// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. #include "node_crypto.h" #include "node_buffer.h" #include "node_crypto_bio.h" #include "node_crypto_common.h" #include "node_crypto_clienthello-inl.h" #include "node_crypto_groups.h" #include "node_errors.h" #include "node_mutex.h" #include "node_process-inl.h" #include "allocated_buffer-inl.h" #include "tls_wrap.h" // TLSWrap #include "async_wrap-inl.h" #include "base_object-inl.h" #include "env-inl.h" #include "memory_tracker-inl.h" #include "string_bytes.h" #include "threadpoolwork-inl.h" #include "util-inl.h" #include "v8.h" #include #include #ifndef OPENSSL_NO_ENGINE # include #endif // !OPENSSL_NO_ENGINE #ifdef OPENSSL_FIPS # include #endif // OPENSSL_FIPS #include #include #include #include #include #include #include #include // INT_MAX #include #include #include #include #include namespace node { namespace crypto { using node::THROW_ERR_TLS_INVALID_PROTOCOL_METHOD; using v8::Array; using v8::ArrayBuffer; using v8::ArrayBufferView; using v8::BackingStore; using v8::Boolean; using v8::ConstructorBehavior; using v8::Context; using v8::DontDelete; using v8::Exception; using v8::External; using v8::False; using v8::Function; using v8::FunctionCallback; using v8::FunctionCallbackInfo; using v8::FunctionTemplate; using v8::HandleScope; using v8::Int32; using v8::Integer; using v8::Isolate; using v8::Just; using v8::Local; using v8::Maybe; using v8::MaybeLocal; using v8::NewStringType; using v8::Nothing; using v8::Null; using v8::Object; using v8::PropertyAttribute; using v8::ReadOnly; using v8::SideEffectType; using v8::Signature; using v8::String; using v8::TryCatch; using v8::Uint32; using v8::Uint8Array; using v8::Undefined; using v8::Value; #ifdef OPENSSL_NO_OCB # define IS_OCB_MODE(mode) false #else # define IS_OCB_MODE(mode) ((mode) == EVP_CIPH_OCB_MODE) #endif static const char* const root_certs[] = { #include "node_root_certs.h" // NOLINT(build/include_order) }; static const char system_cert_path[] = NODE_OPENSSL_SYSTEM_CERT_PATH; static X509_STORE* root_cert_store; static bool extra_root_certs_loaded = false; // Just to generate static methods template void SSLWrap::AddMethods(Environment* env, Local t); template void SSLWrap::ConfigureSecureContext(SecureContext* sc); template int SSLWrap::SetCACerts(SecureContext* sc); template void SSLWrap::MemoryInfo(MemoryTracker* tracker) const; template SSL_SESSION* SSLWrap::GetSessionCallback( SSL* s, const unsigned char* key, int len, int* copy); template int SSLWrap::NewSessionCallback(SSL* s, SSL_SESSION* sess); template void SSLWrap::KeylogCallback(const SSL* s, const char* line); template void SSLWrap::OnClientHello( void* arg, const ClientHelloParser::ClientHello& hello); template int SSLWrap::TLSExtStatusCallback(SSL* s, void* arg); template void SSLWrap::DestroySSL(); template int SSLWrap::SSLCertCallback(SSL* s, void* arg); template void SSLWrap::WaitForCertCb(CertCb cb, void* arg); template int SSLWrap::SelectALPNCallback( SSL* s, const unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg); template void Decode(const FunctionCallbackInfo& args, void (*callback)(T*, const FunctionCallbackInfo&, const char*, size_t)) { T* ctx; ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder()); if (args[0]->IsString()) { StringBytes::InlineDecoder decoder; Environment* env = Environment::GetCurrent(args); enum encoding enc = ParseEncoding(env->isolate(), args[1], UTF8); if (decoder.Decode(env, args[0].As(), enc).IsNothing()) return; callback(ctx, args, decoder.out(), decoder.size()); } else { ArrayBufferViewContents buf(args[0]); callback(ctx, args, buf.data(), buf.length()); } } static int PasswordCallback(char* buf, int size, int rwflag, void* u) { const char* passphrase = static_cast(u); if (passphrase != nullptr) { size_t buflen = static_cast(size); size_t len = strlen(passphrase); if (buflen < len) return -1; memcpy(buf, passphrase, len); return len; } return -1; } void TestFipsCrypto(const v8::FunctionCallbackInfo& args) { #ifdef OPENSSL_FIPS const auto enabled = FIPS_selftest() ? 1 : 0; #else // OPENSSL_FIPS const auto enabled = 0; #endif // OPENSSL_FIPS args.GetReturnValue().Set(enabled); } // Loads OpenSSL engine by engine id and returns it. The loaded engine // gets a reference so remember the corresponding call to ENGINE_free. // In case of error the appropriate js exception is scheduled // and nullptr is returned. #ifndef OPENSSL_NO_ENGINE static ENGINE* LoadEngineById(const char* engine_id, char (*errmsg)[1024]) { MarkPopErrorOnReturn mark_pop_error_on_return; ENGINE* engine = ENGINE_by_id(engine_id); if (engine == nullptr) { // Engine not found, try loading dynamically. engine = ENGINE_by_id("dynamic"); if (engine != nullptr) { if (!ENGINE_ctrl_cmd_string(engine, "SO_PATH", engine_id, 0) || !ENGINE_ctrl_cmd_string(engine, "LOAD", nullptr, 0)) { ENGINE_free(engine); engine = nullptr; } } } if (engine == nullptr) { int err = ERR_get_error(); if (err != 0) { ERR_error_string_n(err, *errmsg, sizeof(*errmsg)); } else { snprintf(*errmsg, sizeof(*errmsg), "Engine \"%s\" was not found", engine_id); } } return engine; } #endif // !OPENSSL_NO_ENGINE // This callback is used to avoid the default passphrase callback in OpenSSL // which will typically prompt for the passphrase. The prompting is designed // for the OpenSSL CLI, but works poorly for Node.js because it involves // synchronous interaction with the controlling terminal, something we never // want, and use this function to avoid it. static int NoPasswordCallback(char* buf, int size, int rwflag, void* u) { return 0; } // namespace node::crypto::error namespace error { Maybe Decorate(Environment* env, Local obj, unsigned long err) { // NOLINT(runtime/int) if (err == 0) return Just(true); // No decoration necessary. const char* ls = ERR_lib_error_string(err); const char* fs = ERR_func_error_string(err); const char* rs = ERR_reason_error_string(err); Isolate* isolate = env->isolate(); Local context = isolate->GetCurrentContext(); if (ls != nullptr) { if (obj->Set(context, env->library_string(), OneByteString(isolate, ls)).IsNothing()) { return Nothing(); } } if (fs != nullptr) { if (obj->Set(context, env->function_string(), OneByteString(isolate, fs)).IsNothing()) { return Nothing(); } } if (rs != nullptr) { if (obj->Set(context, env->reason_string(), OneByteString(isolate, rs)).IsNothing()) { return Nothing(); } // SSL has no API to recover the error name from the number, so we // transform reason strings like "this error" to "ERR_SSL_THIS_ERROR", // which ends up being close to the original error macro name. std::string reason(rs); for (auto& c : reason) { if (c == ' ') c = '_'; else c = ToUpper(c); } #define OSSL_ERROR_CODES_MAP(V) \ V(SYS) \ V(BN) \ V(RSA) \ V(DH) \ V(EVP) \ V(BUF) \ V(OBJ) \ V(PEM) \ V(DSA) \ V(X509) \ V(ASN1) \ V(CONF) \ V(CRYPTO) \ V(EC) \ V(SSL) \ V(BIO) \ V(PKCS7) \ V(X509V3) \ V(PKCS12) \ V(RAND) \ V(DSO) \ V(ENGINE) \ V(OCSP) \ V(UI) \ V(COMP) \ V(ECDSA) \ V(ECDH) \ V(OSSL_STORE) \ V(FIPS) \ V(CMS) \ V(TS) \ V(HMAC) \ V(CT) \ V(ASYNC) \ V(KDF) \ V(SM2) \ V(USER) \ #define V(name) case ERR_LIB_##name: lib = #name "_"; break; const char* lib = ""; const char* prefix = "OSSL_"; switch (ERR_GET_LIB(err)) { OSSL_ERROR_CODES_MAP(V) } #undef V #undef OSSL_ERROR_CODES_MAP // Don't generate codes like "ERR_OSSL_SSL_". if (lib && strcmp(lib, "SSL_") == 0) prefix = ""; // All OpenSSL reason strings fit in a single 80-column macro definition, // all prefix lengths are <= 10, and ERR_OSSL_ is 9, so 128 is more than // sufficient. char code[128]; snprintf(code, sizeof(code), "ERR_%s%s%s", prefix, lib, reason.c_str()); if (obj->Set(env->isolate()->GetCurrentContext(), env->code_string(), OneByteString(env->isolate(), code)).IsNothing()) return Nothing(); } return Just(true); } } // namespace error struct CryptoErrorVector : public std::vector { inline void Capture() { clear(); while (auto err = ERR_get_error()) { char buf[256]; ERR_error_string_n(err, buf, sizeof(buf)); push_back(buf); } std::reverse(begin(), end()); } inline MaybeLocal ToException( Environment* env, Local exception_string = Local()) const { if (exception_string.IsEmpty()) { CryptoErrorVector copy(*this); if (copy.empty()) copy.push_back("no error"); // But possibly a bug... // Use last element as the error message, everything else goes // into the .opensslErrorStack property on the exception object. auto exception_string = String::NewFromUtf8(env->isolate(), copy.back().data(), NewStringType::kNormal, copy.back().size()) .ToLocalChecked(); copy.pop_back(); return copy.ToException(env, exception_string); } Local exception_v = Exception::Error(exception_string); CHECK(!exception_v.IsEmpty()); if (!empty()) { CHECK(exception_v->IsObject()); Local exception = exception_v.As(); Maybe ok = exception->Set(env->context(), env->openssl_error_stack(), ToV8Value(env->context(), *this).ToLocalChecked()); if (ok.IsNothing()) return MaybeLocal(); } return exception_v; } }; void ThrowCryptoError(Environment* env, unsigned long err, // NOLINT(runtime/int) // Default, only used if there is no SSL `err` which can // be used to create a long-style message string. const char* message) { char message_buffer[128] = {0}; if (err != 0 || message == nullptr) { ERR_error_string_n(err, message_buffer, sizeof(message_buffer)); message = message_buffer; } HandleScope scope(env->isolate()); Local exception_string = String::NewFromUtf8(env->isolate(), message).ToLocalChecked(); CryptoErrorVector errors; errors.Capture(); Local exception; if (!errors.ToException(env, exception_string).ToLocal(&exception)) return; Local obj; if (!exception->ToObject(env->context()).ToLocal(&obj)) return; if (error::Decorate(env, obj, err).IsNothing()) return; env->isolate()->ThrowException(exception); } // Ensure that OpenSSL has enough entropy (at least 256 bits) for its PRNG. // The entropy pool starts out empty and needs to fill up before the PRNG // can be used securely. Once the pool is filled, it never dries up again; // its contents is stirred and reused when necessary. // // OpenSSL normally fills the pool automatically but not when someone starts // generating random numbers before the pool is full: in that case OpenSSL // keeps lowering the entropy estimate to thwart attackers trying to guess // the initial state of the PRNG. // // When that happens, we will have to wait until enough entropy is available. // That should normally never take longer than a few milliseconds. // // OpenSSL draws from /dev/random and /dev/urandom. While /dev/random may // block pending "true" randomness, /dev/urandom is a CSPRNG that doesn't // block under normal circumstances. // // The only time when /dev/urandom may conceivably block is right after boot, // when the whole system is still low on entropy. That's not something we can // do anything about. inline void CheckEntropy() { for (;;) { int status = RAND_status(); CHECK_GE(status, 0); // Cannot fail. if (status != 0) break; // Give up, RAND_poll() not supported. if (RAND_poll() == 0) break; } } bool EntropySource(unsigned char* buffer, size_t length) { // Ensure that OpenSSL's PRNG is properly seeded. CheckEntropy(); // RAND_bytes() can return 0 to indicate that the entropy data is not truly // random. That's okay, it's still better than V8's stock source of entropy, // which is /dev/urandom on UNIX platforms and the current time on Windows. return RAND_bytes(buffer, length) != -1; } void SecureContext::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount( SecureContext::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); Local secureContextString = FIXED_ONE_BYTE_STRING(env->isolate(), "SecureContext"); t->SetClassName(secureContextString); env->SetProtoMethod(t, "init", Init); env->SetProtoMethod(t, "setKey", SetKey); #ifndef OPENSSL_NO_ENGINE env->SetProtoMethod(t, "setEngineKey", SetEngineKey); #endif // !OPENSSL_NO_ENGINE env->SetProtoMethod(t, "setCert", SetCert); env->SetProtoMethod(t, "addCACert", AddCACert); env->SetProtoMethod(t, "addCRL", AddCRL); env->SetProtoMethod(t, "addRootCerts", AddRootCerts); env->SetProtoMethod(t, "setCipherSuites", SetCipherSuites); env->SetProtoMethod(t, "setCiphers", SetCiphers); env->SetProtoMethod(t, "setSigalgs", SetSigalgs); env->SetProtoMethod(t, "setECDHCurve", SetECDHCurve); env->SetProtoMethod(t, "setDHParam", SetDHParam); env->SetProtoMethod(t, "setMaxProto", SetMaxProto); env->SetProtoMethod(t, "setMinProto", SetMinProto); env->SetProtoMethod(t, "getMaxProto", GetMaxProto); env->SetProtoMethod(t, "getMinProto", GetMinProto); env->SetProtoMethod(t, "setOptions", SetOptions); env->SetProtoMethod(t, "setSessionIdContext", SetSessionIdContext); env->SetProtoMethod(t, "setSessionTimeout", SetSessionTimeout); env->SetProtoMethod(t, "close", Close); env->SetProtoMethod(t, "loadPKCS12", LoadPKCS12); #ifndef OPENSSL_NO_ENGINE env->SetProtoMethod(t, "setClientCertEngine", SetClientCertEngine); #endif // !OPENSSL_NO_ENGINE env->SetProtoMethodNoSideEffect(t, "getTicketKeys", GetTicketKeys); env->SetProtoMethod(t, "setTicketKeys", SetTicketKeys); env->SetProtoMethod(t, "setFreeListLength", SetFreeListLength); env->SetProtoMethod(t, "enableTicketKeyCallback", EnableTicketKeyCallback); env->SetProtoMethodNoSideEffect(t, "getCertificate", GetCertificate); env->SetProtoMethodNoSideEffect(t, "getIssuer", GetCertificate); #define SET_INTEGER_CONSTANTS(name, value) \ t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), name), \ Integer::NewFromUnsigned(env->isolate(), value)); SET_INTEGER_CONSTANTS("kTicketKeyReturnIndex", kTicketKeyReturnIndex); SET_INTEGER_CONSTANTS("kTicketKeyHMACIndex", kTicketKeyHMACIndex); SET_INTEGER_CONSTANTS("kTicketKeyAESIndex", kTicketKeyAESIndex); SET_INTEGER_CONSTANTS("kTicketKeyNameIndex", kTicketKeyNameIndex); SET_INTEGER_CONSTANTS("kTicketKeyIVIndex", kTicketKeyIVIndex); #undef SET_INTEGER_CONSTANTS Local ctx_getter_templ = FunctionTemplate::New(env->isolate(), CtxGetter, Local(), Signature::New(env->isolate(), t)); t->PrototypeTemplate()->SetAccessorProperty( FIXED_ONE_BYTE_STRING(env->isolate(), "_external"), ctx_getter_templ, Local(), static_cast(ReadOnly | DontDelete)); target->Set(env->context(), secureContextString, t->GetFunction(env->context()).ToLocalChecked()).Check(); env->set_secure_context_constructor_template(t); } SecureContext::SecureContext(Environment* env, Local wrap) : BaseObject(env, wrap) { MakeWeak(); env->isolate()->AdjustAmountOfExternalAllocatedMemory(kExternalSize); } inline void SecureContext::Reset() { if (ctx_ != nullptr) { env()->isolate()->AdjustAmountOfExternalAllocatedMemory(-kExternalSize); } ctx_.reset(); cert_.reset(); issuer_.reset(); } SecureContext::~SecureContext() { Reset(); } void SecureContext::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); new SecureContext(env, args.This()); } // A maxVersion of 0 means "any", but OpenSSL may support TLS versions that // Node.js doesn't, so pin the max to what we do support. const int MAX_SUPPORTED_VERSION = TLS1_3_VERSION; void SecureContext::Init(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); CHECK_EQ(args.Length(), 3); CHECK(args[1]->IsInt32()); CHECK(args[2]->IsInt32()); int min_version = args[1].As()->Value(); int max_version = args[2].As()->Value(); const SSL_METHOD* method = TLS_method(); if (max_version == 0) max_version = MAX_SUPPORTED_VERSION; if (args[0]->IsString()) { const node::Utf8Value sslmethod(env->isolate(), args[0]); // Note that SSLv2 and SSLv3 are disallowed but SSLv23_method and friends // are still accepted. They are OpenSSL's way of saying that all known // protocols below TLS 1.3 are supported unless explicitly disabled (which // we do below for SSLv2 and SSLv3.) if (sslmethod == "SSLv2_method" || sslmethod == "SSLv2_server_method" || sslmethod == "SSLv2_client_method") { THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv2 methods disabled"); return; } else if (sslmethod == "SSLv3_method" || sslmethod == "SSLv3_server_method" || sslmethod == "SSLv3_client_method") { THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv3 methods disabled"); return; } else if (sslmethod == "SSLv23_method") { max_version = TLS1_2_VERSION; } else if (sslmethod == "SSLv23_server_method") { max_version = TLS1_2_VERSION; method = TLS_server_method(); } else if (sslmethod == "SSLv23_client_method") { max_version = TLS1_2_VERSION; method = TLS_client_method(); } else if (sslmethod == "TLS_method") { min_version = 0; max_version = MAX_SUPPORTED_VERSION; } else if (sslmethod == "TLS_server_method") { min_version = 0; max_version = MAX_SUPPORTED_VERSION; method = TLS_server_method(); } else if (sslmethod == "TLS_client_method") { min_version = 0; max_version = MAX_SUPPORTED_VERSION; method = TLS_client_method(); } else if (sslmethod == "TLSv1_method") { min_version = TLS1_VERSION; max_version = TLS1_VERSION; } else if (sslmethod == "TLSv1_server_method") { min_version = TLS1_VERSION; max_version = TLS1_VERSION; method = TLS_server_method(); } else if (sslmethod == "TLSv1_client_method") { min_version = TLS1_VERSION; max_version = TLS1_VERSION; method = TLS_client_method(); } else if (sslmethod == "TLSv1_1_method") { min_version = TLS1_1_VERSION; max_version = TLS1_1_VERSION; } else if (sslmethod == "TLSv1_1_server_method") { min_version = TLS1_1_VERSION; max_version = TLS1_1_VERSION; method = TLS_server_method(); } else if (sslmethod == "TLSv1_1_client_method") { min_version = TLS1_1_VERSION; max_version = TLS1_1_VERSION; method = TLS_client_method(); } else if (sslmethod == "TLSv1_2_method") { min_version = TLS1_2_VERSION; max_version = TLS1_2_VERSION; } else if (sslmethod == "TLSv1_2_server_method") { min_version = TLS1_2_VERSION; max_version = TLS1_2_VERSION; method = TLS_server_method(); } else if (sslmethod == "TLSv1_2_client_method") { min_version = TLS1_2_VERSION; max_version = TLS1_2_VERSION; method = TLS_client_method(); } else { const std::string msg("Unknown method: "); THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, (msg + * sslmethod).c_str()); return; } } sc->ctx_.reset(SSL_CTX_new(method)); SSL_CTX_set_app_data(sc->ctx_.get(), sc); // Disable SSLv2 in the case when method == TLS_method() and the // cipher list contains SSLv2 ciphers (not the default, should be rare.) // The bundled OpenSSL doesn't have SSLv2 support but the system OpenSSL may. // SSLv3 is disabled because it's susceptible to downgrade attacks (POODLE.) SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_NO_SSLv2); SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_NO_SSLv3); // Enable automatic cert chaining. This is enabled by default in OpenSSL, but // disabled by default in BoringSSL. Enable it explicitly to make the // behavior match when Node is built with BoringSSL. SSL_CTX_clear_mode(sc->ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); // SSL session cache configuration SSL_CTX_set_session_cache_mode(sc->ctx_.get(), SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_SERVER | SSL_SESS_CACHE_NO_INTERNAL | SSL_SESS_CACHE_NO_AUTO_CLEAR); SSL_CTX_set_min_proto_version(sc->ctx_.get(), min_version); SSL_CTX_set_max_proto_version(sc->ctx_.get(), max_version); // OpenSSL 1.1.0 changed the ticket key size, but the OpenSSL 1.0.x size was // exposed in the public API. To retain compatibility, install a callback // which restores the old algorithm. if (RAND_bytes(sc->ticket_key_name_, sizeof(sc->ticket_key_name_)) <= 0 || RAND_bytes(sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_)) <= 0 || RAND_bytes(sc->ticket_key_aes_, sizeof(sc->ticket_key_aes_)) <= 0) { return env->ThrowError("Error generating ticket keys"); } SSL_CTX_set_tlsext_ticket_key_cb(sc->ctx_.get(), TicketCompatibilityCallback); } // Takes a string or buffer and loads it into a BIO. // Caller responsible for BIO_free_all-ing the returned object. static BIOPointer LoadBIO(Environment* env, Local v) { HandleScope scope(env->isolate()); if (v->IsString()) { const node::Utf8Value s(env->isolate(), v); return NodeBIO::NewFixed(*s, s.length()); } if (v->IsArrayBufferView()) { ArrayBufferViewContents buf(v.As()); return NodeBIO::NewFixed(buf.data(), buf.length()); } return nullptr; } void SecureContext::SetKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); unsigned int len = args.Length(); if (len < 1) { return THROW_ERR_MISSING_ARGS(env, "Private key argument is mandatory"); } if (len > 2) { return env->ThrowError("Only private key and pass phrase are expected"); } if (len == 2) { if (args[1]->IsUndefined() || args[1]->IsNull()) len = 1; else THROW_AND_RETURN_IF_NOT_STRING(env, args[1], "Pass phrase"); } BIOPointer bio(LoadBIO(env, args[0])); if (!bio) return; node::Utf8Value passphrase(env->isolate(), args[1]); EVPKeyPointer key( PEM_read_bio_PrivateKey(bio.get(), nullptr, PasswordCallback, *passphrase)); if (!key) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) return ThrowCryptoError(env, err, "PEM_read_bio_PrivateKey"); } int rv = SSL_CTX_use_PrivateKey(sc->ctx_.get(), key.get()); if (!rv) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) return ThrowCryptoError(env, err, "SSL_CTX_use_PrivateKey"); } } void SecureContext::SetSigalgs(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); ClearErrorOnReturn clear_error_on_return; CHECK_EQ(args.Length(), 1); CHECK(args[0]->IsString()); const node::Utf8Value sigalgs(env->isolate(), args[0]); int rv = SSL_CTX_set1_sigalgs_list(sc->ctx_.get(), *sigalgs); if (rv == 0) { return ThrowCryptoError(env, ERR_get_error()); } } #ifndef OPENSSL_NO_ENGINE // Helpers for the smart pointer. void ENGINE_free_fn(ENGINE* engine) { ENGINE_free(engine); } void ENGINE_finish_and_free_fn(ENGINE* engine) { ENGINE_finish(engine); ENGINE_free(engine); } void SecureContext::SetEngineKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); CHECK_EQ(args.Length(), 2); char errmsg[1024]; const node::Utf8Value engine_id(env->isolate(), args[1]); std::unique_ptr> e = { LoadEngineById(*engine_id, &errmsg), ENGINE_free_fn }; if (e.get() == nullptr) { return env->ThrowError(errmsg); } if (!ENGINE_init(e.get())) { return env->ThrowError("ENGINE_init"); } e.get_deleter() = ENGINE_finish_and_free_fn; const node::Utf8Value key_name(env->isolate(), args[0]); EVPKeyPointer key(ENGINE_load_private_key(e.get(), *key_name, nullptr, nullptr)); if (!key) { return ThrowCryptoError(env, ERR_get_error(), "ENGINE_load_private_key"); } int rv = SSL_CTX_use_PrivateKey(sc->ctx_.get(), key.get()); if (rv == 0) { return ThrowCryptoError(env, ERR_get_error(), "SSL_CTX_use_PrivateKey"); } sc->private_key_engine_ = std::move(e); } #endif // !OPENSSL_NO_ENGINE int SSL_CTX_use_certificate_chain(SSL_CTX* ctx, X509Pointer&& x, STACK_OF(X509)* extra_certs, X509Pointer* cert, X509Pointer* issuer_) { CHECK(!*issuer_); CHECK(!