• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services.
21  *
22  * For ARM/ARM64:
23  * This is in the low TTBR0 range so that we can use
24  * any allocation we choose, and eliminate the risk of a conflict after kexec.
25  * The value chosen is the largest non-zero power of 2 suitable for this purpose
26  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
27  * be mapped efficiently.
28  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
29  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
30  * entire footprint of the UEFI runtime services memory regions)
31  *
32  * For RISC-V:
33  * There is no specific reason for which, this address (512MB) can't be used
34  * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
35  * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
36  * as well to minimize the code churn.
37  */
38 #define EFI_RT_VIRTUAL_BASE	SZ_512M
39 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
40 
41 #ifdef CONFIG_ARM64
42 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
43 #else
44 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
45 #endif
46 
47 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
48 static bool flat_va_mapping;
49 
50 const efi_system_table_t *efi_system_table;
51 
setup_graphics(void)52 static struct screen_info *setup_graphics(void)
53 {
54 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
55 	efi_status_t status;
56 	unsigned long size;
57 	void **gop_handle = NULL;
58 	struct screen_info *si = NULL;
59 
60 	size = 0;
61 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
62 			     &gop_proto, NULL, &size, gop_handle);
63 	if (status == EFI_BUFFER_TOO_SMALL) {
64 		si = alloc_screen_info();
65 		if (!si)
66 			return NULL;
67 		status = efi_setup_gop(si, &gop_proto, size);
68 		if (status != EFI_SUCCESS) {
69 			free_screen_info(si);
70 			return NULL;
71 		}
72 	}
73 	return si;
74 }
75 
install_memreserve_table(void)76 static void install_memreserve_table(void)
77 {
78 	struct linux_efi_memreserve *rsv;
79 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
80 	efi_status_t status;
81 
82 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
83 			     (void **)&rsv);
84 	if (status != EFI_SUCCESS) {
85 		efi_err("Failed to allocate memreserve entry!\n");
86 		return;
87 	}
88 
89 	rsv->next = 0;
90 	rsv->size = 0;
91 	atomic_set(&rsv->count, 0);
92 
93 	status = efi_bs_call(install_configuration_table,
94 			     &memreserve_table_guid, rsv);
95 	if (status != EFI_SUCCESS)
96 		efi_err("Failed to install memreserve config table!\n");
97 }
98 
get_supported_rt_services(void)99 static u32 get_supported_rt_services(void)
100 {
101 	const efi_rt_properties_table_t *rt_prop_table;
102 	u32 supported = EFI_RT_SUPPORTED_ALL;
103 
104 	rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
105 	if (rt_prop_table)
106 		supported &= rt_prop_table->runtime_services_supported;
107 
108 	return supported;
109 }
110 
111 /*
112  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
113  * that is described in the PE/COFF header.  Most of the code is the same
114  * for both archictectures, with the arch-specific code provided in the
115  * handle_kernel_image() function.
116  */
efi_pe_entry(efi_handle_t handle,efi_system_table_t * sys_table_arg)117 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
118 				   efi_system_table_t *sys_table_arg)
119 {
120 	efi_loaded_image_t *image;
121 	efi_status_t status;
122 	unsigned long image_addr;
123 	unsigned long image_size = 0;
124 	/* addr/point and size pairs for memory management*/
125 	unsigned long initrd_addr = 0;
126 	unsigned long initrd_size = 0;
127 	unsigned long fdt_addr = 0;  /* Original DTB */
128 	unsigned long fdt_size = 0;
129 	char *cmdline_ptr = NULL;
130 	int cmdline_size = 0;
131 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
132 	unsigned long reserve_addr = 0;
133 	unsigned long reserve_size = 0;
134 	enum efi_secureboot_mode secure_boot;
135 	struct screen_info *si;
136 	efi_properties_table_t *prop_tbl;
137 	unsigned long max_addr;
138 
139 	efi_system_table = sys_table_arg;
140 
141 	/* Check if we were booted by the EFI firmware */
142 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
143 		status = EFI_INVALID_PARAMETER;
144 		goto fail;
145 	}
146 
147 	status = check_platform_features();
148 	if (status != EFI_SUCCESS)
149 		goto fail;
150 
151 	/*
152 	 * Get a handle to the loaded image protocol.  This is used to get
153 	 * information about the running image, such as size and the command
154 	 * line.
