• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file describes how to lower LLVM code to machine code.  This has two
11 /// main components:
12 ///
13 ///  1. Which ValueTypes are natively supported by the target.
14 ///  2. Which operations are supported for supported ValueTypes.
15 ///  3. Cost thresholds for alternative implementations of certain operations.
16 ///
17 /// In addition it has a few other components, like information about FP
18 /// immediates.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
23 #define LLVM_CODEGEN_TARGETLOWERING_H
24 
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/CodeGen/DAGCombine.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetCallingConv.h"
38 #include "llvm/CodeGen/ValueTypes.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Support/Alignment.h"
52 #include "llvm/Support/AtomicOrdering.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/MachineValueType.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Transforms/Utils/SizeOpts.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <climits>
61 #include <cstdint>
62 #include <iterator>
63 #include <map>
64 #include <string>
65 #include <utility>
66 #include <vector>
67 
68 namespace llvm {
69 
70 class BranchProbability;
71 class CCState;
72 class CCValAssign;
73 class Constant;
74 class FastISel;
75 class FunctionLoweringInfo;
76 class GlobalValue;
77 class GISelKnownBits;
78 class IntrinsicInst;
79 struct KnownBits;
80 class LegacyDivergenceAnalysis;
81 class LLVMContext;
82 class MachineBasicBlock;
83 class MachineFunction;
84 class MachineInstr;
85 class MachineJumpTableInfo;
86 class MachineLoop;
87 class MachineRegisterInfo;
88 class MCContext;
89 class MCExpr;
90 class Module;
91 class TargetRegisterClass;
92 class TargetLibraryInfo;
93 class TargetRegisterInfo;
94 class Value;
95 
96 namespace Sched {
97 
98   enum Preference {
99     None,             // No preference
100     Source,           // Follow source order.
101     RegPressure,      // Scheduling for lowest register pressure.
102     Hybrid,           // Scheduling for both latency and register pressure.
103     ILP,              // Scheduling for ILP in low register pressure mode.
104     VLIW              // Scheduling for VLIW targets.
105   };
106 
107 } // end namespace Sched
108 
109 /// This base class for TargetLowering contains the SelectionDAG-independent
110 /// parts that can be used from the rest of CodeGen.
111 class TargetLoweringBase {
112 public:
113   /// This enum indicates whether operations are valid for a target, and if not,
114   /// what action should be used to make them valid.
115   enum LegalizeAction : uint8_t {
116     Legal,      // The target natively supports this operation.
117     Promote,    // This operation should be executed in a larger type.
118     Expand,     // Try to expand this to other ops, otherwise use a libcall.
119     LibCall,    // Don't try to expand this to other ops, always use a libcall.
120     Custom      // Use the LowerOperation hook to implement custom lowering.
121   };
122 
123   /// This enum indicates whether a types are legal for a target, and if not,
124   /// what action should be used to make them valid.
125   enum LegalizeTypeAction : uint8_t {
126     TypeLegal,           // The target natively supports this type.
127     TypePromoteInteger,  // Replace this integer with a larger one.
128     TypeExpandInteger,   // Split this integer into two of half the size.
129     TypeSoftenFloat,     // Convert this float to a same size integer type.
130     TypeExpandFloat,     // Split this float into two of half the size.
131     TypeScalarizeVector, // Replace this one-element vector with its element.
132     TypeSplitVector,     // Split this vector into two of half the size.
133     TypeWidenVector,     // This vector should be widened into a larger vector.
134     TypePromoteFloat     // Replace this float with a larger one.
135   };
136 
137   /// LegalizeKind holds the legalization kind that needs to happen to EVT
138   /// in order to type-legalize it.
139   using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
140 
141   /// Enum that describes how the target represents true/false values.
142   enum BooleanContent {
143     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
144     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
145     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
146   };
147 
148   /// Enum that describes what type of support for selects the target has.
149   enum SelectSupportKind {
150     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
151     ScalarCondVectorVal,  // The target supports selects with a scalar condition
152                           // and vector values (ex: cmov).
153     VectorMaskSelect      // The target supports vector selects with a vector
154                           // mask (ex: x86 blends).
155   };
156 
157   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
158   /// to, if at all. Exists because different targets have different levels of
159   /// support for these atomic instructions, and also have different options
160   /// w.r.t. what they should expand to.
161   enum class AtomicExpansionKind {
162     None,    // Don't expand the instruction.
163     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
164              // by ARM/AArch64.
165     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
166              // greater atomic guarantees than a normal load.
167     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
168     MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
169   };
170 
171   /// Enum that specifies when a multiplication should be expanded.
172   enum class MulExpansionKind {
173     Always,            // Always expand the instruction.
174     OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
175                        // or custom.
176   };
177 
178   class ArgListEntry {
179   public:
180     Value *Val = nullptr;
181     SDValue Node = SDValue();
182     Type *Ty = nullptr;
183     bool IsSExt : 1;
184     bool IsZExt : 1;
185     bool IsInReg : 1;
186     bool IsSRet : 1;
187     bool IsNest : 1;
188     bool IsByVal : 1;
189     bool IsInAlloca : 1;
190     bool IsReturned : 1;
191     bool IsSwiftSelf : 1;
192     bool IsSwiftError : 1;
193     bool IsCFGuardTarget : 1;
194     uint16_t Alignment = 0;
195     Type *ByValType = nullptr;
196 
ArgListEntry()197     ArgListEntry()
198         : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
199           IsNest(false), IsByVal(false), IsInAlloca(false), IsReturned(false),
200           IsSwiftSelf(false), IsSwiftError(false), IsCFGuardTarget(false) {}
201 
202     void setAttributes(const CallBase *Call, unsigned ArgIdx);
203 
setAttributes(ImmutableCallSite * CS,unsigned ArgIdx)204     void setAttributes(ImmutableCallSite *CS, unsigned ArgIdx) {
205       return setAttributes(cast<CallBase>(CS->getInstruction()), ArgIdx);
206     }
207   };
208   using ArgListTy = std::vector<ArgListEntry>;
209 
markLibCallAttributes(MachineFunction * MF,unsigned CC,ArgListTy & Args)210   virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
211                                      ArgListTy &Args) const {};
212 
getExtendForContent(BooleanContent Content)213   static ISD::NodeType getExtendForContent(BooleanContent Content) {
214     switch (Content) {
215     case UndefinedBooleanContent:
216       // Extend by adding rubbish bits.
217       return ISD::ANY_EXTEND;
218     case ZeroOrOneBooleanContent:
219       // Extend by adding zero bits.
220       return ISD::ZERO_EXTEND;
221     case ZeroOrNegativeOneBooleanContent:
222       // Extend by copying the sign bit.
223       return ISD::SIGN_EXTEND;
224     }
225     llvm_unreachable("Invalid content kind");
226   }
227 
228   explicit TargetLoweringBase(const TargetMachine &TM);
229   TargetLoweringBase(const TargetLoweringBase &) = delete;
230   TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
231   virtual ~TargetLoweringBase() = default;
232 
233   /// Return true if the target support strict float operation
isStrictFPEnabled()234   bool isStrictFPEnabled() const {
235     return IsStrictFPEnabled;
236   }
237 
238 protected:
239   /// Initialize all of the actions to default values.
240   void initActions();
241 
242 public:
getTargetMachine()243   const TargetMachine &getTargetMachine() const { return TM; }
244 
useSoftFloat()245   virtual bool useSoftFloat() const { return false; }
246 
247   /// Return the pointer type for the given address space, defaults to
248   /// the pointer type from the data layout.
249   /// FIXME: The default needs to be removed once all the code is updated.
250   virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
251     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
252   }
253 
254   /// Return the in-memory pointer type for the given address space, defaults to
255   /// the pointer type from the data layout.  FIXME: The default needs to be
256   /// removed once all the code is updated.
257   MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
258     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
259   }
260 
261   /// Return the type for frame index, which is determined by
262   /// the alloca address space specified through the data layout.
getFrameIndexTy(const DataLayout & DL)263   MVT getFrameIndexTy(const DataLayout &DL) const {
264     return getPointerTy(DL, DL.getAllocaAddrSpace());
265   }
266 
267   /// Return the type for operands of fence.
268   /// TODO: Let fence operands be of i32 type and remove this.
getFenceOperandTy(const DataLayout & DL)269   virtual MVT getFenceOperandTy(const DataLayout &DL) const {
270     return getPointerTy(DL);
271   }
272 
273   /// EVT is not used in-tree, but is used by out-of-tree target.
274   /// A documentation for this function would be nice...
275   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
276 
277   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
278                        bool LegalTypes = true) const;
279 
280   /// Returns the type to be used for the index operand of:
281   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
282   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
getVectorIdxTy(const DataLayout & DL)283   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
284     return getPointerTy(DL);
285   }
286 
isSelectSupported(SelectSupportKind)287   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
288     return true;
289   }
290 
291   /// Return true if it is profitable to convert a select of FP constants into
292   /// a constant pool load whose address depends on the select condition. The
293   /// parameter may be used to differentiate a select with FP compare from
294   /// integer compare.
reduceSelectOfFPConstantLoads(EVT CmpOpVT)295   virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
296     return true;
297   }
298 
299   /// Return true if multiple condition registers are available.
hasMultipleConditionRegisters()300   bool hasMultipleConditionRegisters() const {
301     return HasMultipleConditionRegisters;
302   }
303 
304   /// Return true if the target has BitExtract instructions.
hasExtractBitsInsn()305   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
306 
307   /// Return the preferred vector type legalization action.
308   virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT)309   getPreferredVectorAction(MVT VT) const {
310     // The default action for one element vectors is to scalarize
311     if (VT.getVectorNumElements() == 1)
312       return TypeScalarizeVector;
313     // The default action for an odd-width vector is to widen.
314     if (!VT.isPow2VectorType())
315       return TypeWidenVector;
316     // The default action for other vectors is to promote
317     return TypePromoteInteger;
318   }
319 
320   // There are two general methods for expanding a BUILD_VECTOR node:
321   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
322   //     them together.
323   //  2. Build the vector on the stack and then load it.
324   // If this function returns true, then method (1) will be used, subject to
325   // the constraint that all of the necessary shuffles are legal (as determined
326   // by isShuffleMaskLegal). If this function returns false, then method (2) is
327   // always used. The vector type, and the number of defined values, are
328   // provided.
329   virtual bool
shouldExpandBuildVectorWithShuffles(EVT,unsigned DefinedValues)330   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
331                                       unsigned DefinedValues) const {
332     return DefinedValues < 3;
333   }
334 
335   /// Return true if integer divide is usually cheaper than a sequence of
336   /// several shifts, adds, and multiplies for this target.
337   /// The definition of "cheaper" may depend on whether we're optimizing
338   /// for speed or for size.
isIntDivCheap(EVT VT,AttributeList Attr)339   virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
340 
341   /// Return true if the target can handle a standalone remainder operation.
hasStandaloneRem(EVT VT)342   virtual bool hasStandaloneRem(EVT VT) const {
343     return true;
344   }
345 
346   /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
isFsqrtCheap(SDValue X,SelectionDAG & DAG)347   virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
348     // Default behavior is to replace SQRT(X) with X*RSQRT(X).
349     return false;
350   }
351 
352   /// Reciprocal estimate status values used by the functions below.
353   enum ReciprocalEstimate : int {
354     Unspecified = -1,
355     Disabled = 0,
356     Enabled = 1
357   };
358 
359   /// Return a ReciprocalEstimate enum value for a square root of the given type
360   /// based on the function's attributes. If the operation is not overridden by
361   /// the function's attributes, "Unspecified" is returned and target defaults
362   /// are expected to be used for instruction selection.
363   int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
364 
365   /// Return a ReciprocalEstimate enum value for a division of the given type
366   /// based on the function's attributes. If the operation is not overridden by
367   /// the function's attributes, "Unspecified" is returned and target defaults
368   /// are expected to be used for instruction selection.
369   int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
370 
371   /// Return the refinement step count for a square root of the given type based
372   /// on the function's attributes. If the operation is not overridden by
373   /// the function's attributes, "Unspecified" is returned and target defaults
374   /// are expected to be used for instruction selection.
375   int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
376 
377   /// Return the refinement step count for a division of the given type based
378   /// on the function's attributes. If the operation is not overridden by
379   /// the function's attributes, "Unspecified" is returned and target defaults
380   /// are expected to be used for instruction selection.
381   int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
382 
383   /// Returns true if target has indicated at least one type should be bypassed.
isSlowDivBypassed()384   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
385 
386   /// Returns map of slow types for division or remainder with corresponding
387   /// fast types
getBypassSlowDivWidths()388   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
389     return BypassSlowDivWidths;
390   }
391 
392   /// Return true if Flow Control is an expensive operation that should be
393   /// avoided.
isJumpExpensive()394   bool isJumpExpensive() const { return JumpIsExpensive; }
395 
396   /// Return true if selects are only cheaper than branches if the branch is
397   /// unlikely to be predicted right.
isPredictableSelectExpensive()398   bool isPredictableSelectExpensive() const {
399     return PredictableSelectIsExpensive;
400   }
401 
402   /// If a branch or a select condition is skewed in one direction by more than
403   /// this factor, it is very likely to be predicted correctly.
404   virtual BranchProbability getPredictableBranchThreshold() const;
405 
406   /// Return true if the following transform is beneficial:
407   /// fold (conv (load x)) -> (load (conv*)x)
408   /// On architectures that don't natively support some vector loads
409   /// efficiently, casting the load to a smaller vector of larger types and
410   /// loading is more efficient, however, this can be undone by optimizations in
411   /// dag combiner.
isLoadBitCastBeneficial(EVT LoadVT,EVT BitcastVT,const SelectionDAG & DAG,const MachineMemOperand & MMO)412   virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
413                                        const SelectionDAG &DAG,
414                                        const MachineMemOperand &MMO) const {
415     // Don't do if we could do an indexed load on the original type, but not on
416     // the new one.
417     if (!LoadVT.isSimple() || !BitcastVT.isSimple())
418       return true;
419 
420     MVT LoadMVT = LoadVT.getSimpleVT();
421 
422     // Don't bother doing this if it's just going to be promoted again later, as
423     // doing so might interfere with other combines.
424     if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
425         getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
426       return false;
427 
428     bool Fast = false;
429     return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
430                               MMO, &Fast) && Fast;
431   }
432 
433   /// Return true if the following transform is beneficial:
434   /// (store (y (conv x)), y*)) -> (store x, (x*))
isStoreBitCastBeneficial(EVT StoreVT,EVT BitcastVT,const SelectionDAG & DAG,const MachineMemOperand & MMO)435   virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
436                                         const SelectionDAG &DAG,
437                                         const MachineMemOperand &MMO) const {
438     // Default to the same logic as loads.
439     return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
440   }
441 
442   /// Return true if it is expected to be cheaper to do a store of a non-zero
443   /// vector constant with the given size and type for the address space than to
444   /// store the individual scalar element constants.
storeOfVectorConstantIsCheap(EVT MemVT,unsigned NumElem,unsigned AddrSpace)445   virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
446                                             unsigned NumElem,
447                                             unsigned AddrSpace) const {
448     return false;
449   }
450 
451   /// Allow store merging for the specified type after legalization in addition
452   /// to before legalization. This may transform stores that do not exist
453   /// earlier (for example, stores created from intrinsics).
mergeStoresAfterLegalization(EVT MemVT)454   virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
455     return true;
456   }
457 
458   /// Returns if it's reasonable to merge stores to MemVT size.
canMergeStoresTo(unsigned AS,EVT MemVT,const SelectionDAG & DAG)459   virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
460                                 const SelectionDAG &DAG) const {
461     return true;
462   }
463 
464   /// Return true if it is cheap to speculate a call to intrinsic cttz.
isCheapToSpeculateCttz()465   virtual bool isCheapToSpeculateCttz() const {
466     return false;
467   }
468 
469   /// Return true if it is cheap to speculate a call to intrinsic ctlz.
isCheapToSpeculateCtlz()470   virtual bool isCheapToSpeculateCtlz() const {
471     return false;
472   }
473 
474   /// Return true if ctlz instruction is fast.
isCtlzFast()475   virtual bool isCtlzFast() const {
476     return false;
477   }
478 
479   /// Return true if instruction generated for equality comparison is folded
480   /// with instruction generated for signed comparison.
isEqualityCmpFoldedWithSignedCmp()481   virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
482 
483   /// Return true if it is safe to transform an integer-domain bitwise operation
484   /// into the equivalent floating-point operation. This should be set to true
485   /// if the target has IEEE-754-compliant fabs/fneg operations for the input
486   /// type.
hasBitPreservingFPLogic(EVT VT)487   virtual bool hasBitPreservingFPLogic(EVT VT) const {
488     return false;
489   }
490 
491   /// Return true if it is cheaper to split the store of a merged int val
492   /// from a pair of smaller values into multiple stores.
isMultiStoresCheaperThanBitsMerge(EVT LTy,EVT HTy)493   virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
494     return false;
495   }
496 
497   /// Return if the target supports combining a
498   /// chain like:
499   /// \code
500   ///   %andResult = and %val1, #mask
501   ///   %icmpResult = icmp %andResult, 0
502   /// \endcode
503   /// into a single machine instruction of a form like:
504   /// \code
505   ///   cc = test %register, #mask
506   /// \endcode
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI)507   virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
508     return false;
509   }
510 
511   /// Use bitwise logic to make pairs of compares more efficient. For example:
512   /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
513   /// This should be true when it takes more than one instruction to lower
514   /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
515   /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
convertSetCCLogicToBitwiseLogic(EVT VT)516   virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
517     return false;
518   }
519 
520   /// Return the preferred operand type if the target has a quick way to compare
521   /// integer values of the given size. Assume that any legal integer type can
522   /// be compared efficiently. Targets may override this to allow illegal wide
523   /// types to return a vector type if there is support to compare that type.
hasFastEqualityCompare(unsigned NumBits)524   virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
525     MVT VT = MVT::getIntegerVT(NumBits);
526     return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
527   }
528 
529   /// Return true if the target should transform:
530   /// (X & Y) == Y ---> (~X & Y) == 0
531   /// (X & Y) != Y ---> (~X & Y) != 0
532   ///
533   /// This may be profitable if the target has a bitwise and-not operation that
534   /// sets comparison flags. A target may want to limit the transformation based
535   /// on the type of Y or if Y is a constant.
536   ///
537   /// Note that the transform will not occur if Y is known to be a power-of-2
538   /// because a mask and compare of a single bit can be handled by inverting the
539   /// predicate, for example:
540   /// (X & 8) == 8 ---> (X & 8) != 0
hasAndNotCompare(SDValue Y)541   virtual bool hasAndNotCompare(SDValue Y) const {
542     return false;
543   }
544 
545   /// Return true if the target has a bitwise and-not operation:
546   /// X = ~A & B
547   /// This can be used to simplify select or other instructions.
hasAndNot(SDValue X)548   virtual bool hasAndNot(SDValue X) const {
549     // If the target has the more complex version of this operation, assume that
550     // it has this operation too.
551     return hasAndNotCompare(X);
552   }
553 
554   /// Return true if the target has a bit-test instruction:
555   ///   (X & (1 << Y)) ==/!= 0
556   /// This knowledge can be used to prevent breaking the pattern,
557   /// or creating it if it could be recognized.
hasBitTest(SDValue X,SDValue Y)558   virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
559 
560   /// There are two ways to clear extreme bits (either low or high):
561   /// Mask:    x &  (-1 << y)  (the instcombine canonical form)
562   /// Shifts:  x >> y << y
563   /// Return true if the variant with 2 variable shifts is preferred.
564   /// Return false if there is no preference.
shouldFoldMaskToVariableShiftPair(SDValue X)565   virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
566     // By default, let's assume that no one prefers shifts.
567     return false;
568   }
569 
570   /// Return true if it is profitable to fold a pair of shifts into a mask.
571   /// This is usually true on most targets. But some targets, like Thumb1,
572   /// have immediate shift instructions, but no immediate "and" instruction;
573   /// this makes the fold unprofitable.
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level)574   virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
575                                                  CombineLevel Level) const {
576     return true;
577   }
578 
579   /// Should we tranform the IR-optimal check for whether given truncation
580   /// down into KeptBits would be truncating or not:
581   ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
582   /// Into it's more traditional form:
583   ///   ((%x << C) a>> C) dstcond %x
584   /// Return true if we should transform.
585   /// Return false if there is no preference.
shouldTransformSignedTruncationCheck(EVT XVT,unsigned KeptBits)586   virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
587                                                     unsigned KeptBits) const {
588     // By default, let's assume that no one prefers shifts.
589     return false;
590   }
591 
592   /// Given the pattern
593   ///   (X & (C l>>/<< Y)) ==/!= 0
594   /// return true if it should be transformed into:
595   ///   ((X <</l>> Y) & C) ==/!= 0
596   /// WARNING: if 'X' is a constant, the fold may deadlock!
597   /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
598   ///        here because it can end up being not linked in.