*cert); X509* issuer = nullptr; int ret = SSL_CTX_use_certificate(ctx, x.get()); if (ret) { // If we could set up our certificate, now proceed to // the CA certificates. SSL_CTX_clear_extra_chain_certs(ctx); for (int i = 0; i < sk_X509_num(extra_certs); i++) { X509* ca = sk_X509_value(extra_certs, i); // NOTE: Increments reference count on `ca` if (!SSL_CTX_add1_chain_cert(ctx, ca)) { ret = 0; issuer = nullptr; break; } // Note that we must not free r if it was successfully // added to the chain (while we must free the main // certificate, since its reference count is increased // by SSL_CTX_use_certificate). // Find issuer if (issuer != nullptr || X509_check_issued(ca, x.get()) != X509_V_OK) continue; issuer = ca; } } // Try getting issuer from a cert store if (ret) { if (issuer == nullptr) { ret = SSL_CTX_get_issuer(ctx, x.get(), &issuer); ret = ret < 0 ? 0 : 1; // NOTE: get_cert_store doesn't increment reference count, // no need to free `store` } else { // Increment issuer reference count issuer = X509_dup(issuer); if (issuer == nullptr) { ret = 0; } } } issuer_->reset(issuer); if (ret && x != nullptr) { cert->reset(X509_dup(x.get())); if (!*cert) ret = 0; } return ret; } // Read a file that contains our certificate in "PEM" format, // possibly followed by a sequence of CA certificates that should be // sent to the peer in the Certificate message. // // Taken from OpenSSL - edited for style. int SSL_CTX_use_certificate_chain(SSL_CTX* ctx, BIOPointer&& in, X509Pointer* cert, X509Pointer* issuer) { // Just to ensure that `ERR_peek_last_error` below will return only errors // that we are interested in ERR_clear_error(); X509Pointer x( PEM_read_bio_X509_AUX(in.get(), nullptr, NoPasswordCallback, nullptr)); if (!x) return 0; unsigned long err = 0; // NOLINT(runtime/int) StackOfX509 extra_certs(sk_X509_new_null()); if (!extra_certs) return 0; while (X509Pointer extra {PEM_read_bio_X509(in.get(), nullptr, NoPasswordCallback, nullptr)}) { if (sk_X509_push(extra_certs.get(), extra.get())) { extra.release(); continue; } return 0; } // When the while loop ends, it's usually just EOF. err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { ERR_clear_error(); } else { // some real error return 0; } return SSL_CTX_use_certificate_chain(ctx, std::move(x), extra_certs.get(), cert, issuer); } void SecureContext::SetCert(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); if (args.Length() != 1) { return THROW_ERR_MISSING_ARGS(env, "Certificate argument is mandatory"); } BIOPointer bio(LoadBIO(env, args[0])); if (!bio) return; sc->cert_.reset(); sc->issuer_.reset(); int rv = SSL_CTX_use_certificate_chain(sc->ctx_.get(), std::move(bio), &sc->cert_, &sc->issuer_); if (!rv) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) return ThrowCryptoError(env, err, "SSL_CTX_use_certificate_chain"); } } static X509_STORE* NewRootCertStore() { static std::vector root_certs_vector; static Mutex root_certs_vector_mutex; Mutex::ScopedLock lock(root_certs_vector_mutex); if (root_certs_vector.empty()) { for (size_t i = 0; i < arraysize(root_certs); i++) { X509* x509 = PEM_read_bio_X509(NodeBIO::NewFixed(root_certs[i], strlen(root_certs[i])).get(), nullptr, // no re-use of X509 structure NoPasswordCallback, nullptr); // no callback data // Parse errors from the built-in roots are fatal. CHECK_NOT_NULL(x509); root_certs_vector.push_back(x509); } } X509_STORE* store = X509_STORE_new(); if (*system_cert_path != '\0') { X509_STORE_load_locations(store, system_cert_path, nullptr); } Mutex::ScopedLock cli_lock(node::per_process::cli_options_mutex); if (per_process::cli_options->ssl_openssl_cert_store) { X509_STORE_set_default_paths(store); } else { for (X509* cert : root_certs_vector) { X509_up_ref(cert); X509_STORE_add_cert(store, cert); } } return store; } void GetRootCertificates(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Local result[arraysize(root_certs)]; for (size_t i = 0; i < arraysize(root_certs); i++) { if (!String::NewFromOneByte( env->isolate(), reinterpret_cast(root_certs[i])) .ToLocal(&result[i])) { return; } } args.GetReturnValue().Set( Array::New(env->isolate(), result, arraysize(root_certs))); } void SecureContext::AddCACert(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); ClearErrorOnReturn clear_error_on_return; if (args.Length() != 1) { return THROW_ERR_MISSING_ARGS(env, "CA certificate argument is mandatory"); } BIOPointer bio(LoadBIO(env, args[0])); if (!bio) return; X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get()); while (X509* x509 = PEM_read_bio_X509_AUX( bio.get(), nullptr, NoPasswordCallback, nullptr)) { if (cert_store == root_cert_store) { cert_store = NewRootCertStore(); SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store); } X509_STORE_add_cert(cert_store, x509); SSL_CTX_add_client_CA(sc->ctx_.get(), x509); X509_free(x509); } } void SecureContext::AddCRL(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); if (args.Length() != 1) { return THROW_ERR_MISSING_ARGS(env, "CRL argument is mandatory"); } ClearErrorOnReturn clear_error_on_return; BIOPointer bio(LoadBIO(env, args[0])); if (!bio) return; DeleteFnPtr crl( PEM_read_bio_X509_CRL(bio.get(), nullptr, NoPasswordCallback, nullptr)); if (!crl) return env->ThrowError("Failed to parse CRL"); X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get()); if (cert_store == root_cert_store) { cert_store = NewRootCertStore(); SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store); } X509_STORE_add_crl(cert_store, crl.get()); X509_STORE_set_flags(cert_store, X509_V_FLAG_CRL_CHECK | X509_V_FLAG_CRL_CHECK_ALL); } static unsigned long AddCertsFromFile( // NOLINT(runtime/int) X509_STORE* store, const char* file) { ERR_clear_error(); MarkPopErrorOnReturn mark_pop_error_on_return; BIOPointer bio(BIO_new_file(file, "r")); if (!bio) return ERR_get_error(); while (X509* x509 = PEM_read_bio_X509(bio.get(), nullptr, NoPasswordCallback, nullptr)) { X509_STORE_add_cert(store, x509); X509_free(x509); } unsigned long err = ERR_peek_error(); // NOLINT(runtime/int) // Ignore error if its EOF/no start line found. if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { return 0; } return err; } void UseExtraCaCerts(const std::string& file) { ClearErrorOnReturn clear_error_on_return; if (root_cert_store == nullptr) { root_cert_store = NewRootCertStore(); if (!file.empty()) { unsigned long err = AddCertsFromFile( // NOLINT(runtime/int) root_cert_store, file.c_str()); if (err) { fprintf(stderr, "Warning: Ignoring extra certs from `%s`, load failed: %s\n", file.c_str(), ERR_error_string(err, nullptr)); } else { extra_root_certs_loaded = true; } } } } static void IsExtraRootCertsFileLoaded( const FunctionCallbackInfo& args) { return args.GetReturnValue().Set(extra_root_certs_loaded); } void SecureContext::AddRootCerts(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); ClearErrorOnReturn clear_error_on_return; if (root_cert_store == nullptr) { root_cert_store = NewRootCertStore(); } // Increment reference count so global store is not deleted along with CTX. X509_STORE_up_ref(root_cert_store); SSL_CTX_set_cert_store(sc->ctx_.get(), root_cert_store); } void SecureContext::SetCipherSuites(const FunctionCallbackInfo& args) { // BoringSSL doesn't allow API config of TLS1.3 cipher suites. #ifndef OPENSSL_IS_BORINGSSL SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); ClearErrorOnReturn clear_error_on_return; CHECK_EQ(args.Length(), 1); CHECK(args[0]->IsString()); const node::Utf8Value ciphers(args.GetIsolate(), args[0]); if (!SSL_CTX_set_ciphersuites(sc->ctx_.get(), *ciphers)) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) return ThrowCryptoError(env, err, "Failed to set ciphers"); } #endif } void SecureContext::SetCiphers(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); ClearErrorOnReturn clear_error_on_return; CHECK_EQ(args.Length(), 1); CHECK(args[0]->IsString()); const node::Utf8Value ciphers(args.GetIsolate(), args[0]); if (!SSL_CTX_set_cipher_list(sc->ctx_.get(), *ciphers)) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) if (strlen(*ciphers) == 0 && ERR_GET_REASON(err) == SSL_R_NO_CIPHER_MATCH) { // TLS1.2 ciphers were deliberately cleared, so don't consider // SSL_R_NO_CIPHER_MATCH to be an error (this is how _set_cipher_suites() // works). If the user actually sets a value (like "no-such-cipher"), then // that's actually an error. return; } return ThrowCryptoError(env, err, "Failed to set ciphers"); } } void SecureContext::SetECDHCurve(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); if (args.Length() != 1) return THROW_ERR_MISSING_ARGS(env, "ECDH curve name argument is mandatory"); THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "ECDH curve name"); node::Utf8Value curve(env->isolate(), args[0]); if (strcmp(*curve, "auto") == 0) return; if (!SSL_CTX_set1_curves_list(sc->ctx_.get(), *curve)) return env->ThrowError("Failed to set ECDH curve"); } void SecureContext::SetDHParam(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.This()); Environment* env = sc->env(); ClearErrorOnReturn clear_error_on_return; // Auto DH is not supported in openssl 1.0.1, so dhparam needs // to be specified explicitly if (args.Length() != 1) return THROW_ERR_MISSING_ARGS(env, "DH argument is mandatory"); DHPointer dh; { BIOPointer bio(LoadBIO(env, args[0])); if (!bio) return; dh.reset(PEM_read_bio_DHparams(bio.get(), nullptr, nullptr, nullptr)); } // Invalid dhparam is silently discarded and DHE is no longer used. if (!dh) return; const BIGNUM* p; DH_get0_pqg(dh.get(), &p, nullptr, nullptr); const int size = BN_num_bits(p); if (size < 1024) { return THROW_ERR_INVALID_ARG_VALUE( env, "DH parameter is less than 1024 bits"); } else if (size < 2048) { args.GetReturnValue().Set(FIXED_ONE_BYTE_STRING( env->isolate(), "DH parameter is less than 2048 bits")); } SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_SINGLE_DH_USE); int r = SSL_CTX_set_tmp_dh(sc->ctx_.get(), dh.get()); if (!r) return env->ThrowTypeError("Error setting temp DH parameter"); } void SecureContext::SetMinProto(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); CHECK_EQ(args.Length(), 1); CHECK(args[0]->IsInt32()); int version = args[0].As()->Value(); CHECK(SSL_CTX_set_min_proto_version(sc->ctx_.get(), version)); } void SecureContext::SetMaxProto(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); CHECK_EQ(args.Length(), 1); CHECK(args[0]->IsInt32()); int version = args[0].As()->Value(); CHECK(SSL_CTX_set_max_proto_version(sc->ctx_.get(), version)); } void SecureContext::GetMinProto(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); CHECK_EQ(args.Length(), 0); long version = // NOLINT(runtime/int) SSL_CTX_get_min_proto_version(sc->ctx_.get()); args.GetReturnValue().Set(static_cast(version)); } void SecureContext::GetMaxProto(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); CHECK_EQ(args.Length(), 0); long version = // NOLINT(runtime/int) SSL_CTX_get_max_proto_version(sc->ctx_.get()); args.GetReturnValue().Set(static_cast(version)); } void SecureContext::SetOptions(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); int64_t val; if (args.Length() != 1 || !args[0]->IntegerValue(args.GetIsolate()->GetCurrentContext()).To(&val)) { return THROW_ERR_INVALID_ARG_TYPE( sc->env(), "Options must be an integer value"); } SSL_CTX_set_options(sc->ctx_.get(), static_cast(val)); // NOLINT(runtime/int) } void SecureContext::SetSessionIdContext( const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); if (args.Length() != 1) { return THROW_ERR_MISSING_ARGS( env, "Session ID context argument is mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "Session ID context"); const node::Utf8Value sessionIdContext(args.GetIsolate(), args[0]); const unsigned char* sid_ctx = reinterpret_cast(*sessionIdContext); unsigned int sid_ctx_len = sessionIdContext.length(); int r = SSL_CTX_set_session_id_context(sc->ctx_.get(), sid_ctx, sid_ctx_len); if (r == 1) return; BUF_MEM* mem; Local message; BIOPointer bio(BIO_new(BIO_s_mem())); if (!bio) { message = FIXED_ONE_BYTE_STRING(args.GetIsolate(), "SSL_CTX_set_session_id_context error"); } else { ERR_print_errors(bio.get()); BIO_get_mem_ptr(bio.get(), &mem); message = OneByteString(args.GetIsolate(), mem->data, mem->length); } args.GetIsolate()->ThrowException(Exception::TypeError(message)); } void SecureContext::SetSessionTimeout(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); if (args.Length() != 1 || !args[0]->IsInt32()) { return THROW_ERR_INVALID_ARG_TYPE( sc->env(), "Session timeout must be a 32-bit integer"); } int32_t sessionTimeout = args[0].As()->Value(); SSL_CTX_set_timeout(sc->ctx_.get(), sessionTimeout); } void SecureContext::Close(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); sc->Reset(); } // Takes .pfx or .p12 and password in string or buffer format void SecureContext::LoadPKCS12(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); std::vector pass; bool ret = false; SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); ClearErrorOnReturn clear_error_on_return; if (args.Length() < 1) { return THROW_ERR_MISSING_ARGS(env, "PFX certificate argument is mandatory"); } BIOPointer in(LoadBIO(env, args[0])); if (!in) return env->ThrowError("Unable to load BIO"); if (args.Length() >= 2) { THROW_AND_RETURN_IF_NOT_BUFFER(env, args[1], "Pass phrase"); Local abv = args[1].As(); size_t passlen = abv->ByteLength(); pass.resize(passlen + 1); abv->CopyContents(pass.data(), passlen); pass[passlen] = '\0'; } // Free previous certs sc->issuer_.reset(); sc->cert_.reset(); X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get()); DeleteFnPtr p12; EVPKeyPointer pkey; X509Pointer cert; StackOfX509 extra_certs; PKCS12* p12_ptr = nullptr; EVP_PKEY* pkey_ptr = nullptr; X509* cert_ptr = nullptr; STACK_OF(X509)* extra_certs_ptr = nullptr; if (d2i_PKCS12_bio(in.get(), &p12_ptr) && (p12.reset(p12_ptr), true) && // Move ownership to the smart pointer. PKCS12_parse(p12.get(), pass.data(), &pkey_ptr, &cert_ptr, &extra_certs_ptr) && (pkey.reset(pkey_ptr), cert.reset(cert_ptr), extra_certs.reset(extra_certs_ptr), true) && // Move ownership. SSL_CTX_use_certificate_chain(sc->ctx_.get(), std::move(cert), extra_certs.get(), &sc->cert_, &sc->issuer_) && SSL_CTX_use_PrivateKey(sc->ctx_.get(), pkey.get())) { // Add CA certs too for (int i = 0; i < sk_X509_num(extra_certs.get()); i++) { X509* ca = sk_X509_value(extra_certs.get(), i); if (cert_store == root_cert_store) { cert_store = NewRootCertStore(); SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store); } X509_STORE_add_cert(cert_store, ca); SSL_CTX_add_client_CA(sc->ctx_.get(), ca); } ret = true; } if (!ret) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) const char* str = ERR_reason_error_string(err); return env->ThrowError(str); } } #ifndef OPENSSL_NO_ENGINE void SecureContext::SetClientCertEngine( const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK_EQ(args.Length(), 1); CHECK(args[0]->IsString()); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); MarkPopErrorOnReturn mark_pop_error_on_return; // SSL_CTX_set_client_cert_engine does not itself support multiple // calls by cleaning up before overwriting the client_cert_engine // internal context variable. // Instead of trying to fix up this problem we in turn also do not // support multiple calls to SetClientCertEngine. if (sc->client_cert_engine_provided_) { return env->ThrowError( "Multiple calls to SetClientCertEngine are not allowed"); } const node::Utf8Value engine_id(env->isolate(), args[0]); char errmsg[1024]; DeleteFnPtr engine( LoadEngineById(*engine_id, &errmsg)); if (!engine) return env->ThrowError(errmsg); // Note that this takes another reference to `engine`. int r = SSL_CTX_set_client_cert_engine(sc->ctx_.get(), engine.get()); if (r == 0) return ThrowCryptoError(env, ERR_get_error()); sc->client_cert_engine_provided_ = true; } #endif // !OPENSSL_NO_ENGINE void SecureContext::GetTicketKeys(const FunctionCallbackInfo& args) { #if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys) SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); Local buff = Buffer::New(wrap->env(), 48).ToLocalChecked(); memcpy(Buffer::Data(buff), wrap->ticket_key_name_, 16); memcpy(Buffer::Data(buff) + 16, wrap->ticket_key_hmac_, 16); memcpy(Buffer::Data(buff) + 32, wrap->ticket_key_aes_, 16); args.GetReturnValue().Set(buff); #endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys) } void SecureContext::SetTicketKeys(const FunctionCallbackInfo& args) { #if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys) SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); Environment* env = wrap->env(); // TODO(@sam-github) Move type and len check to js, and CHECK() in C++. if (args.Length() < 1) { return THROW_ERR_MISSING_ARGS(env, "Ticket keys argument is mandatory"); } THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Ticket keys"); ArrayBufferViewContents buf(args[0].As()); if (buf.length() != 48) { return THROW_ERR_INVALID_ARG_VALUE( env, "Ticket keys length must be 48 bytes"); } memcpy(wrap->ticket_key_name_, buf.data(), 16); memcpy(wrap->ticket_key_hmac_, buf.data() + 16, 16); memcpy(wrap->ticket_key_aes_, buf.data() + 32, 16); args.GetReturnValue().Set(true); #endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys) } void SecureContext::SetFreeListLength(const FunctionCallbackInfo& args) { } // Currently, EnableTicketKeyCallback and TicketKeyCallback are only present for // the regression test in test/parallel/test-https-resume-after-renew.js. void SecureContext::EnableTicketKeyCallback( const FunctionCallbackInfo& args) { SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); SSL_CTX_set_tlsext_ticket_key_cb(wrap->ctx_.get(), TicketKeyCallback); } int SecureContext::TicketKeyCallback(SSL* ssl, unsigned char* name, unsigned char* iv, EVP_CIPHER_CTX* ectx, HMAC_CTX* hctx, int enc) { static const int kTicketPartSize = 16; SecureContext* sc = static_cast( SSL_CTX_get_app_data(SSL_get_SSL_CTX(ssl))); Environment* env = sc->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); Local argv[] = { Buffer::Copy(env, reinterpret_cast(name), kTicketPartSize).ToLocalChecked(), Buffer::Copy(env, reinterpret_cast(iv), kTicketPartSize).ToLocalChecked(), Boolean::New(env->isolate(), enc != 0) }; Local ret = node::MakeCallback(env->isolate(), sc->object(), env->ticketkeycallback_string(), arraysize(argv), argv, {0, 0}).ToLocalChecked(); Local arr = ret.As(); int r = arr->Get(env->context(), kTicketKeyReturnIndex).ToLocalChecked() ->Int32Value(env->context()).FromJust(); if (r < 0) return r; Local hmac = arr->Get(env->context(), kTicketKeyHMACIndex).ToLocalChecked(); Local aes = arr->Get(env->context(), kTicketKeyAESIndex).ToLocalChecked(); if (Buffer::Length(aes) != kTicketPartSize) return -1; if (enc) { Local name_val = arr->Get(env->context(), kTicketKeyNameIndex).ToLocalChecked(); Local iv_val = arr->Get(env->context(), kTicketKeyIVIndex).ToLocalChecked(); if (Buffer::Length(name_val) != kTicketPartSize || Buffer::Length(iv_val) != kTicketPartSize) { return -1; } name_val.As()->CopyContents(name, kTicketPartSize); iv_val.As()->CopyContents(iv, kTicketPartSize); } ArrayBufferViewContents hmac_buf(hmac); HMAC_Init_ex(hctx, hmac_buf.data(), hmac_buf.length(), EVP_sha256(), nullptr); ArrayBufferViewContents aes_key(aes.As()); if (enc) { EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr, aes_key.data(), iv); } else { EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr, aes_key.data(), iv); } return r; } int SecureContext::TicketCompatibilityCallback(SSL* ssl, unsigned char* name, unsigned char* iv, EVP_CIPHER_CTX* ectx, HMAC_CTX* hctx, int enc) { SecureContext* sc = static_cast( SSL_CTX_get_app_data(SSL_get_SSL_CTX(ssl))); if (enc) { memcpy(name, sc->ticket_key_name_, sizeof(sc->ticket_key_name_)); if (RAND_bytes(iv, 16) <= 0 || EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr, sc->ticket_key_aes_, iv) <= 0 || HMAC_Init_ex(hctx, sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_), EVP_sha256(), nullptr) <= 0) { return -1; } return 1; } if (memcmp(name, sc->ticket_key_name_, sizeof(sc->ticket_key_name_)) != 0) { // The ticket key name does not match. Discard the ticket. return 0; } if (EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr, sc->ticket_key_aes_, iv) <= 0 || HMAC_Init_ex(hctx, sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_), EVP_sha256(), nullptr) <= 0) { return -1; } return 1; } void SecureContext::CtxGetter(const FunctionCallbackInfo& info) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, info.This()); Local ext = External::New(info.GetIsolate(), sc->ctx_.get()); info.GetReturnValue().Set(ext); } template void SecureContext::GetCertificate(const FunctionCallbackInfo& args) { SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); Environment* env = wrap->env(); X509* cert; if (primary) cert = wrap->cert_.get(); else cert = wrap->issuer_.get(); if (cert == nullptr) return args.GetReturnValue().SetNull(); int size = i2d_X509(cert, nullptr); Local buff = Buffer::New(env, size).ToLocalChecked(); unsigned char* serialized = reinterpret_cast( Buffer::Data(buff)); i2d_X509(cert, &serialized); args.GetReturnValue().Set(buff); } template void SSLWrap::AddMethods(Environment* env, Local t) { HandleScope scope(env->isolate()); env->SetProtoMethodNoSideEffect(t, "getPeerCertificate", GetPeerCertificate); env->SetProtoMethodNoSideEffect(t, "getCertificate", GetCertificate); env->SetProtoMethodNoSideEffect(t, "getFinished", GetFinished); env->SetProtoMethodNoSideEffect(t, "getPeerFinished", GetPeerFinished); env->SetProtoMethodNoSideEffect(t, "getSession", GetSession); env->SetProtoMethod(t, "setSession", SetSession); env->SetProtoMethod(t, "loadSession", LoadSession); env->SetProtoMethodNoSideEffect(t, "isSessionReused", IsSessionReused); env->SetProtoMethodNoSideEffect(t, "verifyError", VerifyError); env->SetProtoMethodNoSideEffect(t, "getCipher", GetCipher); env->SetProtoMethodNoSideEffect(t, "getSharedSigalgs", GetSharedSigalgs); env->SetProtoMethodNoSideEffect( t, "exportKeyingMaterial", ExportKeyingMaterial); env->SetProtoMethod(t, "endParser", EndParser); env->SetProtoMethod(t, "certCbDone", CertCbDone); env->SetProtoMethod(t, "renegotiate", Renegotiate); env->SetProtoMethodNoSideEffect(t, "getTLSTicket", GetTLSTicket); env->SetProtoMethod(t, "newSessionDone", NewSessionDone); env->SetProtoMethod(t, "setOCSPResponse", SetOCSPResponse); env->SetProtoMethod(t, "requestOCSP", RequestOCSP); env->SetProtoMethodNoSideEffect(t, "getEphemeralKeyInfo", GetEphemeralKeyInfo); env->SetProtoMethodNoSideEffect(t, "getProtocol", GetProtocol); env->SetProtoMethod(t, "setMaxSendFragment", SetMaxSendFragment); env->SetProtoMethodNoSideEffect(t, "getALPNNegotiatedProtocol", GetALPNNegotiatedProto); env->SetProtoMethod(t, "setALPNProtocols", SetALPNProtocols); } template void SSLWrap::ConfigureSecureContext(SecureContext* sc) { // OCSP stapling SSL_CTX_set_tlsext_status_cb(sc->ctx_.get(), TLSExtStatusCallback); SSL_CTX_set_tlsext_status_arg(sc->ctx_.get(), nullptr); } template SSL_SESSION* SSLWrap::GetSessionCallback(SSL* s, const unsigned char* key, int len, int* copy) { Base* w = static_cast(SSL_get_app_data(s)); *copy = 0; return w->next_sess_.release(); } template int