• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 namespace llvm {
25 
26 namespace X86 {
27   // Enums for memory operand decoding.  Each memory operand is represented with
28   // a 5 operand sequence in the form:
29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30   // These enums help decode this.
31   enum {
32     AddrBaseReg = 0,
33     AddrScaleAmt = 1,
34     AddrIndexReg = 2,
35     AddrDisp = 3,
36 
37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
38     AddrSegmentReg = 4,
39 
40     /// AddrNumOperands - Total number of operands in a memory reference.
41     AddrNumOperands = 5
42   };
43 
44   /// AVX512 static rounding constants.  These need to match the values in
45   /// avx512fintrin.h.
46   enum STATIC_ROUNDING {
47     TO_NEAREST_INT = 0,
48     TO_NEG_INF = 1,
49     TO_POS_INF = 2,
50     TO_ZERO = 3,
51     CUR_DIRECTION = 4,
52     NO_EXC = 8
53   };
54 
55   /// The constants to describe instr prefixes if there are
56   enum IPREFIXES {
57     IP_NO_PREFIX = 0,
58     IP_HAS_OP_SIZE = 1,
59     IP_HAS_AD_SIZE = 2,
60     IP_HAS_REPEAT_NE = 4,
61     IP_HAS_REPEAT = 8,
62     IP_HAS_LOCK = 16,
63     IP_HAS_NOTRACK = 32,
64     IP_USE_VEX3 = 64,
65   };
66 
67   enum OperandType : unsigned {
68     /// AVX512 embedded rounding control. This should only have values 0-3.
69     OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
70     OPERAND_COND_CODE,
71   };
72 
73   // X86 specific condition code. These correspond to X86_*_COND in
74   // X86InstrInfo.td. They must be kept in synch.
75   enum CondCode {
76     COND_O = 0,
77     COND_NO = 1,
78     COND_B = 2,
79     COND_AE = 3,
80     COND_E = 4,
81     COND_NE = 5,
82     COND_BE = 6,
83     COND_A = 7,
84     COND_S = 8,
85     COND_NS = 9,
86     COND_P = 10,
87     COND_NP = 11,
88     COND_L = 12,
89     COND_GE = 13,
90     COND_LE = 14,
91     COND_G = 15,
92     LAST_VALID_COND = COND_G,
93 
94     // Artificial condition codes. These are used by AnalyzeBranch
95     // to indicate a block terminated with two conditional branches that together
96     // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
97     // which can't be represented on x86 with a single condition. These
98     // are never used in MachineInstrs and are inverses of one another.
99     COND_NE_OR_P,
100     COND_E_AND_NP,
101 
102     COND_INVALID
103   };
104 
105   // The classification for the first instruction in macro fusion.
106   enum class FirstMacroFusionInstKind {
107     // TEST
108     Test,
109     // CMP
110     Cmp,
111     // AND
112     And,
113     // ADD, SUB
114     AddSub,
115     // INC, DEC
116     IncDec,
117     // Not valid as a first macro fusion instruction
118     Invalid
119   };
120 
121   enum class SecondMacroFusionInstKind {
122     // JA, JB and variants.
123     AB,
124     // JE, JL, JG and variants.
125     ELG,
126     // JS, JP, JO and variants
127     SPO,
128     // Not a fusible jump.
129     Invalid,
130   };
131 
132   /// \returns the type of the first instruction in macro-fusion.