155 	 */
156 	status = efi_system_table->boottime->handle_protocol(handle,
157 					&loaded_image_proto, (void *)&image);
158 	if (status != EFI_SUCCESS) {
159 		efi_err("Failed to get loaded image protocol\n");
160 		goto fail;
161 	}
162 
163 	/*
164 	 * Get the command line from EFI, using the LOADED_IMAGE
165 	 * protocol. We are going to copy the command line into the
166 	 * device tree, so this can be allocated anywhere.
167 	 */
168 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
169 	if (!cmdline_ptr) {
170 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
171 		status = EFI_OUT_OF_RESOURCES;
172 		goto fail;
173 	}
174 
175 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
176 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
177 	    cmdline_size == 0) {
178 		status = efi_parse_options(CONFIG_CMDLINE);
179 		if (status != EFI_SUCCESS) {
180 			efi_err("Failed to parse options\n");
181 			goto fail_free_cmdline;
182 		}
183 	}
184 
185 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
186 		status = efi_parse_options(cmdline_ptr);
187 		if (status != EFI_SUCCESS) {
188 			efi_err("Failed to parse options\n");
189 			goto fail_free_cmdline;
190 		}
191 	}
192 
193 	efi_info("Booting Linux Kernel...\n");
194 
195 	si = setup_graphics();
196 
197 	status = handle_kernel_image(&image_addr, &image_size,
198 				     &reserve_addr,
199 				     &reserve_size,
200 				     image);
201 	if (status != EFI_SUCCESS) {
202 		efi_err("Failed to relocate kernel\n");
203 		goto fail_free_screeninfo;
204 	}
205 
206 	efi_retrieve_tpm2_eventlog();
207 
208 	/* Ask the firmware to clear memory on unclean shutdown */
209 	efi_enable_reset_attack_mitigation();
210 
211 	secure_boot = efi_get_secureboot();
212 
213 	/*
214 	 * Unauthenticated device tree data is a security hazard, so ignore
215 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
216 	 * boot is enabled if we can't determine its state.
217 	 */
218 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
219 	     secure_boot != efi_secureboot_mode_disabled) {
220 		if (strstr(cmdline_ptr, "dtb="))
221 			efi_err("Ignoring DTB from command line.\n");
222 	} else {
223 		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
224 
225 		if (status != EFI_SUCCESS) {
226 			efi_err("Failed to load device tree!\n");
227 			goto fail_free_image;
228 		}
229 	}
230 
231 	if (fdt_addr) {
232 		efi_info("Using DTB from command line\n");
233 	} else {
234 		/* Look for a device tree configuration table entry. */
235 		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
236 		if (fdt_addr)
237 			efi_info("Using DTB from configuration table\n");
238 	}
239 
240 	if (!fdt_addr)
241 		efi_info("Generating empty DTB\n");
242 
243 	if (!efi_noinitrd) {
244 		max_addr = efi_get_max_initrd_addr(image_addr);
245 		status = efi_load_initrd(image, &initrd_addr, &initrd_size,
246 					 ULONG_MAX, max_addr);
247 		if (status != EFI_SUCCESS)
248 			efi_err("Failed to load initrd!\n");
249 	}
250 
251 	efi_random_get_seed();
252 
253 	/*
254 	 * If the NX PE data feature is enabled in the properties table, we
255 	 * should take care not to create a virtual mapping that changes the
256 	 * relative placement of runtime services code and data regions, as
257 	 * they may belong to the same PE/COFF executable image in memory.