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X,ConstantSDNode * XC,ConstantSDNode * CC,SDValue Y,unsigned OldShiftOpcode,unsigned NewShiftOpcode,SelectionDAG & DAG)599   virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
600       SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
601       unsigned OldShiftOpcode, unsigned NewShiftOpcode,
602       SelectionDAG &DAG) const {
603     if (hasBitTest(X, Y)) {
604       // One interesting pattern that we'd want to form is 'bit test':
605       //   ((1 << Y) & C) ==/!= 0
606       // But we also need to be careful not to try to reverse that fold.
607 
608       // Is this '1 << Y' ?
609       if (OldShiftOpcode == ISD::SHL && CC->isOne())
610         return false; // Keep the 'bit test' pattern.
611 
612       // Will it be '1 << Y' after the transform ?
613       if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
614         return true; // Do form the 'bit test' pattern.
615     }
616 
617     // If 'X' is a constant, and we transform, then we will immediately
618     // try to undo the fold, thus causing endless combine loop.
619     // So by default, let's assume everyone prefers the fold
620     // iff 'X' is not a constant.
621     return !XC;
622   }
623 
624   /// These two forms are equivalent:
625   ///   sub %y, (xor %x, -1)
626   ///   add (add %x, 1), %y
627   /// The variant with two add's is IR-canonical.
628   /// Some targets may prefer one to the other.
preferIncOfAddToSubOfNot(EVT VT)629   virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
630     // By default, let's assume that everyone prefers the form with two add's.
631     return true;
632   }
633 
634   /// Return true if the target wants to use the optimization that
635   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
636   /// promotedInst1(...(promotedInstN(ext(load)))).
enableExtLdPromotion()637   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
638 
639   /// Return true if the target can combine store(extractelement VectorTy,
640   /// Idx).
641   /// \p Cost[out] gives the cost of that transformation when this is true.
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost)642   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
643                                          unsigned &Cost) const {
644     return false;
645   }
646 
647   /// Return true if inserting a scalar into a variable element of an undef
648   /// vector is more efficiently handled by splatting the scalar instead.
shouldSplatInsEltVarIndex(EVT)649   virtual bool shouldSplatInsEltVarIndex(EVT) const {
650     return false;
651   }
652 
653   /// Return true if target always beneficiates from combining into FMA for a
654   /// given value type. This must typically return false on targets where FMA
655   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(EVT VT)656   virtual bool enableAggressiveFMAFusion(EVT VT) const {
657     return false;
658   }
659 
660   /// Return the ValueType of the result of SETCC operations.
661   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
662                                  EVT VT) const;
663 
664   /// Return the ValueType for comparison libcalls. Comparions libcalls include
665   /// floating point comparion calls, and Ordered/Unordered check calls on
666   /// floating point numbers.
667   virtual
668   MVT::SimpleValueType getCmpLibcallReturnType() const;
669 
670   /// For targets without i1 registers, this gives the nature of the high-bits
671   /// of boolean values held in types wider than i1.
672   ///
673   /// "Boolean values" are special true/false values produced by nodes like
674   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
675   /// Not to be confused with general values promoted from i1.  Some cpus
676   /// distinguish between vectors of boolean and scalars; the isVec parameter
677   /// selects between the two kinds.  For example on X86 a scalar boolean should
678   /// be zero extended from i1, while the elements of a vector of booleans
679   /// should be sign extended from i1.
680   ///
681   /// Some cpus also treat floating point types the same way as they treat
682   /// vectors instead of the way they treat scalars.
getBooleanContents(bool isVec,bool isFloat)683   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
684     if (isVec)
685       return BooleanVectorContents;
686     return isFloat ? BooleanFloatContents : BooleanContents;
687   }
688 
getBooleanContents(EVT Type)689   BooleanContent getBooleanContents(EVT Type) const {
690     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
691   }
692 
693   /// Return target scheduling preference.
getSchedulingPreference()694   Sched::Preference getSchedulingPreference() const {
695     return SchedPreferenceInfo;
696   }
697 
698   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
699   /// for different nodes. This function returns the preference (or none) for
700   /// the given node.
getSchedulingPreference(SDNode *)701   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
702     return Sched::None;
703   }
704 
705   /// Return the register class that should be used for the specified value
706   /// type.
707   virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
708     (void)isDivergent;
709     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
710     assert(RC && "This value type is not natively supported!");
711     return RC;
712   }
713 
714   /// Allows target to decide about the register class of the
715   /// specific value that is live outside the defining block.
716   /// Returns true if the value needs uniform register class.
requiresUniformRegister(MachineFunction & MF,const Value *)717   virtual bool requiresUniformRegister(MachineFunction &MF,
718                                        const Value *) const {
719     return false;
720   }
721 
722   /// Return the 'representative' register class for the specified value
723   /// type.
724   ///
725   /// The 'representative' register class is the largest legal super-reg
726   /// register class for the register class of the value type.  For example, on
727   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
728   /// register class is GR64 on x86_64.
getRepRegClassFor(MVT VT)729   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
730     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
731     return RC;
732   }
733 
734   /// Return the cost of the 'representative' register class for the specified
735   /// value type.
getRepRegClassCostFor(MVT VT)736   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
737     return RepRegClassCostForVT[VT.SimpleTy];
738   }
739 
740   /// Return true if SHIFT instructions should be expanded to SHIFT_PARTS
741   /// instructions, and false if a library call is preferred (e.g for code-size
742   /// reasons).
shouldExpandShift(SelectionDAG & DAG,SDNode * N)743   virtual bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
744     return true;
745   }
746 
747   /// Return true if the target has native support for the specified value type.
748   /// This means that it has a register that directly holds it without
749   /// promotions or expansions.
isTypeLegal(EVT VT)750   bool isTypeLegal(EVT VT) const {
751     assert(!VT.isSimple() ||
752            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
753     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
754   }
755 
756   class ValueTypeActionImpl {
757     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
758     /// that indicates how instruction selection should deal with the type.
759     LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
760 
761   public:
ValueTypeActionImpl()762     ValueTypeActionImpl() {
763       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
764                 TypeLegal);
765     }
766 
getTypeAction(MVT VT)767     LegalizeTypeAction getTypeAction(MVT VT) const {
768       return ValueTypeActions[VT.SimpleTy];
769     }
770 
setTypeAction(MVT VT,LegalizeTypeAction Action)771     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
772       ValueTypeActions[VT.SimpleTy] = Action;
773     }
774   };
775 
getValueTypeActions()776   const ValueTypeActionImpl &getValueTypeActions() const {
777     return ValueTypeActions;
778   }
779 
780   /// Return how we should legalize values of this type, either it is already
781   /// legal (return 'Legal') or we need to promote it to a larger type (return
782   /// 'Promote'), or we need to expand it into multiple registers of smaller
783   /// integer type (return 'Expand').  'Custom' is not an option.
getTypeAction(LLVMContext & Context,EVT VT)784   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
785     return getTypeConversion(Context, VT).first;
786   }
getTypeAction(MVT VT)787   LegalizeTypeAction getTypeAction(MVT VT) const {
788     return ValueTypeActions.getTypeAction(VT);
789   }
790 
791   /// For types supported by the target, this is an identity function.  For
792   /// types that must be promoted to larger types, this returns the larger type
793   /// to promote to.  For integer types that are larger than the largest integer
794   /// register, this contains one step in the expansion to get to the smaller
795   /// register. For illegal floating point types, this returns the integer type
796   /// to transform to.
getTypeToTransformTo(LLVMContext & Context,EVT VT)797   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
798     return getTypeConversion(Context, VT).second;
799   }
800 
801   /// For types supported by the target, this is an identity function.  For
802   /// types that must be expanded (i.e. integer types that are larger than the
803   /// largest integer register or illegal floating point types), this returns
804   /// the largest legal type it will be expanded to.
getTypeToExpandTo(LLVMContext & Context,EVT VT)805   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
806     assert(!VT.isVector());
807     while (true) {
808       switch (getTypeAction(Context, VT)) {
809       case TypeLegal:
810         return VT;
811       case TypeExpandInteger:
812         VT = getTypeToTransformTo(Context, VT);
813         break;
814       default:
815         llvm_unreachable("Type is not legal nor is it to be expanded!");
816       }
817     }
818   }
819 
820   /// Vector types are broken down into some number of legal first class types.
821   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
822   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
823   /// turns into 4 EVT::i32 values with both PPC and X86.
824   ///
825   /// This method returns the number of registers needed, and the VT for each
826   /// register.  It also returns the VT and quantity of the intermediate values
827   /// before they are promoted/expanded.
828   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
829                                   EVT &IntermediateVT,
830                                   unsigned &NumIntermediates,
831                                   MVT &RegisterVT) const;
832 
833   /// Certain targets such as MIPS require that some types such as vectors are
834   /// always broken down into scalars in some contexts. This occurs even if the
835   /// vector type is legal.
getVectorTypeBreakdownForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT)836   virtual unsigned getVectorTypeBreakdownForCallingConv(
837       LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
838       unsigned &NumIntermediates, MVT &RegisterVT) const {
839     return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
840                                   RegisterVT);
841   }
842 
843   struct IntrinsicInfo {
844     unsigned     opc = 0;          // target opcode
845     EVT          memVT;            // memory VT
846 
847     // value representing memory location
848     PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
849 
850     int          offset = 0;       // offset off of ptrVal
851     uint64_t     size = 0;         // the size of the memory location
852                                    // (taken from memVT if zero)
853     MaybeAlign align = Align::None(); // alignment
854 
855     MachineMemOperand::Flags flags = MachineMemOperand::MONone;
856     IntrinsicInfo() = default;
857   };
858 
859   /// Given an intrinsic, checks if on the target the intrinsic will need to map
860   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
861   /// true and store the intrinsic information into the IntrinsicInfo that was
862   /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo &,const CallInst &,MachineFunction &,unsigned)863   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
864                                   MachineFunction &,
865                                   unsigned /*Intrinsic*/) const {
866     return false;
867   }
868 
869   /// Returns true if the target can instruction select the specified FP
870   /// immediate natively. If false, the legalizer will materialize the FP
871   /// immediate as a load from a constant pool.
872   virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
873                             bool ForCodeSize = false) const {
874     return false;
875   }
876 
877   /// Targets can use this to indicate that they only support *some*
878   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
879   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
880   /// legal.
isShuffleMaskLegal(ArrayRef<int>,EVT)881   virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
882     return true;
883   }
884 
885   /// Returns true if the operation can trap for the value type.
886   ///
887   /// VT must be a legal type. By default, we optimistically assume most
888   /// operations don't trap except for integer divide and remainder.
889   virtual bool canOpTrap(unsigned Op, EVT VT) const;
890 
891   /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
892   /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
893   /// constant pool entry.
isVectorClearMaskLegal(ArrayRef<int>,EVT)894   virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
895                                       EVT /*VT*/) const {
896     return false;
897   }
898 
899   /// Return how this operation should be treated: either it is legal, needs to
900   /// be promoted to a larger size, needs to be expanded to some other code
901   /// sequence, or the target has a custom expander for it.
getOperationAction(unsigned Op,EVT VT)902   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
903     if (VT.isExtended()) return Expand;
904     // If a target-specific SDNode requires legalization, require the target
905     // to provide custom legalization for it.
906     if (Op >= array_lengthof(OpActions[0])) return Custom;
907     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
908   }
909 
910   /// Custom method defined by each target to indicate if an operation which
911   /// may require a scale is supported natively by the target.
912   /// If not, the operation is illegal.
isSupportedFixedPointOperation(unsigned Op,EVT VT,unsigned Scale)913   virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
914                                               unsigned Scale) const {
915     return false;
916   }
917 
918   /// Some fixed point operations may be natively supported by the target but
919   /// only for specific scales. This method allows for checking
920   /// if the width is supported by the target for a given operation that may
921   /// depend on scale.
getFixedPointOperationAction(unsigned Op,EVT VT,unsigned Scale)922   LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
923                                               unsigned Scale) const {
924     auto Action = getOperationAction(Op, VT);
925     if (Action != Legal)
926       return Action;
927 
928     // This operation is supported in this type but may only work on specific
929     // scales.
930     bool Supported;
931     switch (Op) {
932     default:
933       llvm_unreachable("Unexpected fixed point operation.");
934     case ISD::SMULFIX:
935     case ISD::SMULFIXSAT:
936     case ISD::UMULFIX:
937     case ISD::UMULFIXSAT:
938     case ISD::SDIVFIX:
939     case ISD::UDIVFIX:
940       Supported = isSupportedFixedPointOperation(Op, VT, Scale);
941       break;
942     }
943 
944     return Supported ? Action : Expand;
945   }
946 
947   // If Op is a strict floating-point operation, return the result
948   // of getOperationAction for the equivalent non-strict operation.
getStrictFPOperationAction(unsigned Op,EVT VT)949   LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
950     unsigned EqOpc;
951     switch (Op) {
952       default: llvm_unreachable("Unexpected FP pseudo-opcode");
953 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
954       case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
955 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
956       case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
957 #include "llvm/IR/ConstrainedOps.def"
958     }
959 
960     return getOperationAction(EqOpc, VT);
961   }
962 
963   /// Return true if the specified operation is legal on this target or can be
964   /// made legal with custom lowering. This is used to help guide high-level
965   /// lowering decisions.
isOperationLegalOrCustom(unsigned Op,EVT VT)966   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
967     return (VT == MVT::Other || isTypeLegal(VT)) &&
968       (getOperationAction(Op, VT) == Legal ||
969        getOperationAction(Op, VT) == Custom);
970   }
971 
972   /// Return true if the specified operation is legal on this target or can be
973   /// made legal using promotion. This is used to help guide high-level lowering
974   /// decisions.
isOperationLegalOrPromote(unsigned Op,EVT VT)975   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
976     return (VT == MVT::Other || isTypeLegal(VT)) &&
977       (getOperationAction(Op, VT) == Legal ||
978        getOperationAction(Op, VT) == Promote);
979   }
980 
981   /// Return true if the specified operation is legal on this target or can be
982   /// made legal with custom lowering or using promotion. This is used to help
983   /// guide high-level lowering decisions.
isOperationLegalOrCustomOrPromote(unsigned Op,EVT VT)984   bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const {
985     return (VT == MVT::Other || isTypeLegal(VT)) &&
986       (getOperationAction(Op, VT) == Legal ||
987        getOperationAction(Op, VT) == Custom ||
988        getOperationAction(Op, VT) == Promote);
989   }
990 
991   /// Return true if the operation uses custom lowering, regardless of whether
992   /// the type is legal or not.
isOperationCustom(unsigned Op,EVT VT)993   bool isOperationCustom(unsigned Op, EVT VT) const {
994     return getOperationAction(Op, VT) == Custom;
995   }
996 
997   /// Return true if lowering to a jump table is allowed.
areJTsAllowed(const Function * Fn)998   virtual bool areJTsAllowed(const Function *Fn) const {
999     if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
1000       return false;
1001 
1002     return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1003            isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
1004   }
1005 
1006   /// Check whether the range [Low,High] fits in a machine word.
rangeFitsInWord(const APInt & Low,const APInt & High,const DataLayout & DL)1007   bool rangeFitsInWord(const APInt &Low, const APInt &High,
1008                        const DataLayout &DL) const {
1009     // FIXME: Using the pointer type doesn't seem ideal.
1010     uint64_t BW = DL.getIndexSizeInBits(0u);
1011     uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1012     return Range <= BW;
1013   }
1014 
1015   /// Return true if lowering to a jump table is suitable for a set of case
1016   /// clusters which may contain \p NumCases cases, \p Range range of values.
1017   virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1018                                       uint64_t Range, ProfileSummaryInfo *PSI,
1019                                       BlockFrequencyInfo *BFI) const;
1020 
1021   /// Return true if lowering to a bit test is suitable for a set of case
1022   /// clusters which contains \p NumDests unique destinations, \p Low and
1023   /// \p High as its lowest and highest case values, and expects \p NumCmps
1024   /// case value comparisons. Check if the number of destinations, comparison
1025   /// metric, and range are all suitable.
isSuitableForBitTests(unsigned NumDests,unsigned NumCmps,const APInt & Low,const APInt & High,const DataLayout & DL)1026   bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1027                              const APInt &Low, const APInt &High,
1028                              const DataLayout &DL) const {
1029     // FIXME: I don't think NumCmps is the correct metric: a single case and a
1030     // range of cases both require only one branch to lower. Just looking at the
1031     // number of clusters and destinations should be enough to decide whether to
1032     // build bit tests.
1033 
1034     // To lower a range with bit tests, the range must fit the bitwidth of a
1035     // machine word.
1036     if (!rangeFitsInWord(Low, High, DL))
1037       return false;
1038 
1039     // Decide whether it's profitable to lower this range with bit tests. Each
1040     // destination requires a bit test and branch, and there is an overall range
1041     // check branch. For a small number of clusters, separate comparisons might
1042     // be cheaper, and for many destinations, splitting the range might be
1043     // better.
1044     return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1045            (NumDests == 3 && NumCmps >= 6);
1046   }
1047 
1048   /// Return true if the specified operation is illegal on this target or
1049   /// unlikely to be made legal with custom lowering. This is used to help guide
1050   /// high-level lowering decisions.
isOperationExpand(unsigned Op,EVT VT)1051   bool isOperationExpand(unsigned Op, EVT VT) const {
1052     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1053   }
1054 
1055   /// Return true if the specified operation is legal on this target.
isOperationLegal(unsigned Op,EVT VT)1056   bool isOperationLegal(unsigned Op, EVT VT) const {
1057     return (VT == MVT::Other || isTypeLegal(VT)) &&
1058            getOperationAction(Op, VT) == Legal;
1059   }
1060 
1061   /// Return how this load with extension should be treated: either it is legal,
1062   /// needs to be promoted to a larger size, needs to be expanded to some other
1063   /// code sequence, or the target has a custom expander for it.
getLoadExtAction(unsigned ExtType,EVT ValVT,EVT MemVT)1064   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1065                                   EVT MemVT) const {
1066     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1067     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1068     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1069     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
1070            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
1071     unsigned Shift = 4 * ExtType;
1072     return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1073   }
1074 
1075   /// Return true if the specified load with extension is legal on this target.
isLoadExtLegal(unsigned ExtType,EVT ValVT,EVT MemVT)1076   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1077     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1078   }
1079 
1080   /// Return true if the specified load with extension is legal or custom
1081   /// on this target.
isLoadExtLegalOrCustom(unsigned ExtType,EVT ValVT,EVT MemVT)1082   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1083     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1084            getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1085   }
1086 
1087   /// Return how this store with truncation should be treated: either it is
1088   /// legal, needs to be promoted to a larger size, needs to be expanded to some
1089   /// other code sequence, or the target has a custom expander for it.
getTruncStoreAction(EVT ValVT,EVT MemVT)1090   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
1091     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1092     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1093     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1094     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
1095            "Table isn't big enough!");
1096     return TruncStoreActions[ValI][MemI];
1097   }
1098 
1099   /// Return true if the specified store with truncation is legal on this
1100   /// target.
isTruncStoreLegal(EVT ValVT,EVT MemVT)1101   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1102     return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1103   }
1104 
1105   /// Return true if the specified store with truncation has solution on this
1106   /// target.
isTruncStoreLegalOrCustom(EVT ValVT,EVT MemVT)1107   bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1108     return isTypeLegal(ValVT) &&
1109       (getTruncStoreAction(ValVT, MemVT) == Legal ||
1110        getTruncStoreAction(ValVT, MemVT) == Custom);
1111   }
1112 
1113   /// Return how the indexed load should be treated: either it is legal, needs
1114   /// to be promoted to a larger size, needs to be expanded to some other code
1115   /// sequence, or the target has a custom expander for it.
getIndexedLoadAction(unsigned IdxMode,MVT VT)1116   LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1117     return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1118   }
1119 
1120   /// Return true if the specified indexed load is legal on this target.
isIndexedLoadLegal(unsigned IdxMode,EVT VT)1121   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1122     return VT.isSimple() &&
1123       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1124        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1125   }
1126 
1127   /// Return how the indexed store should be treated: either it is legal, needs
1128   /// to be promoted to a larger size, needs to be expanded to some other code
1129   /// sequence, or the target has a custom expander for it.
getIndexedStoreAction(unsigned IdxMode,MVT VT)1130   LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1131     return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1132   }
1133 
1134   /// Return true if the specified indexed load is legal on this target.
isIndexedStoreLegal(unsigned IdxMode,EVT VT)1135   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1136     return VT.isSimple() &&
1137       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1138        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1139   }
1140 
1141   /// Return how the indexed load should be treated: either it is legal, needs
1142   /// to be promoted to a larger size, needs to be expanded to some other code
1143   /// sequence, or the target has a custom expander for it.
getIndexedMaskedLoadAction(unsigned IdxMode,MVT VT)1144   LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1145     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1146   }
1147 
1148   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedLoadLegal(unsigned IdxMode,EVT VT)1149   bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1150     return VT.isSimple() &&
1151            (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1152             getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1153   }
1154 
1155   /// Return how the indexed store should be treated: either it is legal, needs
1156   /// to be promoted to a larger size, needs to be expanded to some other code
1157   /// sequence, or the target has a custom expander for it.
getIndexedMaskedStoreAction(unsigned IdxMode,MVT VT)1158   LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1159     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1160   }
1161 
1162   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedStoreLegal(unsigned IdxMode,EVT VT)1163   bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1164     return VT.isSimple() &&
1165            (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1166             getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1167   }
1168 
1169   /// Return how the condition code should be treated: either it is legal, needs
1170   /// to be expanded to some other code sequence, or the target has a custom
1171   /// expander for it.