SSLWrap::NewSessionCallback(SSL* s, SSL_SESSION* sess) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->ssl_env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); if (!w->session_callbacks_) return 0; // Check if session is small enough to be stored int size = i2d_SSL_SESSION(sess, nullptr); if (size > SecureContext::kMaxSessionSize) return 0; // Serialize session Local session = Buffer::New(env, size).ToLocalChecked(); unsigned char* session_data = reinterpret_cast( Buffer::Data(session)); memset(session_data, 0, size); i2d_SSL_SESSION(sess, &session_data); unsigned int session_id_length; const unsigned char* session_id_data = SSL_SESSION_get_id(sess, &session_id_length); Local session_id = Buffer::Copy( env, reinterpret_cast(session_id_data), session_id_length).ToLocalChecked(); Local argv[] = { session_id, session }; // On servers, we pause the handshake until callback of 'newSession', which // calls NewSessionDoneCb(). On clients, there is no callback to wait for. if (w->is_server()) w->awaiting_new_session_ = true; w->MakeCallback(env->onnewsession_string(), arraysize(argv), argv); return 0; } template void SSLWrap::KeylogCallback(const SSL* s, const char* line) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->ssl_env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); const size_t size = strlen(line); Local line_bf = Buffer::Copy(env, line, 1 + size).ToLocalChecked(); char* data = Buffer::Data(line_bf); data[size] = '\n'; w->MakeCallback(env->onkeylog_string(), 1, &line_bf); } template void SSLWrap::OnClientHello(void* arg, const ClientHelloParser::ClientHello& hello) { Base* w = static_cast(arg); Environment* env = w->ssl_env(); HandleScope handle_scope(env->isolate()); Local context = env->context(); Context::Scope context_scope(context); Local hello_obj = Object::New(env->isolate()); Local buff = Buffer::Copy( env, reinterpret_cast(hello.session_id()), hello.session_size()).ToLocalChecked(); hello_obj->Set(context, env->session_id_string(), buff).Check(); if (hello.servername() == nullptr) { hello_obj->Set(context, env->servername_string(), String::Empty(env->isolate())).Check(); } else { Local servername = OneByteString(env->isolate(), hello.servername(), hello.servername_size()); hello_obj->Set(context, env->servername_string(), servername).Check(); } hello_obj->Set(context, env->tls_ticket_string(), Boolean::New(env->isolate(), hello.has_ticket())).Check(); Local argv[] = { hello_obj }; w->MakeCallback(env->onclienthello_string(), arraysize(argv), argv); } template void SSLWrap::GetPeerCertificate( const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); bool abbreviated = args.Length() < 1 || !args[0]->IsTrue(); Local ret; if (GetPeerCert(env, w->ssl_, abbreviated, w->is_server()).ToLocal(&ret)) args.GetReturnValue().Set(ret); } template void SSLWrap::GetCertificate( const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); Local ret; if (GetCert(env, w->ssl_).ToLocal(&ret)) args.GetReturnValue().Set(ret); } template void SSLWrap::GetFinished(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); // We cannot just pass nullptr to SSL_get_finished() // because it would further be propagated to memcpy(), // where the standard requirements as described in ISO/IEC 9899:2011 // sections 7.21.2.1, 7.21.1.2, and 7.1.4, would be violated. // Thus, we use a dummy byte. char dummy[1]; size_t len = SSL_get_finished(w->ssl_.get(), dummy, sizeof dummy); if (len == 0) return; AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, len); CHECK_EQ(len, SSL_get_finished(w->ssl_.get(), buf.data(), len)); args.GetReturnValue().Set(buf.ToBuffer().ToLocalChecked()); } template void SSLWrap::GetPeerFinished(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); // We cannot just pass nullptr to SSL_get_peer_finished() // because it would further be propagated to memcpy(), // where the standard requirements as described in ISO/IEC 9899:2011 // sections 7.21.2.1, 7.21.1.2, and 7.1.4, would be violated. // Thus, we use a dummy byte. char dummy[1]; size_t len = SSL_get_peer_finished(w->ssl_.get(), dummy, sizeof dummy); if (len == 0) return; AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, len); CHECK_EQ(len, SSL_get_peer_finished(w->ssl_.get(), buf.data(), len)); args.GetReturnValue().Set(buf.ToBuffer().ToLocalChecked()); } template void SSLWrap::GetSession(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); SSL_SESSION* sess = SSL_get_session(w->ssl_.get()); if (sess == nullptr) return; int slen = i2d_SSL_SESSION(sess, nullptr); if (slen <= 0) return; // Invalid or malformed session. AllocatedBuffer sbuf = AllocatedBuffer::AllocateManaged(env, slen); unsigned char* p = reinterpret_cast(sbuf.data()); CHECK_LT(0, i2d_SSL_SESSION(sess, &p)); args.GetReturnValue().Set(sbuf.ToBuffer().ToLocalChecked()); } template void SSLWrap::SetSession(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); if (args.Length() < 1) return THROW_ERR_MISSING_ARGS(env, "Session argument is mandatory"); THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Session"); SSLSessionPointer sess = GetTLSSession(args[0]); if (sess == nullptr) return; if (!SetTLSSession(w->ssl_, sess)) return env->ThrowError("SSL_set_session error"); } template void SSLWrap::LoadSession(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); // TODO(@sam-github) check arg length and types in js, and CHECK in c++ if (args.Length() >= 1 && Buffer::HasInstance(args[0])) { ArrayBufferViewContents sbuf(args[0]); const unsigned char* p = sbuf.data(); SSL_SESSION* sess = d2i_SSL_SESSION(nullptr, &p, sbuf.length()); // Setup next session and move hello to the BIO buffer w->next_sess_.reset(sess); } } template void SSLWrap::IsSessionReused(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); bool yes = SSL_session_reused(w->ssl_.get()); args.GetReturnValue().Set(yes); } template void SSLWrap::EndParser(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); w->hello_parser_.End(); } template void SSLWrap::Renegotiate(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); ClearErrorOnReturn clear_error_on_return; if (SSL_renegotiate(w->ssl_.get()) != 1) { return ThrowCryptoError(w->ssl_env(), ERR_get_error()); } } template void SSLWrap::GetTLSTicket(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); SSL_SESSION* sess = SSL_get_session(w->ssl_.get()); if (sess == nullptr) return; const unsigned char* ticket; size_t length; SSL_SESSION_get0_ticket(sess, &ticket, &length); if (ticket == nullptr) return; Local buff = Buffer::Copy( env, reinterpret_cast(ticket), length).ToLocalChecked(); args.GetReturnValue().Set(buff); } template void SSLWrap::NewSessionDone(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); w->awaiting_new_session_ = false; w->NewSessionDoneCb(); } template void SSLWrap::SetOCSPResponse(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->env(); if (args.Length() < 1) return THROW_ERR_MISSING_ARGS(env, "OCSP response argument is mandatory"); THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "OCSP response"); w->ocsp_response_.Reset(args.GetIsolate(), args[0].As()); } template void SSLWrap::RequestOCSP(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); SSL_set_tlsext_status_type(w->ssl_.get(), TLSEXT_STATUSTYPE_ocsp); } template void SSLWrap::GetEphemeralKeyInfo( const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = Environment::GetCurrent(args); CHECK(w->ssl_); // tmp key is available on only client if (w->is_server()) return args.GetReturnValue().SetNull(); Local ret; if (GetEphemeralKey(env, w->ssl_).ToLocal(&ret)) args.GetReturnValue().Set(ret); // TODO(@sam-github) semver-major: else return ThrowCryptoError(env, // ERR_get_error()) } template void SSLWrap::SetMaxSendFragment( const FunctionCallbackInfo& args) { CHECK(args.Length() >= 1 && args[0]->IsNumber()); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); int rv = SSL_set_max_send_fragment( w->ssl_.get(), args[0]->Int32Value(w->ssl_env()->context()).FromJust()); args.GetReturnValue().Set(rv); } template void SSLWrap::VerifyError(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); // XXX(bnoordhuis) The UNABLE_TO_GET_ISSUER_CERT error when there is no // peer certificate is questionable but it's compatible with what was // here before. long x509_verify_error = // NOLINT(runtime/int) VerifyPeerCertificate(w->ssl_, X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT); if (x509_verify_error == X509_V_OK) return args.GetReturnValue().SetNull(); const char* reason = X509_verify_cert_error_string(x509_verify_error); const char* code = reason; code = X509ErrorCode(x509_verify_error); Isolate* isolate = args.GetIsolate(); Local reason_string = OneByteString(isolate, reason); Local exception_value = Exception::Error(reason_string); Local exception_object = exception_value->ToObject(isolate->GetCurrentContext()).ToLocalChecked(); exception_object->Set(w->env()->context(), w->env()->code_string(), OneByteString(isolate, code)).Check(); args.GetReturnValue().Set(exception_object); } template void SSLWrap::GetCipher(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); const SSL_CIPHER* c = SSL_get_current_cipher(w->ssl_.get()); if (c == nullptr) return; Local ret; if (GetCipherInfo(env, w->ssl_).ToLocal(&ret)) args.GetReturnValue().Set(ret); } template void SSLWrap::GetSharedSigalgs(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); SSL* ssl = w->ssl_.get(); int nsig = SSL_get_shared_sigalgs(ssl, 0, nullptr, nullptr, nullptr, nullptr, nullptr); MaybeStackBuffer, 16> ret_arr(nsig); for (int i = 0; i < nsig; i++) { int hash_nid; int sign_nid; std::string sig_with_md; SSL_get_shared_sigalgs(ssl, i, &sign_nid, &hash_nid, nullptr, nullptr, nullptr); switch (sign_nid) { case EVP_PKEY_RSA: sig_with_md = "RSA+"; break; case EVP_PKEY_RSA_PSS: sig_with_md = "RSA-PSS+"; break; case EVP_PKEY_DSA: sig_with_md = "DSA+"; break; case EVP_PKEY_EC: sig_with_md = "ECDSA+"; break; case NID_ED25519: sig_with_md = "Ed25519+"; break; case NID_ED448: sig_with_md = "Ed448+"; break; #ifndef OPENSSL_NO_GOST case NID_id_GostR3410_2001: sig_with_md = "gost2001+"; break; case NID_id_GostR3410_2012_256: sig_with_md = "gost2012_256+"; break; case NID_id_GostR3410_2012_512: sig_with_md = "gost2012_512+"; break; #endif // !OPENSSL_NO_GOST default: const char* sn = OBJ_nid2sn(sign_nid); if (sn != nullptr) { sig_with_md = std::string(sn) + "+"; } else { sig_with_md = "UNDEF+"; } break; } const char* sn_hash = OBJ_nid2sn(hash_nid); if (sn_hash != nullptr) { sig_with_md += std::string(sn_hash); } else { sig_with_md += "UNDEF"; } ret_arr[i] = OneByteString(env->isolate(), sig_with_md.c_str()); } args.GetReturnValue().Set( Array::New(env->isolate(), ret_arr.out(), ret_arr.length())); } template void SSLWrap::ExportKeyingMaterial( const FunctionCallbackInfo& args) { CHECK(args[0]->IsInt32()); CHECK(args[1]->IsString()); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); uint32_t olen = args[0].As()->Value(); node::Utf8Value label(env->isolate(), args[1]); AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, olen); ByteSource context; bool use_context = !args[2]->IsUndefined(); if (use_context) context = ByteSource::FromBuffer(args[2]); if (SSL_export_keying_material(w->ssl_.get(), reinterpret_cast(out.data()), olen, *label, label.length(), reinterpret_cast( context.get()), context.size(), use_context) != 1) { return ThrowCryptoError(env, ERR_get_error(), "SSL_export_keying_material"); } args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked()); } template void SSLWrap::GetProtocol(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); const char* tls_version = SSL_get_version(w->ssl_.get()); args.GetReturnValue().Set(OneByteString(args.GetIsolate(), tls_version)); } template int SSLWrap::SelectALPNCallback(SSL* s, const unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); Local alpn_buffer = w->object()->GetPrivate( env->context(), env->alpn_buffer_private_symbol()).ToLocalChecked(); ArrayBufferViewContents alpn_protos(alpn_buffer); int status = SSL_select_next_proto(const_cast(out), outlen, alpn_protos.data(), alpn_protos.length(), in, inlen); // According to 3.2. Protocol Selection of RFC7301, fatal // no_application_protocol alert shall be sent but OpenSSL 1.0.2 does not // support it yet. See // https://rt.openssl.org/Ticket/Display.html?id=3463&user=guest&pass=guest return status == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK : SSL_TLSEXT_ERR_NOACK; } template void SSLWrap::GetALPNNegotiatedProto( const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); const unsigned char* alpn_proto; unsigned int alpn_proto_len; SSL_get0_alpn_selected(w->ssl_.get(), &alpn_proto, &alpn_proto_len); Local result; if (alpn_proto_len == 0) { result = False(args.GetIsolate()); } else if (alpn_proto_len == sizeof("h2") - 1 && 0 == memcmp(alpn_proto, "h2", sizeof("h2") - 1)) { result = w->env()->h2_string(); } else if (alpn_proto_len == sizeof("http/1.1") - 1 && 0 == memcmp(alpn_proto, "http/1.1", sizeof("http/1.1") - 1)) { result = w->env()->http_1_1_string(); } else { result = OneByteString(args.GetIsolate(), alpn_proto, alpn_proto_len); } args.GetReturnValue().Set(result); } template void SSLWrap::SetALPNProtocols(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->env(); if (args.Length() < 1 || !Buffer::HasInstance(args[0])) return env->ThrowTypeError("Must give a Buffer as first argument"); if (w->is_client()) { CHECK(SetALPN(w->ssl_, args[0])); } else { CHECK( w->object()->SetPrivate( env->context(), env->alpn_buffer_private_symbol(), args[0]).FromJust()); // Server should select ALPN protocol from list of advertised by client SSL_CTX_set_alpn_select_cb(SSL_get_SSL_CTX(w->ssl_.get()), SelectALPNCallback, nullptr); } } template int SSLWrap::TLSExtStatusCallback(SSL* s, void* arg) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->env(); HandleScope handle_scope(env->isolate()); if (w->is_client()) { // Incoming response Local arg; MaybeLocal ret = GetSSLOCSPResponse(env, s, Null(env->isolate())); if (ret.ToLocal(&arg)) w->MakeCallback(env->onocspresponse_string(), 1, &arg); // No async acceptance is possible, so always return 1 to accept the // response. The listener for 'OCSPResponse' event has no control over // return value, but it can .destroy() the connection if the response is not // acceptable. return 1; } else { // Outgoing response if (w->ocsp_response_.IsEmpty()) return SSL_TLSEXT_ERR_NOACK; Local obj = PersistentToLocal::Default(env->isolate(), w->ocsp_response_); size_t len = obj->ByteLength(); // OpenSSL takes control of the pointer after accepting it unsigned char* data = MallocOpenSSL(len); obj->CopyContents(data, len); if (!SSL_set_tlsext_status_ocsp_resp(s, data, len)) OPENSSL_free(data); w->ocsp_response_.Reset(); return SSL_TLSEXT_ERR_OK; } } template void SSLWrap::WaitForCertCb(CertCb cb, void* arg) { cert_cb_ = cb; cert_cb_arg_ = arg; } template int SSLWrap::SSLCertCallback(SSL* s, void* arg) { Base* w = static_cast(SSL_get_app_data(s)); if (!w->is_server()) return 1; if (!w->is_waiting_cert_cb()) return 1; if (w->cert_cb_running_) // Not an error. Suspend handshake with SSL_ERROR_WANT_X509_LOOKUP, and // handshake will continue after certcb is done. return -1; Environment* env = w->env(); Local context = env->context(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(context); w->cert_cb_running_ = true; Local info = Object::New(env->isolate()); const char* servername = GetServerName(s); if (servername == nullptr) { info->Set(context, env->servername_string(), String::Empty(env->isolate())).Check(); } else { Local str = OneByteString(env->isolate(), servername, strlen(servername)); info->Set(context, env->servername_string(), str).Check(); } const bool ocsp = (SSL_get_tlsext_status_type(s) == TLSEXT_STATUSTYPE_ocsp); info->Set(context, env->ocsp_request_string(), Boolean::New(env->isolate(), ocsp)).Check(); Local argv[] = { info }; w->MakeCallback(env->oncertcb_string(), arraysize(argv), argv); if (!w->cert_cb_running_) return 1; // Performing async action, wait... return -1; } template void SSLWrap::CertCbDone(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->env(); CHECK(w->is_waiting_cert_cb() && w->cert_cb_running_); Local object = w->object(); Local ctx = object->Get(env->context(), env->sni_context_string()).ToLocalChecked(); Local cons = env->secure_context_constructor_template(); if (cons->HasInstance(ctx)) { SecureContext* sc = Unwrap(ctx.As()); CHECK_NOT_NULL(sc); // Store the SNI context for later use. w->sni_context_ = BaseObjectPtr(sc); if (UseSNIContext(w->ssl_, w->sni_context_) && !w->SetCACerts(sc)) { // Not clear why sometimes we throw error, and sometimes we call // onerror(). Both cause .destroy(), but onerror does a bit more. unsigned long err = ERR_get_error(); // NOLINT(runtime/int) return ThrowCryptoError(env, err, "CertCbDone"); } } else if (ctx->IsObject()) { // Failure: incorrect SNI context object Local err = Exception::TypeError(env->sni_context_err_string()); w->MakeCallback(env->onerror_string(), 1, &err); return; } CertCb cb; void* arg; cb = w->cert_cb_; arg = w->cert_cb_arg_; w->cert_cb_running_ = false; w->cert_cb_ = nullptr; w->cert_cb_arg_ = nullptr; cb(arg); } template void SSLWrap::DestroySSL() { if (!ssl_) return; env_->isolate()->AdjustAmountOfExternalAllocatedMemory(-kExternalSize); ssl_.reset(); } template int SSLWrap::SetCACerts(SecureContext* sc) { int err = SSL_set1_verify_cert_store(ssl_.get(), SSL_CTX_get_cert_store(sc->ctx_.get())); if (err != 1) return err; STACK_OF(X509_NAME)* list = SSL_dup_CA_list( SSL_CTX_get_client_CA_list(sc->ctx_.get())); // NOTE: `SSL_set_client_CA_list` takes the ownership of `list` SSL_set_client_CA_list(ssl_.get(), list); return 1; } template void SSLWrap::MemoryInfo(MemoryTracker* tracker) const { tracker->TrackField("ocsp_response", ocsp_response_); tracker->TrackField("sni_context", sni_context_); } int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx) { // From https://www.openssl.org/docs/man1.1.1/man3/SSL_verify_cb: // // If VerifyCallback returns 1, the verification process is continued. If // VerifyCallback always returns 1, the TLS/SSL handshake will not be // terminated with respect to verification failures and the connection will // be established. The calling process can however retrieve the error code // of the last verification error using SSL_get_verify_result(3) or by // maintaining its own error storage managed by VerifyCallback. // // Since we cannot perform I/O quickly enough with X509_STORE_CTX_ APIs in // this callback, we ignore all preverify_ok errors and let the handshake // continue. It is imperative that the user use Connection::VerifyError after // the 'secure' callback has been made. return 1; } static bool IsSupportedAuthenticatedMode(const EVP_CIPHER* cipher) { const int mode = EVP_CIPHER_mode(cipher); // Check `chacha20-poly1305` separately, it is also an AEAD cipher, // but its mode is 0 which doesn't indicate return EVP_CIPHER_nid(cipher) == NID_chacha20_poly1305 || mode == EVP_CIPH_CCM_MODE || mode == EVP_CIPH_GCM_MODE || IS_OCB_MODE(mode); } static bool IsSupportedAuthenticatedMode(const EVP_CIPHER_CTX* ctx) { const EVP_CIPHER* cipher = EVP_CIPHER_CTX_cipher(ctx); return IsSupportedAuthenticatedMode(cipher); } enum class ParseKeyResult { kParseKeyOk, kParseKeyNotRecognized, kParseKeyNeedPassphrase, kParseKeyFailed }; static ParseKeyResult TryParsePublicKey( EVPKeyPointer* pkey, const BIOPointer& bp, const char* name, // NOLINTNEXTLINE(runtime/int) const std::function& parse) { unsigned char* der_data; long der_len; // NOLINT(runtime/int) // This skips surrounding data and decodes PEM to DER. { MarkPopErrorOnReturn mark_pop_error_on_return; if (PEM_bytes_read_bio(&der_data, &der_len, nullptr, name, bp.get(), nullptr, nullptr) != 1) return ParseKeyResult::kParseKeyNotRecognized; } // OpenSSL might modify the pointer, so we need to make a copy before parsing. const unsigned char* p = der_data; pkey->reset(parse(&p, der_len)); OPENSSL_clear_free(der_data, der_len); return *pkey ? ParseKeyResult::kParseKeyOk : ParseKeyResult::kParseKeyFailed; } static ParseKeyResult ParsePublicKeyPEM(EVPKeyPointer* pkey, const char* key_pem, int key_pem_len) { BIOPointer bp(BIO_new_mem_buf(const_cast(key_pem), key_pem_len)); if (!bp) return ParseKeyResult::kParseKeyFailed; ParseKeyResult ret; // Try parsing as a SubjectPublicKeyInfo first. ret = TryParsePublicKey(pkey, bp, "PUBLIC KEY", [](const unsigned char** p, long l) { // NOLINT(runtime/int) return d2i_PUBKEY(nullptr, p, l); }); if (ret != ParseKeyResult::kParseKeyNotRecognized) return ret; // Maybe it is PKCS#1. CHECK(BIO_reset(bp.get())); ret = TryParsePublicKey(pkey, bp, "RSA PUBLIC KEY", [](const unsigned char** p, long l) { // NOLINT(runtime/int) return d2i_PublicKey(EVP_PKEY_RSA, nullptr, p, l); }); if (ret != ParseKeyResult::kParseKeyNotRecognized) return ret; // X.509 fallback. CHECK(BIO_reset(bp.get())); return TryParsePublicKey(pkey, bp, "CERTIFICATE", [](const unsigned char** p, long l) { // NOLINT(runtime/int) X509Pointer x509(d2i_X509(nullptr, p, l)); return x509 ? X509_get_pubkey(x509.get()) : nullptr; }); } static ParseKeyResult ParsePublicKey(EVPKeyPointer* pkey, const PublicKeyEncodingConfig& config, const char* key, size_t key_len) { if (config.format_ == kKeyFormatPEM) { return ParsePublicKeyPEM(pkey, key, key_len); } else { CHECK_EQ(config.format_, kKeyFormatDER); const unsigned char* p = reinterpret_cast(key); if (config.type_.ToChecked() == kKeyEncodingPKCS1) { pkey->reset(d2i_PublicKey(EVP_PKEY_RSA, nullptr, &p, key_len)); } else { CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI); pkey->reset(d2i_PUBKEY(nullptr, &p, key_len)); } return *pkey ? ParseKeyResult::kParseKeyOk : ParseKeyResult::kParseKeyFailed; } } static inline Local BIOToStringOrBuffer(Environment* env, BIO* bio, PKFormatType format) { BUF_MEM* bptr; BIO_get_mem_ptr(bio, &bptr); if (format == kKeyFormatPEM) { // PEM is an ASCII format, so we will return it as a string. return String::NewFromUtf8(env->isolate(), bptr->data, NewStringType::kNormal, bptr->length).ToLocalChecked(); } else { CHECK_EQ(format, kKeyFormatDER); // DER is binary, return it as a buffer. return Buffer::Copy(env, bptr->data, bptr->length).ToLocalChecked(); } } static bool WritePublicKeyInner(EVP_PKEY* pkey, const BIOPointer& bio, const PublicKeyEncodingConfig& config) { if (config.type_.ToChecked() == kKeyEncodingPKCS1) { // PKCS#1 is only valid for RSA keys. CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA); RSAPointer rsa(EVP_PKEY_get1_RSA(pkey)); if (config.format_ == kKeyFormatPEM) { // Encode PKCS#1 as PEM. return PEM_write_bio_RSAPublicKey(bio.get(), rsa.get()) == 1; } else { // Encode PKCS#1 as DER. CHECK_EQ(config.format_, kKeyFormatDER); return i2d_RSAPublicKey_bio(bio.get(), rsa.get()) == 1; } } else { CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI); if (config.format_ == kKeyFormatPEM) { // Encode SPKI as PEM. return PEM_write_bio_PUBKEY(bio.get(), pkey) == 1; } else { // Encode SPKI as DER. CHECK_EQ(config.format_, kKeyFormatDER); return i2d_PUBKEY_bio(bio.get(), pkey) == 1; } } } static MaybeLocal WritePublicKey(Environment* env, EVP_PKEY* pkey, const PublicKeyEncodingConfig& config) { BIOPointer bio(BIO_new(BIO_s_mem())); CHECK(bio); if (!WritePublicKeyInner(pkey, bio, config)) { ThrowCryptoError(env, ERR_get_error(), "Failed to encode public key"); return MaybeLocal(); } return BIOToStringOrBuffer(env, bio.get(), config.format_); } static bool IsASN1Sequence(const unsigned char* data, size_t size, size_t* data_offset, size_t* data_size) { if (size < 2 || data[0] != 0x30) return false; if (data[1] & 0x80) { // Long form. size_t n_bytes = data[1] & ~0x80; if (n_bytes + 2 > size || n_bytes > sizeof(size_t)) return false; size_t length = 0; for (size_t i = 0; i < n_bytes; i++) length = (length << 8) | data[i + 2]; *data_offset = 2 + n_bytes; *data_size = std::min(size - 2 - n_bytes, length); } else { // Short form. *data_offset = 2; *data_size = std::min(size - 2, data[1]); } return true; } static bool IsRSAPrivateKey(const unsigned char* data, size_t size) { // Both RSAPrivateKey and RSAPublicKey structures start with a SEQUENCE. size_t offset, len; if (!IsASN1Sequence(data, size, &offset, &len)) return false; // An RSAPrivateKey sequence always starts with a single-byte integer whose // value is either 0 or 1, whereas an RSAPublicKey starts with the modulus // (which is the product of two primes and therefore at least 4), so we can // decide the type of the structure based on the first three bytes of the // sequence. return len >= 3 && data[offset] == 2 && data[offset + 1] == 1 && !