• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore as ms
18from mindspore import context, Tensor, Parameter
19from mindspore.common.api import _cell_graph_executor
20from mindspore.nn import Cell
21from mindspore.ops import operations as P
22
23
24class Net(Cell):
25    def __init__(self, mul_weight, strategy1=None, strategy2=None):
26        super().__init__()
27        self.mul = P.Mul().shard(strategy1)
28        self.neg = P.Neg().shard(strategy2)
29        self.mul_weight = Parameter(mul_weight, "w1")
30
31    def construct(self, x, b):
32        out = self.mul(x, self.mul_weight)
33        out = self.neg(out)
34        return out, b
35
36
37_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
38_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
39_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
40
41
42def compile_net(net):
43    net.set_auto_parallel()
44    net.set_train()
45    _cell_graph_executor.compile(net, _x, _b)
46    context.reset_auto_parallel_context()
47
48
49def test_forward_graph_data_parallel():
50    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
51    strategy1 = ((16, 1, 1), (16, 1, 1))
52    strategy2 = ((16, 1, 1),)
53    net = Net(_w1, strategy1, strategy2)
54    compile_net(net)
55
56
57def test_forward_graph_model_parallel():
58    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
59    strategy1 = ((1, 1, 16), (1, 1, 16))
60    strategy2 = ((1, 1, 16),)
61    net = Net(_w1, strategy1, strategy2)
62    compile_net(net)
63
64
65def test_forward_graph_hybrid_parallel():
66    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
67    strategy1 = ((2, 2, 4), (2, 2, 4))
68    strategy2 = ((2, 2, 4),)
69    net = Net(_w1, strategy1, strategy2)
70    compile_net(net)
71
72
73def test_forward_graph_auto_parallel():
74    context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
75    net = Net(_w1)
76    compile_net(net)
77
78
79def test_forward_graph_repeat_calc():
80    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
81    strategy1 = ((2, 2, 4), (2, 2, 4))
82    strategy2 = ((1, 2, 2),)
83    net = Net(_w1, strategy1, strategy2)
84    compile_net(net)
85