1172   LegalizeAction
getCondCodeAction(ISD::CondCode CC,MVT VT)1173   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1174     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
1175            ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
1176            "Table isn't big enough!");
1177     // See setCondCodeAction for how this is encoded.
1178     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1179     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1180     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1181     assert(Action != Promote && "Can't promote condition code!");
1182     return Action;
1183   }
1184 
1185   /// Return true if the specified condition code is legal on this target.
isCondCodeLegal(ISD::CondCode CC,MVT VT)1186   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1187     return getCondCodeAction(CC, VT) == Legal;
1188   }
1189 
1190   /// Return true if the specified condition code is legal or custom on this
1191   /// target.
isCondCodeLegalOrCustom(ISD::CondCode CC,MVT VT)1192   bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1193     return getCondCodeAction(CC, VT) == Legal ||
1194            getCondCodeAction(CC, VT) == Custom;
1195   }
1196 
1197   /// If the action for this operation is to promote, this method returns the
1198   /// ValueType to promote to.
getTypeToPromoteTo(unsigned Op,MVT VT)1199   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1200     assert(getOperationAction(Op, VT) == Promote &&
1201            "This operation isn't promoted!");
1202 
1203     // See if this has an explicit type specified.
1204     std::map<std::pair<unsigned, MVT::SimpleValueType>,
1205              MVT::SimpleValueType>::const_iterator PTTI =
1206       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1207     if (PTTI != PromoteToType.end()) return PTTI->second;
1208 
1209     assert((VT.isInteger() || VT.isFloatingPoint()) &&
1210            "Cannot autopromote this type, add it with AddPromotedToType.");
1211 
1212     MVT NVT = VT;
1213     do {
1214       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1215       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1216              "Didn't find type to promote to!");
1217     } while (!isTypeLegal(NVT) ||
1218               getOperationAction(Op, NVT) == Promote);
1219     return NVT;
1220   }
1221 
1222   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
1223   /// operations except for the pointer size.  If AllowUnknown is true, this
1224   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1225   /// otherwise it will assert.
1226   EVT getValueType(const DataLayout &DL, Type *Ty,
1227                    bool AllowUnknown = false) const {
1228     // Lower scalar pointers to native pointer types.
1229     if (auto *PTy = dyn_cast<PointerType>(Ty))
1230       return getPointerTy(DL, PTy->getAddressSpace());
1231 
1232     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1233       Type *EltTy = VTy->getElementType();
1234       // Lower vectors of pointers to native pointer types.
1235       if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1236         EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1237         EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1238       }
1239       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1240                               VTy->getElementCount());
1241     }
1242 
1243     return EVT::getEVT(Ty, AllowUnknown);
1244   }
1245 
1246   EVT getMemValueType(const DataLayout &DL, Type *Ty,
1247                       bool AllowUnknown = false) const {
1248     // Lower scalar pointers to native pointer types.
1249     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1250       return getPointerMemTy(DL, PTy->getAddressSpace());
1251     else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1252       Type *Elm = VTy->getElementType();
1253       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
1254         EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
1255         Elm = PointerTy.getTypeForEVT(Ty->getContext());
1256       }
1257       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
1258                               VTy->getElementCount());
1259     }
1260 
1261     return getValueType(DL, Ty, AllowUnknown);
1262   }
1263 
1264 
1265   /// Return the MVT corresponding to this LLVM type. See getValueType.
1266   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1267                          bool AllowUnknown = false) const {
1268     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1269   }
1270 
1271   /// Return the desired alignment for ByVal or InAlloca aggregate function
1272   /// arguments in the caller parameter area.  This is the actual alignment, not
1273   /// its logarithm.
1274   virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1275 
1276   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(MVT VT)1277   MVT getRegisterType(MVT VT) const {
1278     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
1279     return RegisterTypeForVT[VT.SimpleTy];
1280   }
1281 
1282   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(LLVMContext & Context,EVT VT)1283   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1284     if (VT.isSimple()) {
1285       assert((unsigned)VT.getSimpleVT().SimpleTy <
1286                 array_lengthof(RegisterTypeForVT));
1287       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
1288     }
1289     if (VT.isVector()) {
1290       EVT VT1;
1291       MVT RegisterVT;
1292       unsigned NumIntermediates;
1293       (void)getVectorTypeBreakdown(Context, VT, VT1,
1294                                    NumIntermediates, RegisterVT);
1295       return RegisterVT;
1296     }
1297     if (VT.isInteger()) {
1298       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1299     }
1300     llvm_unreachable("Unsupported extended type!");
1301   }
1302 
1303   /// Return the number of registers that this ValueType will eventually
1304   /// require.
1305   ///
1306   /// This is one for any types promoted to live in larger registers, but may be
1307   /// more than one for types (like i64) that are split into pieces.  For types
1308   /// like i140, which are first promoted then expanded, it is the number of
1309   /// registers needed to hold all the bits of the original type.  For an i140
1310   /// on a 32 bit machine this means 5 registers.
getNumRegisters(LLVMContext & Context,EVT VT)1311   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
1312     if (VT.isSimple()) {
1313       assert((unsigned)VT.getSimpleVT().SimpleTy <
1314                 array_lengthof(NumRegistersForVT));
1315       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1316     }
1317     if (VT.isVector()) {
1318       EVT VT1;
1319       MVT VT2;
1320       unsigned NumIntermediates;
1321       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1322     }
1323     if (VT.isInteger()) {
1324       unsigned BitWidth = VT.getSizeInBits();
1325       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1326       return (BitWidth + RegWidth - 1) / RegWidth;
1327     }
1328     llvm_unreachable("Unsupported extended type!");
1329   }
1330 
1331   /// Certain combinations of ABIs, Targets and features require that types
1332   /// are legal for some operations and not for other operations.
1333   /// For MIPS all vector types must be passed through the integer register set.
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1334   virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
1335                                             CallingConv::ID CC, EVT VT) const {
1336     return getRegisterType(Context, VT);
1337   }
1338 
1339   /// Certain targets require unusual breakdowns of certain types. For MIPS,
1340   /// this occurs when a vector type is used, as vector are passed through the
1341   /// integer register set.
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1342   virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1343                                                  CallingConv::ID CC,
1344                                                  EVT VT) const {
1345     return getNumRegisters(Context, VT);
1346   }
1347 
1348   /// Certain targets have context senstive alignment requirements, where one
1349   /// type has the alignment requirement of another type.
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL)1350   virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
1351                                               DataLayout DL) const {
1352     return Align(DL.getABITypeAlignment(ArgTy));
1353   }
1354 
1355   /// If true, then instruction selection should seek to shrink the FP constant
1356   /// of the specified type to a smaller type in order to save space and / or
1357   /// reduce runtime.
ShouldShrinkFPConstant(EVT)1358   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1359 
1360   /// Return true if it is profitable to reduce a load to a smaller type.
1361   /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT)1362   virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1363                                      EVT NewVT) const {
1364     // By default, assume that it is cheaper to extract a subvector from a wide
1365     // vector load rather than creating multiple narrow vector loads.
1366     if (NewVT.isVector() && !Load->hasOneUse())
1367       return false;
1368 
1369     return true;
1370   }
1371 
1372   /// When splitting a value of the specified type into parts, does the Lo
1373   /// or Hi part come first?  This usually follows the endianness, except
1374   /// for ppcf128, where the Hi part always comes first.
hasBigEndianPartOrdering(EVT VT,const DataLayout & DL)1375   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1376     return DL.isBigEndian() || VT == MVT::ppcf128;
1377   }
1378 
1379   /// If true, the target has custom DAG combine transformations that it can
1380   /// perform for the specified node.
hasTargetDAGCombine(ISD::NodeType NT)1381   bool hasTargetDAGCombine(ISD::NodeType NT) const {
1382     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1383     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1384   }
1385 
getGatherAllAliasesMaxDepth()1386   unsigned getGatherAllAliasesMaxDepth() const {
1387     return GatherAllAliasesMaxDepth;
1388   }
1389 
1390   /// Returns the size of the platform's va_list object.
getVaListSizeInBits(const DataLayout & DL)1391   virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1392     return getPointerTy(DL).getSizeInBits();
1393   }
1394 
1395   /// Get maximum # of store operations permitted for llvm.memset
1396   ///
1397   /// This function returns the maximum number of store operations permitted
1398   /// to replace a call to llvm.memset. The value is set by the target at the
1399   /// performance threshold for such a replacement. If OptSize is true,
1400   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemset(bool OptSize)1401   unsigned getMaxStoresPerMemset(bool OptSize) const {
1402     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1403   }
1404 
1405   /// Get maximum # of store operations permitted for llvm.memcpy
1406   ///
1407   /// This function returns the maximum number of store operations permitted
1408   /// to replace a call to llvm.memcpy. The value is set by the target at the
1409   /// performance threshold for such a replacement. If OptSize is true,
1410   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemcpy(bool OptSize)1411   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1412     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1413   }
1414 
1415   /// \brief Get maximum # of store operations to be glued together
1416   ///
1417   /// This function returns the maximum number of store operations permitted
1418   /// to glue together during lowering of llvm.memcpy. The value is set by
1419   //  the target at the performance threshold for such a replacement.
getMaxGluedStoresPerMemcpy()1420   virtual unsigned getMaxGluedStoresPerMemcpy() const {
1421     return MaxGluedStoresPerMemcpy;
1422   }
1423 
1424   /// Get maximum # of load operations permitted for memcmp
1425   ///
1426   /// This function returns the maximum number of load operations permitted
1427   /// to replace a call to memcmp. The value is set by the target at the
1428   /// performance threshold for such a replacement. If OptSize is true,
1429   /// return the limit for functions that have OptSize attribute.
getMaxExpandSizeMemcmp(bool OptSize)1430   unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1431     return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1432   }
1433 
1434   /// Get maximum # of store operations permitted for llvm.memmove
1435   ///
1436   /// This function returns the maximum number of store operations permitted
1437   /// to replace a call to llvm.memmove. The value is set by the target at the
1438   /// performance threshold for such a replacement. If OptSize is true,
1439   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemmove(bool OptSize)1440   unsigned getMaxStoresPerMemmove(bool OptSize) const {
1441     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1442   }
1443 
1444   /// Determine if the target supports unaligned memory accesses.
1445   ///
1446   /// This function returns true if the target allows unaligned memory accesses
1447   /// of the specified type in the given address space. If true, it also returns
1448   /// whether the unaligned memory access is "fast" in the last argument by
1449   /// reference. This is used, for example, in situations where an array
1450   /// copy/move/set is converted to a sequence of store operations. Its use
1451   /// helps to ensure that such replacements don't generate code that causes an
1452   /// alignment error (trap) on the target machine.
1453   virtual bool allowsMisalignedMemoryAccesses(
1454       EVT, unsigned AddrSpace = 0, unsigned Align = 1,
1455       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1456       bool * /*Fast*/ = nullptr) const {
1457     return false;
1458   }
1459 
1460   /// LLT handling variant.
1461   virtual bool allowsMisalignedMemoryAccesses(
1462       LLT, unsigned AddrSpace = 0, unsigned Align = 1,
1463       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1464       bool * /*Fast*/ = nullptr) const {
1465     return false;
1466   }
1467 
1468   /// This function returns true if the memory access is aligned or if the
1469   /// target allows this specific unaligned memory access. If the access is
1470   /// allowed, the optional final parameter returns if the access is also fast
1471   /// (as defined by the target).
1472   bool allowsMemoryAccessForAlignment(
1473       LLVMContext &Context, const DataLayout &DL, EVT VT,
1474       unsigned AddrSpace = 0, unsigned Alignment = 1,
1475       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1476       bool *Fast = nullptr) const;
1477 
1478   /// Return true if the memory access of this type is aligned or if the target
1479   /// allows this specific unaligned access for the given MachineMemOperand.
1480   /// If the access is allowed, the optional final parameter returns if the
1481   /// access is also fast (as defined by the target).
1482   bool allowsMemoryAccessForAlignment(LLVMContext &Context,
1483                                       const DataLayout &DL, EVT VT,
1484                                       const MachineMemOperand &MMO,
1485                                       bool *Fast = nullptr) const;
1486 
1487   /// Return true if the target supports a memory access of this type for the
1488   /// given address space and alignment. If the access is allowed, the optional
1489   /// final parameter returns if the access is also fast (as defined by the
1490   /// target).
1491   virtual bool
1492   allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1493                      unsigned AddrSpace = 0, unsigned Alignment = 1,
1494                      MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1495                      bool *Fast = nullptr) const;
1496 
1497   /// Return true if the target supports a memory access of this type for the
1498   /// given MachineMemOperand. If the access is allowed, the optional
1499   /// final parameter returns if the access is also fast (as defined by the
1500   /// target).
1501   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1502                           const MachineMemOperand &MMO,
1503                           bool *Fast = nullptr) const;
1504 
1505   /// Returns the target specific optimal type for load and store operations as
1506   /// a result of memset, memcpy, and memmove lowering.
1507   ///
1508   /// If DstAlign is zero that means it's safe to destination alignment can
1509   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
1510   /// a need to check it against alignment requirement, probably because the
1511   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
1512   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
1513   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
1514   /// does not need to be loaded.  It returns EVT::Other if the type should be
1515   /// determined using generic target-independent logic.
1516   virtual EVT
getOptimalMemOpType(uint64_t,unsigned,unsigned,bool,bool,bool,const AttributeList &)1517   getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/,
1518                       unsigned /*SrcAlign*/, bool /*IsMemset*/,
1519                       bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/,
1520                       const AttributeList & /*FuncAttributes*/) const {
1521     return MVT::Other;
1522   }
1523 
1524 
1525   /// LLT returning variant.
1526   virtual LLT
getOptimalMemOpLLT(uint64_t,unsigned,unsigned,bool,bool,bool,const AttributeList &)1527   getOptimalMemOpLLT(uint64_t /*Size*/, unsigned /*DstAlign*/,
1528                      unsigned /*SrcAlign*/, bool /*IsMemset*/,
1529                      bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/,
1530                      const AttributeList & /*FuncAttributes*/) const {
1531     return LLT();
1532   }
1533 
1534   /// Returns true if it's safe to use load / store of the specified type to
1535   /// expand memcpy / memset inline.
1536   ///
1537   /// This is mostly true for all types except for some special cases. For
1538   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1539   /// fstpl which also does type conversion. Note the specified type doesn't
1540   /// have to be legal as the hook is used before type legalization.
isSafeMemOpType(MVT)1541   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1542 
1543   /// Return lower limit for number of blocks in a jump table.
1544   virtual unsigned getMinimumJumpTableEntries() const;
1545 
1546   /// Return lower limit of the density in a jump table.
1547   unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1548 
1549   /// Return upper limit for number of entries in a jump table.
1550   /// Zero if no limit.
1551   unsigned getMaximumJumpTableSize() const;
1552 
isJumpTableRelative()1553   virtual bool isJumpTableRelative() const {
1554     return TM.isPositionIndependent();
1555   }
1556 
1557   /// If a physical register, this specifies the register that
1558   /// llvm.savestack/llvm.restorestack should save and restore.
getStackPointerRegisterToSaveRestore()1559   unsigned getStackPointerRegisterToSaveRestore() const {
1560     return StackPointerRegisterToSaveRestore;
1561   }
1562 
1563   /// If a physical register, this returns the register that receives the
1564   /// exception address on entry to an EH pad.
1565   virtual unsigned
getExceptionPointerRegister(const Constant * PersonalityFn)1566   getExceptionPointerRegister(const Constant *PersonalityFn) const {
1567     // 0 is guaranteed to be the NoRegister value on all targets
1568     return 0;
1569   }
1570 
1571   /// If a physical register, this returns the register that receives the
1572   /// exception typeid on entry to a landing pad.
1573   virtual unsigned
getExceptionSelectorRegister(const Constant * PersonalityFn)1574   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
1575     // 0 is guaranteed to be the NoRegister value on all targets
1576     return 0;
1577   }
1578 
needsFixedCatchObjects()1579   virtual bool needsFixedCatchObjects() const {
1580     report_fatal_error("Funclet EH is not implemented for this target");
1581   }
1582 
1583   /// Return the minimum stack alignment of an argument.
getMinStackArgumentAlignment()1584   Align getMinStackArgumentAlignment() const {
1585     return MinStackArgumentAlignment;
1586   }
1587 
1588   /// Return the minimum function alignment.
getMinFunctionAlignment()1589   Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
1590 
1591   /// Return the preferred function alignment.
getPrefFunctionAlignment()1592   Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
1593 
1594   /// Return the preferred loop alignment.
1595   virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
1596     return PrefLoopAlignment;
1597   }
1598 
1599   /// Should loops be aligned even when the function is marked OptSize (but not
1600   /// MinSize).
alignLoopsWithOptSize()1601   virtual bool alignLoopsWithOptSize() const {
1602     return false;
1603   }
1604 
1605   /// If the target has a standard location for the stack protector guard,
1606   /// returns the address of that location. Otherwise, returns nullptr.
1607   /// DEPRECATED: please override useLoadStackGuardNode and customize
1608   ///             LOAD_STACK_GUARD, or customize \@llvm.stackguard().
1609   virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
1610 
1611   /// Inserts necessary declarations for SSP (stack protection) purpose.
1612   /// Should be used only when getIRStackGuard returns nullptr.
1613   virtual void insertSSPDeclarations(Module &M) const;
1614 
1615   /// Return the variable that's previously inserted by insertSSPDeclarations,
1616   /// if any, otherwise return nullptr. Should be used only when
1617   /// getIRStackGuard returns nullptr.
1618   virtual Value *getSDagStackGuard(const Module &M) const;
1619 
1620   /// If this function returns true, stack protection checks should XOR the
1621   /// frame pointer (or whichever pointer is used to address locals) into the
1622   /// stack guard value before checking it. getIRStackGuard must return nullptr
1623   /// if this returns true.
useStackGuardXorFP()1624   virtual bool useStackGuardXorFP() const { return false; }
1625 
1626   /// If the target has a standard stack protection check function that
1627   /// performs validation and error handling, returns the function. Otherwise,
1628   /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1629   /// Should be used only when getIRStackGuard returns nullptr.
1630   virtual Function *getSSPStackGuardCheck(const Module &M) const;
1631 
1632 protected:
1633   Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1634                                             bool UseTLS) const;
1635 
1636 public:
1637   /// Returns the target-specific address of the unsafe stack pointer.
1638   virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1639 
1640   /// Returns the name of the symbol used to emit stack probes or the empty
1641   /// string if not applicable.
getStackProbeSymbolName(MachineFunction & MF)1642   virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
1643     return "";
1644   }
1645 
1646   /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)1647   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1648     return false;
1649   }
1650 
1651   /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
1652   /// are happy to sink it into basic blocks. A cast may be free, but not
1653   /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
isFreeAddrSpaceCast(unsigned SrcAS,unsigned DestAS)1654   virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1655     return isNoopAddrSpaceCast(SrcAS, DestAS);
1656   }
1657 
1658   /// Return true if the pointer arguments to CI should be aligned by aligning
1659   /// the object whose address is being passed. If so then MinSize is set to the
1660   /// minimum size the object must be to be aligned and PrefAlign is set to the
1661   /// preferred alignment.
shouldAlignPointerArgs(CallInst *,unsigned &,unsigned &)1662   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1663                                       unsigned & /*PrefAlign*/) const {
1664     return false;
1665   }
1666 
1667   //===--------------------------------------------------------------------===//
1668   /// \name Helpers for TargetTransformInfo implementations
1669   /// @{
1670 
1671   /// Get the ISD node that corresponds to the Instruction class opcode.
1672   int InstructionOpcodeToISD(unsigned Opcode) const;
1673 
1674   /// Estimate the cost of type-legalization and the legalized type.
1675   std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1676                                               Type *Ty) const;
1677 
1678   /// @}
1679 
1680   //===--------------------------------------------------------------------===//
1681   /// \name Helpers for atomic expansion.
1682   /// @{
1683 
1684   /// Returns the maximum atomic operation size (in bits) supported by
1685   /// the backend. Atomic operations greater than this size (as well
1686   /// as ones that are not naturally aligned), will be expanded by
1687   /// AtomicExpandPass into an __atomic_* library call.
getMaxAtomicSizeInBitsSupported()1688   unsigned getMaxAtomicSizeInBitsSupported() const {
1689     return MaxAtomicSizeInBitsSupported;
1690   }
1691 
1692   /// Returns the size of the smallest cmpxchg or ll/sc instruction
1693   /// the backend supports.  Any smaller operations are widened in
1694   /// AtomicExpandPass.