133   inline FirstMacroFusionInstKind
classifyFirstOpcodeInMacroFusion(unsigned Opcode)134   classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
135     switch (Opcode) {
136     default:
137       return FirstMacroFusionInstKind::Invalid;
138     // TEST
139     case X86::TEST16i16:
140     case X86::TEST16mr:
141     case X86::TEST16ri:
142     case X86::TEST16rr:
143     case X86::TEST32i32:
144     case X86::TEST32mr:
145     case X86::TEST32ri:
146     case X86::TEST32rr:
147     case X86::TEST64i32:
148     case X86::TEST64mr:
149     case X86::TEST64ri32:
150     case X86::TEST64rr:
151     case X86::TEST8i8:
152     case X86::TEST8mr:
153     case X86::TEST8ri:
154     case X86::TEST8rr:
155       return FirstMacroFusionInstKind::Test;
156     case X86::AND16i16:
157     case X86::AND16ri:
158     case X86::AND16ri8:
159     case X86::AND16rm:
160     case X86::AND16rr:
161     case X86::AND16rr_REV:
162     case X86::AND32i32:
163     case X86::AND32ri:
164     case X86::AND32ri8:
165     case X86::AND32rm:
166     case X86::AND32rr:
167     case X86::AND32rr_REV:
168     case X86::AND64i32:
169     case X86::AND64ri32:
170     case X86::AND64ri8:
171     case X86::AND64rm:
172     case X86::AND64rr:
173     case X86::AND64rr_REV:
174     case X86::AND8i8:
175     case X86::AND8ri:
176     case X86::AND8ri8:
177     case X86::AND8rm:
178     case X86::AND8rr:
179     case X86::AND8rr_REV:
180       return FirstMacroFusionInstKind::And;
181     // CMP
182     case X86::CMP16i16:
183     case X86::CMP16mr:
184     case X86::CMP16ri:
185     case X86::CMP16ri8:
186     case X86::CMP16rm:
187     case X86::CMP16rr:
188     case X86::CMP16rr_REV:
189     case X86::CMP32i32:
190     case X86::CMP32mr:
191     case X86::CMP32ri:
192     case X86::CMP32ri8:
193     case X86::CMP32rm:
194     case X86::CMP32rr:
195     case X86::CMP32rr_REV:
196     case X86::CMP64i32:
197     case X86::CMP64mr:
198     case X86::CMP64ri32:
199     case X86::CMP64ri8:
200     case X86::CMP64rm:
201     case X86::CMP64rr:
202     case X86::CMP64rr_REV:
203     case X86::CMP8i8:
204     case X86::CMP8mr:
205     case X86::CMP8ri:
206     case X86::CMP8ri8:
207     case X86::CMP8rm:
208     case X86::CMP8rr:
209     case X86::CMP8rr_REV:
210       return FirstMacroFusionInstKind::Cmp;
211     // ADD
212     case X86::ADD16i16:
213     case X86::ADD16ri:
214     case X86::ADD16ri8:
215     case X86::ADD16rm:
216     case X86::ADD16rr:
217     case X86::ADD16rr_REV:
218     case X86::ADD32i32:
219     case X86::ADD32ri:
220     case X86::ADD32ri8:
221     case X86::ADD32rm:
222     case X86::ADD32rr:
223     case X86::ADD32rr_REV:
224     case X86::ADD64i32:
225     case X86::ADD64ri32:
226     case X86::ADD64ri8:
227     case X86::ADD64rm:
228     case X86::ADD64rr:
229     case X86::ADD64rr_REV:
230     case X86::ADD8i8:
231     case X86::ADD8ri:
232     case X86::ADD8ri8:
233     case X86::ADD8rm:
234     case X86::ADD8rr:
235     case X86::ADD8rr_REV:
236     // SUB
237     case X86::SUB16i16:
238     case X86::SUB16ri:
239     case X86::SUB16ri8:
240     case X86::SUB16rm:
241     case X86::SUB16rr:
242     case X86::SUB16rr_REV:
243     case X86::SUB32i32:
244     case X86::SUB32ri:
245     case X86::SUB32ri8:
246     case X86::SUB32rm:
247     case X86::SUB32rr:
248     case X86::SUB32rr_REV:
249     case X86::SUB64i32:
250     case X86::SUB64ri32:
251     case X86::SUB64ri8:
252     case X86::SUB64rm:
253     case X86::SUB64rr:
254     case X86::SUB64rr_REV:
255     case X86::SUB8i8:
256     case X86::SUB8ri:
257     case X86::SUB8ri8:
258     case X86::SUB8rm:
259     case X86::SUB8rr:
260     case X86::SUB8rr_REV:
261       return FirstMacroFusionInstKind::AddSub;
262     // INC
263     case X86::INC16r:
264     case X86::INC16r_alt:
265     case X86::INC32r:
266     case X86::INC32r_alt:
267     case X86::INC64r:
268     case X86::INC8r:
269     // DEC
270     case X86::DEC16r:
271     case X86::DEC16r_alt:
272     case X86::DEC32r:
273     case X86::DEC32r_alt:
274     case X86::DEC64r:
275     case X86::DEC8r:
276       return FirstMacroFusionInstKind::IncDec;
277     }
278   }
279 
280   /// \returns the type of the second instruction in macro-fusion.