(data[offset + 2] & 0xfe); } static bool IsEncryptedPrivateKeyInfo(const unsigned char* data, size_t size) { // Both PrivateKeyInfo and EncryptedPrivateKeyInfo start with a SEQUENCE. size_t offset, len; if (!IsASN1Sequence(data, size, &offset, &len)) return false; // A PrivateKeyInfo sequence always starts with an integer whereas an // EncryptedPrivateKeyInfo starts with an AlgorithmIdentifier. return len >= 1 && data[offset] != 2; } static ParseKeyResult ParsePrivateKey(EVPKeyPointer* pkey, const PrivateKeyEncodingConfig& config, const char* key, size_t key_len) { // OpenSSL needs a non-const pointer, that's why the const_cast is required. char* const passphrase = const_cast(config.passphrase_.get()); if (config.format_ == kKeyFormatPEM) { BIOPointer bio(BIO_new_mem_buf(key, key_len)); if (!bio) return ParseKeyResult::kParseKeyFailed; pkey->reset(PEM_read_bio_PrivateKey(bio.get(), nullptr, PasswordCallback, passphrase)); } else { CHECK_EQ(config.format_, kKeyFormatDER); if (config.type_.ToChecked() == kKeyEncodingPKCS1) { const unsigned char* p = reinterpret_cast(key); pkey->reset(d2i_PrivateKey(EVP_PKEY_RSA, nullptr, &p, key_len)); } else if (config.type_.ToChecked() == kKeyEncodingPKCS8) { BIOPointer bio(BIO_new_mem_buf(key, key_len)); if (!bio) return ParseKeyResult::kParseKeyFailed; if (IsEncryptedPrivateKeyInfo( reinterpret_cast(key), key_len)) { pkey->reset(d2i_PKCS8PrivateKey_bio(bio.get(), nullptr, PasswordCallback, passphrase)); } else { PKCS8Pointer p8inf(d2i_PKCS8_PRIV_KEY_INFO_bio(bio.get(), nullptr)); if (p8inf) pkey->reset(EVP_PKCS82PKEY(p8inf.get())); } } else { CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSEC1); const unsigned char* p = reinterpret_cast(key); pkey->reset(d2i_PrivateKey(EVP_PKEY_EC, nullptr, &p, key_len)); } } // OpenSSL can fail to parse the key but still return a non-null pointer. unsigned long err = ERR_peek_error(); // NOLINT(runtime/int) if (err != 0) pkey->reset(); if (*pkey) return ParseKeyResult::kParseKeyOk; if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_BAD_PASSWORD_READ) { if (config.passphrase_.get() == nullptr) return ParseKeyResult::kParseKeyNeedPassphrase; } return ParseKeyResult::kParseKeyFailed; } ByteSource::ByteSource(ByteSource&& other) : data_(other.data_), allocated_data_(other.allocated_data_), size_(other.size_) { other.allocated_data_ = nullptr; } ByteSource::~ByteSource() { OPENSSL_clear_free(allocated_data_, size_); } ByteSource& ByteSource::operator=(ByteSource&& other) { if (&other != this) { OPENSSL_clear_free(allocated_data_, size_); data_ = other.data_; allocated_data_ = other.allocated_data_; other.allocated_data_ = nullptr; size_ = other.size_; } return *this; } const char* ByteSource::get() const { return data_; } size_t ByteSource::size() const { return size_; } ByteSource ByteSource::FromStringOrBuffer(Environment* env, Local value) { return Buffer::HasInstance(value) ? FromBuffer(value) : FromString(env, value.As()); } ByteSource ByteSource::FromString(Environment* env, Local str, bool ntc) { CHECK(str->IsString()); size_t size = str->Utf8Length(env->isolate()); size_t alloc_size = ntc ? size + 1 : size; char* data = MallocOpenSSL(alloc_size); int opts = String::NO_OPTIONS; if (!ntc) opts |= String::NO_NULL_TERMINATION; str->WriteUtf8(env->isolate(), data, alloc_size, nullptr, opts); return Allocated(data, size); } ByteSource ByteSource::FromBuffer(Local buffer, bool ntc) { CHECK(buffer->IsArrayBufferView()); Local abv = buffer.As(); size_t size = abv->ByteLength(); if (ntc) { char* data = MallocOpenSSL(size + 1); abv->CopyContents(data, size); data[size] = 0; return Allocated(data, size); } return Foreign(Buffer::Data(buffer), size); } ByteSource ByteSource::NullTerminatedCopy(Environment* env, Local value) { return Buffer::HasInstance(value) ? FromBuffer(value, true) : FromString(env, value.As(), true); } ByteSource ByteSource::FromSymmetricKeyObjectHandle(Local handle) { CHECK(handle->IsObject()); KeyObjectHandle* key = Unwrap(handle.As()); CHECK_NOT_NULL(key); return Foreign(key->Data()->GetSymmetricKey(), key->Data()->GetSymmetricKeySize()); } ByteSource::ByteSource(const char* data, char* allocated_data, size_t size) : data_(data), allocated_data_(allocated_data), size_(size) {} ByteSource ByteSource::Allocated(char* data, size_t size) { return ByteSource(data, data, size); } ByteSource ByteSource::Foreign(const char* data, size_t size) { return ByteSource(data, nullptr, size); } enum KeyEncodingContext { kKeyContextInput, kKeyContextExport, kKeyContextGenerate }; static void GetKeyFormatAndTypeFromJs( AsymmetricKeyEncodingConfig* config, const FunctionCallbackInfo& args, unsigned int* offset, KeyEncodingContext context) { // During key pair generation, it is possible not to specify a key encoding, // which will lead to a key object being returned. if (args[*offset]->IsUndefined()) { CHECK_EQ(context, kKeyContextGenerate); CHECK(args[*offset + 1]->IsUndefined()); config->output_key_object_ = true; } else { config->output_key_object_ = false; CHECK(args[*offset]->IsInt32()); config->format_ = static_cast( args[*offset].As()->Value()); if (args[*offset + 1]->IsInt32()) { config->type_ = Just(static_cast( args[*offset + 1].As()->Value())); } else { CHECK(context == kKeyContextInput && config->format_ == kKeyFormatPEM); CHECK(args[*offset + 1]->IsNullOrUndefined()); config->type_ = Nothing(); } } *offset += 2; } static PublicKeyEncodingConfig GetPublicKeyEncodingFromJs( const FunctionCallbackInfo& args, unsigned int* offset, KeyEncodingContext context) { PublicKeyEncodingConfig result; GetKeyFormatAndTypeFromJs(&result, args, offset, context); return result; } static inline ManagedEVPPKey GetParsedKey(Environment* env, EVPKeyPointer&& pkey, ParseKeyResult ret, const char* default_msg) { switch (ret) { case ParseKeyResult::kParseKeyOk: CHECK(pkey); break; case ParseKeyResult::kParseKeyNeedPassphrase: THROW_ERR_MISSING_PASSPHRASE(env, "Passphrase required for encrypted key"); break; default: ThrowCryptoError(env, ERR_get_error(), default_msg); } return ManagedEVPPKey(std::move(pkey)); } static NonCopyableMaybe GetPrivateKeyEncodingFromJs( const FunctionCallbackInfo& args, unsigned int* offset, KeyEncodingContext context) { Environment* env = Environment::GetCurrent(args); PrivateKeyEncodingConfig result; GetKeyFormatAndTypeFromJs(&result, args, offset, context); if (result.output_key_object_) { if (context != kKeyContextInput) (*offset)++; } else { bool needs_passphrase = false; if (context != kKeyContextInput) { if (args[*offset]->IsString()) { String::Utf8Value cipher_name(env->isolate(), args[*offset].As()); result.cipher_ = EVP_get_cipherbyname(*cipher_name); if (result.cipher_ == nullptr) { THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env); return NonCopyableMaybe(); } needs_passphrase = true; } else { CHECK(args[*offset]->IsNullOrUndefined()); result.cipher_ = nullptr; } (*offset)++; } if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) { CHECK_IMPLIES(context != kKeyContextInput, result.cipher_ != nullptr); result.passphrase_ = ByteSource::NullTerminatedCopy(env, args[*offset]); } else { CHECK(args[*offset]->IsNullOrUndefined() && !needs_passphrase); } } (*offset)++; return NonCopyableMaybe(std::move(result)); } static ManagedEVPPKey GetPrivateKeyFromJs( const FunctionCallbackInfo& args, unsigned int* offset, bool allow_key_object) { if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) { Environment* env = Environment::GetCurrent(args); ByteSource key = ByteSource::FromStringOrBuffer(env, args[(*offset)++]); NonCopyableMaybe config = GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput); if (config.IsEmpty()) return ManagedEVPPKey(); EVPKeyPointer pkey; ParseKeyResult ret = ParsePrivateKey(&pkey, config.Release(), key.get(), key.size()); return GetParsedKey(env, std::move(pkey), ret, "Failed to read private key"); } else { CHECK(args[*offset]->IsObject() && allow_key_object); KeyObjectHandle* key; ASSIGN_OR_RETURN_UNWRAP(&key, args[*offset].As(), ManagedEVPPKey()); CHECK_EQ(key->Data()->GetKeyType(), kKeyTypePrivate); (*offset) += 4; return key->Data()->GetAsymmetricKey(); } } static ManagedEVPPKey GetPublicOrPrivateKeyFromJs( const FunctionCallbackInfo& args, unsigned int* offset) { if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) { Environment* env = Environment::GetCurrent(args); ByteSource data = ByteSource::FromStringOrBuffer(env, args[(*offset)++]); NonCopyableMaybe config_ = GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput); if (config_.IsEmpty()) return ManagedEVPPKey(); ParseKeyResult ret; PrivateKeyEncodingConfig config = config_.Release(); EVPKeyPointer pkey; if (config.format_ == kKeyFormatPEM) { // For PEM, we can easily determine whether it is a public or private key // by looking for the respective PEM tags. ret = ParsePublicKeyPEM(&pkey, data.get(), data.size()); if (ret == ParseKeyResult::kParseKeyNotRecognized) { ret = ParsePrivateKey(&pkey, config, data.get(), data.size()); } } else { // For DER, the type determines how to parse it. SPKI, PKCS#8 and SEC1 are // easy, but PKCS#1 can be a public key or a private key. bool is_public; switch (config.type_.ToChecked()) { case kKeyEncodingPKCS1: is_public = !IsRSAPrivateKey( reinterpret_cast(data.get()), data.size()); break; case kKeyEncodingSPKI: is_public = true; break; case kKeyEncodingPKCS8: case kKeyEncodingSEC1: is_public = false; break; default: UNREACHABLE("Invalid key encoding type"); } if (is_public) { ret = ParsePublicKey(&pkey, config, data.get(), data.size()); } else { ret = ParsePrivateKey(&pkey, config, data.get(), data.size()); } } return GetParsedKey(env, std::move(pkey), ret, "Failed to read asymmetric key"); } else { CHECK(args[*offset]->IsObject()); KeyObjectHandle* key = Unwrap(args[*offset].As()); CHECK_NOT_NULL(key); CHECK_NE(key->Data()->GetKeyType(), kKeyTypeSecret); (*offset) += 4; return key->Data()->GetAsymmetricKey(); } } static MaybeLocal WritePrivateKey( Environment* env, EVP_PKEY* pkey, const PrivateKeyEncodingConfig& config) { BIOPointer bio(BIO_new(BIO_s_mem())); CHECK(bio); bool err; PKEncodingType encoding_type = config.type_.ToChecked(); if (encoding_type == kKeyEncodingPKCS1) { // PKCS#1 is only permitted for RSA keys. CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA); RSAPointer rsa(EVP_PKEY_get1_RSA(pkey)); if (config.format_ == kKeyFormatPEM) { // Encode PKCS#1 as PEM. const char* pass = config.passphrase_.get(); err = PEM_write_bio_RSAPrivateKey( bio.get(), rsa.get(), config.cipher_, reinterpret_cast(const_cast(pass)), config.passphrase_.size(), nullptr, nullptr) != 1; } else { // Encode PKCS#1 as DER. This does not permit encryption. CHECK_EQ(config.format_, kKeyFormatDER); CHECK_NULL(config.cipher_); err = i2d_RSAPrivateKey_bio(bio.get(), rsa.get()) != 1; } } else if (encoding_type == kKeyEncodingPKCS8) { if (config.format_ == kKeyFormatPEM) { // Encode PKCS#8 as PEM. err = PEM_write_bio_PKCS8PrivateKey( bio.get(), pkey, config.cipher_, const_cast(config.passphrase_.get()), config.passphrase_.size(), nullptr, nullptr) != 1; } else { // Encode PKCS#8 as DER. CHECK_EQ(config.format_, kKeyFormatDER); err = i2d_PKCS8PrivateKey_bio( bio.get(), pkey, config.cipher_, const_cast(config.passphrase_.get()), config.passphrase_.size(), nullptr, nullptr) != 1; } } else { CHECK_EQ(encoding_type, kKeyEncodingSEC1); // SEC1 is only permitted for EC keys. CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_EC); ECKeyPointer ec_key(EVP_PKEY_get1_EC_KEY(pkey)); if (config.format_ == kKeyFormatPEM) { // Encode SEC1 as PEM. const char* pass = config.passphrase_.get(); err = PEM_write_bio_ECPrivateKey( bio.get(), ec_key.get(), config.cipher_, reinterpret_cast(const_cast(pass)), config.passphrase_.size(), nullptr, nullptr) != 1; } else { // Encode SEC1 as DER. This does not permit encryption. CHECK_EQ(config.format_, kKeyFormatDER); CHECK_NULL(config.cipher_); err = i2d_ECPrivateKey_bio(bio.get(), ec_key.get()) != 1; } } if (err) { ThrowCryptoError(env, ERR_get_error(), "Failed to encode private key"); return MaybeLocal(); } return BIOToStringOrBuffer(env, bio.get(), config.format_); } ManagedEVPPKey::ManagedEVPPKey(EVPKeyPointer&& pkey) : pkey_(std::move(pkey)) {} ManagedEVPPKey::ManagedEVPPKey(const ManagedEVPPKey& that) { *this = that; } ManagedEVPPKey& ManagedEVPPKey::operator=(const ManagedEVPPKey& that) { pkey_.reset(that.get()); if (pkey_) EVP_PKEY_up_ref(pkey_.get()); return *this; } ManagedEVPPKey::operator bool() const { return !!pkey_; } EVP_PKEY* ManagedEVPPKey::get() const { return pkey_.get(); } std::shared_ptr KeyObjectData::CreateSecret( Local abv) { size_t key_len = abv->ByteLength(); char* mem = MallocOpenSSL(key_len); abv->CopyContents(mem, key_len); return std::shared_ptr(new KeyObjectData( std::unique_ptr>(mem, [key_len](char* p) { OPENSSL_clear_free(p, key_len); }), key_len)); } std::shared_ptr KeyObjectData::CreateAsymmetric( KeyType key_type, const ManagedEVPPKey& pkey) { CHECK(pkey); return std::shared_ptr(new KeyObjectData(key_type, pkey)); } KeyType KeyObjectData::GetKeyType() const { return key_type_; } ManagedEVPPKey KeyObjectData::GetAsymmetricKey() const { CHECK_NE(key_type_, kKeyTypeSecret); return asymmetric_key_; } const char* KeyObjectData::GetSymmetricKey() const { CHECK_EQ(key_type_, kKeyTypeSecret); return symmetric_key_.get(); } size_t KeyObjectData::GetSymmetricKeySize() const { CHECK_EQ(key_type_, kKeyTypeSecret); return symmetric_key_len_; } Local KeyObjectHandle::Initialize(Environment* env) { Local templ = env->crypto_key_object_handle_constructor(); if (!templ.IsEmpty()) { return templ; } Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount( KeyObjectHandle::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); env->SetProtoMethod(t, "init", Init); env->SetProtoMethodNoSideEffect(t, "getSymmetricKeySize", GetSymmetricKeySize); env->SetProtoMethodNoSideEffect(t, "getAsymmetricKeyType", GetAsymmetricKeyType); env->SetProtoMethod(t, "export", Export); auto function = t->GetFunction(env->context()).ToLocalChecked(); env->set_crypto_key_object_handle_constructor(function); return KeyObjectHandle::Initialize(env); } MaybeLocal KeyObjectHandle::Create( Environment* env, std::shared_ptr data) { Local obj; Local fctun = KeyObjectHandle::Initialize(env); if (!fctun->NewInstance(env->context(), 0, nullptr).ToLocal(&obj)) { return MaybeLocal(); } KeyObjectHandle* key = Unwrap(obj); CHECK_NOT_NULL(key); key->data_ = data; return obj; } const std::shared_ptr& KeyObjectHandle::Data() { return data_; } void KeyObjectHandle::New(const FunctionCallbackInfo& args) { CHECK(args.IsConstructCall()); Environment* env = Environment::GetCurrent(args); new KeyObjectHandle(env, args.This()); } KeyObjectHandle::KeyObjectHandle(Environment* env, Local wrap) : BaseObject(env, wrap) { MakeWeak(); } void KeyObjectHandle::Init(const FunctionCallbackInfo& args) { KeyObjectHandle* key; ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); MarkPopErrorOnReturn mark_pop_error_on_return; CHECK(args[0]->IsInt32()); KeyType type = static_cast(args[0].As()->Value()); unsigned int offset; ManagedEVPPKey pkey; switch (type) { case kKeyTypeSecret: CHECK_EQ(args.Length(), 2); CHECK(args[1]->IsArrayBufferView()); key->data_ = KeyObjectData::CreateSecret(args[1].As()); break; case kKeyTypePublic: CHECK_EQ(args.Length(), 4); offset = 1; pkey = GetPublicOrPrivateKeyFromJs(args, &offset); if (!pkey) return; key->data_ = KeyObjectData::CreateAsymmetric(type, pkey); break; case kKeyTypePrivate: CHECK_EQ(args.Length(), 5); offset = 1; pkey = GetPrivateKeyFromJs(args, &offset, false); if (!pkey) return; key->data_ = KeyObjectData::CreateAsymmetric(type, pkey); break; default: CHECK(false); } } Local KeyObjectHandle::GetAsymmetricKeyType() const { const ManagedEVPPKey& key = data_->GetAsymmetricKey(); switch (EVP_PKEY_id(key.get())) { case EVP_PKEY_RSA: return env()->crypto_rsa_string(); case EVP_PKEY_RSA_PSS: return env()->crypto_rsa_pss_string(); case EVP_PKEY_DSA: return env()->crypto_dsa_string(); case EVP_PKEY_DH: return env()->crypto_dh_string(); case EVP_PKEY_EC: return env()->crypto_ec_string(); case EVP_PKEY_ED25519: return env()->crypto_ed25519_string(); case EVP_PKEY_ED448: return env()->crypto_ed448_string(); case EVP_PKEY_X25519: return env()->crypto_x25519_string(); case EVP_PKEY_X448: return env()->crypto_x448_string(); default: return Undefined(env()->isolate()); } } void KeyObjectHandle::GetAsymmetricKeyType( const FunctionCallbackInfo& args) { KeyObjectHandle* key; ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); args.GetReturnValue().Set(key->GetAsymmetricKeyType()); } void KeyObjectHandle::GetSymmetricKeySize( const FunctionCallbackInfo& args) { KeyObjectHandle* key; ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); args.GetReturnValue().Set( static_cast(key->Data()->GetSymmetricKeySize())); } void KeyObjectHandle::Export(const FunctionCallbackInfo& args) { KeyObjectHandle* key; ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); KeyType type = key->Data()->GetKeyType(); MaybeLocal result; if (type == kKeyTypeSecret) { result = key->ExportSecretKey(); } else if (type == kKeyTypePublic) { unsigned int offset = 0; PublicKeyEncodingConfig config = GetPublicKeyEncodingFromJs(args, &offset, kKeyContextExport); CHECK_EQ(offset, static_cast(args.Length())); result = key->ExportPublicKey(config); } else { CHECK_EQ(type, kKeyTypePrivate); unsigned int offset = 0; NonCopyableMaybe config = GetPrivateKeyEncodingFromJs(args, &offset, kKeyContextExport); if (config.IsEmpty()) return; CHECK_EQ(offset, static_cast(args.Length())); result = key->ExportPrivateKey(config.Release()); } if (!result.IsEmpty()) args.GetReturnValue().Set(result.ToLocalChecked()); } Local KeyObjectHandle::ExportSecretKey() const { const char* buf = data_->GetSymmetricKey(); unsigned int len = data_->GetSymmetricKeySize(); return Buffer::Copy(env(), buf, len).ToLocalChecked(); } MaybeLocal KeyObjectHandle::ExportPublicKey( const PublicKeyEncodingConfig& config) const { return WritePublicKey(env(), data_->GetAsymmetricKey().get(), config); } MaybeLocal KeyObjectHandle::ExportPrivateKey( const PrivateKeyEncodingConfig& config) const { return WritePrivateKey(env(), data_->GetAsymmetricKey().get(), config); } void NativeKeyObject::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK_EQ(args.Length(), 1); CHECK(args[0]->IsObject()); KeyObjectHandle* handle = Unwrap(args[0].As()); new NativeKeyObject(env, args.This(), handle->Data()); } BaseObjectPtr NativeKeyObject::KeyObjectTransferData::Deserialize( Environment* env, Local context, std::unique_ptr self) { if (context != env->context()) { THROW_ERR_MESSAGE_TARGET_CONTEXT_UNAVAILABLE(env); return {}; } Local handle = KeyObjectHandle::Create(env, data_).ToLocalChecked(); Local key_ctor; Local arg = FIXED_ONE_BYTE_STRING(env->isolate(), "internal/crypto/keys"); if (env->native_module_require()-> Call(context, Null(env->isolate()), 1, &arg).IsEmpty()) return {}; switch (data_->GetKeyType()) { case kKeyTypeSecret: key_ctor = env->crypto_key_object_secret_constructor(); break; case kKeyTypePublic: key_ctor = env->crypto_key_object_public_constructor(); break; case kKeyTypePrivate: key_ctor = env->crypto_key_object_private_constructor(); break; default: CHECK(false); } Local key = key_ctor->NewInstance(context, 1, &handle).ToLocalChecked(); return BaseObjectPtr(Unwrap(key.As())); } BaseObject::TransferMode NativeKeyObject::GetTransferMode() const { return BaseObject::TransferMode::kCloneable; } std::unique_ptr NativeKeyObject::CloneForMessaging() const { return std::make_unique(handle_data_); } static void CreateNativeKeyObjectClass( const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK_EQ(args.Length(), 1); Local callback = args[0]; CHECK(callback->IsFunction()); Local t = env->NewFunctionTemplate(NativeKeyObject::New); t->InstanceTemplate()->SetInternalFieldCount( KeyObjectHandle::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); Local ctor = t->GetFunction(env->context()).ToLocalChecked(); Local recv = Undefined(env->isolate()); Local ret_v; if (!callback.As()->Call( env->context(), recv, 1, &ctor).ToLocal(&ret_v)) { return; } Local ret = ret_v.As(); if (!ret->Get(env->context(), 1).ToLocal(&ctor)) return; env->set_crypto_key_object_secret_constructor(ctor.As()); if (!ret->Get(env->context(), 2).ToLocal(&ctor)) return; env->set_crypto_key_object_public_constructor(ctor.As()); if (!ret->Get(env->context(), 3).ToLocal(&ctor)) return; env->set_crypto_key_object_private_constructor(ctor.As()); args.GetReturnValue().Set(ret); } CipherBase::CipherBase(Environment* env, Local wrap, CipherKind kind) : BaseObject(env, wrap), ctx_(nullptr), kind_(kind), auth_tag_state_(kAuthTagUnknown), auth_tag_len_(kNoAuthTagLength), pending_auth_failed_(false) { MakeWeak(); } void CipherBase::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount( CipherBase::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); env->SetProtoMethod(t, "init", Init); env->SetProtoMethod(t, "initiv", InitIv); env->SetProtoMethod(t, "update", Update); env->SetProtoMethod(t, "final", Final); env->SetProtoMethod(t, "setAutoPadding", SetAutoPadding); env->SetProtoMethodNoSideEffect(t, "getAuthTag", GetAuthTag); env->SetProtoMethod(t, "setAuthTag", SetAuthTag); env->SetProtoMethod(t, "setAAD", SetAAD); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "CipherBase"), t->GetFunction(env->context()).ToLocalChecked()).Check(); } void