/* * Double-precision log(x) function. * * Copyright (c) 2018, Arm Limited. * SPDX-License-Identifier: MIT */ #include #include #include "libm.h" #include "log_data.h" #define T __log_data.tab #define T2 __log_data.tab2 #define B __log_data.poly1 #define A __log_data.poly #define Ln2hi __log_data.ln2hi #define Ln2lo __log_data.ln2lo #define N (1 << LOG_TABLE_BITS) #define OFF 0x3fe6000000000000 #ifdef NEED_MATH_DIVZERO /* base math internal func */ double __math_divzero(uint32_t sign) { return fp_barrier(sign ? -1.0 : 1.0) / 0.0; } #endif #ifdef NEED_MATH_INVALID double __math_invalid(double x) { return (x - x) / (x - x); } #endif /* Top 16 bits of a double. */ static inline uint32_t top16(double x) { return asuint64(x) >> 48; } double log(double x) { double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo; uint64_t ix, iz, tmp; uint32_t top; int k, i; ix = asuint64(x); top = top16(x); #define LO asuint64(1.0 - 0x1p-4) #define HI asuint64(1.0 + 0x1.09p-4) if (predict_false(ix - LO < HI - LO)) { /* Handle close to 1.0 inputs separately. */ /* Fix sign of zero with downward rounding when x==1. */ if (WANT_ROUNDING && predict_false(ix == asuint64(1.0))) return 0; r = x - 1.0; r2 = r * r; r3 = r * r2; y = r3 * (B[1] + r * B[2] + r2 * B[3] + r3 * (B[4] + r * B[5] + r2 * B[6] + r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10]))); /* Worst-case error is around 0.507 ULP. */ w = r * 0x1p27; double_t rhi = r + w - w; double_t rlo = r - rhi; w = rhi * rhi * B[0]; /* B[0] == -0.5. */ hi = r + w; lo = r - hi + w; lo += B[0] * rlo * (rhi + r); y += lo; y += hi; return eval_as_double(y); } if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) { /* x < 0x1p-1022 or inf or nan. */ if (ix * 2 == 0) return __math_divzero(1); if (ix == asuint64(INFINITY)) /* log(inf) == inf. */ return x; if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) return __math_invalid(x); /* x is subnormal, normalize it. */ ix = asuint64(x * 0x1p52); ix -= 52ULL << 52; } /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. The range is split into N subintervals. The ith subinterval contains z and c is near its center. */ tmp = ix - OFF; i = (tmp >> (52 - LOG_TABLE_BITS)) % N; k = (int64_t)tmp >> 52; /* arithmetic shift */ iz = ix - (tmp & 0xfffULL << 52); invc = T[i].invc; logc = T[i].logc; z = asdouble(iz); /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */ /* r ~= z/c - 1, |r| < 1/(2*N). */ #if __FP_FAST_FMA /* rounding error: 0x1p-55/N. */ r = __builtin_fma(z, invc, -1.0); #else /* rounding error: 0x1p-55/N + 0x1p-66. */ r = (z - T2[i].chi - T2[i].clo) * invc; #endif kd = (double_t)k; /* hi + lo = r + log(c) + k*Ln2. */ w = kd * Ln2hi + logc; hi = w + r; lo = w - hi + r + kd * Ln2lo; /* log(x) = lo + (log1p(r) - r) + hi. */ r2 = r * r; /* rounding error: 0x1p-54/N^2. */ /* Worst case error if |y| > 0x1p-5: 0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma) Worst case error if |y| > 0x1p-4: 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */ y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi; return eval_as_double(y); }