1695   ///
1696   /// Note that *unlike* operations above the maximum size, atomic ops
1697   /// are still natively supported below the minimum; they just
1698   /// require a more complex expansion.
getMinCmpXchgSizeInBits()1699   unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
1700 
1701   /// Whether the target supports unaligned atomic operations.
supportsUnalignedAtomics()1702   bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
1703 
1704   /// Whether AtomicExpandPass should automatically insert fences and reduce
1705   /// ordering for this atomic. This should be true for most architectures with
1706   /// weak memory ordering. Defaults to false.
shouldInsertFencesForAtomic(const Instruction * I)1707   virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
1708     return false;
1709   }
1710 
1711   /// Perform a load-linked operation on Addr, returning a "Value *" with the
1712   /// corresponding pointee type. This may entail some non-trivial operations to
1713   /// truncate or reconstruct types that will be illegal in the backend. See
1714   /// ARMISelLowering for an example implementation.
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord)1715   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1716                                 AtomicOrdering Ord) const {
1717     llvm_unreachable("Load linked unimplemented on this target");
1718   }
1719 
1720   /// Perform a store-conditional operation to Addr. Return the status of the
1721   /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord)1722   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1723                                       Value *Addr, AtomicOrdering Ord) const {
1724     llvm_unreachable("Store conditional unimplemented on this target");
1725   }
1726 
1727   /// Perform a masked atomicrmw using a target-specific intrinsic. This
1728   /// represents the core LL/SC loop which will be lowered at a late stage by
1729   /// the backend.
emitMaskedAtomicRMWIntrinsic(IRBuilder<> & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord)1730   virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder,
1731                                               AtomicRMWInst *AI,
1732                                               Value *AlignedAddr, Value *Incr,
1733                                               Value *Mask, Value *ShiftAmt,
1734                                               AtomicOrdering Ord) const {
1735     llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
1736   }
1737 
1738   /// Perform a masked cmpxchg using a target-specific intrinsic. This
1739   /// represents the core LL/SC loop which will be lowered at a late stage by
1740   /// the backend.
emitMaskedAtomicCmpXchgIntrinsic(IRBuilder<> & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord)1741   virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
1742       IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
1743       Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
1744     llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
1745   }
1746 
1747   /// Inserts in the IR a target-specific intrinsic specifying a fence.
1748   /// It is called by AtomicExpandPass before expanding an
1749   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1750   ///   if shouldInsertFencesForAtomic returns true.
1751   ///
1752   /// Inst is the original atomic instruction, prior to other expansions that
1753   /// may be performed.
1754   ///
1755   /// This function should either return a nullptr, or a pointer to an IR-level
1756   ///   Instruction*. Even complex fence sequences can be represented by a
1757   ///   single Instruction* through an intrinsic to be lowered later.
1758   /// Backends should override this method to produce target-specific intrinsic
1759   ///   for their fences.
1760   /// FIXME: Please note that the default implementation here in terms of
1761   ///   IR-level fences exists for historical/compatibility reasons and is
1762   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
1763   ///   consistency. For example, consider the following example:
1764   /// atomic<int> x = y = 0;
1765   /// int r1, r2, r3, r4;
1766   /// Thread 0:
1767   ///   x.store(1);
1768   /// Thread 1:
1769   ///   y.store(1);
1770   /// Thread 2:
1771   ///   r1 = x.load();
1772   ///   r2 = y.load();
1773   /// Thread 3:
1774   ///   r3 = y.load();
1775   ///   r4 = x.load();
1776   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1777   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
1778   ///  IR-level fences can prevent it.
1779   /// @{
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord)1780   virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
1781                                         AtomicOrdering Ord) const {
1782     if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
1783       return Builder.CreateFence(Ord);
1784     else
1785       return nullptr;
1786   }
1787 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord)1788   virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1789                                          Instruction *Inst,
1790                                          AtomicOrdering Ord) const {
1791     if (isAcquireOrStronger(Ord))
1792       return Builder.CreateFence(Ord);
1793     else
1794       return nullptr;
1795   }
1796   /// @}
1797 
1798   // Emits code that executes when the comparison result in the ll/sc
1799   // expansion of a cmpxchg instruction is such that the store-conditional will
1800   // not execute.  This makes it possible to balance out the load-linked with
1801   // a dedicated instruction, if desired.
1802   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1803   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder)1804   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1805 
1806   /// Returns true if the given (atomic) store should be expanded by the
1807   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
shouldExpandAtomicStoreInIR(StoreInst * SI)1808   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1809     return false;
1810   }
1811 
1812   /// Returns true if arguments should be sign-extended in lib calls.
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned)1813   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1814     return IsSigned;
1815   }
1816 
1817   /// Returns true if arguments should be extended in lib calls.
shouldExtendTypeInLibCall(EVT Type)1818   virtual bool shouldExtendTypeInLibCall(EVT Type) const {
1819     return true;
1820   }
1821 
1822   /// Returns how the given (atomic) load should be expanded by the
1823   /// IR-level AtomicExpand pass.
shouldExpandAtomicLoadInIR(LoadInst * LI)1824   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1825     return AtomicExpansionKind::None;
1826   }
1827 
1828   /// Returns how the given atomic cmpxchg should be expanded by the IR-level
1829   /// AtomicExpand pass.
1830   virtual AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI)1831   shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1832     return AtomicExpansionKind::None;
1833   }
1834 
1835   /// Returns how the IR-level AtomicExpand pass should expand the given
1836   /// AtomicRMW, if at all. Default is to never expand.
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW)1837   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
1838     return RMW->isFloatingPointOperation() ?
1839       AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
1840   }
1841 
1842   /// On some platforms, an AtomicRMW that never actually modifies the value
1843   /// (such as fetch_add of 0) can be turned into a fence followed by an
1844   /// atomic load. This may sound useless, but it makes it possible for the
1845   /// processor to keep the cacheline shared, dramatically improving
1846   /// performance. And such idempotent RMWs are useful for implementing some
1847   /// kinds of locks, see for example (justification + benchmarks):
1848   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1849   /// This method tries doing that transformation, returning the atomic load if
1850   /// it succeeds, and nullptr otherwise.
1851   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1852   /// another round of expansion.
1853   virtual LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst * RMWI)1854   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1855     return nullptr;
1856   }
1857 
1858   /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
1859   /// SIGN_EXTEND, or ANY_EXTEND).
getExtendForAtomicOps()1860   virtual ISD::NodeType getExtendForAtomicOps() const {
1861     return ISD::ZERO_EXTEND;
1862   }
1863 
1864   /// @}
1865 
1866   /// Returns true if we should normalize
1867   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1868   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1869   /// that it saves us from materializing N0 and N1 in an integer register.
1870   /// Targets that are able to perform and/or on flags should return false here.
shouldNormalizeToSelectSequence(LLVMContext & Context,EVT VT)1871   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1872                                                EVT VT) const {
1873     // If a target has multiple condition registers, then it likely has logical
1874     // operations on those registers.
1875     if (hasMultipleConditionRegisters())
1876       return false;
1877     // Only do the transform if the value won't be split into multiple
1878     // registers.
1879     LegalizeTypeAction Action = getTypeAction(Context, VT);
1880     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1881       Action != TypeSplitVector;
1882   }
1883 
isProfitableToCombineMinNumMaxNum(EVT VT)1884   virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
1885 
1886   /// Return true if a select of constants (select Cond, C1, C2) should be
1887   /// transformed into simple math ops with the condition value. For example:
1888   /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
convertSelectOfConstantsToMath(EVT VT)1889   virtual bool convertSelectOfConstantsToMath(EVT VT) const {
1890     return false;
1891   }
1892 
1893   /// Return true if it is profitable to transform an integer
1894   /// multiplication-by-constant into simpler operations like shifts and adds.
1895   /// This may be true if the target does not directly support the
1896   /// multiplication operation for the specified type or the sequence of simpler
1897   /// ops is faster than the multiply.
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C)1898   virtual bool decomposeMulByConstant(LLVMContext &Context,
1899                                       EVT VT, SDValue C) const {
1900     return false;
1901   }
1902 
1903   /// Return true if it is more correct/profitable to use strict FP_TO_INT
1904   /// conversion operations - canonicalizing the FP source value instead of
1905   /// converting all cases and then selecting based on value.
1906   /// This may be true if the target throws exceptions for out of bounds
1907   /// conversions or has fast FP CMOV.
shouldUseStrictFP_TO_INT(EVT FpVT,EVT IntVT,bool IsSigned)1908   virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
1909                                         bool IsSigned) const {
1910     return false;
1911   }
1912 
1913   //===--------------------------------------------------------------------===//
1914   // TargetLowering Configuration Methods - These methods should be invoked by
1915   // the derived class constructor to configure this object for the target.
1916   //
1917 protected:
1918   /// Specify how the target extends the result of integer and floating point
1919   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent Ty)1920   void setBooleanContents(BooleanContent Ty) {
1921     BooleanContents = Ty;
1922     BooleanFloatContents = Ty;
1923   }
1924 
1925   /// Specify how the target extends the result of integer and floating point
1926   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent IntTy,BooleanContent FloatTy)1927   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1928     BooleanContents = IntTy;
1929     BooleanFloatContents = FloatTy;
1930   }
1931 
1932   /// Specify how the target extends the result of a vector boolean value from a
1933   /// vector of i1 to a wider type.  See getBooleanContents.
setBooleanVectorContents(BooleanContent Ty)1934   void setBooleanVectorContents(BooleanContent Ty) {
1935     BooleanVectorContents = Ty;
1936   }
1937 
1938   /// Specify the target scheduling preference.
setSchedulingPreference(Sched::Preference Pref)1939   void setSchedulingPreference(Sched::Preference Pref) {
1940     SchedPreferenceInfo = Pref;
1941   }
1942 
1943   /// Indicate the minimum number of blocks to generate jump tables.
1944   void setMinimumJumpTableEntries(unsigned Val);
1945 
1946   /// Indicate the maximum number of entries in jump tables.
1947   /// Set to zero to generate unlimited jump tables.
1948   void setMaximumJumpTableSize(unsigned);
1949 
1950   /// If set to a physical register, this specifies the register that
1951   /// llvm.savestack/llvm.restorestack should save and restore.
setStackPointerRegisterToSaveRestore(unsigned R)1952   void setStackPointerRegisterToSaveRestore(unsigned R) {
1953     StackPointerRegisterToSaveRestore = R;
1954   }
1955 
1956   /// Tells the code generator that the target has multiple (allocatable)
1957   /// condition registers that can be used to store the results of comparisons
1958   /// for use by selects and conditional branches. With multiple condition
1959   /// registers, the code generator will not aggressively sink comparisons into
1960   /// the blocks of their users.
1961   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1962     HasMultipleConditionRegisters = hasManyRegs;
1963   }
1964 
1965   /// Tells the code generator that the target has BitExtract instructions.
1966   /// The code generator will aggressively sink "shift"s into the blocks of
1967   /// their users if the users will generate "and" instructions which can be
1968   /// combined with "shift" to BitExtract instructions.
1969   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1970     HasExtractBitsInsn = hasExtractInsn;
1971   }
1972 
1973   /// Tells the code generator not to expand logic operations on comparison
1974   /// predicates into separate sequences that increase the amount of flow
1975   /// control.
1976   void setJumpIsExpensive(bool isExpensive = true);
1977 
1978   /// Tells the code generator which bitwidths to bypass.
addBypassSlowDiv(unsigned int SlowBitWidth,unsigned int FastBitWidth)1979   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1980     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1981   }
1982 
1983   /// Add the specified register class as an available regclass for the
1984   /// specified value type. This indicates the selector can handle values of
1985   /// that class natively.
addRegisterClass(MVT VT,const TargetRegisterClass * RC)1986   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1987     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1988     RegClassForVT[VT.SimpleTy] = RC;
1989   }
1990 
1991   /// Return the largest legal super-reg register class of the register class
1992   /// for the specified type and its associated "cost".
1993   virtual std::pair<const TargetRegisterClass *, uint8_t>
1994   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
1995 
1996   /// Once all of the register classes are added, this allows us to compute
1997   /// derived properties we expose.
1998   void computeRegisterProperties(const TargetRegisterInfo *TRI);
1999 
2000   /// Indicate that the specified operation does not work with the specified
2001   /// type and indicate what to do about it. Note that VT may refer to either
2002   /// the type of a result or that of an operand of Op.
setOperationAction(unsigned Op,MVT VT,LegalizeAction Action)2003   void setOperationAction(unsigned Op, MVT VT,
2004                           LegalizeAction Action) {
2005     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
2006     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2007   }
2008 
2009   /// Indicate that the specified load with extension does not work with the
2010   /// specified type and indicate what to do about it.
setLoadExtAction(unsigned ExtType,MVT ValVT,MVT MemVT,LegalizeAction Action)2011   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2012                         LegalizeAction Action) {
2013     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2014            MemVT.isValid() && "Table isn't big enough!");
2015     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2016     unsigned Shift = 4 * ExtType;
2017     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2018     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2019   }
2020 
2021   /// Indicate that the specified truncating store does not work with the
2022   /// specified type and indicate what to do about it.
setTruncStoreAction(MVT ValVT,MVT MemVT,LegalizeAction Action)2023   void setTruncStoreAction(MVT ValVT, MVT MemVT,
2024                            LegalizeAction Action) {
2025     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2026     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2027   }
2028 
2029   /// Indicate that the specified indexed load does or does not work with the
2030   /// specified type and indicate what to do abort it.
2031   ///
2032   /// NOTE: All indexed mode loads are initialized to Expand in
2033   /// TargetLowering.cpp
setIndexedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2034   void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
2035     setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2036   }
2037 
2038   /// Indicate that the specified indexed store does or does not work with the
2039   /// specified type and indicate what to do about it.
2040   ///
2041   /// NOTE: All indexed mode stores are initialized to Expand in
2042   /// TargetLowering.cpp
setIndexedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2043   void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
2044     setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2045   }
2046 
2047   /// Indicate that the specified indexed masked load does or does not work with
2048   /// the specified type and indicate what to do about it.
2049   ///
2050   /// NOTE: All indexed mode masked loads are initialized to Expand in
2051   /// TargetLowering.cpp
setIndexedMaskedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2052   void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2053                                   LegalizeAction Action) {
2054     setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2055   }
2056 
2057   /// Indicate that the specified indexed masked store does or does not work
2058   /// with the specified type and indicate what to do about it.
2059   ///
2060   /// NOTE: All indexed mode masked stores are initialized to Expand in
2061   /// TargetLowering.cpp
setIndexedMaskedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2062   void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2063                                    LegalizeAction Action) {
2064     setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2065   }
2066 
2067   /// Indicate that the specified condition code is or isn't supported on the
2068   /// target and indicate what to do about it.
setCondCodeAction(ISD::CondCode CC,MVT VT,LegalizeAction Action)2069   void setCondCodeAction(ISD::CondCode CC, MVT VT,
2070                          LegalizeAction Action) {
2071     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
2072            "Table isn't big enough!");
2073     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2074     /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
2075     /// value and the upper 29 bits index into the second dimension of the array
2076     /// to select what 32-bit value to use.
2077     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2078     CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2079     CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2080   }
2081 
2082   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2083   /// to trying a larger integer/fp until it can find one that works. If that
2084   /// default is insufficient, this method can be used by the target to override
2085   /// the default.
AddPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2086   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2087     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2088   }
2089 
2090   /// Convenience method to set an operation to Promote and specify the type
2091   /// in a single call.
setOperationPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2092   void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2093     setOperationAction(Opc, OrigVT, Promote);
2094     AddPromotedToType(Opc, OrigVT, DestVT);
2095   }
2096 
2097   /// Targets should invoke this method for each target independent node that
2098   /// they want to provide a custom DAG combiner for by implementing the
2099   /// PerformDAGCombine virtual method.
setTargetDAGCombine(ISD::NodeType NT)2100   void setTargetDAGCombine(ISD::NodeType NT) {
2101     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
2102     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
2103   }
2104 
2105   /// Set the target's minimum function alignment.
setMinFunctionAlignment(Align Alignment)2106   void setMinFunctionAlignment(Align Alignment) {
2107     MinFunctionAlignment = Alignment;
2108   }
2109 
2110   /// Set the target's preferred function alignment.  This should be set if
2111   /// there is a performance benefit to higher-than-minimum alignment
setPrefFunctionAlignment(Align Alignment)2112   void setPrefFunctionAlignment(Align Alignment) {
2113     PrefFunctionAlignment = Alignment;
2114   }
2115 
2116   /// Set the target's preferred loop alignment. Default alignment is one, it
2117   /// means the target does not care about loop alignment. The target may also
2118   /// override getPrefLoopAlignment to provide per-loop values.
setPrefLoopAlignment(Align Alignment)2119   void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
2120 
2121   /// Set the minimum stack alignment of an argument.
setMinStackArgumentAlignment(Align Alignment)2122   void setMinStackArgumentAlignment(Align Alignment) {
2123     MinStackArgumentAlignment = Alignment;
2124   }
2125 
2126   /// Set the maximum atomic operation size supported by the
2127   /// backend. Atomic operations greater than this size (as well as
2128   /// ones that are not naturally aligned), will be expanded by
2129   /// AtomicExpandPass into an __atomic_* library call.
setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)2130   void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2131     MaxAtomicSizeInBitsSupported = SizeInBits;
2132   }
2133 
2134   /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
setMinCmpXchgSizeInBits(unsigned SizeInBits)2135   void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2136     MinCmpXchgSizeInBits = SizeInBits;
2137   }
2138 
2139   /// Sets whether unaligned atomic operations are supported.
setSupportsUnalignedAtomics(bool UnalignedSupported)2140   void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2141     SupportsUnalignedAtomics = UnalignedSupported;
2142   }
2143 
2144 public:
2145   //===--------------------------------------------------------------------===//
2146   // Addressing mode description hooks (used by LSR etc).
2147   //
2148 
2149   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2150   /// instructions reading the address. This allows as much computation as
2151   /// possible to be done in the address mode for that operand. This hook lets
2152   /// targets also pass back when this should be done on intrinsics which
2153   /// load/store.
getAddrModeArguments(IntrinsicInst *,SmallVectorImpl<Value * > &,Type * &)2154   virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
2155                                     SmallVectorImpl<Value*> &/*Ops*/,
2156                                     Type *&/*AccessTy*/) const {
2157     return false;
2158   }
2159 
2160   /// This represents an addressing mode of:
2161   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2162   /// If BaseGV is null,  there is no BaseGV.
2163   /// If BaseOffs is zero, there is no base offset.
2164   /// If HasBaseReg is false, there is no base register.
2165   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
2166   /// no scale.
2167   struct AddrMode {
2168     GlobalValue *BaseGV = nullptr;
2169     int64_t      BaseOffs = 0;
2170     bool         HasBaseReg = false;
2171     int64_t      Scale = 0;
2172     AddrMode() = default;
2173   };
2174 
2175   /// Return true if the addressing mode represented by AM is legal for this
2176   /// target, for a load/store of the specified type.
2177   ///
2178   /// The type may be VoidTy, in which case only return true if the addressing
2179   /// mode is legal for a load/store of any legal type.  TODO: Handle
2180   /// pre/postinc as well.
2181   ///
2182   /// If the address space cannot be determined, it will be -1.
2183   ///
2184   /// TODO: Remove default argument
2185   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2186                                      Type *Ty, unsigned AddrSpace,
2187                                      Instruction *I = nullptr) const;
2188 
2189   /// Return the cost of the scaling factor used in the addressing mode
2190   /// represented by AM for this target, for a load/store of the specified type.
2191   ///
2192   /// If the AM is supported, the return value must be >= 0.
2193   /// If the AM is not supported, it returns a negative value.
2194   /// TODO: Handle pre/postinc as well.
2195   /// TODO: Remove default argument
2196   virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
2197                                    Type *Ty, unsigned AS = 0) const {
2198     // Default: assume that any scaling factor used in a legal AM is free.
2199     if (isLegalAddressingMode(DL, AM, Ty, AS))
2200       return 0;
2201     return -1;
2202   }
2203 
2204   /// Return true if the specified immediate is legal icmp immediate, that is
2205   /// the target has icmp instructions which can compare a register against the
2206   /// immediate without having to materialize the immediate into a register.
isLegalICmpImmediate(int64_t)2207   virtual bool isLegalICmpImmediate(int64_t) const {
2208     return true;
2209   }
2210 
2211   /// Return true if the specified immediate is legal add immediate, that is the
2212   /// target has add instructions which can add a register with the immediate
2213   /// without having to materialize the immediate into a register.
isLegalAddImmediate(int64_t)2214   virtual bool isLegalAddImmediate(int64_t) const {
2215     return true;
2216   }
2217 
2218   /// Return true if the specified immediate is legal for the value input of a
2219   /// store instruction.
isLegalStoreImmediate(int64_t Value)2220   virtual bool isLegalStoreImmediate(int64_t Value) const {
2221     // Default implementation assumes that at least 0 works since it is likely
2222     // that a zero register exists or a zero immediate is allowed.