CipherBase::New(const FunctionCallbackInfo& args) { CHECK(args.IsConstructCall()); CipherKind kind = args[0]->IsTrue() ? kCipher : kDecipher; Environment* env = Environment::GetCurrent(args); new CipherBase(env, args.This(), kind); } void CipherBase::CommonInit(const char* cipher_type, const EVP_CIPHER* cipher, const unsigned char* key, int key_len, const unsigned char* iv, int iv_len, unsigned int auth_tag_len) { CHECK(!ctx_); ctx_.reset(EVP_CIPHER_CTX_new()); const int mode = EVP_CIPHER_mode(cipher); if (mode == EVP_CIPH_WRAP_MODE) EVP_CIPHER_CTX_set_flags(ctx_.get(), EVP_CIPHER_CTX_FLAG_WRAP_ALLOW); const bool encrypt = (kind_ == kCipher); if (1 != EVP_CipherInit_ex(ctx_.get(), cipher, nullptr, nullptr, nullptr, encrypt)) { return ThrowCryptoError(env(), ERR_get_error(), "Failed to initialize cipher"); } if (IsSupportedAuthenticatedMode(cipher)) { CHECK_GE(iv_len, 0); if (!InitAuthenticated(cipher_type, iv_len, auth_tag_len)) return; } if (!EVP_CIPHER_CTX_set_key_length(ctx_.get(), key_len)) { ctx_.reset(); return env()->ThrowError("Invalid key length"); } if (1 != EVP_CipherInit_ex(ctx_.get(), nullptr, nullptr, key, iv, encrypt)) { return ThrowCryptoError(env(), ERR_get_error(), "Failed to initialize cipher"); } } void CipherBase::Init(const char* cipher_type, const char* key_buf, int key_buf_len, unsigned int auth_tag_len) { HandleScope scope(env()->isolate()); MarkPopErrorOnReturn mark_pop_error_on_return; if (FIPS_mode()) { return env()->ThrowError( "crypto.createCipher() is not supported in FIPS mode."); } const EVP_CIPHER* const cipher = EVP_get_cipherbyname(cipher_type); if (cipher == nullptr) return THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env()); unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; int key_len = EVP_BytesToKey(cipher, EVP_md5(), nullptr, reinterpret_cast(key_buf), key_buf_len, 1, key, iv); CHECK_NE(key_len, 0); const int mode = EVP_CIPHER_mode(cipher); if (kind_ == kCipher && (mode == EVP_CIPH_CTR_MODE || mode == EVP_CIPH_GCM_MODE || mode == EVP_CIPH_CCM_MODE)) { // Ignore the return value (i.e. possible exception) because we are // not calling back into JS anyway. ProcessEmitWarning(env(), "Use Cipheriv for counter mode of %s", cipher_type); } CommonInit(cipher_type, cipher, key, key_len, iv, EVP_CIPHER_iv_length(cipher), auth_tag_len); } void CipherBase::Init(const FunctionCallbackInfo& args) { CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); CHECK_GE(args.Length(), 3); const node::Utf8Value cipher_type(args.GetIsolate(), args[0]); ArrayBufferViewContents key_buf(args[1]); // Don't assign to cipher->auth_tag_len_ directly; the value might not // represent a valid length at this point. unsigned int auth_tag_len; if (args[2]->IsUint32()) { auth_tag_len = args[2].As()->Value(); } else { CHECK(args[2]->IsInt32() && args[2].As()->Value() == -1); auth_tag_len = kNoAuthTagLength; } cipher->Init(*cipher_type, key_buf.data(), key_buf.length(), auth_tag_len); } void CipherBase::InitIv(const char* cipher_type, const unsigned char* key, int key_len, const unsigned char* iv, int iv_len, unsigned int auth_tag_len) { HandleScope scope(env()->isolate()); MarkPopErrorOnReturn mark_pop_error_on_return; const EVP_CIPHER* const cipher = EVP_get_cipherbyname(cipher_type); if (cipher == nullptr) { return THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env()); } const int expected_iv_len = EVP_CIPHER_iv_length(cipher); const bool is_authenticated_mode = IsSupportedAuthenticatedMode(cipher); const bool has_iv = iv_len >= 0; // Throw if no IV was passed and the cipher requires an IV if (!has_iv && expected_iv_len != 0) { char msg[128]; snprintf(msg, sizeof(msg), "Missing IV for cipher %s", cipher_type); return env()->ThrowError(msg); } // Throw if an IV was passed which does not match the cipher's fixed IV length if (!is_authenticated_mode && has_iv && iv_len != expected_iv_len) { return env()->ThrowError("Invalid IV length"); } if (EVP_CIPHER_nid(cipher) == NID_chacha20_poly1305) { CHECK(has_iv); // Check for invalid IV lengths, since OpenSSL does not under some // conditions: // https://www.openssl.org/news/secadv/20190306.txt. if (iv_len > 12) { return env()->ThrowError("Invalid IV length"); } } CommonInit(cipher_type, cipher, key, key_len, iv, iv_len, auth_tag_len); } static ByteSource GetSecretKeyBytes(Environment* env, Local value) { // A key can be passed as a string, buffer or KeyObject with type 'secret'. // If it is a string, we need to convert it to a buffer. We are not doing that // in JS to avoid creating an unprotected copy on the heap. return value->IsString() || Buffer::HasInstance(value) ? ByteSource::FromStringOrBuffer(env, value) : ByteSource::FromSymmetricKeyObjectHandle(value); } void CipherBase::InitIv(const FunctionCallbackInfo& args) { CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); Environment* env = cipher->env(); CHECK_GE(args.Length(), 4); const node::Utf8Value cipher_type(env->isolate(), args[0]); const ByteSource key = GetSecretKeyBytes(env, args[1]); ArrayBufferViewContents iv_buf; ssize_t iv_len = -1; if (!args[2]->IsNull()) { CHECK(args[2]->IsArrayBufferView()); iv_buf.Read(args[2].As()); iv_len = iv_buf.length(); } // Don't assign to cipher->auth_tag_len_ directly; the value might not // represent a valid length at this point. unsigned int auth_tag_len; if (args[3]->IsUint32()) { auth_tag_len = args[3].As()->Value(); } else { CHECK(args[3]->IsInt32() && args[3].As()->Value() == -1); auth_tag_len = kNoAuthTagLength; } cipher->InitIv(*cipher_type, reinterpret_cast(key.get()), key.size(), iv_buf.data(), static_cast(iv_len), auth_tag_len); } static bool IsValidGCMTagLength(unsigned int tag_len) { return tag_len == 4 || tag_len == 8 || (tag_len >= 12 && tag_len <= 16); } bool CipherBase::InitAuthenticated(const char* cipher_type, int iv_len, unsigned int auth_tag_len) { CHECK(IsAuthenticatedMode()); MarkPopErrorOnReturn mark_pop_error_on_return; if (!EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_SET_IVLEN, iv_len, nullptr)) { env()->ThrowError("Invalid IV length"); return false; } const int mode = EVP_CIPHER_CTX_mode(ctx_.get()); if (mode == EVP_CIPH_GCM_MODE) { if (auth_tag_len != kNoAuthTagLength) { if (!IsValidGCMTagLength(auth_tag_len)) { char msg[50]; snprintf(msg, sizeof(msg), "Invalid authentication tag length: %u", auth_tag_len); env()->ThrowError(msg); return false; } // Remember the given authentication tag length for later. auth_tag_len_ = auth_tag_len; } } else { if (auth_tag_len == kNoAuthTagLength) { char msg[128]; snprintf(msg, sizeof(msg), "authTagLength required for %s", cipher_type); env()->ThrowError(msg); return false; } // TODO(tniessen) Support CCM decryption in FIPS mode if (mode == EVP_CIPH_CCM_MODE && kind_ == kDecipher && FIPS_mode()) { env()->ThrowError("CCM decryption not supported in FIPS mode"); return false; } // Tell OpenSSL about the desired length. if (!EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_SET_TAG, auth_tag_len, nullptr)) { env()->ThrowError("Invalid authentication tag length"); return false; } // Remember the given authentication tag length for later. auth_tag_len_ = auth_tag_len; if (mode == EVP_CIPH_CCM_MODE) { // Restrict the message length to min(INT_MAX, 2^(8*(15-iv_len))-1) bytes. CHECK(iv_len >= 7 && iv_len <= 13); max_message_size_ = INT_MAX; if (iv_len == 12) max_message_size_ = 16777215; if (iv_len == 13) max_message_size_ = 65535; } } return true; } bool CipherBase::CheckCCMMessageLength(int message_len) { CHECK(ctx_); CHECK(EVP_CIPHER_CTX_mode(ctx_.get()) == EVP_CIPH_CCM_MODE); if (message_len > max_message_size_) { env()->ThrowError("Message exceeds maximum size"); return false; } return true; } bool CipherBase::IsAuthenticatedMode() const { // Check if this cipher operates in an AEAD mode that we support. CHECK(ctx_); return IsSupportedAuthenticatedMode(ctx_.get()); } void CipherBase::GetAuthTag(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); // Only callable after Final and if encrypting. if (cipher->ctx_ || cipher->kind_ != kCipher || cipher->auth_tag_len_ == kNoAuthTagLength) { return args.GetReturnValue().SetUndefined(); } Local buf = Buffer::Copy(env, cipher->auth_tag_, cipher->auth_tag_len_) .ToLocalChecked(); args.GetReturnValue().Set(buf); } void CipherBase::SetAuthTag(const FunctionCallbackInfo& args) { CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); if (!cipher->ctx_ || !cipher->IsAuthenticatedMode() || cipher->kind_ != kDecipher || cipher->auth_tag_state_ != kAuthTagUnknown) { return args.GetReturnValue().Set(false); } unsigned int tag_len = Buffer::Length(args[0]); const int mode = EVP_CIPHER_CTX_mode(cipher->ctx_.get()); bool is_valid; if (mode == EVP_CIPH_GCM_MODE) { // Restrict GCM tag lengths according to NIST 800-38d, page 9. is_valid = (cipher->auth_tag_len_ == kNoAuthTagLength || cipher->auth_tag_len_ == tag_len) && IsValidGCMTagLength(tag_len); } else { // At this point, the tag length is already known and must match the // length of the given authentication tag. CHECK(IsSupportedAuthenticatedMode(cipher->ctx_.get())); CHECK_NE(cipher->auth_tag_len_, kNoAuthTagLength); is_valid = cipher->auth_tag_len_ == tag_len; } if (!is_valid) { char msg[50]; snprintf(msg, sizeof(msg), "Invalid authentication tag length: %u", tag_len); return cipher->env()->ThrowError(msg); } cipher->auth_tag_len_ = tag_len; cipher->auth_tag_state_ = kAuthTagKnown; CHECK_LE(cipher->auth_tag_len_, sizeof(cipher->auth_tag_)); memset(cipher->auth_tag_, 0, sizeof(cipher->auth_tag_)); args[0].As()->CopyContents( cipher->auth_tag_, cipher->auth_tag_len_); args.GetReturnValue().Set(true); } bool CipherBase::MaybePassAuthTagToOpenSSL() { if (auth_tag_state_ == kAuthTagKnown) { if (!EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_SET_TAG, auth_tag_len_, reinterpret_cast(auth_tag_))) { return false; } auth_tag_state_ = kAuthTagPassedToOpenSSL; } return true; } bool CipherBase::SetAAD(const char* data, unsigned int len, int plaintext_len) { if (!ctx_ || !IsAuthenticatedMode()) return false; MarkPopErrorOnReturn mark_pop_error_on_return; int outlen; const int mode = EVP_CIPHER_CTX_mode(ctx_.get()); // When in CCM mode, we need to set the authentication tag and the plaintext // length in advance. if (mode == EVP_CIPH_CCM_MODE) { if (plaintext_len < 0) { env()->ThrowError("plaintextLength required for CCM mode with AAD"); return false; } if (!CheckCCMMessageLength(plaintext_len)) return false; if (kind_ == kDecipher) { if (!MaybePassAuthTagToOpenSSL()) return false; } // Specify the plaintext length. if (!EVP_CipherUpdate(ctx_.get(), nullptr, &outlen, nullptr, plaintext_len)) return false; } return 1 == EVP_CipherUpdate(ctx_.get(), nullptr, &outlen, reinterpret_cast(data), len); } void CipherBase::SetAAD(const FunctionCallbackInfo& args) { CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); CHECK_EQ(args.Length(), 2); CHECK(args[1]->IsInt32()); int plaintext_len = args[1].As()->Value(); ArrayBufferViewContents buf(args[0]); bool b = cipher->SetAAD(buf.data(), buf.length(), plaintext_len); args.GetReturnValue().Set(b); // Possibly report invalid state failure } CipherBase::UpdateResult CipherBase::Update(const char* data, int len, AllocatedBuffer* out) { if (!ctx_) return kErrorState; MarkPopErrorOnReturn mark_pop_error_on_return; const int mode = EVP_CIPHER_CTX_mode(ctx_.get()); if (mode == EVP_CIPH_CCM_MODE) { if (!CheckCCMMessageLength(len)) return kErrorMessageSize; } // Pass the authentication tag to OpenSSL if possible. This will only happen // once, usually on the first update. if (kind_ == kDecipher && IsAuthenticatedMode()) { CHECK(MaybePassAuthTagToOpenSSL()); } int buf_len = len + EVP_CIPHER_CTX_block_size(ctx_.get()); // For key wrapping algorithms, get output size by calling // EVP_CipherUpdate() with null output. if (kind_ == kCipher && mode == EVP_CIPH_WRAP_MODE && EVP_CipherUpdate(ctx_.get(), nullptr, &buf_len, reinterpret_cast(data), len) != 1) { return kErrorState; } *out = AllocatedBuffer::AllocateManaged(env(), buf_len); int r = EVP_CipherUpdate(ctx_.get(), reinterpret_cast(out->data()), &buf_len, reinterpret_cast(data), len); CHECK_LE(static_cast(buf_len), out->size()); out->Resize(buf_len); // When in CCM mode, EVP_CipherUpdate will fail if the authentication tag is // invalid. In that case, remember the error and throw in final(). if (!r && kind_ == kDecipher && mode == EVP_CIPH_CCM_MODE) { pending_auth_failed_ = true; return kSuccess; } return r == 1 ? kSuccess : kErrorState; } void CipherBase::Update(const FunctionCallbackInfo& args) { Decode(args, [](CipherBase* cipher, const FunctionCallbackInfo& args, const char* data, size_t size) { AllocatedBuffer out; UpdateResult r = cipher->Update(data, size, &out); if (r != kSuccess) { if (r == kErrorState) { Environment* env = Environment::GetCurrent(args); ThrowCryptoError(env, ERR_get_error(), "Trying to add data in unsupported state"); } return; } CHECK(out.data() != nullptr || out.size() == 0); args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked()); }); } bool CipherBase::SetAutoPadding(bool auto_padding) { if (!ctx_) return false; MarkPopErrorOnReturn mark_pop_error_on_return; return EVP_CIPHER_CTX_set_padding(ctx_.get(), auto_padding); } void CipherBase::SetAutoPadding(const FunctionCallbackInfo& args) { CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); bool b = cipher->SetAutoPadding(args.Length() < 1 || args[0]->IsTrue()); args.GetReturnValue().Set(b); // Possibly report invalid state failure } bool CipherBase::Final(AllocatedBuffer* out) { if (!ctx_) return false; const int mode = EVP_CIPHER_CTX_mode(ctx_.get()); *out = AllocatedBuffer::AllocateManaged( env(), static_cast(EVP_CIPHER_CTX_block_size(ctx_.get()))); if (kind_ == kDecipher && IsSupportedAuthenticatedMode(ctx_.get())) { MaybePassAuthTagToOpenSSL(); } // In CCM mode, final() only checks whether authentication failed in update(). // EVP_CipherFinal_ex must not be called and will fail. bool ok; if (kind_ == kDecipher && mode == EVP_CIPH_CCM_MODE) { ok = !pending_auth_failed_; *out = AllocatedBuffer::AllocateManaged(env(), 0); // Empty buffer. } else { int out_len = out->size(); ok = EVP_CipherFinal_ex(ctx_.get(), reinterpret_cast(out->data()), &out_len) == 1; if (out_len >= 0) out->Resize(out_len); else *out = AllocatedBuffer(); // *out will not be used. if (ok && kind_ == kCipher && IsAuthenticatedMode()) { // In GCM mode, the authentication tag length can be specified in advance, // but defaults to 16 bytes when encrypting. In CCM and OCB mode, it must // always be given by the user. if (auth_tag_len_ == kNoAuthTagLength) { CHECK(mode == EVP_CIPH_GCM_MODE); auth_tag_len_ = sizeof(auth_tag_); } CHECK_EQ(1, EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_GET_TAG, auth_tag_len_, reinterpret_cast(auth_tag_))); } } ctx_.reset(); return ok; } void CipherBase::Final(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); if (cipher->ctx_ == nullptr) return env->ThrowError("Unsupported state"); AllocatedBuffer out; // Check IsAuthenticatedMode() first, Final() destroys the EVP_CIPHER_CTX. const bool is_auth_mode = cipher->IsAuthenticatedMode(); bool r = cipher->Final(&out); if (!r) { const char* msg = is_auth_mode ? "Unsupported state or unable to authenticate data" : "Unsupported state"; return ThrowCryptoError(env, ERR_get_error(), msg); } args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked()); } Hmac::Hmac(Environment* env, Local wrap) : BaseObject(env, wrap), ctx_(nullptr) { MakeWeak(); } void Hmac::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount( Hmac::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); env->SetProtoMethod(t, "init", HmacInit); env->SetProtoMethod(t, "update", HmacUpdate); env->SetProtoMethod(t, "digest", HmacDigest); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "Hmac"), t->GetFunction(env->context()).ToLocalChecked()).Check(); } void Hmac::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); new Hmac(env, args.This()); } void Hmac::HmacInit(const char* hash_type, const char* key, int key_len) { HandleScope scope(env()->isolate()); const EVP_MD* md = EVP_get_digestbyname(hash_type); if (md == nullptr) { return env()->ThrowError("Unknown message digest"); } if (key_len == 0) { key = ""; } ctx_.reset(HMAC_CTX_new()); if (!ctx_ || !HMAC_Init_ex(ctx_.get(), key, key_len, md, nullptr)) { ctx_.reset(); return ThrowCryptoError(env(), ERR_get_error()); } } void Hmac::HmacInit(const FunctionCallbackInfo& args) { Hmac* hmac; ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder()); Environment* env = hmac->env(); const node::Utf8Value hash_type(env->isolate(), args[0]); ByteSource key = GetSecretKeyBytes(env, args[1]); hmac->HmacInit(*hash_type, key.get(), key.size()); } bool Hmac::HmacUpdate(const char* data, int len) { if (!ctx_) return false; int r = HMAC_Update(ctx_.get(), reinterpret_cast(data), len); return r == 1; } void Hmac::HmacUpdate(const FunctionCallbackInfo& args) { Decode(args, [](Hmac* hmac, const FunctionCallbackInfo& args, const char* data, size_t size) { bool r = hmac->HmacUpdate(data, size); args.GetReturnValue().Set(r); }); } void Hmac::HmacDigest(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Hmac* hmac; ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder()); enum encoding encoding = BUFFER; if (args.Length() >= 1) { encoding = ParseEncoding(env->isolate(), args[0], BUFFER); } unsigned char md_value[EVP_MAX_MD_SIZE]; unsigned int md_len = 0; if (hmac->ctx_) { HMAC_Final(hmac->ctx_.get(), md_value, &md_len); hmac->ctx_.reset(); } Local error; MaybeLocal rc = StringBytes::Encode(env->isolate(), reinterpret_cast(md_value), md_len, encoding, &error); if (rc.IsEmpty()) { CHECK(!error.IsEmpty()); env->isolate()->ThrowException(error); return; } args.GetReturnValue().Set(rc.ToLocalChecked()); } Hash::Hash(Environment* env, Local wrap) : BaseObject(env, wrap), mdctx_(nullptr), has_md_(false), md_value_(nullptr) { MakeWeak(); } void Hash::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount( Hash::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); env->SetProtoMethod(t, "update", HashUpdate); env->SetProtoMethod(t, "digest", HashDigest); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "Hash"), t->GetFunction(env->context()).ToLocalChecked()).Check(); } Hash::~Hash() { if (md_value_ != nullptr) OPENSSL_clear_free(md_value_, md_len_); } void Hash::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); const Hash* orig = nullptr; const EVP_MD* md = nullptr; if (args[0]->IsObject()) { ASSIGN_OR_RETURN_UNWRAP(&orig, args[0].As()); md = EVP_MD_CTX_md(orig->mdctx_.get()); } else { const node::Utf8Value hash_type(env->isolate(), args[0]); md = EVP_get_digestbyname(*hash_type); } Maybe xof_md_len = Nothing(); if (!args[1]->IsUndefined()) { CHECK(args[1]->IsUint32()); xof_md_len = Just(args[1].As()->Value()); } Hash* hash = new Hash(env, args.This()); if (md == nullptr || !hash->HashInit(md, xof_md_len)) { return ThrowCryptoError(env, ERR_get_error(), "Digest method not supported"); } if (orig != nullptr && 0 >= EVP_MD_CTX_copy(hash->mdctx_.get(), orig->mdctx_.get())) { return ThrowCryptoError(env, ERR_get_error(), "Digest copy error"); } } bool Hash::HashInit(const EVP_MD* md, Maybe xof_md_len) { mdctx_.reset(EVP_MD_CTX_new()); if (!mdctx_ || EVP_DigestInit_ex(mdctx_.get(), md, nullptr) <= 0) { mdctx_.reset(); return false; } md_len_ = EVP_MD_size(md); if (xof_md_len.IsJust() && xof_md_len.FromJust() != md_len_) { // This is a little hack to cause createHash to fail when an incorrect // hashSize option was passed for a non-XOF hash function. if ((EVP_MD_flags(md) & EVP_MD_FLAG_XOF) == 0) { EVPerr(EVP_F_EVP_DIGESTFINALXOF, EVP_R_NOT_XOF_OR_INVALID_LENGTH); return false; } md_len_ = xof_md_len.FromJust(); } return true; } bool Hash::HashUpdate(const char* data, int len) { if (!mdctx_) return false; EVP_DigestUpdate(mdctx_.get(), data, len); return true; } void Hash::HashUpdate(const FunctionCallbackInfo& args) { Decode(args, [](Hash* hash, const FunctionCallbackInfo& args, const char* data, size_t size) { bool r = hash->HashUpdate(data, size); args.GetReturnValue().Set(r); }); } void Hash::HashDigest(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Hash* hash; ASSIGN_OR_RETURN_UNWRAP(&hash, args.Holder()); enum encoding encoding = BUFFER; if (args.Length() >= 1) { encoding = ParseEncoding(env->isolate(), args[0], BUFFER); } // TODO(tniessen): SHA3_squeeze does not work for zero-length outputs on all // platforms and will cause a segmentation fault if called. This workaround // causes hash.digest() to correctly return an empty buffer / string. // See https://github.com/openssl/openssl/issues/9431. if (!hash->has_md_ && hash->md_len_ == 0) { hash->has_md_ = true; } if (!hash->has_md_) { // Some hash algorithms such as SHA3 do not support calling // EVP_DigestFinal_ex more than once, however, Hash._flush // and Hash.digest can both be used to retrieve the digest, // so we need to cache it. // See https://github.com/nodejs/node/issues/28245. hash->md_value_ = MallocOpenSSL(hash->md_len_); size_t default_len = EVP_MD_CTX_size(hash->mdctx_.get()); int ret; if (hash->md_len_ == default_len) { ret = EVP_DigestFinal_ex(hash->mdctx_.get(), hash->md_value_, &hash->md_len_); } else { ret = EVP_DigestFinalXOF(hash->mdctx_.get(), hash->md_value_, hash->md_len_); } if (ret != 1) { OPENSSL_free(hash->md_value_); hash->md_value_ = nullptr; return ThrowCryptoError(env, ERR_get_error()); } hash->has_md_ = true; } Local error; MaybeLocal rc = StringBytes::Encode(env->isolate(), reinterpret_cast(hash->md_value_), hash->md_len_, encoding, &error); if (rc.IsEmpty()) { CHECK(!error.IsEmpty()); env->isolate()->ThrowException(error); return; } args.GetReturnValue().Set(rc.ToLocalChecked()); } SignBase::Error SignBase::Init(const char* sign_type) { CHECK_NULL(mdctx_); // Historically, "dss1" and "DSS1" were DSA aliases for SHA-1 // exposed through the public API. if (strcmp(sign_type, "dss1") == 0 || strcmp(sign_type, "DSS1") == 0) { sign_type = "SHA1"; } const EVP_MD* md = EVP_get_digestbyname(sign_type); if (md == nullptr) return kSignUnknownDigest; mdctx_.reset(EVP_MD_CTX_new()); if (!mdctx_ || !EVP_DigestInit_ex(mdctx_.get(), md, nullptr)) { mdctx_.reset(); return kSignInit; } return kSignOk; } SignBase::Error SignBase::Update(const char* data, int len) { if (mdctx_ == nullptr) return kSignNotInitialised; if (!EVP_DigestUpdate(mdctx_.get(), data, len)) return kSignUpdate; return kSignOk; } void CheckThrow(Environment* env, SignBase::Error error) { HandleScope scope(env->isolate()); switch (error) { case SignBase::Error::kSignUnknownDigest: return env->ThrowError("Unknown message digest"); case SignBase::Error::kSignNotInitialised: return env->ThrowError("Not initialised"); case SignBase::Error::kSignMalformedSignature: return env->ThrowError("Malformed signature"); case SignBase::Error::kSignInit: case SignBase::Error::kSignUpdate: case SignBase::Error::kSignPrivateKey: case SignBase::Error::kSignPublicKey: { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) if (err) return ThrowCryptoError(env, err); switch (error) { case SignBase::Error::kSignInit: return env->ThrowError("EVP_SignInit_ex failed"); case SignBase::Error::kSignUpdate: return env->ThrowError("EVP_SignUpdate failed"); case SignBase::Error::kSignPrivateKey: return env->ThrowError("PEM_read_bio_PrivateKey failed"); case SignBase::Error::kSignPublicKey: return env->ThrowError("PEM_read_bio_PUBKEY failed"); default: ABORT(); } } case SignBase::Error::kSignOk: return; } } SignBase::SignBase(Environment* env, Local wrap) : BaseObject(env, wrap) { } void SignBase::CheckThrow(SignBase::Error error) { node::crypto::CheckThrow(env(), error); } static bool ApplyRSAOptions(const ManagedEVPPKey& pkey, EVP_PKEY_CTX* pkctx, int padding, const Maybe& salt_len) { if (EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA || EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA2 || EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA_PSS) { if (EVP_PKEY_CTX_set_rsa_padding(pkctx, padding) <= 0) return false; if (padding == RSA_PKCS1_PSS_PADDING && salt_len.IsJust()) { if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, salt_len.FromJust()) <= 0) return false; } } return true; } Sign::Sign(Environment* env, Local wrap) : SignBase(env, wrap) { MakeWeak(); } void Sign::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount( SignBase::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); env->SetProtoMethod(t, "init", SignInit); env->SetProtoMethod(t, "update", SignUpdate); env->SetProtoMethod(t, "sign", SignFinal); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "Sign"), t->GetFunction(env->context()).ToLocalChecked()).Check(); } void Sign::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); new Sign(env, args.This()); } void Sign::SignInit(const FunctionCallbackInfo& args) { Sign* sign; ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder()); const node::Utf8Value sign_type(args.GetIsolate(), args[0]); sign->CheckThrow(sign->Init(*sign_type)); } void Sign::SignUpdate(const FunctionCallbackInfo& args) { Decode(args, [](Sign* sign, const FunctionCallbackInfo& args, const char* data, size_t size) { Error err = sign->Update(data, size); sign->CheckThrow(err); }); } static int GetDefaultSignPadding(const ManagedEVPPKey& key) { return EVP_PKEY_id(key.get()) == EVP_PKEY_RSA_PSS ? RSA_PKCS1_PSS_PADDING : RSA_PKCS1_PADDING; } static const unsigned int kNoDsaSignature = static_cast(-1); // Returns the maximum size of each of the integers (r, s) of the DSA signature. static unsigned int GetBytesOfRS(const ManagedEVPPKey& pkey) { int bits, base_id = EVP_PKEY_base_id(pkey.get()); if (base_id == EVP_PKEY_DSA) { DSA* dsa_key = EVP_PKEY_get0_DSA(pkey.get()); // Both r and s are computed mod q, so their width is limited by that of q. bits = BN_num_bits(DSA_get0_q(dsa_key)); } else if (base_id == EVP_PKEY_EC) { EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(pkey.get()); const EC_GROUP* ec_group = EC_KEY_get0_group(ec_key); bits = EC_GROUP_order_bits(ec_group); } else { return kNoDsaSignature; } return (bits + 7) / 8; } static AllocatedBuffer ConvertSignatureToP1363(Environment* env, const ManagedEVPPKey& pkey, AllocatedBuffer&& signature) { unsigned int n = GetBytesOfRS(pkey); if (n == kNoDsaSignature) return std::move(signature); const unsigned char* sig_data = reinterpret_cast(signature.data()); ECDSASigPointer asn1_sig(d2i_ECDSA_SIG(nullptr, &sig_data, signature.size())); if (!asn1_sig) return AllocatedBuffer(); AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, 2 * n); unsigned char* data = reinterpret_cast(buf.data()); const BIGNUM* r = ECDSA_SIG_get0_r(asn1_sig.get()); const BIGNUM* s = ECDSA_SIG_get0_s(asn1_sig.get()); CHECK_EQ(n, static_cast(BN_bn2binpad(r, data, n))); CHECK_EQ(n, static_cast(BN_bn2binpad(s, data + n, n))); return buf; } static ByteSource ConvertSignatureToDER( const ManagedEVPPKey& pkey, const ArrayBufferViewContents& signature) { unsigned int n = GetBytesOfRS(pkey); if (n == kNoDsaSignature) return ByteSource::Foreign(signature.data(), signature.length()); const unsigned char* sig_data = reinterpret_cast(signature.data()); if (signature.length() != 2 * n) return ByteSource(); ECDSASigPointer asn1_sig(ECDSA_SIG_new()); CHECK(asn1_sig); BIGNUM* r = BN_new(); CHECK_NOT_NULL(r); BIGNUM* s = BN_new(); CHECK_NOT_NULL(s); CHECK_EQ(r, BN_bin2bn(sig_data, n, r)); CHECK_EQ(s, BN_bin2bn(sig_data + n, n, s)); CHECK_EQ(1, ECDSA_SIG_set0(asn1_sig.get(), r, s)); unsigned char* data = nullptr; int len = i2d_ECDSA_SIG(asn1_sig.get(), &data); if (len <= 0) return ByteSource(); CHECK_NOT_NULL(data); return ByteSource::Allocated(reinterpret_cast(data), len); } static AllocatedBuffer Node_SignFinal(Environment* env, EVPMDPointer&& mdctx, const ManagedEVPPKey& pkey, int padding, Maybe pss_salt_len) { unsigned char m[EVP_MAX_MD_SIZE]; unsigned int m_len; if (!EVP_DigestFinal_ex(mdctx.get(), m, &m_len)) return AllocatedBuffer(); int signed_sig_len = EVP_PKEY_size(pkey.get()); CHECK_GE(signed_sig_len, 0); size_t sig_len = static_cast(signed_sig_len); AllocatedBuffer sig = AllocatedBuffer::AllocateManaged(env, sig_len); EVPKeyCtxPointer pkctx(EVP_PKEY_CTX_new(pkey.get(), nullptr)); if (pkctx && EVP_PKEY_sign_init(pkctx.get()) > 0 && ApplyRSAOptions(pkey, pkctx.get(), padding, pss_salt_len) && EVP_PKEY_CTX_set_signature_md(pkctx.get(), EVP_MD_CTX_md(mdctx.get())) > 0 && EVP_PKEY_sign(pkctx.get(), reinterpret_cast(sig.data()), &sig_len, m, m_len) > 0) { sig.Resize(sig_len); return sig; } return AllocatedBuffer(); } static inline bool ValidateDSAParameters(EVP_PKEY* key) { /* Validate DSA2 parameters from FIPS 186-4 */ if (FIPS_mode() && EVP_PKEY_DSA == EVP_PKEY_base_id(key)) { DSA* dsa = EVP_PKEY_get0_DSA(key); const BIGNUM* p; DSA_get0_pqg(dsa, &p, nullptr, nullptr); size_t L = BN_num_bits(p); const BIGNUM* q; DSA_get0_pqg(dsa, nullptr, &q, nullptr); size_t N = BN_num_bits(q); return (L == 1024 && N == 160) || (L == 2048 && N == 224) || (L == 2048 && N == 256) || (L == 3072 && N == 256); } return true; } Sign::SignResult Sign::SignFinal( const ManagedEVPPKey& pkey, int padding, const Maybe& salt_len, DSASigEnc dsa_sig_enc) { if (!mdctx_) return SignResult(kSignNotInitialised); EVPMDPointer mdctx = std::move(mdctx_); if (!ValidateDSAParameters(pkey.get())) return SignResult(kSignPrivateKey); AllocatedBuffer buffer = Node_SignFinal(env(), std::move(mdctx), pkey, padding, salt_len); Error error = buffer.data() == nullptr ? kSignPrivateKey : kSignOk; if (error == kSignOk && dsa_sig_enc == kSigEncP1363) { buffer = ConvertSignatureToP1363(env(), pkey, std::move(buffer)); CHECK_NOT_NULL(buffer.data()); } return SignResult(error, std::move(buffer)); } void Sign::SignFinal(const FunctionCallbackInfo& args) { Sign* sign; ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder()); ClearErrorOnReturn clear_error_on_return; unsigned int offset = 0; ManagedEVPPKey key = GetPrivateKeyFromJs(args, &offset, true); if (!key) return; int padding = GetDefaultSignPadding(key); if (!args[offset]->IsUndefined()) { CHECK(args[offset]->IsInt32()); padding = args[offset].As()->Value(); } Maybe salt_len = Nothing(); if (!args[offset + 1]->IsUndefined()) { CHECK(args[offset + 1]->IsInt32()); salt_len = Just(args[offset + 1].As()->Value()); } CHECK(args[offset + 2]->IsInt32()); DSASigEnc dsa_sig_enc = static_cast(args[offset + 2].As()->Value()); SignResult ret = sign->SignFinal( key, padding, salt_len, dsa_sig_enc); if (ret.error != kSignOk) return sign->CheckThrow(ret.error); args.GetReturnValue().Set(ret.signature.ToBuffer().ToLocalChecked()); } void SignOneShot(const FunctionCallbackInfo& args) { ClearErrorOnReturn clear_error_on_return; Environment* env = Environment::GetCurrent(args); unsigned int offset = 0; ManagedEVPPKey key = GetPrivateKeyFromJs(args, &offset, true); if (!key) return; if (!ValidateDSAParameters(key.get())) return CheckThrow(env, SignBase::Error::kSignPrivateKey); ArrayBufferViewContents data(args[offset]); const EVP_MD* md; if (args[offset + 1]->IsNullOrUndefined()) { md = nullptr; } else { const node::Utf8Value sign_type(args.GetIsolate(), args[offset + 1]); md = EVP_get_digestbyname(*sign_type); if (md == nullptr) return CheckThrow(env, SignBase::Error::kSignUnknownDigest); } int rsa_padding = GetDefaultSignPadding(key); if (!args[offset + 2]->IsUndefined()) { CHECK(args[offset + 2]->IsInt32()); rsa_padding = args[offset + 2].As()->Value(); } Maybe rsa_salt_len = Nothing(); if (!args[offset + 3]->IsUndefined()) { CHECK(args[offset + 3]->IsInt32()); rsa_salt_len = Just(args[offset + 3].As()->Value()); } CHECK(args[offset + 4]->IsInt32()); DSASigEnc dsa_sig_enc = static_cast(args[offset + 4].As()->Value()); EVP_PKEY_CTX* pkctx = nullptr; EVPMDPointer mdctx(EVP_MD_CTX_new()); if (!mdctx || !EVP_DigestSignInit(mdctx.get(), &pkctx, md, nullptr, key.get())) { return CheckThrow(env, SignBase::Error::kSignInit); } if (!ApplyRSAOptions(key, pkctx, rsa_padding, rsa_salt_len)) return CheckThrow(env, SignBase::Error::kSignPrivateKey); const unsigned char* input = reinterpret_cast(data.data()); size_t sig_len; if (!EVP_DigestSign(mdctx.get(), nullptr, &sig_len, input, data.length())) return CheckThrow(env, SignBase::Error::kSignPrivateKey); AllocatedBuffer signature = AllocatedBuffer::AllocateManaged(env, sig_len); if (!EVP_DigestSign(mdctx.get(), reinterpret_cast(signature.data()), &sig_len, input, data.length())) { return CheckThrow(env, SignBase::Error::kSignPrivateKey); } signature.Resize(sig_len); if (dsa_sig_enc == kSigEncP1363) { signature = ConvertSignatureToP1363(env, key, std::move(signature)); } args.GetReturnValue().Set(signature.ToBuffer().ToLocalChecked()); } Verify::Verify(Environment* env, Local wrap) : SignBase(env, wrap) { MakeWeak(); } void Verify::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount( SignBase::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); env->SetProtoMethod(t, "init", VerifyInit); env->SetProtoMethod(t, "update", VerifyUpdate); env->SetProtoMethod(t, "verify", VerifyFinal); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "Verify"), t->GetFunction(env->context()).ToLocalChecked()).Check(); } void Verify::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); new Verify(env, args.This()); } void Verify::VerifyInit(const FunctionCallbackInfo& args) { Verify* verify; ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder()); const node::Utf8Value verify_type(args.GetIsolate(), args[0]); verify->CheckThrow(verify->Init(*verify_type)); } void Verify::VerifyUpdate(const FunctionCallbackInfo& args) { Decode(args, [](Verify* verify, const FunctionCallbackInfo& args, const char* data, size_t size) { Error err = verify->Update(data, size); verify->CheckThrow(err); }); } SignBase::Error Verify::VerifyFinal(const ManagedEVPPKey& pkey, const ByteSource& sig, int padding, const Maybe& saltlen, bool* verify_result) { if (!mdctx_) return kSignNotInitialised; unsigned char m[EVP_MAX_MD_SIZE]; unsigned int m_len; *verify_result = false; EVPMDPointer mdctx = std::move(mdctx_); if (!EVP_DigestFinal_ex(mdctx.get(), m, &m_len)) return kSignPublicKey; EVPKeyCtxPointer pkctx(EVP_PKEY_CTX_new(pkey.get(), nullptr)); if (pkctx && EVP_PKEY_verify_init(pkctx.get()) > 0 && ApplyRSAOptions(pkey, pkctx.get(), padding, saltlen) && EVP_PKEY_CTX_set_signature_md(pkctx.get(), EVP_MD_CTX_md(mdctx.get())) > 0) { const unsigned char* s = reinterpret_cast(sig.get()); const int r = EVP_PKEY_verify(pkctx.get(), s, sig.size(), m, m_len); *verify_result = r == 1; } return kSignOk; } void Verify::VerifyFinal(const FunctionCallbackInfo& args) { ClearErrorOnReturn clear_error_on_return; Verify* verify; ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder()); unsigned int offset = 0; ManagedEVPPKey pkey = GetPublicOrPrivateKeyFromJs(args, &offset); if (!pkey) return; ArrayBufferViewContents hbuf(args[offset]); int padding = GetDefaultSignPadding(pkey); if (!args[offset + 1]->IsUndefined()) { CHECK(args[offset + 1]->IsInt32()); padding = args[offset + 1].As()->Value(); } Maybe salt_len = Nothing(); if (!args[offset + 2]->IsUndefined()) { CHECK(args[offset + 2]->IsInt32()); salt_len = Just(args[offset + 2].As()->Value()); } CHECK(args[offset + 3]->IsInt32()); DSASigEnc dsa_sig_enc = static_cast(args[offset + 3].As()->Value()); ByteSource signature = ByteSource::Foreign(hbuf.data(), hbuf.length()); if (dsa_sig_enc == kSigEncP1363) { signature = ConvertSignatureToDER(pkey, hbuf); if (signature.get() == nullptr) return verify->CheckThrow(Error::kSignMalformedSignature); } bool verify_result; Error err = verify->VerifyFinal(pkey, signature, padding, salt_len, &verify_result); if (err != kSignOk) return verify->CheckThrow(err); args.GetReturnValue().Set(verify_result); } void VerifyOneShot(const FunctionCallbackInfo& args) { ClearErrorOnReturn clear_error_on_return; Environment* env = Environment::GetCurrent(args); unsigned int offset = 0; ManagedEVPPKey key = GetPublicOrPrivateKeyFromJs(args, &offset); if (!key) return; ArrayBufferViewContents sig(args[offset]); ArrayBufferViewContents data(args[offset + 1]); const EVP_MD* md; if (args[offset + 2]->IsNullOrUndefined()) { md = nullptr; } else { const node::Utf8Value sign_type(args.GetIsolate(), args[offset + 2]); md = EVP_get_digestbyname(*sign_type); if (md == nullptr) return CheckThrow(env, SignBase::Error::kSignUnknownDigest); } int rsa_padding = GetDefaultSignPadding(key); if (!args[offset + 3]->IsUndefined()) { CHECK(args[offset + 3]->IsInt32()); rsa_padding = args[offset + 3].As()->Value(); } Maybe rsa_salt_len = Nothing(); if (!args[offset + 4]->IsUndefined()) { CHECK(args[offset + 4]->IsInt32()); rsa_salt_len = Just(args[offset + 4].As()->Value()); } CHECK(args[offset + 5]->IsInt32()); DSASigEnc dsa_sig_enc = static_cast(args[offset + 5].As()->Value()); EVP_PKEY_CTX* pkctx = nullptr; EVPMDPointer mdctx(EVP_MD_CTX_new()); if (!mdctx || !EVP_DigestVerifyInit(mdctx.get(), &pkctx, md, nullptr, key.get())) { return CheckThrow(env, SignBase::Error::kSignInit); } if (!ApplyRSAOptions(key, pkctx, rsa_padding, rsa_salt_len)) return CheckThrow(env, SignBase::Error::kSignPublicKey); ByteSource sig_bytes = ByteSource::Foreign(sig.data(), sig.length()); if (dsa_sig_enc == kSigEncP1363) { sig_bytes = ConvertSignatureToDER(key, sig); if (!sig_bytes) return CheckThrow(env, SignBase::Error::kSignMalformedSignature); } bool verify_result; const int r = EVP_DigestVerify( mdctx.get(), reinterpret_cast(sig_bytes.get()), sig_bytes.size(), reinterpret_cast(data.data()), data.length()); switch (r) { case 1: verify_result = true; break; case 0: verify_result = false; break; default: return CheckThrow(env, SignBase::Error::kSignPublicKey); } args.GetReturnValue().Set(verify_result); } template bool PublicKeyCipher::Cipher(Environment* env, const ManagedEVPPKey& pkey, int padding, const EVP_MD* digest, const void* oaep_label, size_t oaep_label_len, const unsigned char* data, int len, AllocatedBuffer* out) { EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(pkey.get(), nullptr)); if (!ctx) return false; if (EVP_PKEY_cipher_init(ctx.get()) <= 0) return false; if (EVP_PKEY_CTX_set_rsa_padding(ctx.get(), padding) <= 0) return false; if (digest != nullptr) { if (EVP_PKEY_CTX_set_rsa_oaep_md(ctx.get(), digest) <= 0) return false; } if (oaep_label_len != 0) { // OpenSSL takes ownership of the label, so we need to create a copy. void* label = OPENSSL_memdup(oaep_label, oaep_label_len); CHECK_NOT_NULL(label); if (0 >= EVP_PKEY_CTX_set0_rsa_oaep_label(ctx.get(), reinterpret_cast(label), oaep_label_len)) { OPENSSL_free(label); return false; } } size_t out_len = 0; if (EVP_PKEY_cipher(ctx.get(), nullptr, &out_len, data, len) <= 0) return false; *out = AllocatedBuffer::AllocateManaged(env, out_len); if (EVP_PKEY_cipher(ctx.get(), reinterpret_cast(out->data()), &out_len, data, len) <= 0) { return false; } out->Resize(out_len); return true; } template void PublicKeyCipher::Cipher(const FunctionCallbackInfo& args) { MarkPopErrorOnReturn mark_pop_error_on_return; Environment* env = Environment::GetCurrent(args); unsigned int offset = 0; ManagedEVPPKey pkey = GetPublicOrPrivateKeyFromJs(args, &offset); if (!pkey) return; THROW_AND_RETURN_IF_NOT_BUFFER(env, args[offset], "Data"); ArrayBufferViewContents buf(args[offset]); uint32_t padding; if (!args[offset + 1]->Uint32Value(env->context()).To(&padding)) return; const node::Utf8Value oaep_str(env->isolate(), args[offset + 2]); const char* oaep_hash = args[offset + 2]->IsString() ? *oaep_str : nullptr; const EVP_MD* digest = nullptr; if (oaep_hash != nullptr) { digest = EVP_get_digestbyname(oaep_hash); if (digest == nullptr) return THROW_ERR_OSSL_EVP_INVALID_DIGEST(env); } ArrayBufferViewContents oaep_label; if (!args[offset + 3]->IsUndefined()) { CHECK(args[offset + 3]->IsArrayBufferView()); oaep_label.Read(args[offset + 3].As()); } AllocatedBuffer out; bool r = Cipher( env, pkey, padding, digest, oaep_label.data(), oaep_label.length(), buf.data(), buf.length(), &out); if (!r) return ThrowCryptoError(env, ERR_get_error()); args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked()); } DiffieHellman::DiffieHellman(Environment* env, Local wrap) : BaseObject(env, wrap), verifyError_(0) { MakeWeak(); } void DiffieHellman::Initialize(Environment* env, Local target) { auto make = [&] (Local name, FunctionCallback callback) { Local t = env->NewFunctionTemplate(callback); const PropertyAttribute attributes = static_cast(ReadOnly | DontDelete); t->InstanceTemplate()->SetInternalFieldCount( DiffieHellman::kInternalFieldCount); t->Inherit(BaseObject::GetConstructorTemplate(env)); env->SetProtoMethod(t, "generateKeys", GenerateKeys); env->SetProtoMethod(t, "computeSecret", ComputeSecret); env->SetProtoMethodNoSideEffect(t, "getPrime", GetPrime); env->SetProtoMethodNoSideEffect(t, "getGenerator", GetGenerator); env->SetProtoMethodNoSideEffect(t, "getPublicKey", GetPublicKey); env->SetProtoMethodNoSideEffect(t, "getPrivateKey", GetPrivateKey); env->SetProtoMethod(t, "setPublicKey", SetPublicKey); env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey); Local verify_error_getter_templ = FunctionTemplate::New(env->isolate(), DiffieHellman::VerifyErrorGetter, Local(), Signature::New(env->isolate(), t), /* length */ 0, ConstructorBehavior::kThrow, SideEffectType::kHasNoSideEffect); t->InstanceTemplate()->SetAccessorProperty( env->verify_error_string(), verify_error_getter_templ, Local(), attributes); target->Set(env->context(), name, t->GetFunction(env->context()).ToLocalChecked()).Check(); }; make(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellman"), New); make(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellmanGroup"), DiffieHellmanGroup); } bool DiffieHellman::Init(int primeLength, int g) { dh_.reset(DH_new()); if (!DH_generate_parameters_ex(dh_.get(), primeLength, g, nullptr)) return false; return VerifyContext(); } bool DiffieHellman::Init(const char* p, int p_len, int g) { dh_.reset(DH_new()); if (p_len <= 0) { BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); return false; } if (g <= 1) { DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR); return false; } BIGNUM* bn_p = BN_bin2bn(reinterpret_cast(p), p_len, nullptr); BIGNUM* bn_g = BN_new(); if (!BN_set_word(bn_g, g) || !DH_set0_pqg(dh_.get(), bn_p, nullptr, bn_g)) { BN_free(bn_p); BN_free(bn_g); return false; } return VerifyContext(); } bool DiffieHellman::Init(const char* p, int p_len, const char* g, int g_len) { dh_.reset(DH_new()); if (p_len <= 0) { BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); return false; } if (g_len <= 0) { DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR); return false; } BIGNUM* bn_g = BN_bin2bn(reinterpret_cast(g), g_len, nullptr); if (BN_is_zero(bn_g) || BN_is_one(bn_g)) { BN_free(bn_g); DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR); return false; } BIGNUM* bn_p = BN_bin2bn(reinterpret_cast(p), p_len, nullptr); if (!DH_set0_pqg(dh_.get(), bn_p, nullptr, bn_g)) { BN_free(bn_p); BN_free(bn_g); return false; } return VerifyContext(); } inline const modp_group* FindDiffieHellmanGroup(const char* name) { for (const modp_group& group : modp_groups) { if (StringEqualNoCase(name, group.name)) return &group; } return nullptr; } void DiffieHellman::DiffieHellmanGroup( const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman = new DiffieHellman(env, args.This()); CHECK_EQ(args.Length(), 1); THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "Group name"); bool initialized = false; const node::Utf8Value group_name(env->isolate(), args[0]); const modp_group* group = FindDiffieHellmanGroup(*group_name); if (group == nullptr) return THROW_ERR_CRYPTO_UNKNOWN_DH_GROUP(env); initialized = diffieHellman->Init(group->prime, group->prime_size, group->gen); if (!initialized) env->ThrowError("Initialization failed"); } void DiffieHellman::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman = new DiffieHellman(env, args.This()); bool initialized = false; if (args.Length() == 2) { if (args[0]->IsInt32()) { if (args[1]->IsInt32()) { initialized = diffieHellman->Init(args[0].As()->Value(), args[1].As()->Value()); } } else { ArrayBufferViewContents arg0(args[0]); if (args[1]->IsInt32()) { initialized = diffieHellman->Init(arg0.data(), arg0.length(), args[1].As()->Value()); } else { ArrayBufferViewContents arg1(args[1]); initialized = diffieHellman->Init(arg0.data(), arg0.length(), arg1.data(), arg1.length()); } } } if (!initialized) { return ThrowCryptoError(env, ERR_get_error(), "Initialization failed"); } } void DiffieHellman::GenerateKeys(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); if (!DH_generate_key(diffieHellman->dh_.get())) { return ThrowCryptoError(env, ERR_get_error(), "Key generation failed"); } const BIGNUM* pub_key; DH_get0_key(diffieHellman->dh_.get(), &pub_key, nullptr); const int size = BN_num_bytes(pub_key); CHECK_GE(size, 0); AllocatedBuffer data = AllocatedBuffer::AllocateManaged(env, size); CHECK_EQ(size, BN_bn2binpad( pub_key, reinterpret_cast(data.data()), size)); args.GetReturnValue().Set(data.ToBuffer().ToLocalChecked()); } void DiffieHellman::GetField(const FunctionCallbackInfo& args, const BIGNUM* (*get_field)(const DH*), const char* err_if_null) { Environment* env = Environment::GetCurrent(args); DiffieHellman* dh; ASSIGN_OR_RETURN_UNWRAP(&dh, args.Holder()); const BIGNUM* num = get_field(dh->dh_.get()); if (num == nullptr) return env->ThrowError(err_if_null); const int size = BN_num_bytes(num); CHECK_GE(size, 0); AllocatedBuffer data = AllocatedBuffer::AllocateManaged(env, size); CHECK_EQ( size, BN_bn2binpad(num, reinterpret_cast(data.data()), size)); args.GetReturnValue().Set(data.ToBuffer().ToLocalChecked()); } void DiffieHellman::GetPrime(const FunctionCallbackInfo& args) { GetField(args, [](const DH* dh) -> const BIGNUM* { const BIGNUM* p; DH_get0_pqg(dh, &p, nullptr, nullptr); return p; }, "p is null"); } void DiffieHellman::GetGenerator(const FunctionCallbackInfo& args) { GetField(args, [](const