/third_party/mindspore/tests/ut/cpp/dataset/ |
D | random_crop_and_resize_op_test.cc | 40 int w_out = 2048; in TEST_F() local 46 TensorShape s_out({h_out, w_out, s_in[2]}); in TEST_F() 48 …auto op = std::make_unique<RandomCropAndResizeOp>(h_out, w_out, scale_lb, scale_ub, aspect_lb, asp… in TEST_F() 66 int w_out = 2048; in TEST_F() local 72 TensorShape s_out({h_out, w_out, s_in[2]}); in TEST_F() 74 …auto op = std::make_unique<RandomCropAndResizeOp>(h_out, w_out, scale_lb, scale_ub, aspect_lb, asp… in TEST_F() 92 int w_out = 2048; in TEST_F() local 98 TensorShape s_out({h_out, w_out, s_in[2]}); in TEST_F() 100 …auto op = std::make_unique<RandomCropAndResizeOp>(h_out, w_out, scale_lb, scale_ub, aspect_lb, asp… in TEST_F()
|
D | random_crop_and_resize_with_bbox_op_test.cc | 44 int w_out = 2048; in TEST_F() local 49 …auto op = std::make_unique<RandomCropAndResizeWithBBoxOp>(h_out, w_out, scale_lb, scale_ub, aspect… in TEST_F() 74 int w_out = 2048; in TEST_F() local 79 …auto op = std::make_unique<RandomCropAndResizeWithBBoxOp>(h_out, w_out, scale_lb, scale_ub, aspect… in TEST_F() 92 int w_out = 2048; in TEST_F() local 97 …auto op = std::make_unique<RandomCropAndResizeWithBBoxOp>(h_out, w_out, scale_lb, scale_ub, aspect… in TEST_F()
|
/third_party/mindspore/mindspore/ops/operations/ |
D | _thor_ops.py | 502 w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w) 506 w_out = math.ceil(x_shape[3] / stride_w) 510 … pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3]) 516 …w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) /… 518 w_out = math.floor(w_out) 525 out_shape = [channel, k_h, k_w, batch_size, h_out, w_out] 582 w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w) 586 w_out = math.ceil(x_shape[3] / stride_w) 590 … pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3]) 599 out_shape = [batch_size, h_out, w_out, channel * k_h * k_w] [all …]
|
D | nn_ops.py | 1575 w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w) 1579 w_out = math.ceil(x_shape[3] / stride_w) 1585 … pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3]) 1593 …w_out = 1 + (x_shape[3] + pad_left + pad_right - kernel_size_w - (kernel_size_w - 1) * (dilation_w… 1596 w_out = math.floor(w_out) 1602 out_shape = [x_shape[0], out_channel, h_out, w_out] 8380 w_out = math.ceil((x_shape[4] - dilation_w * (kernel_size_w - 1)) / stride_w) 8386 w_out = math.ceil(x_shape[4] / stride_w) 8396 … pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[4]) 8406 w_out = 1 + (x_shape[4] + pad_left + pad_right - kernel_size_w - (kernel_size_w - 1) [all …]
|
/third_party/mindspore/mindspore/nn/layer/ |
D | conv.py | 1073 … w_out = _deconv_output_length(self.is_valid, self.is_same, self.is_pad, w, self.kernel_size[1], 1076 … return self.bias_add(self.conv2d_transpose(x, self.weight, (n, self.out_channels, h_out, w_out)), 1078 return self.conv2d_transpose(x, self.weight, (n, self.out_channels, h_out, w_out)) 1270 … w_out = _deconv_output_length(self.is_valid, self.is_same, self.is_pad, w, self.kernel_size[1], 1272 output = self.conv2d_transpose(x, self.weight, (n, self.out_channels, h_out, w_out))
|
/third_party/ffmpeg/libavutil/ |
D | opt.h | 761 int av_opt_get_image_size(void *obj, const char *name, int search_flags, int *w_out, int *h_out);
|
D | opt.c | 952 int av_opt_get_image_size(void *obj, const char *name, int search_flags, int *w_out, int *h_out) in av_opt_get_image_size() argument 965 if (w_out) *w_out = *(int *)dst; in av_opt_get_image_size()
|
/third_party/mindspore/mindspore/core/abstract/ |
D | prim_nn.cc | 100 int64_t w_out = ((w_input + 2 * padding - (window - 1) - 1) / stride) + 1; in InferImplPooling() local 101 ShapeVector shape_out = {input_shape->shape()[0], input_shape->shape()[1], h_out, w_out}; in InferImplPooling()
|