2223     return Value == 0;
2224   }
2225 
2226   /// Return true if it's significantly cheaper to shift a vector by a uniform
2227   /// scalar than by an amount which will vary across each lane. On x86, for
2228   /// example, there is a "psllw" instruction for the former case, but no simple
2229   /// instruction for a general "a << b" operation on vectors.
isVectorShiftByScalarCheap(Type * Ty)2230   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2231     return false;
2232   }
2233 
2234   /// Returns true if the opcode is a commutative binary operation.
isCommutativeBinOp(unsigned Opcode)2235   virtual bool isCommutativeBinOp(unsigned Opcode) const {
2236     // FIXME: This should get its info from the td file.
2237     switch (Opcode) {
2238     case ISD::ADD:
2239     case ISD::SMIN:
2240     case ISD::SMAX:
2241     case ISD::UMIN:
2242     case ISD::UMAX:
2243     case ISD::MUL:
2244     case ISD::MULHU:
2245     case ISD::MULHS:
2246     case ISD::SMUL_LOHI:
2247     case ISD::UMUL_LOHI:
2248     case ISD::FADD:
2249     case ISD::FMUL:
2250     case ISD::AND:
2251     case ISD::OR:
2252     case ISD::XOR:
2253     case ISD::SADDO:
2254     case ISD::UADDO:
2255     case ISD::ADDC:
2256     case ISD::ADDE:
2257     case ISD::SADDSAT:
2258     case ISD::UADDSAT:
2259     case ISD::FMINNUM:
2260     case ISD::FMAXNUM:
2261     case ISD::FMINNUM_IEEE:
2262     case ISD::FMAXNUM_IEEE:
2263     case ISD::FMINIMUM:
2264     case ISD::FMAXIMUM:
2265       return true;
2266     default: return false;
2267     }
2268   }
2269 
2270   /// Return true if the node is a math/logic binary operator.
isBinOp(unsigned Opcode)2271   virtual bool isBinOp(unsigned Opcode) const {
2272     // A commutative binop must be a binop.
2273     if (isCommutativeBinOp(Opcode))
2274       return true;
2275     // These are non-commutative binops.
2276     switch (Opcode) {
2277     case ISD::SUB:
2278     case ISD::SHL:
2279     case ISD::SRL:
2280     case ISD::SRA:
2281     case ISD::SDIV:
2282     case ISD::UDIV:
2283     case ISD::SREM:
2284     case ISD::UREM:
2285     case ISD::FSUB:
2286     case ISD::FDIV:
2287     case ISD::FREM:
2288       return true;
2289     default:
2290       return false;
2291     }
2292   }
2293 
2294   /// Return true if it's free to truncate a value of type FromTy to type
2295   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2296   /// by referencing its sub-register AX.
2297   /// Targets must return false when FromTy <= ToTy.
isTruncateFree(Type * FromTy,Type * ToTy)2298   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2299     return false;
2300   }
2301 
2302   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2303   /// whether a call is in tail position. Typically this means that both results
2304   /// would be assigned to the same register or stack slot, but it could mean
2305   /// the target performs adequate checks of its own before proceeding with the
2306   /// tail call.  Targets must return false when FromTy <= ToTy.
allowTruncateForTailCall(Type * FromTy,Type * ToTy)2307   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2308     return false;
2309   }
2310 
isTruncateFree(EVT FromVT,EVT ToVT)2311   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
2312     return false;
2313   }
2314 
isProfitableToHoist(Instruction * I)2315   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2316 
2317   /// Return true if the extension represented by \p I is free.
2318   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2319   /// this method can use the context provided by \p I to decide
2320   /// whether or not \p I is free.
2321   /// This method extends the behavior of the is[Z|FP]ExtFree family.
2322   /// In other words, if is[Z|FP]Free returns true, then this method
2323   /// returns true as well. The converse is not true.
2324   /// The target can perform the adequate checks by overriding isExtFreeImpl.
2325   /// \pre \p I must be a sign, zero, or fp extension.
isExtFree(const Instruction * I)2326   bool isExtFree(const Instruction *I) const {
2327     switch (I->getOpcode()) {
2328     case Instruction::FPExt:
2329       if (isFPExtFree(EVT::getEVT(I->getType()),
2330                       EVT::getEVT(I->getOperand(0)->getType())))
2331         return true;
2332       break;
2333     case Instruction::ZExt:
2334       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2335         return true;
2336       break;
2337     case Instruction::SExt:
2338       break;
2339     default:
2340       llvm_unreachable("Instruction is not an extension");
2341     }
2342     return isExtFreeImpl(I);
2343   }
2344 
2345   /// Return true if \p Load and \p Ext can form an ExtLoad.
2346   /// For example, in AArch64
2347   ///   %L = load i8, i8* %ptr
2348   ///   %E = zext i8 %L to i32
2349   /// can be lowered into one load instruction
2350   ///   ldrb w0, [x0]
isExtLoad(const LoadInst * Load,const Instruction * Ext,const DataLayout & DL)2351   bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
2352                  const DataLayout &DL) const {
2353     EVT VT = getValueType(DL, Ext->getType());
2354     EVT LoadVT = getValueType(DL, Load->getType());
2355 
2356     // If the load has other users and the truncate is not free, the ext
2357     // probably isn't free.
2358     if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
2359         !isTruncateFree(Ext->getType(), Load->getType()))
2360       return false;
2361 
2362     // Check whether the target supports casts folded into loads.
2363     unsigned LType;
2364     if (isa<ZExtInst>(Ext))
2365       LType = ISD::ZEXTLOAD;
2366     else {
2367       assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
2368       LType = ISD::SEXTLOAD;
2369     }
2370 
2371     return isLoadExtLegal(LType, VT, LoadVT);
2372   }
2373 
2374   /// Return true if any actual instruction that defines a value of type FromTy
2375   /// implicitly zero-extends the value to ToTy in the result register.
2376   ///
2377   /// The function should return true when it is likely that the truncate can
2378   /// be freely folded with an instruction defining a value of FromTy. If
2379   /// the defining instruction is unknown (because you're looking at a
2380   /// function argument, PHI, etc.) then the target may require an
2381   /// explicit truncate, which is not necessarily free, but this function
2382   /// does not deal with those cases.
2383   /// Targets must return false when FromTy >= ToTy.
isZExtFree(Type * FromTy,Type * ToTy)2384   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
2385     return false;
2386   }
2387 
isZExtFree(EVT FromTy,EVT ToTy)2388   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
2389     return false;
2390   }
2391 
2392   /// Return true if sign-extension from FromTy to ToTy is cheaper than
2393   /// zero-extension.
isSExtCheaperThanZExt(EVT FromTy,EVT ToTy)2394   virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
2395     return false;
2396   }
2397 
2398   /// Return true if sinking I's operands to the same basic block as I is
2399   /// profitable, e.g. because the operands can be folded into a target
2400   /// instruction during instruction selection. After calling the function
2401   /// \p Ops contains the Uses to sink ordered by dominance (dominating users
2402   /// come first).
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops)2403   virtual bool shouldSinkOperands(Instruction *I,
2404                                   SmallVectorImpl<Use *> &Ops) const {
2405     return false;
2406   }
2407 
2408   /// Return true if the target supplies and combines to a paired load
2409   /// two loaded values of type LoadedType next to each other in memory.
2410   /// RequiredAlignment gives the minimal alignment constraints that must be met
2411   /// to be able to select this paired load.
2412   ///
2413   /// This information is *not* used to generate actual paired loads, but it is
2414   /// used to generate a sequence of loads that is easier to combine into a
2415   /// paired load.
2416   /// For instance, something like this:
2417   /// a = load i64* addr
2418   /// b = trunc i64 a to i32
2419   /// c = lshr i64 a, 32
2420   /// d = trunc i64 c to i32
2421   /// will be optimized into:
2422   /// b = load i32* addr1
2423   /// d = load i32* addr2
2424   /// Where addr1 = addr2 +/- sizeof(i32).
2425   ///
2426   /// In other words, unless the target performs a post-isel load combining,
2427   /// this information should not be provided because it will generate more
2428   /// loads.
hasPairedLoad(EVT,unsigned &)2429   virtual bool hasPairedLoad(EVT /*LoadedType*/,
2430                              unsigned & /*RequiredAlignment*/) const {
2431     return false;
2432   }
2433 
2434   /// Return true if the target has a vector blend instruction.
hasVectorBlend()2435   virtual bool hasVectorBlend() const { return false; }
2436 
2437   /// Get the maximum supported factor for interleaved memory accesses.
2438   /// Default to be the minimum interleave factor: 2.
getMaxSupportedInterleaveFactor()2439   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
2440 
2441   /// Lower an interleaved load to target specific intrinsics. Return
2442   /// true on success.
2443   ///
2444   /// \p LI is the vector load instruction.
2445   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
2446   /// \p Indices is the corresponding indices for each shufflevector.
2447   /// \p Factor is the interleave factor.
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor)2448   virtual bool lowerInterleavedLoad(LoadInst *LI,
2449                                     ArrayRef<ShuffleVectorInst *> Shuffles,
2450                                     ArrayRef<unsigned> Indices,
2451                                     unsigned Factor) const {
2452     return false;
2453   }
2454 
2455   /// Lower an interleaved store to target specific intrinsics. Return
2456   /// true on success.
2457   ///
2458   /// \p SI is the vector store instruction.
2459   /// \p SVI is the shufflevector to RE-interleave the stored vector.
2460   /// \p Factor is the interleave factor.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor)2461   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
2462                                      unsigned Factor) const {
2463     return false;
2464   }
2465 
2466   /// Return true if zero-extending the specific node Val to type VT2 is free
2467   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2468   /// because it's folded such as X86 zero-extending loads).
isZExtFree(SDValue Val,EVT VT2)2469   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
2470     return isZExtFree(Val.getValueType(), VT2);
2471   }
2472 
2473   /// Return true if an fpext operation is free (for instance, because
2474   /// single-precision floating-point numbers are implicitly extended to
2475   /// double-precision).
isFPExtFree(EVT DestVT,EVT SrcVT)2476   virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
2477     assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
2478            "invalid fpext types");
2479     return false;
2480   }
2481 
2482   /// Return true if an fpext operation input to an \p Opcode operation is free
2483   /// (for instance, because half-precision floating-point numbers are
2484   /// implicitly extended to float-precision) for an FMA instruction.
isFPExtFoldable(const SelectionDAG & DAG,unsigned Opcode,EVT DestVT,EVT SrcVT)2485   virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
2486                                EVT DestVT, EVT SrcVT) const {
2487     assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
2488            "invalid fpext types");
2489     return isFPExtFree(DestVT, SrcVT);
2490   }
2491 
2492   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
2493   /// extend node) is profitable.
isVectorLoadExtDesirable(SDValue ExtVal)2494   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
2495 
2496   /// Return true if an fneg operation is free to the point where it is never
2497   /// worthwhile to replace it with a bitwise operation.
isFNegFree(EVT VT)2498   virtual bool isFNegFree(EVT VT) const {
2499     assert(VT.isFloatingPoint());
2500     return false;
2501   }
2502 
2503   /// Return true if an fabs operation is free to the point where it is never
2504   /// worthwhile to replace it with a bitwise operation.
isFAbsFree(EVT VT)2505   virtual bool isFAbsFree(EVT VT) const {
2506     assert(VT.isFloatingPoint());
2507     return false;
2508   }
2509 
2510   /// Return true if an FMA operation is faster than a pair of fmul and fadd
2511   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
2512   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
2513   ///
2514   /// NOTE: This may be called before legalization on types for which FMAs are
2515   /// not legal, but should return true if those types will eventually legalize
2516   /// to types that support FMAs. After legalization, it will only be called on
2517   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT)2518   virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
2519                                           EVT) const {
2520     return false;
2521   }
2522 
2523   /// IR version
isFMAFasterThanFMulAndFAdd(const Function & F,Type *)2524   virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
2525     return false;
2526   }
2527 
2528   /// Returns true if the FADD or FSUB node passed could legally be combined with
2529   /// an fmul to form an ISD::FMAD.
isFMADLegalForFAddFSub(const SelectionDAG & DAG,const SDNode * N)2530   virtual bool isFMADLegalForFAddFSub(const SelectionDAG &DAG,
2531                                       const SDNode *N) const {
2532     assert(N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB);
2533     return isOperationLegal(ISD::FMAD, N->getValueType(0));
2534   }
2535 
2536   /// Return true if it's profitable to narrow operations of type VT1 to
2537   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
2538   /// i32 to i16.
isNarrowingProfitable(EVT,EVT)2539   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
2540     return false;
2541   }
2542 
2543   /// Return true if it is beneficial to convert a load of a constant to
2544   /// just the constant itself.
2545   /// On some targets it might be more efficient to use a combination of
2546   /// arithmetic instructions to materialize the constant instead of loading it
2547   /// from a constant pool.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty)2548   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
2549                                                  Type *Ty) const {
2550     return false;
2551   }
2552 
2553   /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
2554   /// from this source type with this index. This is needed because
2555   /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
2556   /// the first element, and only the target knows which lowering is cheap.
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index)2557   virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2558                                        unsigned Index) const {
2559     return false;
2560   }
2561 
2562   /// Try to convert an extract element of a vector binary operation into an
2563   /// extract element followed by a scalar operation.
shouldScalarizeBinop(SDValue VecOp)2564   virtual bool shouldScalarizeBinop(SDValue VecOp) const {
2565     return false;
2566   }
2567 
2568   /// Return true if extraction of a scalar element from the given vector type
2569   /// at the given index is cheap. For example, if scalar operations occur on
2570   /// the same register file as vector operations, then an extract element may
2571   /// be a sub-register rename rather than an actual instruction.
isExtractVecEltCheap(EVT VT,unsigned Index)2572   virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
2573     return false;
2574   }
2575 
2576   /// Try to convert math with an overflow comparison into the corresponding DAG
2577   /// node operation. Targets may want to override this independently of whether
2578   /// the operation is legal/custom for the given type because it may obscure
2579   /// matching of other patterns.
shouldFormOverflowOp(unsigned Opcode,EVT VT)2580   virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const {
2581     // TODO: The default logic is inherited from code in CodeGenPrepare.
2582     // The opcode should not make a difference by default?
2583     if (Opcode != ISD::UADDO)
2584       return false;
2585 
2586     // Allow the transform as long as we have an integer type that is not
2587     // obviously illegal and unsupported.
2588     if (VT.isVector())
2589       return false;
2590     return VT.isSimple() || !isOperationExpand(Opcode, VT);
2591   }
2592 
2593   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
2594   // even if the vector itself has multiple uses.
aggressivelyPreferBuildVectorSources(EVT VecVT)2595   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
2596     return false;
2597   }
2598 
2599   // Return true if CodeGenPrepare should consider splitting large offset of a
2600   // GEP to make the GEP fit into the addressing mode and can be sunk into the
2601   // same blocks of its users.
shouldConsiderGEPOffsetSplit()2602   virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
2603 
2604   /// Return true if creating a shift of the type by the given
2605   /// amount is not profitable.
shouldAvoidTransformToShift(EVT VT,unsigned Amount)2606   virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
2607     return false;
2608   }
2609 
2610   //===--------------------------------------------------------------------===//
2611   // Runtime Library hooks
2612   //
2613 
2614   /// Rename the default libcall routine name for the specified libcall.
setLibcallName(RTLIB::Libcall Call,const char * Name)2615   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
2616     LibcallRoutineNames[Call] = Name;
2617   }
2618 
2619   /// Get the libcall routine name for the specified libcall.
getLibcallName(RTLIB::Libcall Call)2620   const char *getLibcallName(RTLIB::Libcall Call) const {
2621     return LibcallRoutineNames[Call];
2622   }
2623 
2624   /// Override the default CondCode to be used to test the result of the
2625   /// comparison libcall against zero.
setCmpLibcallCC(RTLIB::Libcall Call,ISD::CondCode CC)2626   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
2627     CmpLibcallCCs[Call] = CC;
2628   }
2629 
2630   /// Get the CondCode that's to be used to test the result of the comparison
2631   /// libcall against zero.
getCmpLibcallCC(RTLIB::Libcall Call)2632   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
2633     return CmpLibcallCCs[Call];
2634   }
2635 
2636   /// Set the CallingConv that should be used for the specified libcall.
setLibcallCallingConv(RTLIB::Libcall Call,CallingConv::ID CC)2637   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
2638     LibcallCallingConvs[Call] = CC;
2639   }
2640 
2641   /// Get the CallingConv that should be used for the specified libcall.
getLibcallCallingConv(RTLIB::Libcall Call)2642   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
2643     return LibcallCallingConvs[Call];
2644   }
2645 
2646   /// Execute target specific actions to finalize target lowering.
2647   /// This is used to set extra flags in MachineFrameInformation and freezing
2648   /// the set of reserved registers.
2649   /// The default implementation just freezes the set of reserved registers.
2650   virtual void finalizeLowering(MachineFunction &MF) const;
2651 
2652 private:
2653   const TargetMachine &TM;
2654 
2655   /// Tells the code generator that the target has multiple (allocatable)
2656   /// condition registers that can be used to store the results of comparisons
2657   /// for use by selects and conditional branches. With multiple condition
2658   /// registers, the code generator will not aggressively sink comparisons into
2659   /// the blocks of their users.
2660   bool HasMultipleConditionRegisters;
2661 
2662   /// Tells the code generator that the target has BitExtract instructions.
2663   /// The code generator will aggressively sink "shift"s into the blocks of
2664   /// their users if the users will generate "and" instructions which can be
2665   /// combined with "shift" to BitExtract instructions.
2666   bool HasExtractBitsInsn;
2667 
2668   /// Tells the code generator to bypass slow divide or remainder
2669   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
2670   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
2671   /// div/rem when the operands are positive and less than 256.
2672   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
2673 
2674   /// Tells the code generator that it shouldn't generate extra flow control
2675   /// instructions and should attempt to combine flow control instructions via
2676   /// predication.
2677   bool JumpIsExpensive;
2678 
2679   /// Information about the contents of the high-bits in boolean values held in
2680   /// a type wider than i1. See getBooleanContents.
2681   BooleanContent BooleanContents;
2682 
2683   /// Information about the contents of the high-bits in boolean values held in
2684   /// a type wider than i1. See getBooleanContents.
2685   BooleanContent BooleanFloatContents;
2686 
2687   /// Information about the contents of the high-bits in boolean vector values
2688   /// when the element type is wider than i1. See getBooleanContents.
2689   BooleanContent BooleanVectorContents;
2690 
2691   /// The target scheduling preference: shortest possible total cycles or lowest
2692   /// register usage.
2693   Sched::Preference SchedPreferenceInfo;
2694 
2695   /// The minimum alignment that any argument on the stack needs to have.
2696   Align MinStackArgumentAlignment;
2697 
2698   /// The minimum function alignment (used when optimizing for size, and to
2699   /// prevent explicitly provided alignment from leading to incorrect code).
2700   Align MinFunctionAlignment;
2701 
2702   /// The preferred function alignment (used when alignment unspecified and
2703   /// optimizing for speed).
2704   Align PrefFunctionAlignment;
2705 
2706   /// The preferred loop alignment (in log2 bot in bytes).
2707   Align PrefLoopAlignment;
2708 
2709   /// Size in bits of the maximum atomics size the backend supports.
2710   /// Accesses larger than this will be expanded by AtomicExpandPass.
2711   unsigned MaxAtomicSizeInBitsSupported;
2712 
2713   /// Size in bits of the minimum cmpxchg or ll/sc operation the
2714   /// backend supports.
2715   unsigned MinCmpXchgSizeInBits;
2716 
2717   /// This indicates if the target supports unaligned atomic operations.
2718   bool SupportsUnalignedAtomics;
2719 
2720   /// If set to a physical register, this specifies the register that
2721   /// llvm.savestack/llvm.restorestack should save and restore.
2722   unsigned StackPointerRegisterToSaveRestore;
2723 
2724   /// This indicates the default register class to use for each ValueType the
2725   /// target supports natively.
2726   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
2727   uint16_t NumRegistersForVT[MVT::LAST_VALUETYPE];
2728   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
2729 
2730   /// This indicates the "representative" register class to use for each
2731   /// ValueType the target supports natively. This information is used by the
2732   /// scheduler to track register pressure. By default, the representative
2733   /// register class is the largest legal super-reg register class of the
2734   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
2735   /// representative class would be GR32.
2736   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
2737 
2738   /// This indicates the "cost" of the "representative" register class for each
2739   /// ValueType. The cost is used by the scheduler to approximate register
2740   /// pressure.
2741   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
2742 
2743   /// For any value types we are promoting or expanding, this contains the value
2744   /// type that we are changing to.  For Expanded types, this contains one step
2745   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2746   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
2747   /// the same type (e.g. i32 -> i32).