DH* dh) -> const BIGNUM* { const BIGNUM* g; DH_get0_pqg(dh, nullptr, nullptr, &g); return g; }, "g is null"); } void DiffieHellman::GetPublicKey(const FunctionCallbackInfo& args) { GetField(args, [](const DH* dh) -> const BIGNUM* { const BIGNUM* pub_key; DH_get0_key(dh, &pub_key, nullptr); return pub_key; }, "No public key - did you forget to generate one?"); } void DiffieHellman::GetPrivateKey(const FunctionCallbackInfo& args) { GetField(args, [](const DH* dh) -> const BIGNUM* { const BIGNUM* priv_key; DH_get0_key(dh, nullptr, &priv_key); return priv_key; }, "No private key - did you forget to generate one?"); } static void ZeroPadDiffieHellmanSecret(size_t remainder_size, AllocatedBuffer* ret) { // DH_size returns number of bytes in a prime number. // DH_compute_key returns number of bytes in a remainder of exponent, which // may have less bytes than a prime number. Therefore add 0-padding to the // allocated buffer. const size_t prime_size = ret->size(); if (remainder_size != prime_size) { CHECK_LT(remainder_size, prime_size); const size_t padding = prime_size - remainder_size; memmove(ret->data() + padding, ret->data(), remainder_size); memset(ret->data(), 0, padding); } } void DiffieHellman::ComputeSecret(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); ClearErrorOnReturn clear_error_on_return; CHECK_EQ(args.Length(), 1); THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Other party's public key"); ArrayBufferViewContents key_buf(args[0].As()); BignumPointer key(BN_bin2bn(key_buf.data(), key_buf.length(), nullptr)); AllocatedBuffer ret = AllocatedBuffer::AllocateManaged(env, DH_size(diffieHellman->dh_.get())); int size = DH_compute_key(reinterpret_cast(ret.data()), key.get(), diffieHellman->dh_.get()); if (size == -1) { int checkResult; int checked; checked = DH_check_pub_key(diffieHellman->dh_.get(), key.get(), &checkResult); if (!checked) { return ThrowCryptoError(env, ERR_get_error(), "Invalid Key"); } else if (checkResult) { if (checkResult & DH_CHECK_PUBKEY_TOO_SMALL) { return env->ThrowError("Supplied key is too small"); } else if (checkResult & DH_CHECK_PUBKEY_TOO_LARGE) { return env->ThrowError("Supplied key is too large"); } else { return env->ThrowError("Invalid key"); } } else { return env->ThrowError("Invalid key"); } UNREACHABLE(); } CHECK_GE(size, 0); ZeroPadDiffieHellmanSecret(static_cast(size), &ret); args.GetReturnValue().Set(ret.ToBuffer().ToLocalChecked()); } void DiffieHellman::SetKey(const FunctionCallbackInfo& args, int (*set_field)(DH*, BIGNUM*), const char* what) { Environment* env = Environment::GetCurrent(args); DiffieHellman* dh; ASSIGN_OR_RETURN_UNWRAP(&dh, args.Holder()); char errmsg[64]; CHECK_EQ(args.Length(), 1); if (!Buffer::HasInstance(args[0])) { snprintf(errmsg, sizeof(errmsg), "%s must be a buffer", what); return THROW_ERR_INVALID_ARG_TYPE(env, errmsg); } ArrayBufferViewContents buf(args[0].As()); BIGNUM* num = BN_bin2bn(buf.data(), buf.length(), nullptr); CHECK_NOT_NULL(num); CHECK_EQ(1, set_field(dh->dh_.get(), num)); } void DiffieHellman::SetPublicKey(const FunctionCallbackInfo& args) { SetKey(args, [](DH* dh, BIGNUM* num) { return DH_set0_key(dh, num, nullptr); }, "Public key"); } void DiffieHellman::SetPrivateKey(const FunctionCallbackInfo& args) { SetKey(args, [](DH* dh, BIGNUM* num) { return DH_set0_key(dh, nullptr, num); }, "Private key"); } void DiffieHellman::VerifyErrorGetter(const FunctionCallbackInfo& args) { HandleScope scope(args.GetIsolate()); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); args.GetReturnValue().Set(diffieHellman->verifyError_); } bool DiffieHellman::VerifyContext() { int codes; if (!DH_check(dh_.get(), &codes)) return false; verifyError_ = codes; return true; } void ECDH::Initialize(Environment* env, Local target) { HandleScope scope(env->isolate()); Local t = env->NewFunctionTemplate(New); t->Inherit(BaseObject::GetConstructorTemplate(env)); t->InstanceTemplate()->SetInternalFieldCount(ECDH::kInternalFieldCount); env->SetProtoMethod(t, "generateKeys", GenerateKeys); env->SetProtoMethod(t, "computeSecret", ComputeSecret); env->SetProtoMethodNoSideEffect(t, "getPublicKey", GetPublicKey); env->SetProtoMethodNoSideEffect(t, "getPrivateKey", GetPrivateKey); env->SetProtoMethod(t, "setPublicKey", SetPublicKey); env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "ECDH"), t->GetFunction(env->context()).ToLocalChecked()).Check(); } ECDH::ECDH(Environment* env, Local wrap, ECKeyPointer&& key) : BaseObject(env, wrap), key_(std::move(key)), group_(EC_KEY_get0_group(key_.get())) { MakeWeak(); CHECK_NOT_NULL(group_); } ECDH::~ECDH() {} void ECDH::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); MarkPopErrorOnReturn mark_pop_error_on_return; // TODO(indutny): Support raw curves? CHECK(args[0]->IsString()); node::Utf8Value curve(env->isolate(), args[0]); int nid = OBJ_sn2nid(*curve); if (nid == NID_undef) return THROW_ERR_INVALID_ARG_VALUE(env, "First argument should be a valid curve name"); ECKeyPointer key(EC_KEY_new_by_curve_name(nid)); if (!key) return env->ThrowError("Failed to create EC_KEY using curve name"); new ECDH(env, args.This(), std::move(key)); } void ECDH::GenerateKeys(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); if (!EC_KEY_generate_key(ecdh->key_.get())) return env->ThrowError("Failed to generate EC_KEY"); } ECPointPointer ECDH::BufferToPoint(Environment* env, const EC_GROUP* group, Local buf) { int r; ECPointPointer pub(EC_POINT_new(group)); if (!pub) { env->ThrowError("Failed to allocate EC_POINT for a public key"); return pub; } ArrayBufferViewContents input(buf); r = EC_POINT_oct2point( group, pub.get(), input.data(), input.length(), nullptr); if (!r) return ECPointPointer(); return pub; } void ECDH::ComputeSecret(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Data"); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); MarkPopErrorOnReturn mark_pop_error_on_return; if (!ecdh->IsKeyPairValid()) return env->ThrowError("Invalid key pair"); ECPointPointer pub( ECDH::BufferToPoint(env, ecdh->group_, args[0])); if (!pub) { args.GetReturnValue().Set( FIXED_ONE_BYTE_STRING(env->isolate(), "ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY")); return; } // NOTE: field_size is in bits int field_size = EC_GROUP_get_degree(ecdh->group_); size_t out_len = (field_size + 7) / 8; AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, out_len); int r = ECDH_compute_key( out.data(), out_len, pub.get(), ecdh->key_.get(), nullptr); if (!r) return env->ThrowError("Failed to compute ECDH key"); Local buf = out.ToBuffer().ToLocalChecked(); args.GetReturnValue().Set(buf); } void ECDH::GetPublicKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); // Conversion form CHECK_EQ(args.Length(), 1); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); const EC_GROUP* group = EC_KEY_get0_group(ecdh->key_.get()); const EC_POINT* pub = EC_KEY_get0_public_key(ecdh->key_.get()); if (pub == nullptr) return env->ThrowError("Failed to get ECDH public key"); CHECK(args[0]->IsUint32()); uint32_t val = args[0].As()->Value(); point_conversion_form_t form = static_cast(val); const char* error; Local buf; if (!ECPointToBuffer(env, group, pub, form, &error).ToLocal(&buf)) return env->ThrowError(error); args.GetReturnValue().Set(buf); } void ECDH::GetPrivateKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); const BIGNUM* b = EC_KEY_get0_private_key(ecdh->key_.get()); if (b == nullptr) return env->ThrowError("Failed to get ECDH private key"); const int size = BN_num_bytes(b); AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, size); CHECK_EQ(size, BN_bn2binpad(b, reinterpret_cast(out.data()), size)); Local buf = out.ToBuffer().ToLocalChecked(); args.GetReturnValue().Set(buf); } void ECDH::SetPrivateKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Private key"); ArrayBufferViewContents priv_buffer(args[0]); BignumPointer priv(BN_bin2bn( priv_buffer.data(), priv_buffer.length(), nullptr)); if (!priv) return env->ThrowError("Failed to convert Buffer to BN"); if (!ecdh->IsKeyValidForCurve(priv)) { return env->ThrowError("Private key is not valid for specified curve."); } ECKeyPointer new_key(EC_KEY_dup(ecdh->key_.get())); CHECK(new_key); int result = EC_KEY_set_private_key(new_key.get(), priv.get()); priv.reset(); if (!result) { return env->ThrowError("Failed to convert BN to a private key"); } MarkPopErrorOnReturn mark_pop_error_on_return; USE(&mark_pop_error_on_return); const BIGNUM* priv_key = EC_KEY_get0_private_key(new_key.get()); CHECK_NOT_NULL(priv_key); ECPointPointer pub(EC_POINT_new(ecdh->group_)); CHECK(pub); if (!EC_POINT_mul(ecdh->group_, pub.get(), priv_key, nullptr, nullptr, nullptr)) { return env->ThrowError("Failed to generate ECDH public key"); } if (!EC_KEY_set_public_key(new_key.get(), pub.get())) return env->ThrowError("Failed to set generated public key"); EC_KEY_copy(ecdh->key_.get(), new_key.get()); ecdh->group_ = EC_KEY_get0_group(ecdh->key_.get()); } void ECDH::SetPublicKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Public key"); MarkPopErrorOnReturn mark_pop_error_on_return; ECPointPointer pub( ECDH::BufferToPoint(env, ecdh->group_, args[0])); if (!pub) return env->ThrowError("Failed to convert Buffer to EC_POINT"); int r = EC_KEY_set_public_key(ecdh->key_.get(), pub.get()); if (!r) return env->ThrowError("Failed to set EC_POINT as the public key"); } bool ECDH::IsKeyValidForCurve(const BignumPointer& private_key) { CHECK(group_); CHECK(private_key); // Private keys must be in the range [1, n-1]. // Ref: Section 3.2.1 - http://www.secg.org/sec1-v2.pdf if (BN_cmp(private_key.get(), BN_value_one()) < 0) { return false; } BignumPointer order(BN_new()); CHECK(order); return EC_GROUP_get_order(group_, order.get(), nullptr) && BN_cmp(private_key.get(), order.get()) < 0; } bool ECDH::IsKeyPairValid() { MarkPopErrorOnReturn mark_pop_error_on_return; USE(&mark_pop_error_on_return); return 1 == EC_KEY_check_key(key_.get()); } // TODO(addaleax): If there is an `AsyncWrap`, it currently has no access to // this object. This makes proper reporting of memory usage impossible. struct CryptoJob : public ThreadPoolWork { std::unique_ptr async_wrap; inline explicit CryptoJob(Environment* env) : ThreadPoolWork(env) {} inline void AfterThreadPoolWork(int status) final; virtual void AfterThreadPoolWork() = 0; static inline void Run(std::unique_ptr job, Local wrap); }; void CryptoJob::AfterThreadPoolWork(int status) { CHECK(status == 0 || status == UV_ECANCELED); std::unique_ptr job(this); if (status == UV_ECANCELED) return; HandleScope handle_scope(env()->isolate()); Context::Scope context_scope(env()->context()); CHECK_EQ(false, async_wrap->persistent().IsWeak()); AfterThreadPoolWork(); } void CryptoJob::Run(std::unique_ptr job, Local wrap) { CHECK(wrap->IsObject()); CHECK_NULL(job->async_wrap); job->async_wrap.reset(Unwrap(wrap.As())); CHECK_EQ(false, job->async_wrap->persistent().IsWeak()); job->ScheduleWork(); job.release(); // Run free, little job! } inline void CopyBuffer(Local buf, std::vector* vec) { CHECK(buf->IsArrayBufferView()); vec->clear(); vec->resize(buf.As()->ByteLength()); buf.As()->CopyContents(vec->data(), vec->size()); } struct RandomBytesJob : public CryptoJob { unsigned char* data; size_t size; CryptoErrorVector errors; Maybe rc; inline explicit RandomBytesJob(Environment* env) : CryptoJob(env), rc(Nothing()) {} inline void DoThreadPoolWork() override { CheckEntropy(); // Ensure that OpenSSL's PRNG is properly seeded. rc = Just(RAND_bytes(data, size)); if (0 == rc.FromJust()) errors.Capture(); } inline void AfterThreadPoolWork() override { Local arg = ToResult(); async_wrap->MakeCallback(env()->ondone_string(), 1, &arg); } inline Local ToResult() const { if (errors.empty()) return Undefined(env()->isolate()); return errors.ToException(env()).ToLocalChecked(); } }; void RandomBytes(const FunctionCallbackInfo& args) { CHECK(args[0]->IsArrayBufferView()); // buffer; wrap object retains ref. CHECK(args[1]->IsUint32()); // offset CHECK(args[2]->IsUint32()); // size CHECK(args[3]->IsObject() || args[3]->IsUndefined()); // wrap object const uint32_t offset = args[1].As()->Value(); const uint32_t size = args[2].As()->Value(); CHECK_GE(offset + size, offset); // Overflow check. CHECK_LE(offset + size, Buffer::Length(args[0])); // Bounds check. Environment* env = Environment::GetCurrent(args); std::unique_ptr job(new RandomBytesJob(env)); job->data = reinterpret_cast(Buffer::Data(args[0])) + offset; job->size = size; if (args[3]->IsObject()) return RandomBytesJob::Run(std::move(job), args[3]); env->PrintSyncTrace(); job->DoThreadPoolWork(); args.GetReturnValue().Set(job->ToResult()); } struct PBKDF2Job : public CryptoJob { unsigned char* keybuf_data; size_t keybuf_size; std::vector pass; std::vector salt; uint32_t iteration_count; const EVP_MD* digest; Maybe success; inline explicit PBKDF2Job(Environment* env) : CryptoJob(env), success(Nothing()) {} inline ~PBKDF2Job() override { Cleanse(); } inline void DoThreadPoolWork() override { auto salt_data = reinterpret_cast(salt.data()); const bool ok = PKCS5_PBKDF2_HMAC(pass.data(), pass.size(), salt_data, salt.size(), iteration_count, digest, keybuf_size, keybuf_data); success = Just(ok); Cleanse(); } inline void AfterThreadPoolWork() override { Local arg = ToResult(); async_wrap->MakeCallback(env()->ondone_string(), 1, &arg); } inline Local ToResult() const { return Boolean::New(env()->isolate(), success.FromJust()); } inline void Cleanse() { OPENSSL_cleanse(pass.data(), pass.size()); OPENSSL_cleanse(salt.data(), salt.size()); pass.clear(); salt.clear(); } }; inline void PBKDF2(const FunctionCallbackInfo& args) { auto rv = args.GetReturnValue(); Environment* env = Environment::GetCurrent(args); CHECK(args[0]->IsArrayBufferView()); // keybuf; wrap object retains ref. CHECK(args[1]->IsArrayBufferView()); // pass CHECK(args[2]->IsArrayBufferView()); // salt CHECK(args[3]->IsUint32()); // iteration_count CHECK(args[4]->IsString()); // digest_name CHECK(args[5]->IsObject() || args[5]->IsUndefined()); // wrap object std::unique_ptr job(new PBKDF2Job(env)); job->keybuf_data = reinterpret_cast(Buffer::Data(args[0])); job->keybuf_size = Buffer::Length(args[0]); CopyBuffer(args[1], &job->pass); CopyBuffer(args[2], &job->salt); job->iteration_count = args[3].As()->Value(); Utf8Value digest_name(args.GetIsolate(), args[4]); job->digest = EVP_get_digestbyname(*digest_name); if (job->digest == nullptr) return rv.Set(-1); if (args[5]->IsObject()) return PBKDF2Job::Run(std::move(job), args[5]); env->PrintSyncTrace(); job->DoThreadPoolWork(); rv.Set(job->ToResult()); } #ifndef OPENSSL_NO_SCRYPT struct ScryptJob : public CryptoJob { unsigned char* keybuf_data; size_t keybuf_size; std::vector pass; std::vector salt; uint32_t N; uint32_t r; uint32_t p; uint64_t maxmem; CryptoErrorVector errors; inline explicit ScryptJob(Environment* env) : CryptoJob(env) {} inline ~ScryptJob() override { Cleanse(); } inline bool Validate() { if (1 == EVP_PBE_scrypt(nullptr, 0, nullptr, 0, N, r, p, maxmem, nullptr, 0)) { return true; } else { // Note: EVP_PBE_scrypt() does not always put errors on the error stack. errors.Capture(); return false; } } inline void DoThreadPoolWork() override { auto salt_data = reinterpret_cast(salt.data()); if (1 != EVP_PBE_scrypt(pass.data(), pass.size(), salt_data, salt.size(), N, r, p, maxmem, keybuf_data, keybuf_size)) { errors.Capture(); } } inline void AfterThreadPoolWork() override { Local arg = ToResult(); async_wrap->MakeCallback(env()->ondone_string(), 1, &arg); } inline Local ToResult() const { if (errors.empty()) return Undefined(env()->isolate()); return errors.ToException(env()).ToLocalChecked(); } inline void Cleanse() { OPENSSL_cleanse(pass.data(), pass.size()); OPENSSL_cleanse(salt.data(), salt.size()); pass.clear(); salt.clear(); } }; void Scrypt(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK(args[0]->IsArrayBufferView()); // keybuf; wrap object retains ref. CHECK(args[1]->IsArrayBufferView()); // pass CHECK(args[2]->IsArrayBufferView()); // salt CHECK(args[3]->IsUint32()); // N CHECK(args[4]->IsUint32()); // r CHECK(args[5]->IsUint32()); // p CHECK(args[6]->IsNumber()); // maxmem CHECK(args[7]->IsObject() || args[7]->IsUndefined()); // wrap object std::unique_ptr job(new ScryptJob(env)); job->keybuf_data = reinterpret_cast(Buffer::Data(args[0])); job->keybuf_size = Buffer::Length(args[0]); CopyBuffer(args[1], &job->pass); CopyBuffer(args[2], &job->salt); job->N = args[3].As()->Value(); job->r = args[4].As()->Value(); job->p = args[5].As()->Value(); Local ctx = env->isolate()->GetCurrentContext(); job->maxmem = static_cast(args[6]->IntegerValue(ctx).ToChecked()); if (!job->Validate()) { // EVP_PBE_scrypt() does not always put errors on the error stack // and therefore ToResult() may or may not return an exception // object. Return a sentinel value to inform JS land it should // throw an ERR_CRYPTO_SCRYPT_INVALID_PARAMETER on our behalf. auto result = job->ToResult(); if (result->IsUndefined()) result = Null(args.GetIsolate()); return args.GetReturnValue().Set(result); } if (args[7]->IsObject()) return ScryptJob::Run(std::move(job), args[7]); env->PrintSyncTrace(); job->DoThreadPoolWork(); args.GetReturnValue().Set(job->ToResult()); } #endif // OPENSSL_NO_SCRYPT class KeyPairGenerationConfig { public: virtual EVPKeyCtxPointer Setup() = 0; virtual bool Configure(const EVPKeyCtxPointer& ctx) { return true; } virtual ~KeyPairGenerationConfig() = default; }; class RSAKeyPairGenerationConfig : public KeyPairGenerationConfig { public: RSAKeyPairGenerationConfig(unsigned int modulus_bits, unsigned int exponent) : modulus_bits_(modulus_bits), exponent_(exponent) {} EVPKeyCtxPointer Setup() override { return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, nullptr)); } bool Configure(const EVPKeyCtxPointer& ctx) override { if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx.get(), modulus_bits_) <= 0) return false; // 0x10001 is the default RSA exponent. if (exponent_ != 0x10001) { BignumPointer bn(BN_new()); CHECK_NOT_NULL(bn.get()); CHECK(BN_set_word(bn.get(), exponent_)); // EVP_CTX acceps ownership of bn on success. if (EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx.get(), bn.get()) <= 0) return false; bn.release(); } return true; } private: const unsigned int modulus_bits_; const unsigned int exponent_; }; class RSAPSSKeyPairGenerationConfig : public RSAKeyPairGenerationConfig { public: RSAPSSKeyPairGenerationConfig(unsigned int modulus_bits, unsigned int exponent, const EVP_MD* md, const EVP_MD* mgf1_md, int saltlen) : RSAKeyPairGenerationConfig(modulus_bits, exponent), md_(md), mgf1_md_(mgf1_md), saltlen_(saltlen) {} EVPKeyCtxPointer Setup() override { return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA_PSS, nullptr)); } bool Configure(const EVPKeyCtxPointer& ctx) override { if (!RSAKeyPairGenerationConfig::Configure(ctx)) return false; if (md_ != nullptr) { if (EVP_PKEY_CTX_set_rsa_pss_keygen_md(ctx.get(), md_) <= 0) return false; } if (mgf1_md_ != nullptr) { if (EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(ctx.get(), mgf1_md_) <= 0) return false; } if (saltlen_ >= 0) { if (EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(ctx.get(), saltlen_) <= 0) return false; } return true; } private: const EVP_MD* md_; const EVP_MD* mgf1_md_; const int saltlen_; }; class DSAKeyPairGenerationConfig : public KeyPairGenerationConfig { public: DSAKeyPairGenerationConfig(unsigned int modulus_bits, int divisor_bits) : modulus_bits_(modulus_bits), divisor_bits_(divisor_bits) {} EVPKeyCtxPointer Setup() override { EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, nullptr)); if (!param_ctx) return nullptr; if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0) return nullptr; if (EVP_PKEY_CTX_set_dsa_paramgen_bits(param_ctx.get(), modulus_bits_) <= 0) return nullptr; if (divisor_bits_ != -1) { if (EVP_PKEY_CTX_ctrl(param_ctx.get(), EVP_PKEY_DSA, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS, divisor_bits_, nullptr) <= 0) { return nullptr; } } EVP_PKEY* raw_params = nullptr; if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0) return nullptr; EVPKeyPointer params(raw_params); param_ctx.reset(); EVPKeyCtxPointer key_ctx(EVP_PKEY_CTX_new(params.get(), nullptr)); return key_ctx; } private: const unsigned int modulus_bits_; const int divisor_bits_; }; class ECKeyPairGenerationConfig : public KeyPairGenerationConfig { public: ECKeyPairGenerationConfig(int curve_nid, int param_encoding) : curve_nid_(curve_nid), param_encoding_(param_encoding) {} EVPKeyCtxPointer Setup() override { EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr)); if (!param_ctx) return nullptr; if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0) return nullptr; if (EVP_PKEY_CTX_set_ec_paramgen_curve_nid(param_ctx.get(), curve_nid_) <= 0) return nullptr; if (EVP_PKEY_CTX_set_ec_param_enc(param_ctx.get(), param_encoding_) <= 0) return nullptr; EVP_PKEY* raw_params = nullptr; if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0) return nullptr; EVPKeyPointer params(raw_params); param_ctx.reset(); EVPKeyCtxPointer key_ctx(EVP_PKEY_CTX_new(params.get(), nullptr)); return key_ctx; } private: const int curve_nid_; const int param_encoding_; }; class NidKeyPairGenerationConfig : public KeyPairGenerationConfig { public: explicit NidKeyPairGenerationConfig(int id) : id_(id) {} EVPKeyCtxPointer Setup() override { return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(id_, nullptr)); } private: const int id_; }; // TODO(tniessen): Use std::variant instead. // Diffie-Hellman can either generate keys using a fixed prime, or by first // generating a random prime of a given size (in bits). Only one of both options // may be specified. struct PrimeInfo { BignumPointer fixed_value_; unsigned int prime_size_; }; class DHKeyPairGenerationConfig : public KeyPairGenerationConfig { public: explicit DHKeyPairGenerationConfig(PrimeInfo&& prime_info, unsigned int generator) : prime_info_(std::move(prime_info)), generator_(generator) {} EVPKeyCtxPointer Setup() override { EVPKeyPointer params; if (prime_info_.fixed_value_) { DHPointer dh(DH_new()); if (!dh) return nullptr; BIGNUM* prime = prime_info_.fixed_value_.get(); BignumPointer bn_g(BN_new()); if (!BN_set_word(bn_g.get(), generator_) || !DH_set0_pqg(dh.get(), prime, nullptr, bn_g.get())) return nullptr; prime_info_.fixed_value_.release(); bn_g.release(); params = EVPKeyPointer(EVP_PKEY_new()); CHECK(params); EVP_PKEY_assign_DH(params.get(), dh.release()); } else { EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_DH, nullptr)); if (!param_ctx) return nullptr; if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0) return nullptr; if (EVP_PKEY_CTX_set_dh_paramgen_prime_len(param_ctx.get(), prime_info_.prime_size_) <= 0) return nullptr; if (EVP_PKEY_CTX_set_dh_paramgen_generator(param_ctx.get(), generator_) <= 0) return nullptr; EVP_PKEY* raw_params = nullptr; if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0) return