)
|
D | ops_common.py | 43 def construct1(self, x1, sens): argument 44 return self.grad(self.network)(x1, sens) 46 def construct2(self, x1, x2, sens): argument 47 return self.grad(self.network)(x1, x2, sens) 49 def construct3(self, x1, x2, x3, sens): argument 50 return self.grad(self.network)(x1, x2, x3, sens) 52 def construct4(self, x1, x2, x3, x4, sens): argument 53 return self.grad(self.network)(x1, x2, x3, x4, sens) 55 def construct5(self, x1, x2, x3, x4, x5, sens): argument 56 return self.grad(self.network)(x1, x2, x3, x4, x5, sens) [all …]
|
/third_party/mindspore/tests/ut/python/pipeline/parse/ |
D | test_sequence_assign.py | 196 def construct(self, x, sens): argument 197 return self.grad_all_with_sens(self.net)(x, sens) 202 sens = Tensor(np.arange(2 * 3).reshape(2, 3)) 203 grad_net(x, sens) 224 def construct(self, x, value, sens): argument 225 return self.grad_all_with_sens(self.net)(x, value, sens) 231 sens = Tensor(np.arange(2 * 3).reshape(2, 3)) 232 grad_net(x, value, sens)
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_dataset_interface.py | 113 def construct(self, data, sens): argument 116 grads = self.grad(self.network, weights)(data, sens) 121 def loss_scale_manager_sens(strategy1, sens): argument 132 train_net(predict, sens) 137 sens = Tensor(np.ones([256, 1024]), dtype=ms.float32) 139 loss_scale_manager_sens(strategy1, sens) 150 sens = Tensor(np.ones([256, 256]), dtype=ms.float32) 151 loss_scale_manager_sens(strategy1, sens)
|
D | test_semi_auto_two_subgraphs.py | 68 def __init__(self, network, sens=1000.0): argument 84 loss_scale=sens) 90 self.sens = sens 98 sens_w = P.Fill()(P.DType()(loss_w), P.Shape()(loss_w), self.sens) 99 sens_d = P.Fill()(P.DType()(loss_d), P.Shape()(loss_d), self.sens)
|
/third_party/mindspore/mindspore/boost/ |
D | grad_freeze.py | 133 …def __init__(self, net, sens, grad, grad_reducer, use_grad_accumulation, optimizer, max_accumulati… argument 140 self.sens = sens 149 sens = F.fill(loss.dtype, loss.shape, self.sens) 150 grads = self.grad(self.net, self.parameters)(*inputs, sens) 251 def freeze_cell(reducer_flag, network, optimizer, sens, grad, use_grad_accumulation, mean=None, deg… argument 258 freeze_nets = tuple(_TrainFreezeCell(network, sens, grad, reducer, 262 freeze_nets = tuple(_TrainFreezeCell(network, sens, grad, F.identity,
|
D | boost_cell_wrapper.py | 137 def __init__(self, network, optimizer, sens=1.0): argument 138 super(BoostTrainOneStepCell, self).__init__(network, optimizer, sens) 164 … self.freeze_nets = freeze_cell(self.reducer_flag, self.network, self.optimizer, self.sens, 199 sens = F.fill(loss.dtype, loss.shape, self.sens) 200 grads = self.grad(self.network, self.weights)(*inputs, sens) 351 super(BoostTrainOneStepWithLossScaleCell, self).__init__(network, optimizer, sens=None) 396 def _set_sense_scale(self, sens): argument 404 if self.scale_sense and isinstance(sens, Tensor): 405 self.scale_sense.set_data(sens) 407 raise TypeError("The input type must be Tensor, but got {}".format(type(sens)))
|
/third_party/mindspore/tests/st/fl/hybrid_lenet/src/ |
D | cell_wrapper.py | 78 def __init__(self, network, optimizer, sens=1.0): argument 86 self.sens = sens 156 sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) 157 grads = self.grad(self.network, weights)(*inputs, sens)
|
/third_party/mindspore/tests/st/ops/ascend/ |
D | test_dense_grad.py | 48 sens = np.random.randn(32, 1001).astype(np.float32) 50 output = net(Tensor(x), Tensor(sens)) 55 sens = np.random.randn(2, 32, 1001).astype(np.float32) 57 output = net(Tensor(x), Tensor(sens))
|
/third_party/mindspore/tests/perf_test/ |
D | test_lenet.py | 47 def construct(self, x, sens): argument 48 grad_op = self.grad_op(self.network)(x, sens) 72 sens = Tensor(np.ones([batch_size, num_class]).astype(np.float32)) 75 _cell_graph_executor.compile(grad_op, inp, sens)
|
/third_party/mindspore/tests/ut/python/keep_order/ |
D | test_keep_order.py | 69 def construct(self, x, y, sens): argument 72 dx = grad_s(self.func)(x, y, sens) 97 sens = Tensor(np.ones([3, 3]).astype(np.float32)) 99 _ = net(x, y, sens) 110 def construct(self, x, y, sens): argument 114 dx = grad_s(self.func)(x, y, sens) 132 sens = Tensor(np.ones([3, 3]).astype(np.float32)) 134 _ = net(x, y, sens)
|
/third_party/mindspore/tests/st/gnn/ |
D | test_gnn_aggregator.py | 39 def construct(self, x, sens): argument 40 grad_op = self.grad_op(self.network)(x, sens) 55 sens = Tensor(np.ones([32, 64]).astype(np.float32)) 57 _cell_graph_executor.compile(grad_op, input_data, sens)
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_kl_div_op.py | 59 def construct(self, x1, x2, sens): argument 60 gout = self.grad(self.network)(x1, x2, sens) 71 sens = np.random.rand(20).astype(np.float32) 73 dx = grad(Tensor(prediction), Tensor(target), Tensor(sens))
|