258 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
259 	 */
260 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
261 	flat_va_mapping = prop_tbl &&
262 			  (prop_tbl->memory_protection_attribute &
263 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
264 
265 	/* force efi_novamap if SetVirtualAddressMap() is unsupported */
266 	efi_novamap |= !(get_supported_rt_services() &
267 			 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
268 
269 	/* hibernation expects the runtime regions to stay in the same place */
270 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
271 		/*
272 		 * Randomize the base of the UEFI runtime services region.
273 		 * Preserve the 2 MB alignment of the region by taking a
274 		 * shift of 21 bit positions into account when scaling
275 		 * the headroom value using a 32-bit random value.
276 		 */
277 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
278 					    EFI_RT_VIRTUAL_BASE -
279 					    EFI_RT_VIRTUAL_SIZE;
280 		u32 rnd;
281 
282 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
283 		if (status == EFI_SUCCESS) {
284 			virtmap_base = EFI_RT_VIRTUAL_BASE +
285 				       (((headroom >> 21) * rnd) >> (32 - 21));
286 		}
287 	}
288 
289 	install_memreserve_table();
290 
291 	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
292 						efi_get_max_fdt_addr(image_addr),
293 						initrd_addr, initrd_size,
294 						cmdline_ptr, fdt_addr, fdt_size);
295 	if (status != EFI_SUCCESS)
296 		goto fail_free_initrd;
297 
298 	if (IS_ENABLED(CONFIG_ARM))
299 		efi_handle_post_ebs_state();
300 
301 	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
302 	/* not reached */
303 
304 fail_free_initrd:
305 	efi_err("Failed to update FDT and exit boot services\n");
306 
307 	efi_free(initrd_size, initrd_addr);
308 	efi_free(fdt_size, fdt_addr);
309 
310 fail_free_image:
311 	efi_free(image_size, image_addr);
312 	efi_free(reserve_size, reserve_addr);
313 fail_free_screeninfo:
314 	free_screen_info(si);
315 fail_free_cmdline:
316 	efi_bs_call(free_pool, cmdline_ptr);
317 fail:
318 	return status;
319 }
320 
321 /*
322  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
323  *
324  * This function populates the virt_addr fields of all memory region descriptors
325  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
326  * are also copied to @runtime_map, and their total count is returned in @count.
327  */
efi_get_virtmap(efi_memory_desc_t * memory_map,unsigned long map_size,unsigned long desc_size,efi_memory_desc_t * runtime_map,int * count)328 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
329 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
330 		     int *count)
331 {
332 	u64 efi_virt_base = virtmap_base;
333 	efi_memory_desc_t *in, *out = runtime_map;
334 	int l;
335 
336 	for (l = 0; l < map_size; l += desc_size) {
337 		u64 paddr, size;
338 
339 		in = (void *)memory_map + l;
340 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
341 			continue;
342 
343 		paddr = in->phys_addr;
344 		size = in->num_pages * EFI_PAGE_SIZE;
345 
346 		in->virt_addr = in->phys_addr;
347 		if (efi_novamap) {
348 			continue;
349 		}
350 
351 		/*
352 		 * Make the mapping compatible with 64k pages: this allows
353 		 * a 4k page size kernel to kexec a 64k page size kernel and
354 		 * vice versa.
355 		 */
356 		if (!flat_va_mapping) {
357 
358 			paddr = round_down(in->phys_addr, SZ_64K);
359 			size += in->phys_addr - paddr;
360 
361 			/*
362 			 * Avoid wasting memory on PTEs by choosing a virtual
363 			 * base that is compatible with section mappings if this
364 			 * region has the appropriate size and physical
365 			 * alignment. (Sections are 2 MB on 4k granule kernels)
366 			 */
367 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
368 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
369 			else
370 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
371 
372 			in->virt_addr += efi_virt_base - paddr;
373 			efi_virt_base += size;
374 		}
375 
376 		memcpy(out, in, desc_size);
377 		out = (void *)out + desc_size;
378 		++*count;
379 	}
380 }
381