nullptr; params = EVPKeyPointer(raw_params); } return EVPKeyCtxPointer(EVP_PKEY_CTX_new(params.get(), nullptr)); } private: PrimeInfo prime_info_; unsigned int generator_; }; class GenerateKeyPairJob : public CryptoJob { public: GenerateKeyPairJob(Environment* env, std::unique_ptr config, PublicKeyEncodingConfig public_key_encoding, PrivateKeyEncodingConfig&& private_key_encoding) : CryptoJob(env), config_(std::move(config)), public_key_encoding_(public_key_encoding), private_key_encoding_(std::forward( private_key_encoding)), pkey_(nullptr) {} inline void DoThreadPoolWork() override { if (!GenerateKey()) errors_.Capture(); } inline bool GenerateKey() { // Make sure that the CSPRNG is properly seeded so the results are secure. CheckEntropy(); // Create the key generation context. EVPKeyCtxPointer ctx = config_->Setup(); if (!ctx) return false; // Initialize key generation. if (EVP_PKEY_keygen_init(ctx.get()) <= 0) return false; // Configure key generation. if (!config_->Configure(ctx)) return false; // Generate the key. EVP_PKEY* pkey = nullptr; if (EVP_PKEY_keygen(ctx.get(), &pkey) != 1) return false; pkey_ = ManagedEVPPKey(EVPKeyPointer(pkey)); return true; } inline void AfterThreadPoolWork() override { Local args[3]; ToResult(&args[0], &args[1], &args[2]); async_wrap->MakeCallback(env()->ondone_string(), 3, args); } inline void ToResult(Local* err, Local* pubkey, Local* privkey) { if (pkey_ && EncodeKeys(pubkey, privkey)) { CHECK(errors_.empty()); *err = Undefined(env()->isolate()); } else { if (errors_.empty()) errors_.Capture(); CHECK(!errors_.empty()); *err = errors_.ToException(env()).ToLocalChecked(); *pubkey = Undefined(env()->isolate()); *privkey = Undefined(env()->isolate()); } } inline bool EncodeKeys(Local* pubkey, Local* privkey) { // Encode the public key. if (public_key_encoding_.output_key_object_) { // Note that this has the downside of containing sensitive data of the // private key. std::shared_ptr data = KeyObjectData::CreateAsymmetric(kKeyTypePublic, pkey_); if (!KeyObjectHandle::Create(env(), data).ToLocal(pubkey)) return false; } else { if (!WritePublicKey(env(), pkey_.get(), public_key_encoding_) .ToLocal(pubkey)) return false; } // Now do the same for the private key. if (private_key_encoding_.output_key_object_) { std::shared_ptr data = KeyObjectData::CreateAsymmetric(kKeyTypePrivate, pkey_); if (!KeyObjectHandle::Create(env(), data).ToLocal(privkey)) return false; } else { if (!WritePrivateKey(env(), pkey_.get(), private_key_encoding_) .ToLocal(privkey)) return false; } return true; } private: CryptoErrorVector errors_; std::unique_ptr config_; PublicKeyEncodingConfig public_key_encoding_; PrivateKeyEncodingConfig private_key_encoding_; ManagedEVPPKey pkey_; }; void GenerateKeyPair(const FunctionCallbackInfo& args, unsigned int offset, std::unique_ptr config) { Environment* env = Environment::GetCurrent(args); PublicKeyEncodingConfig public_key_encoding = GetPublicKeyEncodingFromJs(args, &offset, kKeyContextGenerate); NonCopyableMaybe private_key_encoding = GetPrivateKeyEncodingFromJs(args, &offset, kKeyContextGenerate); if (private_key_encoding.IsEmpty()) return; std::unique_ptr job( new GenerateKeyPairJob(env, std::move(config), public_key_encoding, private_key_encoding.Release())); if (args[offset]->IsObject()) return GenerateKeyPairJob::Run(std::move(job), args[offset]); env->PrintSyncTrace(); job->DoThreadPoolWork(); Local err, pubkey, privkey; job->ToResult(&err, &pubkey, &privkey); Local ret[] = { err, pubkey, privkey }; args.GetReturnValue().Set(Array::New(env->isolate(), ret, arraysize(ret))); } void GenerateKeyPairRSA(const FunctionCallbackInfo& args) { CHECK(args[0]->IsUint32()); const uint32_t modulus_bits = args[0].As()->Value(); CHECK(args[1]->IsUint32()); const uint32_t exponent = args[1].As()->Value(); std::unique_ptr config( new RSAKeyPairGenerationConfig(modulus_bits, exponent)); GenerateKeyPair(args, 2, std::move(config)); } void GenerateKeyPairRSAPSS(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK(args[0]->IsUint32()); const uint32_t modulus_bits = args[0].As()->Value(); CHECK(args[1]->IsUint32()); const uint32_t exponent = args[1].As()->Value(); const EVP_MD* md = nullptr; if (!args[2]->IsUndefined()) { CHECK(args[2]->IsString()); String::Utf8Value md_name(env->isolate(), args[2].As()); md = EVP_get_digestbyname(*md_name); if (md == nullptr) return env->ThrowTypeError("Digest method not supported"); } const EVP_MD* mgf1_md = nullptr; if (!args[3]->IsUndefined()) { CHECK(args[3]->IsString()); String::Utf8Value mgf1_md_name(env->isolate(), args[3].As()); mgf1_md = EVP_get_digestbyname(*mgf1_md_name); if (mgf1_md == nullptr) return env->ThrowTypeError("Digest method not supported"); } int saltlen = -1; if (!args[4]->IsUndefined()) { CHECK(args[4]->IsInt32()); saltlen = args[4].As()->Value(); } std::unique_ptr config( new RSAPSSKeyPairGenerationConfig(modulus_bits, exponent, md, mgf1_md, saltlen)); GenerateKeyPair(args, 5, std::move(config)); } void GenerateKeyPairDSA(const FunctionCallbackInfo& args) { CHECK(args[0]->IsUint32()); const uint32_t modulus_bits = args[0].As()->Value(); CHECK(args[1]->IsInt32()); const int32_t divisor_bits = args[1].As()->Value(); std::unique_ptr config( new DSAKeyPairGenerationConfig(modulus_bits, divisor_bits)); GenerateKeyPair(args, 2, std::move(config)); } void GenerateKeyPairEC(const FunctionCallbackInfo& args) { CHECK(args[0]->IsString()); String::Utf8Value curve_name(args.GetIsolate(), args[0].As()); int curve_nid = EC_curve_nist2nid(*curve_name); if (curve_nid == NID_undef) curve_nid = OBJ_sn2nid(*curve_name); // TODO(tniessen): Should we also support OBJ_ln2nid? (Other APIs don't.) if (curve_nid == NID_undef) { Environment* env = Environment::GetCurrent(args); return env->ThrowTypeError("Invalid ECDH curve name"); } CHECK(args[1]->IsUint32()); const uint32_t param_encoding = args[1].As()->Value(); CHECK(param_encoding == OPENSSL_EC_NAMED_CURVE || param_encoding == OPENSSL_EC_EXPLICIT_CURVE); std::unique_ptr config( new ECKeyPairGenerationConfig(curve_nid, param_encoding)); GenerateKeyPair(args, 2, std::move(config)); } void GenerateKeyPairNid(const FunctionCallbackInfo& args) { CHECK(args[0]->IsInt32()); const int id = args[0].As()->Value(); std::unique_ptr config( new NidKeyPairGenerationConfig(id)); GenerateKeyPair(args, 1, std::move(config)); } void GenerateKeyPairDH(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); PrimeInfo prime_info = {}; unsigned int generator; if (args[0]->IsString()) { String::Utf8Value group_name(args.GetIsolate(), args[0].As()); const modp_group* group = FindDiffieHellmanGroup(*group_name); if (group == nullptr) return THROW_ERR_CRYPTO_UNKNOWN_DH_GROUP(env); prime_info.fixed_value_ = BignumPointer( BN_bin2bn(reinterpret_cast(group->prime), group->prime_size, nullptr)); generator = group->gen; } else { if (args[0]->IsInt32()) { prime_info.prime_size_ = args[0].As()->Value(); } else { ArrayBufferViewContents input(args[0]); prime_info.fixed_value_ = BignumPointer( BN_bin2bn(input.data(), input.length(), nullptr)); } CHECK(args[1]->IsInt32()); generator = args[1].As()->Value(); } std::unique_ptr config( new DHKeyPairGenerationConfig(std::move(prime_info), generator)); GenerateKeyPair(args, 2, std::move(config)); } void GetSSLCiphers(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SSLCtxPointer ctx(SSL_CTX_new(TLS_method())); CHECK(ctx); SSLPointer ssl(SSL_new(ctx.get())); CHECK(ssl); STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl.get()); // TLSv1.3 ciphers aren't listed by EVP. There are only 5, we could just // document them, but since there are only 5, easier to just add them manually // and not have to explain their absence in the API docs. They are lower-cased // because the docs say they will be. static const char* TLS13_CIPHERS[] = { "tls_aes_256_gcm_sha384", "tls_chacha20_poly1305_sha256", "tls_aes_128_gcm_sha256", "tls_aes_128_ccm_8_sha256", "tls_aes_128_ccm_sha256" }; const int n = sk_SSL_CIPHER_num(ciphers); std::vector> arr(n + arraysize(TLS13_CIPHERS)); for (int i = 0; i < n; ++i) { const SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i); arr[i] = OneByteString(env->isolate(), SSL_CIPHER_get_name(cipher)); } for (unsigned i = 0; i < arraysize(TLS13_CIPHERS); ++i) { const char* name = TLS13_CIPHERS[i]; arr[n + i] = OneByteString(env->isolate(), name); } args.GetReturnValue().Set(Array::New(env->isolate(), arr.data(), arr.size())); } class CipherPushContext { public: explicit CipherPushContext(Environment* env) : arr(Array::New(env->isolate())), env_(env) { } inline Environment* env() const { return env_; } Local arr; private: Environment* env_; }; template static void array_push_back(const TypeName* md, const char* from, const char* to, void* arg) { CipherPushContext* ctx = static_cast(arg); ctx->arr->Set(ctx->env()->context(), ctx->arr->Length(), OneByteString(ctx->env()->isolate(), from)).Check(); } void GetCiphers(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherPushContext ctx(env); EVP_CIPHER_do_all_sorted(array_push_back, &ctx); args.GetReturnValue().Set(ctx.arr); } void GetHashes(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherPushContext ctx(env); EVP_MD_do_all_sorted(array_push_back, &ctx); args.GetReturnValue().Set(ctx.arr); } void GetCurves(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); const size_t num_curves = EC_get_builtin_curves(nullptr, 0); if (num_curves) { std::vector curves(num_curves); if (EC_get_builtin_curves(curves.data(), num_curves)) { std::vector> arr(num_curves); for (size_t i = 0; i < num_curves; i++) arr[i] = OneByteString(env->isolate(), OBJ_nid2sn(curves[i].nid)); args.GetReturnValue().Set( Array::New(env->isolate(), arr.data(), arr.size())); return; } } args.GetReturnValue().Set(Array::New(env->isolate())); } bool VerifySpkac(const char* data, unsigned int len) { NetscapeSPKIPointer spki(NETSCAPE_SPKI_b64_decode(data, len)); if (!spki) return false; EVPKeyPointer pkey(X509_PUBKEY_get(spki->spkac->pubkey)); if (!pkey) return false; return NETSCAPE_SPKI_verify(spki.get(), pkey.get()) > 0; } void VerifySpkac(const FunctionCallbackInfo& args) { bool verify_result = false; ArrayBufferViewContents input(args[0]); if (input.length() == 0) return args.GetReturnValue().SetEmptyString(); CHECK_NOT_NULL(input.data()); verify_result = VerifySpkac(input.data(), input.length()); args.GetReturnValue().Set(verify_result); } AllocatedBuffer ExportPublicKey(Environment* env, const char* data, int len, size_t* size) { BIOPointer bio(BIO_new(BIO_s_mem())); if (!bio) return AllocatedBuffer(); NetscapeSPKIPointer spki(NETSCAPE_SPKI_b64_decode(data, len)); if (!spki) return AllocatedBuffer(); EVPKeyPointer pkey(NETSCAPE_SPKI_get_pubkey(spki.get())); if (!pkey) return AllocatedBuffer(); if (PEM_write_bio_PUBKEY(bio.get(), pkey.get()) <= 0) return AllocatedBuffer(); BUF_MEM* ptr; BIO_get_mem_ptr(bio.get(), &ptr); *size = ptr->length; AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, *size); memcpy(buf.data(), ptr->data, *size); return buf; } void ExportPublicKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ArrayBufferViewContents input(args[0]); if (input.length() == 0) return args.GetReturnValue().SetEmptyString(); CHECK_NOT_NULL(input.data()); size_t pkey_size; AllocatedBuffer pkey = ExportPublicKey(env, input.data(), input.length(), &pkey_size); if (pkey.data() == nullptr) return args.GetReturnValue().SetEmptyString(); args.GetReturnValue().Set(pkey.ToBuffer().ToLocalChecked()); } OpenSSLBuffer ExportChallenge(const char* data, int len) { NetscapeSPKIPointer sp(NETSCAPE_SPKI_b64_decode(data, len)); if (!sp) return nullptr; unsigned char* buf = nullptr; ASN1_STRING_to_UTF8(&buf, sp->spkac->challenge); return OpenSSLBuffer(reinterpret_cast(buf)); } void ExportChallenge(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ArrayBufferViewContents input(args[0]); if (input.length() == 0) return args.GetReturnValue().SetEmptyString(); OpenSSLBuffer cert = ExportChallenge(input.data(), input.length()); if (!cert) return args.GetReturnValue().SetEmptyString(); Local outString = Encode(env->isolate(), cert.get(), strlen(cert.get()), BUFFER); args.GetReturnValue().Set(outString); } // Convert the input public key to compressed, uncompressed, or hybrid formats. void ConvertKey(const FunctionCallbackInfo& args) { MarkPopErrorOnReturn mark_pop_error_on_return; Environment* env = Environment::GetCurrent(args); CHECK_EQ(args.Length(), 3); CHECK(args[0]->IsArrayBufferView()); size_t len = args[0].As()->ByteLength(); if (len == 0) return args.GetReturnValue().SetEmptyString(); node::Utf8Value curve(env->isolate(), args[1]); int nid = OBJ_sn2nid(*curve); if (nid == NID_undef) return env->ThrowTypeError("Invalid ECDH curve name"); ECGroupPointer group( EC_GROUP_new_by_curve_name(nid)); if (group == nullptr) return env->ThrowError("Failed to get EC_GROUP"); ECPointPointer pub( ECDH::BufferToPoint(env, group.get(), args[0])); if (pub == nullptr) return env->ThrowError("Failed to convert Buffer to EC_POINT"); CHECK(args[2]->IsUint32()); uint32_t val = args[2].As()->Value(); point_conversion_form_t form = static_cast(val); const char* error; Local buf; if (!ECPointToBuffer(env, group.get(), pub.get(), form, &error).ToLocal(&buf)) return env->ThrowError(error); args.GetReturnValue().Set(buf); } AllocatedBuffer StatelessDiffieHellman(Environment* env, ManagedEVPPKey our_key, ManagedEVPPKey their_key) { size_t out_size; EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(our_key.get(), nullptr)); if (!ctx || EVP_PKEY_derive_init(ctx.get()) <= 0 || EVP_PKEY_derive_set_peer(ctx.get(), their_key.get()) <= 0 || EVP_PKEY_derive(ctx.get(), nullptr, &out_size) <= 0) return AllocatedBuffer(); AllocatedBuffer result = AllocatedBuffer::AllocateManaged(env, out_size); CHECK_NOT_NULL(result.data()); unsigned char* data = reinterpret_cast(result.data()); if (EVP_PKEY_derive(ctx.get(), data, &out_size) <= 0) return AllocatedBuffer(); ZeroPadDiffieHellmanSecret(out_size, &result); return result; } void StatelessDiffieHellman(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK(args[0]->IsObject() && args[1]->IsObject()); KeyObjectHandle* our_key_object; ASSIGN_OR_RETURN_UNWRAP(&our_key_object, args[0].As()); CHECK_EQ(our_key_object->Data()->GetKeyType(), kKeyTypePrivate); KeyObjectHandle* their_key_object; ASSIGN_OR_RETURN_UNWRAP(&their_key_object, args[1].As()); CHECK_NE(their_key_object->Data()->GetKeyType(), kKeyTypeSecret); ManagedEVPPKey our_key = our_key_object->Data()->GetAsymmetricKey(); ManagedEVPPKey their_key = their_key_object->Data()->GetAsymmetricKey(); AllocatedBuffer out = StatelessDiffieHellman(env, our_key, their_key); if (out.size() == 0) return ThrowCryptoError(env, ERR_get_error(), "diffieHellman failed"); args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked()); } void TimingSafeEqual(const FunctionCallbackInfo& args) { // Moving the type checking into JS leads to test failures, most likely due // to V8 inlining certain parts of the wrapper. Therefore, keep them in C++. // Refs: https://github.com/nodejs/node/issues/34073. Environment* env = Environment::GetCurrent(args); if (!args[0]->IsArrayBufferView()) { THROW_ERR_INVALID_ARG_TYPE( env, "The \"buf1\" argument must be an instance of " "Buffer, TypedArray, or DataView."); return; } if (!args[1]->IsArrayBufferView()) { THROW_ERR_INVALID_ARG_TYPE( env, "The \"buf2\" argument must be an instance of " "Buffer, TypedArray, or DataView."); return; } ArrayBufferViewContents buf1(args[0].As()); ArrayBufferViewContents buf2(args[1].As()); if (buf1.length() != buf2.length()) { THROW_ERR_CRYPTO_TIMING_SAFE_EQUAL_LENGTH(env); return; } return args.GetReturnValue().Set( CRYPTO_memcmp(buf1.data(), buf2.data(), buf1.length()) == 0); } void InitCryptoOnce() { #ifndef OPENSSL_IS_BORINGSSL OPENSSL_INIT_SETTINGS* settings = OPENSSL_INIT_new(); // --openssl-config=... if (!per_process::cli_options->openssl_config.empty()) { const char* conf = per_process::cli_options->openssl_config.c_str(); OPENSSL_INIT_set_config_filename(settings, conf); } OPENSSL_init_ssl(0, settings); OPENSSL_INIT_free(settings); settings = nullptr; #endif /* Override FIPS settings in cnf file, if needed. */ unsigned long err = 0; // NOLINT(runtime/int) if (per_process::cli_options->enable_fips_crypto || per_process::cli_options->force_fips_crypto) { if (0 == FIPS_mode() && !FIPS_mode_set(1)) { err = ERR_get_error(); } } if (0 != err) { auto* isolate = Isolate::GetCurrent(); auto* env = Environment::GetCurrent(isolate); return ThrowCryptoError(env, err); } // Turn off compression. Saves memory and protects against CRIME attacks. // No-op with OPENSSL_NO_COMP builds of OpenSSL. sk_SSL_COMP_zero(SSL_COMP_get_compression_methods()); #ifndef OPENSSL_NO_ENGINE ERR_load_ENGINE_strings(); ENGINE_load_builtin_engines(); #endif // !OPENSSL_NO_ENGINE NodeBIO::GetMethod(); } #ifndef OPENSSL_NO_ENGINE void SetEngine(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK(args.Length() >= 2 && args[0]->IsString()); uint32_t flags; if (!args[1]->Uint32Value(env->context()).To(&flags)) return; ClearErrorOnReturn clear_error_on_return; // Load engine. const node::Utf8Value engine_id(env->isolate(), args[0]); char errmsg[1024]; ENGINE* engine = LoadEngineById(*engine_id, &errmsg); if (engine == nullptr) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) if (err == 0) return args.GetReturnValue().Set(false); return ThrowCryptoError(env, err); } int r = ENGINE_set_default(engine, flags); ENGINE_free(engine); if (r == 0) return ThrowCryptoError(env, ERR_get_error()); args.GetReturnValue().Set(true); } #endif // !OPENSSL_NO_ENGINE void GetFipsCrypto(const FunctionCallbackInfo& args) { args.GetReturnValue().Set(FIPS_mode() ? 1 : 0); } void SetFipsCrypto(const FunctionCallbackInfo& args) { CHECK(!per_process::cli_options->force_fips_crypto); Environment* env = Environment::GetCurrent(args); const bool enabled = FIPS_mode(); bool enable = args[0]->BooleanValue(env->isolate()); if (enable == enabled) return; // No action needed. if (!FIPS_mode_set(enable)) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) return ThrowCryptoError(env, err); } } namespace { // SecureBuffer uses openssl to allocate a Uint8Array using // OPENSSL_secure_malloc. Because we do not yet actually // make use of secure heap, this has the same semantics as // using OPENSSL_malloc. However, if the secure heap is // initialized, SecureBuffer will automatically use it. void SecureBuffer(const FunctionCallbackInfo& args) { CHECK(args[0]->IsUint32()); Environment* env = Environment::GetCurrent(args); uint32_t len = args[0].As()->Value(); char* data = static_cast(OPENSSL_secure_malloc(len)); if (data == nullptr) { // There's no memory available for the allocation. // Return nothing. return; } memset(data, 0, len); std::shared_ptr store = ArrayBuffer::NewBackingStore( data, len, [](void* data, size_t len, void* deleter_data) { OPENSSL_secure_clear_free(data, len); }, data); Local buffer = ArrayBuffer::New(env->isolate(), store); args.GetReturnValue().Set(Uint8Array::New(buffer, 0, len)); } } // namespace void Initialize(Local target, Local unused, Local context, void* priv) { Environment* env = Environment::GetCurrent(context); static uv_once_t init_once = UV_ONCE_INIT; TryCatch try_catch{env->isolate()}; uv_once(&init_once, InitCryptoOnce); if (try_catch.HasCaught() && !try_catch.HasTerminated()) { try_catch.ReThrow(); return; } SecureContext::Initialize(env, target); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "KeyObjectHandle"), KeyObjectHandle::Initialize(env)).Check(); env->SetMethod(target, "createNativeKeyObjectClass", CreateNativeKeyObjectClass); CipherBase::Initialize(env, target); DiffieHellman::Initialize(env, target); ECDH::Initialize(env, target); Hmac::Initialize(env, target); Hash::Initialize(env, target); Sign::Initialize(env, target); Verify::Initialize(env, target); env->SetMethodNoSideEffect(target, "certVerifySpkac", VerifySpkac); env->SetMethodNoSideEffect(target, "certExportPublicKey", ExportPublicKey); env->SetMethodNoSideEffect(target, "certExportChallenge", ExportChallenge); env->SetMethodNoSideEffect(target, "getRootCertificates", GetRootCertificates); // Exposed for testing purposes only. env->SetMethodNoSideEffect(target, "isExtraRootCertsFileLoaded", IsExtraRootCertsFileLoaded); env->SetMethodNoSideEffect(target, "ECDHConvertKey", ConvertKey); #ifndef OPENSSL_NO_ENGINE env->SetMethod(target, "setEngine", SetEngine); #endif // !OPENSSL_NO_ENGINE env->SetMethodNoSideEffect(target, "getFipsCrypto", GetFipsCrypto); env->SetMethod(target, "setFipsCrypto", SetFipsCrypto); env->SetMethodNoSideEffect(target, "testFipsCrypto", TestFipsCrypto); env->SetMethod(target, "pbkdf2", PBKDF2); env->SetMethod(target, "generateKeyPairRSA", GenerateKeyPairRSA); env->SetMethod(target, "generateKeyPairRSAPSS", GenerateKeyPairRSAPSS); env->SetMethod(target, "generateKeyPairDSA", GenerateKeyPairDSA); env->SetMethod(target, "generateKeyPairEC", GenerateKeyPairEC); env->SetMethod(target, "generateKeyPairNid", GenerateKeyPairNid); env->SetMethod(target, "generateKeyPairDH", GenerateKeyPairDH); NODE_DEFINE_CONSTANT(target, EVP_PKEY_ED25519); NODE_DEFINE_CONSTANT(target, EVP_PKEY_ED448); NODE_DEFINE_CONSTANT(target, EVP_PKEY_X25519); NODE_DEFINE_CONSTANT(target, EVP_PKEY_X448); NODE_DEFINE_CONSTANT(target, OPENSSL_EC_NAMED_CURVE); NODE_DEFINE_CONSTANT(target, OPENSSL_EC_EXPLICIT_CURVE); NODE_DEFINE_CONSTANT(target, kKeyEncodingPKCS1); NODE_DEFINE_CONSTANT(target, kKeyEncodingPKCS8); NODE_DEFINE_CONSTANT(target, kKeyEncodingSPKI); NODE_DEFINE_CONSTANT(target, kKeyEncodingSEC1); NODE_DEFINE_CONSTANT(target, kKeyFormatDER); NODE_DEFINE_CONSTANT(target, kKeyFormatPEM); NODE_DEFINE_CONSTANT(target, kKeyTypeSecret); NODE_DEFINE_CONSTANT(target, kKeyTypePublic); NODE_DEFINE_CONSTANT(target, kKeyTypePrivate); NODE_DEFINE_CONSTANT(target, kSigEncDER); NODE_DEFINE_CONSTANT(target, kSigEncP1363); env->SetMethodNoSideEffect(target, "statelessDH", StatelessDiffieHellman); env->SetMethod(target, "randomBytes", RandomBytes); env->SetMethod(target, "signOneShot", SignOneShot); env->SetMethod(target, "verifyOneShot", VerifyOneShot); env->SetMethodNoSideEffect(target, "timingSafeEqual", TimingSafeEqual); env->SetMethodNoSideEffect(target, "getSSLCiphers", GetSSLCiphers); env->SetMethodNoSideEffect(target, "getCiphers", GetCiphers); env->SetMethodNoSideEffect(target, "getHashes", GetHashes); env->SetMethodNoSideEffect(target, "getCurves", GetCurves); env->SetMethod(target, "publicEncrypt", PublicKeyCipher::Cipher); env->SetMethod(target, "privateDecrypt", PublicKeyCipher::Cipher); env->SetMethod(target, "privateEncrypt", PublicKeyCipher::Cipher); env->SetMethod(target, "publicDecrypt", PublicKeyCipher::Cipher); #ifndef OPENSSL_NO_SCRYPT env->SetMethod(target, "scrypt", Scrypt); #endif // OPENSSL_NO_SCRYPT env->SetMethod(target, "secureBuffer", SecureBuffer); } } // namespace crypto } // namespace node NODE_MODULE_CONTEXT_AWARE_INTERNAL(crypto, node::crypto::Initialize)