2748   MVT TransformToType[MVT::LAST_VALUETYPE];
2749 
2750   /// For each operation and each value type, keep a LegalizeAction that
2751   /// indicates how instruction selection should deal with the operation.  Most
2752   /// operations are Legal (aka, supported natively by the target), but
2753   /// operations that are not should be described.  Note that operations on
2754   /// non-legal value types are not described here.
2755   LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2756 
2757   /// For each load extension type and each value type, keep a LegalizeAction
2758   /// that indicates how instruction selection should deal with a load of a
2759   /// specific value type and extension type. Uses 4-bits to store the action
2760   /// for each of the 4 load ext types.
2761   uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2762 
2763   /// For each value type pair keep a LegalizeAction that indicates whether a
2764   /// truncating store of a specific value type and truncating type is legal.
2765   LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2766 
2767   /// For each indexed mode and each value type, keep a quad of LegalizeAction
2768   /// that indicates how instruction selection should deal with the load /
2769   /// store / maskedload / maskedstore.
2770   ///
2771   /// The first dimension is the value_type for the reference. The second
2772   /// dimension represents the various modes for load store.
2773   uint16_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
2774 
2775   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
2776   /// indicates how instruction selection should deal with the condition code.
2777   ///
2778   /// Because each CC action takes up 4 bits, we need to have the array size be
2779   /// large enough to fit all of the value types. This can be done by rounding
2780   /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
2781   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
2782 
2783   ValueTypeActionImpl ValueTypeActions;
2784 
2785 private:
2786   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
2787 
2788   /// Targets can specify ISD nodes that they would like PerformDAGCombine
2789   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
2790   /// array.
2791   unsigned char
2792   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2793 
2794   /// For operations that must be promoted to a specific type, this holds the
2795   /// destination type.  This map should be sparse, so don't hold it as an
2796   /// array.
2797   ///
2798   /// Targets add entries to this map with AddPromotedToType(..), clients access
2799   /// this with getTypeToPromoteTo(..).
2800   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2801     PromoteToType;
2802 
2803   /// Stores the name each libcall.
2804   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
2805 
2806   /// The ISD::CondCode that should be used to test the result of each of the
2807   /// comparison libcall against zero.
2808   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2809 
2810   /// Stores the CallingConv that should be used for each libcall.
2811   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2812 
2813   /// Set default libcall names and calling conventions.
2814   void InitLibcalls(const Triple &TT);
2815 
2816   /// The bits of IndexedModeActions used to store the legalisation actions
2817   /// We store the data as   | ML | MS |  L |  S | each taking 4 bits.
2818   enum IndexedModeActionsBits {
2819     IMAB_Store = 0,
2820     IMAB_Load = 4,
2821     IMAB_MaskedStore = 8,
2822     IMAB_MaskedLoad = 12
2823   };
2824 
setIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift,LegalizeAction Action)2825   void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
2826                             LegalizeAction Action) {
2827     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
2828            (unsigned)Action < 0xf && "Table isn't big enough!");
2829     unsigned Ty = (unsigned)VT.SimpleTy;
2830     IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
2831     IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
2832   }
2833 
getIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift)2834   LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
2835                                       unsigned Shift) const {
2836     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
2837            "Table isn't big enough!");
2838     unsigned Ty = (unsigned)VT.SimpleTy;
2839     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
2840   }
2841 
2842 protected:
2843   /// Return true if the extension represented by \p I is free.
2844   /// \pre \p I is a sign, zero, or fp extension and
2845   ///      is[Z|FP]ExtFree of the related types is not true.
isExtFreeImpl(const Instruction * I)2846   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
2847 
2848   /// Depth that GatherAllAliases should should continue looking for chain
2849   /// dependencies when trying to find a more preferable chain. As an
2850   /// approximation, this should be more than the number of consecutive stores
2851   /// expected to be merged.
2852   unsigned GatherAllAliasesMaxDepth;
2853 
2854   /// \brief Specify maximum number of store instructions per memset call.
2855   ///
2856   /// When lowering \@llvm.memset this field specifies the maximum number of
2857   /// store operations that may be substituted for the call to memset. Targets
2858   /// must set this value based on the cost threshold for that target. Targets
2859   /// should assume that the memset will be done using as many of the largest
2860   /// store operations first, followed by smaller ones, if necessary, per
2861   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2862   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2863   /// store.  This only applies to setting a constant array of a constant size.
2864   unsigned MaxStoresPerMemset;
2865   /// Likewise for functions with the OptSize attribute.
2866   unsigned MaxStoresPerMemsetOptSize;
2867 
2868   /// \brief Specify maximum number of store instructions per memcpy call.
2869   ///
2870   /// When lowering \@llvm.memcpy this field specifies the maximum number of
2871   /// store operations that may be substituted for a call to memcpy. Targets
2872   /// must set this value based on the cost threshold for that target. Targets
2873   /// should assume that the memcpy will be done using as many of the largest
2874   /// store operations first, followed by smaller ones, if necessary, per
2875   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2876   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2877   /// and one 1-byte store. This only applies to copying a constant array of
2878   /// constant size.
2879   unsigned MaxStoresPerMemcpy;
2880   /// Likewise for functions with the OptSize attribute.
2881   unsigned MaxStoresPerMemcpyOptSize;
2882   /// \brief Specify max number of store instructions to glue in inlined memcpy.
2883   ///
2884   /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
2885   /// of store instructions to keep together. This helps in pairing and
2886   //  vectorization later on.
2887   unsigned MaxGluedStoresPerMemcpy = 0;
2888 
2889   /// \brief Specify maximum number of load instructions per memcmp call.
2890   ///
2891   /// When lowering \@llvm.memcmp this field specifies the maximum number of
2892   /// pairs of load operations that may be substituted for a call to memcmp.
2893   /// Targets must set this value based on the cost threshold for that target.
2894   /// Targets should assume that the memcmp will be done using as many of the
2895   /// largest load operations first, followed by smaller ones, if necessary, per
2896   /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
2897   /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
2898   /// and one 1-byte load. This only applies to copying a constant array of
2899   /// constant size.
2900   unsigned MaxLoadsPerMemcmp;
2901   /// Likewise for functions with the OptSize attribute.
2902   unsigned MaxLoadsPerMemcmpOptSize;
2903 
2904   /// \brief Specify maximum number of store instructions per memmove call.
2905   ///
2906   /// When lowering \@llvm.memmove this field specifies the maximum number of
2907   /// store instructions that may be substituted for a call to memmove. Targets
2908   /// must set this value based on the cost threshold for that target. Targets
2909   /// should assume that the memmove will be done using as many of the largest
2910   /// store operations first, followed by smaller ones, if necessary, per
2911   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2912   /// with 8-bit alignment would result in nine 1-byte stores.  This only
2913   /// applies to copying a constant array of constant size.
2914   unsigned MaxStoresPerMemmove;
2915   /// Likewise for functions with the OptSize attribute.
2916   unsigned MaxStoresPerMemmoveOptSize;
2917 
2918   /// Tells the code generator that select is more expensive than a branch if
2919   /// the branch is usually predicted right.
2920   bool PredictableSelectIsExpensive;
2921 
2922   /// \see enableExtLdPromotion.
2923   bool EnableExtLdPromotion;
2924 
2925   /// Return true if the value types that can be represented by the specified
2926   /// register class are all legal.
2927   bool isLegalRC(const TargetRegisterInfo &TRI,
2928                  const TargetRegisterClass &RC) const;
2929 
2930   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
2931   /// sequence of memory operands that is recognized by PrologEpilogInserter.
2932   MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
2933                                     MachineBasicBlock *MBB) const;
2934 
2935   /// Replace/modify the XRay custom event operands with target-dependent
2936   /// details.
2937   MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI,
2938                                          MachineBasicBlock *MBB) const;
2939 
2940   /// Replace/modify the XRay typed event operands with target-dependent
2941   /// details.
2942   MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI,
2943                                         MachineBasicBlock *MBB) const;
2944 
2945   bool IsStrictFPEnabled;
2946 };
2947 
2948 /// This class defines information used to lower LLVM code to legal SelectionDAG
2949 /// operators that the target instruction selector can accept natively.
2950 ///
2951 /// This class also defines callbacks that targets must implement to lower
2952 /// target-specific constructs to SelectionDAG operators.
2953 class TargetLowering : public TargetLoweringBase {
2954 public:
2955   struct DAGCombinerInfo;
2956   struct MakeLibCallOptions;
2957 
2958   TargetLowering(const TargetLowering &) = delete;
2959   TargetLowering &operator=(const TargetLowering &) = delete;
2960 
2961   explicit TargetLowering(const TargetMachine &TM);
2962 
2963   bool isPositionIndependent() const;
2964 
isSDNodeSourceOfDivergence(const SDNode * N,FunctionLoweringInfo * FLI,LegacyDivergenceAnalysis * DA)2965   virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
2966                                           FunctionLoweringInfo *FLI,
2967                                           LegacyDivergenceAnalysis *DA) const {
2968     return false;
2969   }
2970 
isSDNodeAlwaysUniform(const SDNode * N)2971   virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
2972     return false;
2973   }
2974 
2975   /// Returns true by value, base pointer and offset pointer and addressing mode
2976   /// by reference if the node's address can be legally represented as
2977   /// pre-indexed load / store address.
getPreIndexedAddressParts(SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)2978   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
2979                                          SDValue &/*Offset*/,
2980                                          ISD::MemIndexedMode &/*AM*/,
2981                                          SelectionDAG &/*DAG*/) const {
2982     return false;
2983   }
2984 
2985   /// Returns true by value, base pointer and offset pointer and addressing mode
2986   /// by reference if this node can be combined with a load / store to form a
2987   /// post-indexed load / store.
getPostIndexedAddressParts(SDNode *,SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)2988   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
2989                                           SDValue &/*Base*/,
2990                                           SDValue &/*Offset*/,
2991                                           ISD::MemIndexedMode &/*AM*/,
2992                                           SelectionDAG &/*DAG*/) const {
2993     return false;
2994   }
2995 
2996   /// Returns true if the specified base+offset is a legal indexed addressing
2997   /// mode for this target. \p MI is the load or store instruction that is being
2998   /// considered for transformation.
isIndexingLegal(MachineInstr & MI,Register Base,Register Offset,bool IsPre,MachineRegisterInfo & MRI)2999   virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
3000                                bool IsPre, MachineRegisterInfo &MRI) const {
3001     return false;
3002   }
3003 
3004   /// Return the entry encoding for a jump table in the current function.  The
3005   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
3006   virtual unsigned getJumpTableEncoding() const;
3007 
3008   virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *,const MachineBasicBlock *,unsigned,MCContext &)3009   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
3010                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3011                             MCContext &/*Ctx*/) const {
3012     llvm_unreachable("Need to implement this hook if target has custom JTIs");
3013   }
3014 
3015   /// Returns relocation base for the given PIC jumptable.
3016   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
3017                                            SelectionDAG &DAG) const;
3018 
3019   /// This returns the relocation base for the given PIC jumptable, the same as
3020   /// getPICJumpTableRelocBase, but as an MCExpr.
3021   virtual const MCExpr *
3022   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3023                                unsigned JTI, MCContext &Ctx) const;
3024 
3025   /// Return true if folding a constant offset with the given GlobalAddress is
3026   /// legal.  It is frequently not legal in PIC relocation models.
3027   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3028 
3029   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
3030                             SDValue &Chain) const;
3031 
3032   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3033                            SDValue &NewRHS, ISD::CondCode &CCCode,
3034                            const SDLoc &DL, const SDValue OldLHS,
3035                            const SDValue OldRHS) const;
3036 
3037   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3038                            SDValue &NewRHS, ISD::CondCode &CCCode,
3039                            const SDLoc &DL, const SDValue OldLHS,
3040                            const SDValue OldRHS, SDValue &Chain,
3041                            bool IsSignaling = false) const;
3042 
3043   /// Returns a pair of (return value, chain).
3044   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3045   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3046                                           EVT RetVT, ArrayRef<SDValue> Ops,
3047                                           MakeLibCallOptions CallOptions,
3048                                           const SDLoc &dl,
3049                                           SDValue Chain = SDValue()) const;
3050 
3051   /// Check whether parameters to a call that are passed in callee saved
3052   /// registers are the same as from the calling function.  This needs to be
3053   /// checked for tail call eligibility.
3054   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
3055       const uint32_t *CallerPreservedMask,
3056       const SmallVectorImpl<CCValAssign> &ArgLocs,
3057       const SmallVectorImpl<SDValue> &OutVals) const;
3058 
3059   //===--------------------------------------------------------------------===//
3060   // TargetLowering Optimization Methods
3061   //
3062 
3063   /// A convenience struct that encapsulates a DAG, and two SDValues for
3064   /// returning information from TargetLowering to its clients that want to
3065   /// combine.
3066   struct TargetLoweringOpt {
3067     SelectionDAG &DAG;
3068     bool LegalTys;
3069     bool LegalOps;
3070     SDValue Old;
3071     SDValue New;
3072 
TargetLoweringOptTargetLoweringOpt3073     explicit TargetLoweringOpt(SelectionDAG &InDAG,
3074                                bool LT, bool LO) :
3075       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3076 
LegalTypesTargetLoweringOpt3077     bool LegalTypes() const { return LegalTys; }
LegalOperationsTargetLoweringOpt3078     bool LegalOperations() const { return LegalOps; }
3079 
CombineToTargetLoweringOpt3080     bool CombineTo(SDValue O, SDValue N) {
3081       Old = O;
3082       New = N;
3083       return true;
3084     }
3085   };
3086 
3087   /// Determines the optimal series of memory ops to replace the memset / memcpy.
3088   /// Return true if the number of memory ops is below the threshold (Limit).
3089   /// It returns the types of the sequence of memory ops to perform
3090   /// memset / memcpy by reference.
3091   bool findOptimalMemOpLowering(std::vector<EVT> &MemOps,
3092                                 unsigned Limit, uint64_t Size,
3093                                 unsigned DstAlign, unsigned SrcAlign,
3094                                 bool IsMemset,
3095                                 bool ZeroMemset,
3096                                 bool MemcpyStrSrc,
3097                                 bool AllowOverlap,
3098                                 unsigned DstAS, unsigned SrcAS,
3099                                 const AttributeList &FuncAttributes) const;
3100 
3101   /// Check to see if the specified operand of the specified instruction is a
3102   /// constant integer.  If so, check to see if there are any bits set in the
3103   /// constant that are not demanded.  If so, shrink the constant and return
3104   /// true.
3105   bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
3106                               TargetLoweringOpt &TLO) const;
3107 
3108   // Target hook to do target-specific const optimization, which is called by
3109   // ShrinkDemandedConstant. This function should return true if the target
3110   // doesn't want ShrinkDemandedConstant to further optimize the constant.
targetShrinkDemandedConstant(SDValue Op,const APInt & Demanded,TargetLoweringOpt & TLO)3111   virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
3112                                             TargetLoweringOpt &TLO) const {
3113     return false;
3114   }
3115 
3116   /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
3117   /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
3118   /// generalized for targets with other types of implicit widening casts.
3119   bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
3120                         TargetLoweringOpt &TLO) const;
3121 
3122   /// Look at Op.  At this point, we know that only the DemandedBits bits of the
3123   /// result of Op are ever used downstream.  If we can use this information to
3124   /// simplify Op, create a new simplified DAG node and return true, returning
3125   /// the original and new nodes in Old and New.  Otherwise, analyze the
3126   /// expression and return a mask of KnownOne and KnownZero bits for the
3127   /// expression (used to simplify the caller).  The KnownZero/One bits may only
3128   /// be accurate for those bits in the Demanded masks.
3129   /// \p AssumeSingleUse When this parameter is true, this function will
3130   ///    attempt to simplify \p Op even if there are multiple uses.
3131   ///    Callers are responsible for correctly updating the DAG based on the
3132   ///    results of this function, because simply replacing replacing TLO.Old
3133   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
3134   ///    has multiple uses.
3135   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3136                             const APInt &DemandedElts, KnownBits &Known,
3137                             TargetLoweringOpt &TLO, unsigned Depth = 0,
3138                             bool AssumeSingleUse = false) const;
3139 
3140   /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3141   /// Adds Op back to the worklist upon success.
3142   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3143                             KnownBits &Known, TargetLoweringOpt &TLO,
3144                             unsigned Depth = 0,
3145                             bool AssumeSingleUse = false) const;
3146 
3147   /// Helper wrapper around SimplifyDemandedBits.
3148   /// Adds Op back to the worklist upon success.
3149   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
3150                             DAGCombinerInfo &DCI) const;
3151 
3152   /// More limited version of SimplifyDemandedBits that can be used to "look
3153   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3154   /// bitwise ops etc.
3155   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3156                                           const APInt &DemandedElts,
3157                                           SelectionDAG &DAG,
3158                                           unsigned Depth) const;
3159 
3160   /// Look at Vector Op. At this point, we know that only the DemandedElts
3161   /// elements of the result of Op are ever used downstream.  If we can use
3162   /// this information to simplify Op, create a new simplified DAG node and
3163   /// return true, storing the original and new nodes in TLO.
3164   /// Otherwise, analyze the expression and return a mask of KnownUndef and
3165   /// KnownZero elements for the expression (used to simplify the caller).
3166   /// The KnownUndef/Zero elements may only be accurate for those bits
3167   /// in the DemandedMask.
3168   /// \p AssumeSingleUse When this parameter is true, this function will
3169   ///    attempt to simplify \p Op even if there are multiple uses.
3170   ///    Callers are responsible for correctly updating the DAG based on the
3171   ///    results of this function, because simply replacing replacing TLO.Old
3172   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
3173   ///    has multiple uses.
3174   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
3175                                   APInt &KnownUndef, APInt &KnownZero,
3176                                   TargetLoweringOpt &TLO, unsigned Depth = 0,
3177                                   bool AssumeSingleUse = false) const;
3178 
3179   /// Helper wrapper around SimplifyDemandedVectorElts.
3180   /// Adds Op back to the worklist upon success.
3181   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
3182                                   APInt &KnownUndef, APInt &KnownZero,
3183                                   DAGCombinerInfo &DCI) const;
3184 
3185   /// Determine which of the bits specified in Mask are known to be either zero
3186   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3187   /// argument allows us to only collect the known bits that are shared by the
3188   /// requested vector elements.
3189   virtual void computeKnownBitsForTargetNode(const SDValue Op,
3190                                              KnownBits &Known,
3191                                              const APInt &DemandedElts,
3192                                              const SelectionDAG &DAG,
3193                                              unsigned Depth = 0) const;
3194   /// Determine which of the bits specified in Mask are known to be either zero
3195   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3196   /// argument allows us to only collect the known bits that are shared by the
3197   /// requested vector elements. This is for GISel.
3198   virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
3199                                               Register R, KnownBits &Known,
3200                                               const APInt &DemandedElts,
3201                                               const MachineRegisterInfo &MRI,
3202                                               unsigned Depth = 0) const;
3203 
3204   /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
3205   /// Default implementation computes low bits based on alignment
3206   /// information. This should preserve known bits passed into it.
3207   virtual void computeKnownBitsForFrameIndex(const SDValue FIOp,
3208                                              KnownBits &Known,
3209                                              const APInt &DemandedElts,
3210                                              const SelectionDAG &DAG,
3211                                              unsigned Depth = 0) const;
3212 
3213   /// This method can be implemented by targets that want to expose additional
3214   /// information about sign bits to the DAG Combiner. The DemandedElts
3215   /// argument allows us to only collect the minimum sign bits that are shared
3216   /// by the requested vector elements.
3217   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
3218                                                    const APInt &DemandedElts,
3219                                                    const SelectionDAG &DAG,
3220                                                    unsigned Depth = 0) const;
3221 
3222   /// Attempt to simplify any target nodes based on the demanded vector
3223   /// elements, returning true on success. Otherwise, analyze the expression and
3224   /// return a mask of KnownUndef and KnownZero elements for the expression
3225   /// (used to simplify the caller). The KnownUndef/Zero elements may only be
3226   /// accurate for those bits in the DemandedMask.
3227   virtual bool SimplifyDemandedVectorEltsForTargetNode(
3228       SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
3229       APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
3230 
3231   /// Attempt to simplify any target nodes based on the demanded bits/elts,
3232   /// returning true on success. Otherwise, analyze the
3233   /// expression and return a mask of KnownOne and KnownZero bits for the
3234   /// expression (used to simplify the caller).  The KnownZero/One bits may only
3235   /// be accurate for those bits in the Demanded masks.
3236   virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
3237                                                  const APInt &DemandedBits,
3238                                                  const APInt &DemandedElts,
3239                                                  KnownBits &Known,
3240                                                  TargetLoweringOpt &TLO,
3241                                                  unsigned Depth = 0) const;
3242 
3243   /// More limited version of SimplifyDemandedBits that can be used to "look
3244   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3245   /// bitwise ops etc.
3246   virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
3247       SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3248       SelectionDAG &DAG, unsigned Depth) const;
3249 
3250   /// Tries to build a legal vector shuffle using the provided parameters
3251   /// or equivalent variations. The Mask argument maybe be modified as the
3252   /// function tries different variations.
3253   /// Returns an empty SDValue if the operation fails.
3254   SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3255                                   SDValue N1, MutableArrayRef<int> Mask,
3256                                   SelectionDAG &DAG) const;
3257 
3258   /// This method returns the constant pool value that will be loaded by LD.
3259   /// NOTE: You must check for implicit extensions of the constant by LD.
3260   virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
3261 
3262   /// If \p SNaN is false, \returns true if \p Op is known to never be any
3263   /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
3264   /// NaN.
3265   virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
3266                                             const SelectionDAG &DAG,
3267                                             bool SNaN = false,
3268                                             unsigned Depth = 0) const;
3269   struct DAGCombinerInfo {
3270     void *DC;  // The DAG Combiner object.
3271     CombineLevel Level;
3272     bool CalledByLegalizer;
3273 
3274   public:
3275     SelectionDAG &DAG;
3276 
DAGCombinerInfoDAGCombinerInfo3277     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
3278       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
3279 
isBeforeLegalizeDAGCombinerInfo3280     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
isBeforeLegalizeOpsDAGCombinerInfo3281     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
isAfterLegalizeDAGDAGCombinerInfo3282     bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
getDAGCombineLevelDAGCombinerInfo3283     CombineLevel getDAGCombineLevel() { return Level; }
isCalledByLegalizerDAGCombinerInfo3284     bool isCalledByLegalizer() const { return CalledByLegalizer; }
3285 
3286     void AddToWorklist(SDNode *N);
3287     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
3288     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
3289     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
3290 
3291     bool recursivelyDeleteUnusedNodes(SDNode *N);
3292 
3293     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
3294   };
3295 
3296   /// Return if the N is a constant or constant vector equal to the true value
3297   /// from getBooleanContents().
3298   bool isConstTrueVal(const SDNode *N) const;
3299 
3300   /// Return if the N is a constant or constant vector equal to the false value
3301   /// from getBooleanContents().
3302   bool isConstFalseVal(const SDNode *N) const;
3303 
3304   /// Return if \p N is a True value when extended to \p VT.
3305   bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
3306 
3307   /// Try to simplify a setcc built with the specified operands and cc. If it is
3308   /// unable to simplify it, return a null SDValue.
3309   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
3310                         bool foldBooleans, DAGCombinerInfo &DCI,
3311                         const SDLoc &dl) const;
3312 
3313   // For targets which wrap address, unwrap for analysis.
unwrapAddress(SDValue N)3314   virtual SDValue unwrapAddress(SDValue N) const { return N; }
3315 
3316   /// Returns true (and the GlobalValue and the offset) if the node is a
3317   /// GlobalAddress + offset.
3318   virtual bool
3319   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
3320 
3321   /// This method will be invoked for all target nodes and for any
3322   /// target-independent nodes that the target has registered with invoke it
3323   /// for.
3324   ///
3325   /// The semantics are as follows:
3326   /// Return Value:
3327   ///   SDValue.Val == 0   - No change was made
3328   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
3329   ///   otherwise          - N should be replaced by the returned Operand.
3330   ///
3331   /// In addition, methods provided by DAGCombinerInfo may be used to perform
3332   /// more complex transformations.
3333   ///
3334   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
3335 
3336   /// Return true if it is profitable to move this shift by a constant amount
3337   /// though its operand, adjusting any immediate operands as necessary to
3338   /// preserve semantics. This transformation may not be desirable if it
3339   /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
3340   /// extraction in AArch64). By default, it returns true.
3341   ///
3342   /// @param N the shift node
3343   /// @param Level the current DAGCombine legalization level.
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level)3344   virtual bool isDesirableToCommuteWithShift(const SDNode *N,
3345                                              CombineLevel Level) const {
3346     return true;
3347   }
3348 
3349   // Return true if it is profitable to combine a BUILD_VECTOR with a stride-pattern
3350   // to a shuffle and a truncate.
3351   // Example of such a combine:
3352   // v4i32 build_vector((extract_elt V, 1),
3353   //                    (extract_elt V, 3),
3354   //                    (extract_elt V, 5),
3355   //                    (extract_elt V, 7))
3356   //  -->
3357   // v4i32 truncate (bitcast (shuffle<1,u,3,u,5,u,7,u> V, u) to v4i64)
isDesirableToCombineBuildVectorToShuffleTruncate(ArrayRef<int> ShuffleMask,EVT SrcVT,EVT TruncVT)3358   virtual bool isDesirableToCombineBuildVectorToShuffleTruncate(
3359       ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
3360     return false;
3361   }
3362 
3363   /// Return true if the target has native support for the specified value type
3364   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
3365   /// i16 is legal, but undesirable since i16 instruction encodings are longer
3366   /// and some i16 instructions are slow.
isTypeDesirableForOp(unsigned,EVT VT)3367   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
3368     // By default, assume all legal types are desirable.
3369     return isTypeLegal(VT);
3370   }
3371 
3372   /// Return true if it is profitable for dag combiner to transform a floating
3373   /// point op of specified opcode to a equivalent op of an integer
3374   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
isDesirableToTransformToIntegerOp(unsigned,EVT)3375   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
3376                                                  EVT /*VT*/) const {
3377     return false;
3378   }
3379 
3380   /// This method query the target whether it is beneficial for dag combiner to
3381   /// promote the specified node. If true, it should return the desired
3382   /// promotion type by reference.
IsDesirableToPromoteOp(SDValue,EVT &)3383   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
3384     return false;
3385   }
3386 
3387   /// Return true if the target supports swifterror attribute. It optimizes
3388   /// loads and stores to reading and writing a specific register.
supportSwiftError()3389   virtual bool supportSwiftError() const {
3390     return false;
3391   }
3392 
3393   /// Return true if the target supports that a subset of CSRs for the given
3394   /// machine function is handled explicitly via copies.
supportSplitCSR(MachineFunction * MF)3395   virtual bool supportSplitCSR(MachineFunction *MF) const {
3396     return false;
3397   }
3398 
3399   /// Perform necessary initialization to handle a subset of CSRs explicitly
3400   /// via copies. This function is called at the beginning of instruction
3401   /// selection.
initializeSplitCSR(MachineBasicBlock * Entry)3402   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
3403     llvm_unreachable("Not Implemented");
3404   }
3405 
3406   /// Insert explicit copies in entry and exit blocks. We copy a subset of
3407   /// CSRs to virtual registers in the entry block, and copy them back to
3408   /// physical registers in the exit blocks. This function is called at the end
3409   /// of instruction selection.
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits)3410   virtual void insertCopiesSplitCSR(
3411       MachineBasicBlock *Entry,
3412       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
3413     llvm_unreachable("Not Implemented");
3414   }
3415 
3416   /// Return 1 if we can compute the negated form of the specified expression
3417   /// for the same cost as the expression itself, or 2 if we can compute the
3418   /// negated form more cheaply than the expression itself. Else return 0.
3419   virtual char isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
3420                                   bool LegalOperations, bool ForCodeSize,
3421                                   unsigned Depth = 0) const;
3422 
3423   /// If isNegatibleForFree returns true, return the newly negated expression.
3424   virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
3425                                        bool LegalOperations, bool ForCodeSize,
3426                                        unsigned Depth = 0) const;
3427 
3428   //===--------------------------------------------------------------------===//
3429   // Lowering methods - These methods must be implemented by targets so that
3430   // the SelectionDAGBuilder code knows how to lower these.
3431   //
3432 
3433   /// This hook must be implemented to lower the incoming (formal) arguments,
3434   /// described by the Ins array, into the specified DAG. The implementation
3435   /// should fill in the InVals array with legal-type argument values, and
3436   /// return the resulting token chain value.
LowerFormalArguments(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::InputArg> &,const SDLoc &,SelectionDAG &,SmallVectorImpl<SDValue> &)3437   virtual SDValue LowerFormalArguments(
3438       SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
3439       const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
3440       SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
3441     llvm_unreachable("Not Implemented");
3442   }
3443 
3444   /// This structure contains all information that is necessary for lowering
3445   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
3446   /// needs to lower a call, and targets will see this struct in their LowerCall
3447   /// implementation.
3448   struct CallLoweringInfo {
3449     SDValue Chain;
3450     Type *RetTy = nullptr;
3451     bool RetSExt           : 1;
3452     bool RetZExt           : 1;
3453     bool IsVarArg          : 1;
3454     bool IsInReg           : 1;
3455     bool DoesNotReturn     : 1;
3456     bool IsReturnValueUsed : 1;
3457     bool IsConvergent      : 1;
3458     bool IsPatchPoint      : 1;
3459 
3460     // IsTailCall should be modified by implementations of
3461     // TargetLowering::LowerCall that perform tail call conversions.
3462     bool IsTailCall = false;
3463 
3464     // Is Call lowering done post SelectionDAG type legalization.
3465     bool IsPostTypeLegalization = false;
3466 
3467     unsigned NumFixedArgs = -1;
3468     CallingConv::ID CallConv = CallingConv::C;
3469     SDValue Callee;
3470     ArgListTy Args;
3471     SelectionDAG &DAG;
3472     SDLoc DL;
3473     ImmutableCallSite CS;
3474     SmallVector<ISD::OutputArg, 32> Outs;
3475     SmallVector<SDValue, 32> OutVals;
3476     SmallVector<ISD::InputArg, 32> Ins;
3477     SmallVector<SDValue, 4> InVals;
3478 
CallLoweringInfoCallLoweringInfo3479     CallLoweringInfo(SelectionDAG &DAG)
3480         : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
3481           DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
3482           IsPatchPoint(false), DAG(DAG) {}
3483 
setDebugLocCallLoweringInfo3484     CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
3485       DL = dl;
3486       return *this;
3487     }
3488 
setChainCallLoweringInfo3489     CallLoweringInfo &setChain(SDValue InChain) {
3490       Chain = InChain;
3491       return *this;
3492     }
3493 
3494     // setCallee with target/module-specific attributes
setLibCalleeCallLoweringInfo3495     CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
3496                                    SDValue Target, ArgListTy &&ArgsList) {
3497       RetTy = ResultType;
3498       Callee = Target;
3499       CallConv = CC;
3500       NumFixedArgs = ArgsList.size();
3501       Args = std::move(ArgsList);
3502 
3503       DAG.getTargetLoweringInfo().markLibCallAttributes(
3504           &(DAG.getMachineFunction()), CC, Args);
3505       return *this;
3506     }
3507 
setCalleeCallLoweringInfo3508     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
3509                                 SDValue Target, ArgListTy &&ArgsList) {
3510       RetTy = ResultType;
3511       Callee = Target;
3512       CallConv = CC;
3513       NumFixedArgs = ArgsList.size();
3514       Args = std::move(ArgsList);
3515       return *this;
3516     }
3517 
setCalleeCallLoweringInfo3518     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
3519                                 SDValue Target, ArgListTy &&ArgsList,
3520                                 ImmutableCallSite Call) {
3521       RetTy = ResultType;
3522 
3523       IsInReg = Call.hasRetAttr(Attribute::InReg);
3524       DoesNotReturn =
3525           Call.doesNotReturn() ||
3526           (!Call.isInvoke() &&
3527            isa<UnreachableInst>(Call.getInstruction()->getNextNode()));
3528       IsVarArg = FTy->isVarArg();
3529       IsReturnValueUsed = !Call.getInstruction()->use_empty();
3530       RetSExt = Call.hasRetAttr(Attribute::SExt);
3531       RetZExt = Call.hasRetAttr(Attribute::ZExt);
3532 
3533       Callee = Target;
3534 
3535       CallConv = Call.getCallingConv();
3536       NumFixedArgs = FTy->getNumParams();
3537       Args = std::move(ArgsList);
3538 
3539       CS = Call;
3540 
3541       return *this;
3542     }
3543 
3544     CallLoweringInfo &setInRegister(bool Value = true) {
3545       IsInReg = Value;
3546       return *this;
3547     }
3548 
3549     CallLoweringInfo &setNoReturn(bool Value = true) {
3550       DoesNotReturn = Value;
3551       return *this;
3552     }
3553 
3554     CallLoweringInfo &setVarArg(bool Value = true) {
3555       IsVarArg = Value;
3556       return *this;
3557     }
3558 
3559     CallLoweringInfo &setTailCall(bool Value = true) {
3560       IsTailCall = Value;
3561       return *this;
3562     }
3563 
3564     CallLoweringInfo &setDiscardResult(bool Value = true) {
3565       IsReturnValueUsed = !Value;
3566       return *this;
3567     }
3568 
3569     CallLoweringInfo &setConvergent(bool Value = true) {
3570       IsConvergent = Value;
3571       return *this;
3572     }
3573 
3574     CallLoweringInfo &setSExtResult(bool Value = true) {
3575       RetSExt = Value;
3576       return *this;
3577     }
3578 
3579     CallLoweringInfo &setZExtResult(bool Value = true) {
3580       RetZExt = Value;
3581       return *this;
3582     }
3583 
3584     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
3585       IsPatchPoint = Value;
3586       return *this;
3587     }
3588 
3589     CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
3590       IsPostTypeLegalization = Value;
3591       return *this;
3592     }
3593 
getArgsCallLoweringInfo3594     ArgListTy &getArgs() {
3595       return Args;
3596     }
3597   };
3598 
3599   /// This structure is used to pass arguments to makeLibCall function.
3600   struct MakeLibCallOptions {
3601     // By passing type list before soften to makeLibCall, the target hook
3602     // shouldExtendTypeInLibCall can get the original type before soften.
3603     ArrayRef<EVT> OpsVTBeforeSoften;
3604     EVT RetVTBeforeSoften;
3605     bool IsSExt : 1;
3606     bool DoesNotReturn : 1;
3607     bool IsReturnValueUsed : 1;
3608     bool IsPostTypeLegalization : 1;
3609     bool IsSoften : 1;
3610 
MakeLibCallOptionsMakeLibCallOptions3611     MakeLibCallOptions()
3612         : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
3613           IsPostTypeLegalization(false), IsSoften(false) {}
3614 
3615     MakeLibCallOptions &setSExt(bool Value = true) {
3616       IsSExt = Value;
3617       return *this;
3618     }
3619 
3620     MakeLibCallOptions &setNoReturn(bool Value = true) {
3621       DoesNotReturn = Value;
3622       return *this;
3623     }
3624 
3625     MakeLibCallOptions &setDiscardResult(bool Value = true) {
3626       IsReturnValueUsed = !Value;
3627       return *this;
3628     }
3629 
3630     MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
3631       IsPostTypeLegalization = Value;
3632       return *this;
3633     }
3634 
3635     MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
3636                                                 bool Value = true) {
3637       OpsVTBeforeSoften = OpsVT;
3638       RetVTBeforeSoften = RetVT;
3639       IsSoften = Value;
3640       return *this;
3641     }
3642   };
3643 
3644   /// This function lowers an abstract call to a function into an actual call.
3645   /// This returns a pair of operands.  The first element is the return value
3646   /// for the function (if RetTy is not VoidTy).  The second element is the
3647   /// outgoing token chain. It calls LowerCall to do the actual lowering.
3648   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
3649 
3650   /// This hook must be implemented to lower calls into the specified
3651   /// DAG. The outgoing arguments to the call are described by the Outs array,
3652   /// and the values to be returned by the call are described by the Ins
3653   /// array. The implementation should fill in the InVals array with legal-type
3654   /// return values from the call, and return the resulting token chain value.
3655   virtual SDValue
LowerCall(CallLoweringInfo &,SmallVectorImpl<SDValue> &)3656     LowerCall(CallLoweringInfo &/*CLI*/,
3657               SmallVectorImpl<SDValue> &/*InVals*/) const {
3658     llvm_unreachable("Not Implemented");
3659   }
3660 
3661   /// Target-specific cleanup for formal ByVal parameters.
HandleByVal(CCState *,unsigned &,unsigned)3662   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
3663 
3664   /// This hook should be implemented to check whether the return values
3665   /// described by the Outs array can fit into the return registers.  If false
3666   /// is returned, an sret-demotion is performed.
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> &,LLVMContext &)3667   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
3668                               MachineFunction &/*MF*/, bool /*isVarArg*/,
3669                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
3670                LLVMContext &/*Context*/) const
3671   {
3672     // Return true by default to get preexisting behavior.
3673     return true;
3674   }
3675 
3676   /// This hook must be implemented to lower outgoing return values, described
3677   /// by the Outs array, into the specified DAG. The implementation should
3678   /// return the resulting token chain value.
LowerReturn(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::OutputArg> &,const SmallVectorImpl<SDValue> &,const SDLoc &,SelectionDAG &)3679   virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
3680                               bool /*isVarArg*/,
3681                               const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
3682                               const SmallVectorImpl<SDValue> & /*OutVals*/,
3683                               const SDLoc & /*dl*/,
3684                               SelectionDAG & /*DAG*/) const {
3685     llvm_unreachable("Not Implemented");
3686   }
3687 
3688   /// Return true if result of the specified node is used by a return node
3689   /// only. It also compute and return the input chain for the tail call.
3690   ///
3691   /// This is used to determine whether it is possible to codegen a libcall as
3692   /// tail call at legalization time.
isUsedByReturnOnly(SDNode *,SDValue &)3693   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
3694     return false;
3695   }
3696 
3697   /// Return true if the target may be able emit the call instruction as a tail
3698   /// call. This is used by optimization passes to determine if it's profitable
3699   /// to duplicate return instructions to enable tailcall optimization.
mayBeEmittedAsTailCall(const CallInst *)3700   virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
3701     return false;
3702   }
3703 
3704   /// Return the builtin name for the __builtin___clear_cache intrinsic
3705   /// Default is to invoke the clear cache library call
getClearCacheBuiltinName()3706   virtual const char * getClearCacheBuiltinName() const {
3707     return "__clear_cache";
3708   }
3709 
3710   /// Return the register ID of the name passed in. Used by named register
3711   /// global variables extension. There is no target-independent behaviour
3712   /// so the default action is to bail.
getRegisterByName(const char * RegName,LLT Ty,const MachineFunction & MF)3713   virtual Register getRegisterByName(const char* RegName, LLT Ty,
3714                                      const MachineFunction &MF) const {
3715     report_fatal_error("Named registers not implemented for this target");
3716   }
3717 
3718   /// Return the type that should be used to zero or sign extend a
3719   /// zeroext/signext integer return value.  FIXME: Some C calling conventions
3720   /// require the return type to be promoted, but this is not true all the time,
3721   /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
3722   /// conventions. The frontend should handle this and include all of the
3723   /// necessary information.
getTypeForExtReturn(LLVMContext & Context,EVT VT,ISD::NodeType)3724   virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
3725                                        ISD::NodeType /*ExtendKind*/) const {
3726     EVT MinVT = getRegisterType(Context, MVT::i32);
3727     return VT.bitsLT(MinVT) ? MinVT : VT;
3728   }
3729 
3730   /// For some targets, an LLVM struct type must be broken down into multiple
3731   /// simple types, but the calling convention specifies that the entire struct
3732   /// must be passed in a block of consecutive registers.
3733   virtual bool
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)3734   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
3735                                             bool isVarArg) const {
3736     return false;
3737   }
3738 
3739   /// For most targets, an LLVM type must be broken down into multiple
3740   /// smaller types. Usually the halves are ordered according to the endianness
3741   /// but for some platform that would break. So this method will default to
3742   /// matching the endianness but can be overridden.
3743   virtual bool
shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout & DL)3744   shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
3745     return DL.isLittleEndian();
3746   }
3747 
3748   /// Returns a 0 terminated array of registers that can be safely used as
3749   /// scratch registers.
getScratchRegisters(CallingConv::ID CC)3750   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
3751     return nullptr;
3752   }
3753 
3754   /// This callback is used to prepare for a volatile or atomic load.
3755   /// It takes a chain node as input and returns the chain for the load itself.
3756   ///
3757   /// Having a callback like this is necessary for targets like SystemZ,
3758   /// which allows a CPU to reuse the result of a previous load indefinitely,
3759   /// even if a cache-coherent store is performed by another CPU.  The default
3760   /// implementation does nothing.
prepareVolatileOrAtomicLoad(SDValue Chain,const SDLoc & DL,SelectionDAG & DAG)3761   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
3762                                               SelectionDAG &DAG) const {
3763     return Chain;
3764   }
3765 
3766   /// This callback is used to inspect load/store instructions and add
3767   /// target-specific MachineMemOperand flags to them.  The default
3768   /// implementation does nothing.
getMMOFlags(const Instruction & I)3769   virtual MachineMemOperand::Flags getMMOFlags(const Instruction &I) const {
3770     return MachineMemOperand::MONone;
3771   }
3772 
3773   /// Should SelectionDAG lower an atomic store of the given kind as a normal
3774   /// StoreSDNode (as opposed to an AtomicSDNode)?  NOTE: The intention is to
3775   /// eventually migrate all targets to the using StoreSDNodes, but porting is
3776   /// being done target at a time.
lowerAtomicStoreAsStoreSDNode(const StoreInst & SI)3777   virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
3778     assert(SI.isAtomic() && "violated precondition");
3779     return false;
3780   }
3781 
3782   /// Should SelectionDAG lower an atomic load of the given kind as a normal
3783   /// LoadSDNode (as opposed to an AtomicSDNode)?  NOTE: The intention is to
3784   /// eventually migrate all targets to the using LoadSDNodes, but porting is
3785   /// being done target at a time.
lowerAtomicLoadAsLoadSDNode(const LoadInst & LI)3786   virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
3787     assert(LI.isAtomic() && "violated precondition");
3788     return false;
3789   }
3790 
3791 
3792   /// This callback is invoked by the type legalizer to legalize nodes with an
3793   /// illegal operand type but legal result types.  It replaces the
3794   /// LowerOperation callback in the type Legalizer.  The reason we can not do
3795   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
3796   /// use this callback.
3797   ///
3798   /// TODO: Consider merging with ReplaceNodeResults.
3799   ///
3800   /// The target places new result values for the node in Results (their number
3801   /// and types must exactly match those of the original return values of
3802   /// the node), or leaves Results empty, which indicates that the node is not
3803   /// to be custom lowered after all.
3804   /// The default implementation calls LowerOperation.
3805   virtual void LowerOperationWrapper(SDNode *N,
3806                                      SmallVectorImpl<SDValue> &Results,
3807                                      SelectionDAG &DAG) const;
3808 
3809   /// This callback is invoked for operations that are unsupported by the
3810   /// target, which are registered to use 'custom' lowering, and whose defined
3811   /// values are all legal.  If the target has no operations that require custom
3812   /// lowering, it need not implement this.  The default implementation of this
3813   /// aborts.
3814   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
3815 
3816   /// This callback is invoked when a node result type is illegal for the
3817   /// target, and the operation was registered to use 'custom' lowering for that
3818   /// result type.  The target places new result values for the node in Results
3819   /// (their number and types must exactly match those of the original return
3820   /// values of the node), or leaves Results empty, which indicates that the
3821   /// node is not to be custom lowered after all.
3822   ///
3823   /// If the target has no operations that require custom lowering, it need not
3824   /// implement this.  The default implementation aborts.
ReplaceNodeResults(SDNode *,SmallVectorImpl<SDValue> &,SelectionDAG &)3825   virtual void ReplaceNodeResults(SDNode * /*N*/,
3826                                   SmallVectorImpl<SDValue> &/*Results*/,
3827                                   SelectionDAG &/*DAG*/) const {
3828     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
3829   }
3830 
3831   /// This method returns the name of a target specific DAG node.
3832   virtual const char *getTargetNodeName(unsigned Opcode) const;
3833 
3834   /// This method returns a target specific FastISel object, or null if the
3835   /// target does not support "fast" ISel.
createFastISel(FunctionLoweringInfo &,const TargetLibraryInfo *)3836   virtual FastISel *createFastISel(FunctionLoweringInfo &,
3837                                    const TargetLibraryInfo *) const {
3838     return nullptr;
3839   }
3840 
3841   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
3842                                              SelectionDAG &DAG) const;
3843 
3844   //===--------------------------------------------------------------------===//
3845   // Inline Asm Support hooks
3846   //
3847 
3848   /// This hook allows the target to expand an inline asm call to be explicit
3849   /// llvm code if it wants to.  This is useful for turning simple inline asms
3850   /// into LLVM intrinsics, which gives the compiler more information about the
3851   /// behavior of the code.
ExpandInlineAsm(CallInst *)3852   virtual bool ExpandInlineAsm(CallInst *) const {
3853     return false;
3854   }
3855 
3856   enum ConstraintType {
3857     C_Register,            // Constraint represents specific register(s).
3858     C_RegisterClass,       // Constraint represents any of register(s) in class.
3859     C_Memory,              // Memory constraint.
3860     C_Immediate,           // Requires an immediate.
3861     C_Other,               // Something else.
3862     C_Unknown              // Unsupported constraint.
3863   };
3864 
3865   enum ConstraintWeight {
3866     // Generic weights.
3867     CW_Invalid  = -1,     // No match.
3868     CW_Okay     = 0,      // Acceptable.
3869     CW_Good     = 1,      // Good weight.
3870     CW_Better   = 2,      // Better weight.
3871     CW_Best     = 3,      // Best weight.
3872 
3873     // Well-known weights.
3874     CW_SpecificReg  = CW_Okay,    // Specific register operands.
3875     CW_Register     = CW_Good,    // Register operands.
3876     CW_Memory       = CW_Better,  // Memory operands.
3877     CW_Constant     = CW_Best,    // Constant operand.
3878     CW_Default      = CW_Okay     // Default or don't know type.
3879   };
3880 
3881   /// This contains information for each constraint that we are lowering.
3882   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3883     /// This contains the actual string for the code, like "m".  TargetLowering
3884     /// picks the 'best' code from ConstraintInfo::Codes that most closely
3885     /// matches the operand.
3886     std::string ConstraintCode;
3887 
3888     /// Information about the constraint code, e.g. Register, RegisterClass,
3889     /// Memory, Other, Unknown.
3890     TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
3891 
3892     /// If this is the result output operand or a clobber, this is null,
3893     /// otherwise it is the incoming operand to the CallInst.  This gets
3894     /// modified as the asm is processed.
3895     Value *CallOperandVal = nullptr;
3896 
3897     /// The ValueType for the operand value.
3898     MVT ConstraintVT = MVT::Other;
3899 
3900     /// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfoAsmOperandInfo3901     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
3902         : InlineAsm::ConstraintInfo(std::move(Info)) {}
3903 
3904     /// Return true of this is an input operand that is a matching constraint
3905     /// like "4".
3906     bool isMatchingInputConstraint() const;
3907 
3908     /// If this is an input matching constraint, this method returns the output
3909     /// operand it matches.
3910     unsigned getMatchedOperand() const;
3911   };
3912 
3913   using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
3914 
3915   /// Split up the constraint string from the inline assembly value into the
3916   /// specific constraints and their prefixes, and also tie in the associated
3917   /// operand values.  If this returns an empty vector, and if the constraint
3918   /// string itself isn't empty, there was an error parsing.
3919   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
3920                                                 const TargetRegisterInfo *TRI,
3921                                                 ImmutableCallSite CS) const;
3922 
3923   /// Examine constraint type and operand type and determine a weight value.
3924   /// The operand object must already have been set up with the operand type.
3925   virtual ConstraintWeight getMultipleConstraintMatchWeight(
3926       AsmOperandInfo &info, int maIndex) const;
3927 
3928   /// Examine constraint string and operand type and determine a weight value.
3929   /// The operand object must already have been set up with the operand type.
3930   virtual ConstraintWeight getSingleConstraintMatchWeight(
3931       AsmOperandInfo &info, const char *constraint) const;
3932 
3933   /// Determines the constraint code and constraint type to use for the specific
3934   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3935   /// If the actual operand being passed in is available, it can be passed in as
3936   /// Op, otherwise an empty SDValue can be passed.
3937   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3938                                       SDValue Op,
3939                                       SelectionDAG *DAG = nullptr) const;
3940 
3941   /// Given a constraint, return the type of constraint it is for this target.
3942   virtual ConstraintType getConstraintType(StringRef Constraint) const;
3943 
3944   /// Given a physical register constraint (e.g.  {edx}), return the register
3945   /// number and the register class for the register.
3946   ///
3947   /// Given a register class constraint, like 'r', if this corresponds directly
3948   /// to an LLVM register class, return a register of 0 and the register class
3949   /// pointer.
3950   ///
3951   /// This should only be used for C_Register constraints.  On error, this
3952   /// returns a register number of 0 and a null register class pointer.
3953   virtual std::pair<unsigned, const TargetRegisterClass *>
3954   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3955                                StringRef Constraint, MVT VT) const;
3956 
getInlineAsmMemConstraint(StringRef ConstraintCode)3957   virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
3958     if (ConstraintCode == "m")
3959       return InlineAsm::Constraint_m;
3960     return InlineAsm::Constraint_Unknown;
3961   }
3962 
3963   /// Try to replace an X constraint, which matches anything, with another that
3964   /// has more specific requirements based on the type of the corresponding
3965   /// operand.  This returns null if there is no replacement to make.
3966   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
3967 
3968   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
3969   /// add anything to Ops.
3970   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
3971                                             std::vector<SDValue> &Ops,
3972                                             SelectionDAG &DAG) const;
3973 
3974   // Lower custom output constraints. If invalid, return SDValue().
3975   virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
3976                                               SDLoc DL,
3977                                               const AsmOperandInfo &OpInfo,
3978                                               SelectionDAG &DAG) const;
3979 
3980   //===--------------------------------------------------------------------===//
3981   // Div utility functions
3982   //
3983   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3984                     SmallVectorImpl<SDNode *> &Created) const;
3985   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3986                     SmallVectorImpl<SDNode *> &Created) const;
3987 
3988   /// Targets may override this function to provide custom SDIV lowering for
3989   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
3990   /// assumes SDIV is expensive and replaces it with a series of other integer
3991   /// operations.
3992   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3993                                 SelectionDAG &DAG,
3994                                 SmallVectorImpl<SDNode *> &Created) const;
3995 
3996   /// Indicate whether this target prefers to combine FDIVs with the same
3997   /// divisor. If the transform should never be done, return zero. If the
3998   /// transform should be done, return the minimum number of divisor uses
3999   /// that must exist.
combineRepeatedFPDivisors()4000   virtual unsigned combineRepeatedFPDivisors() const {
4001     return 0;
4002   }
4003 
4004   /// Hooks for building estimates in place of slower divisions and square
4005   /// roots.
4006 
4007   /// Return either a square root or its reciprocal estimate value for the input
4008   /// operand.
4009   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4010   /// 'Enabled' as set by a potential default override attribute.
4011   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4012   /// refinement iterations required to generate a sufficient (though not
4013   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4014   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
4015   /// algorithm implementation that uses either one or two constants.
4016   /// The boolean Reciprocal is used to select whether the estimate is for the
4017   /// square root of the input operand or the reciprocal of its square root.
4018   /// A target may choose to implement its own refinement within this function.
4019   /// If that's true, then return '0' as the number of RefinementSteps to avoid
4020   /// any further refinement of the estimate.
4021   /// An empty SDValue return means no estimate sequence can be created.
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal)4022   virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
4023                                   int Enabled, int &RefinementSteps,
4024                                   bool &UseOneConstNR, bool Reciprocal) const {
4025     return SDValue();
4026   }
4027 
4028   /// Return a reciprocal estimate value for the input operand.
4029   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4030   /// 'Enabled' as set by a potential default override attribute.
4031   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4032   /// refinement iterations required to generate a sufficient (though not
4033   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4034   /// A target may choose to implement its own refinement within this function.
4035   /// If that's true, then return '0' as the number of RefinementSteps to avoid
4036   /// any further refinement of the estimate.
4037   /// An empty SDValue return means no estimate sequence can be created.
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps)4038   virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
4039                                    int Enabled, int &RefinementSteps) const {
4040     return SDValue();
4041   }
4042 
4043   //===--------------------------------------------------------------------===//
4044   // Legalization utility functions
4045   //
4046 
4047   /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
4048   /// respectively, each computing an n/2-bit part of the result.
4049   /// \param Result A vector that will be filled with the parts of the result
4050   ///        in little-endian order.
4051   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
4052   ///        if you want to control how low bits are extracted from the LHS.
4053   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
4054   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
4055   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
4056   /// \returns true if the node has been expanded, false if it has not
4057   bool expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, SDValue LHS,
4058                       SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
4059                       SelectionDAG &DAG, MulExpansionKind Kind,
4060                       SDValue LL = SDValue(), SDValue LH = SDValue(),
4061                       SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4062 
4063   /// Expand a MUL into two nodes.  One that computes the high bits of
4064   /// the result and one that computes the low bits.
4065   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
4066   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
4067   ///        if you want to control how low bits are extracted from the LHS.
4068   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
4069   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
4070   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
4071   /// \returns true if the node has been expanded. false if it has not
4072   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4073                  SelectionDAG &DAG, MulExpansionKind Kind,
4074                  SDValue LL = SDValue(), SDValue LH = SDValue(),
4075                  SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4076 
4077   /// Expand funnel shift.
4078   /// \param N Node to expand
4079   /// \param Result output after conversion
4080   /// \returns True, if the expansion was successful, false otherwise
4081   bool expandFunnelShift(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4082 
4083   /// Expand rotations.
4084   /// \param N Node to expand
4085   /// \param Result output after conversion
4086   /// \returns True, if the expansion was successful, false otherwise
4087   bool expandROT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4088 
4089   /// Expand float(f32) to SINT(i64) conversion
4090   /// \param N Node to expand
4091   /// \param Result output after conversion
4092   /// \returns True, if the expansion was successful, false otherwise
4093   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4094 
4095   /// Expand float to UINT conversion
4096   /// \param N Node to expand
4097   /// \param Result output after conversion
4098   /// \param Chain output chain after conversion
4099   /// \returns True, if the expansion was successful, false otherwise
4100   bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
4101                         SelectionDAG &DAG) const;
4102 
4103   /// Expand UINT(i64) to double(f64) conversion
4104   /// \param N Node to expand
4105   /// \param Result output after conversion
4106   /// \param Chain output chain after conversion
4107   /// \returns True, if the expansion was successful, false otherwise
4108   bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
4109                         SelectionDAG &DAG) const;
4110 
4111   /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
4112   SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
4113 
4114   /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
4115   /// vector nodes can only succeed if all operations are legal/custom.
4116   /// \param N Node to expand
4117   /// \param Result output after conversion
4118   /// \returns True, if the expansion was successful, false otherwise
4119   bool expandCTPOP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4120 
4121   /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
4122   /// vector nodes can only succeed if all operations are legal/custom.
4123   /// \param N Node to expand
4124   /// \param Result output after conversion
4125   /// \returns True, if the expansion was successful, false otherwise
4126   bool expandCTLZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4127 
4128   /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
4129   /// vector nodes can only succeed if all operations are legal/custom.
4130   /// \param N Node to expand
4131   /// \param Result output after conversion
4132   /// \returns True, if the expansion was successful, false otherwise
4133   bool expandCTTZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4134 
4135   /// Expand ABS nodes. Expands vector/scalar ABS nodes,
4136   /// vector nodes can only succeed if all operations are legal/custom.
4137   /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
4138   /// \param N Node to expand
4139   /// \param Result output after conversion
4140   /// \returns True, if the expansion was successful, false otherwise
4141   bool expandABS(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4142 
4143   /// Turn load of vector type into a load of the individual elements.
4144   /// \param LD load to expand
4145   /// \returns BUILD_VECTOR and TokenFactor nodes.
4146   std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
4147                                                   SelectionDAG &DAG) const;
4148 
4149   // Turn a store of a vector type into stores of the individual elements.
4150   /// \param ST Store with a vector value type
4151   /// \returns TokenFactor of the individual store chains.
4152   SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4153 
4154   /// Expands an unaligned load to 2 half-size loads for an integer, and
4155   /// possibly more for vectors.
4156   std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
4157                                                   SelectionDAG &DAG) const;
4158 
4159   /// Expands an unaligned store to 2 half-size stores for integer values, and
4160   /// possibly more for vectors.
4161   SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4162 
4163   /// Increments memory address \p Addr according to the type of the value
4164   /// \p DataVT that should be stored. If the data is stored in compressed
4165   /// form, the memory address should be incremented according to the number of
4166   /// the stored elements. This number is equal to the number of '1's bits
4167   /// in the \p Mask.
4168   /// \p DataVT is a vector type. \p Mask is a vector value.
4169   /// \p DataVT and \p Mask have the same number of vector elements.
4170   SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
4171                                  EVT DataVT, SelectionDAG &DAG,
4172                                  bool IsCompressedMemory) const;
4173 
4174   /// Get a pointer to vector element \p Idx located in memory for a vector of
4175   /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
4176   /// bounds the returned pointer is unspecified, but will be within the vector
4177   /// bounds.
4178   SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
4179                                   SDValue Index) const;
4180 
4181   /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
4182   /// method accepts integers as its arguments.
4183   SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
4184 
4185   /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
4186   /// method accepts integers as its arguments.
4187   SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
4188 
4189   /// Method for building the DAG expansion of ISD::[US]DIVFIX. This
4190   /// method accepts integers as its arguments.
4191   /// Note: This method may fail if the division could not be performed
4192   /// within the type. Clients must retry with a wider type if this happens.
4193   SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
4194                               SDValue LHS, SDValue RHS,
4195                               unsigned Scale, SelectionDAG &DAG) const;
4196 
4197   /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
4198   /// always suceeds and populates the Result and Overflow arguments.
4199   void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4200                       SelectionDAG &DAG) const;
4201 
4202   /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
4203   /// always suceeds and populates the Result and Overflow arguments.
4204   void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4205                       SelectionDAG &DAG) const;
4206 
4207   /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
4208   /// expansion was successful and populates the Result and Overflow arguments.
4209   bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4210                   SelectionDAG &DAG) const;
4211 
4212   /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
4213   /// only the first Count elements of the vector are used.
4214   SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
4215 
4216   //===--------------------------------------------------------------------===//
4217   // Instruction Emitting Hooks
4218   //
4219 
4220   /// This method should be implemented by targets that mark instructions with
4221   /// the 'usesCustomInserter' flag.  These instructions are special in various
4222   /// ways, which require special support to insert.  The specified MachineInstr
4223   /// is created but not inserted into any basic blocks, and this method is
4224   /// called to expand it into a sequence of instructions, potentially also
4225   /// creating new basic blocks and control flow.
4226   /// As long as the returned basic block is different (i.e., we created a new
4227   /// one), the custom inserter is free to modify the rest of \p MBB.
4228   virtual MachineBasicBlock *
4229   EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
4230 
4231   /// This method should be implemented by targets that mark instructions with
4232   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
4233   /// instruction selection by target hooks.  e.g. To fill in optional defs for
4234   /// ARM 's' setting instructions.
4235   virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
4236                                              SDNode *Node) const;
4237 
4238   /// If this function returns true, SelectionDAGBuilder emits a
4239   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
useLoadStackGuardNode()4240   virtual bool useLoadStackGuardNode() const {
4241     return false;
4242   }
4243 
emitStackGuardXorFP(SelectionDAG & DAG,SDValue Val,const SDLoc & DL)4244   virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
4245                                       const SDLoc &DL) const {
4246     llvm_unreachable("not implemented for this target");
4247   }
4248 
4249   /// Lower TLS global address SDNode for target independent emulated TLS model.
4250   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4251                                           SelectionDAG &DAG) const;
4252 
4253   /// Expands target specific indirect branch for the case of JumpTable
4254   /// expanasion.
expandIndirectJTBranch(const SDLoc & dl,SDValue Value,SDValue Addr,SelectionDAG & DAG)4255   virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
4256                                          SelectionDAG &DAG) const {
4257     return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
4258   }
4259 
4260   // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
4261   // If we're comparing for equality to zero and isCtlzFast is true, expose the
4262   // fact that this can be implemented as a ctlz/srl pair, so that the dag
4263   // combiner can fold the new nodes.
4264   SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
4265 
4266 private:
4267   SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4268                            const SDLoc &DL, DAGCombinerInfo &DCI) const;
4269   SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4270                              const SDLoc &DL, DAGCombinerInfo &DCI) const;
4271 
4272   SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
4273                                                SDValue N1, ISD::CondCode Cond,
4274                                                DAGCombinerInfo &DCI,
4275                                                const SDLoc &DL) const;
4276 
4277   // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4278   SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
4279       EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4280       DAGCombinerInfo &DCI, const SDLoc &DL) const;
4281 
4282   SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4283                             SDValue CompTargetNode, ISD::CondCode Cond,
4284                             DAGCombinerInfo &DCI, const SDLoc &DL,
4285                             SmallVectorImpl<SDNode *> &Created) const;
4286   SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4287                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
4288                           const SDLoc &DL) const;
4289 
4290   SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
4291                             SDValue CompTargetNode, ISD::CondCode Cond,
4292                             DAGCombinerInfo &DCI, const SDLoc &DL,
4293                             SmallVectorImpl<SDNode *> &Created) const;
4294   SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4295                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
4296                           const SDLoc &DL) const;
4297 };
4298 
4299 /// Given an LLVM IR type and return type attributes, compute the return value
4300 /// EVTs and flags, and optionally also the offsets, if the return value is
4301 /// being lowered to memory.
4302 void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
4303                    SmallVectorImpl<ISD::OutputArg> &Outs,
4304                    const TargetLowering &TLI, const DataLayout &DL);
4305 
4306 } // end namespace llvm
4307 
4308 #endif // LLVM_CODEGEN_TARGETLOWERING_H
4309