281   inline SecondMacroFusionInstKind
classifySecondCondCodeInMacroFusion(X86::CondCode CC)282   classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
283     if (CC == X86::COND_INVALID)
284       return SecondMacroFusionInstKind::Invalid;
285 
286     switch (CC) {
287     default:
288       return SecondMacroFusionInstKind::Invalid;
289     // JE,JZ
290     case X86::COND_E:
291     // JNE,JNZ
292     case X86::COND_NE:
293     // JL,JNGE
294     case X86::COND_L:
295     // JLE,JNG
296     case X86::COND_LE:
297     // JG,JNLE
298     case X86::COND_G:
299     // JGE,JNL
300     case X86::COND_GE:
301       return SecondMacroFusionInstKind::ELG;
302     // JB,JC
303     case X86::COND_B:
304     // JNA,JBE
305     case X86::COND_BE:
306     // JA,JNBE
307     case X86::COND_A:
308     // JAE,JNC,JNB
309     case X86::COND_AE:
310       return SecondMacroFusionInstKind::AB;
311     // JS
312     case X86::COND_S:
313     // JNS
314     case X86::COND_NS:
315     // JP,JPE
316     case X86::COND_P:
317     // JNP,JPO
318     case X86::COND_NP:
319     // JO
320     case X86::COND_O:
321     // JNO
322     case X86::COND_NO:
323       return SecondMacroFusionInstKind::SPO;
324     }
325   }
326 
327   /// \param FirstKind kind of the first instruction in macro fusion.
328   /// \param SecondKind kind of the second instruction in macro fusion.
329   ///
330   /// \returns true if the two instruction can be macro fused.
isMacroFused(FirstMacroFusionInstKind FirstKind,SecondMacroFusionInstKind SecondKind)331   inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
332                            SecondMacroFusionInstKind SecondKind) {
333     switch (FirstKind) {
334     case X86::FirstMacroFusionInstKind::Test:
335     case X86::FirstMacroFusionInstKind::And:
336       return true;
337     case X86::FirstMacroFusionInstKind::Cmp:
338     case X86::FirstMacroFusionInstKind::AddSub:
339       return SecondKind == X86::SecondMacroFusionInstKind::AB ||
340              SecondKind == X86::SecondMacroFusionInstKind::ELG;
341     case X86::FirstMacroFusionInstKind::IncDec:
342       return SecondKind == X86::SecondMacroFusionInstKind::ELG;
343     case X86::FirstMacroFusionInstKind::Invalid:
344       return false;
345     }
346     llvm_unreachable("unknown fusion type");
347   }
348 
349   /// Defines the possible values of the branch boundary alignment mask.
350   enum AlignBranchBoundaryKind : uint8_t {
351     AlignBranchNone = 0,
352     AlignBranchFused = 1U << 0,
353     AlignBranchJcc = 1U << 1,
354     AlignBranchJmp = 1U << 2,
355     AlignBranchCall = 1U << 3,
356     AlignBranchRet = 1U << 4,
357     AlignBranchIndirect = 1U << 5
358   };
359 } // end namespace X86;
360 
361 /// X86II - This namespace holds all of the target specific flags that
362 /// instruction info tracks.
363 ///
364 namespace X86II {
365   /// Target Operand Flag enum.
366   enum TOF {
367     //===------------------------------------------------------------------===//
368     // X86 Specific MachineOperand flags.
369 
370     MO_NO_FLAG,
371 
372     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
373     /// relocation of:
374     ///    SYMBOL_LABEL + [. - PICBASELABEL]
375     MO_GOT_ABSOLUTE_ADDRESS,
376 
377     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
378     /// immediate should get the value of the symbol minus the PIC base label:
379     ///    SYMBOL_LABEL - PICBASELABEL
380     MO_PIC_BASE_OFFSET,
381 
382     /// MO_GOT - On a symbol operand this indicates that the immediate is the
383     /// offset to the GOT entry for the symbol name from the base of the GOT.
384     ///
385     /// See the X86-64 ELF ABI supplement for more details.
386     ///    SYMBOL_LABEL @GOT
387     MO_GOT,
388 
389     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
390     /// the offset to the location of the symbol name from the base of the GOT.
391     ///
392     /// See the X86-64 ELF ABI supplement for more details.
393     ///    SYMBOL_LABEL @GOTOFF
394     MO_GOTOFF,
395 
396     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
397     /// offset to the GOT entry for the symbol name from the current code
398     /// location.
399     ///
400     /// See the X86-64 ELF ABI supplement for more details.
401     ///    SYMBOL_LABEL @GOTPCREL
402     MO_GOTPCREL,
403 
404     /// MO_PLT - On a symbol operand this indicates that the immediate is
405     /// offset to the PLT entry of symbol name from the current code location.
406     ///
407     /// See the X86-64 ELF ABI supplement for more details.
408     ///    SYMBOL_LABEL @PLT
409     MO_PLT,
410 
411     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
412     /// the offset of the GOT entry with the TLS index structure that contains
413     /// the module number and variable offset for the symbol. Used in the
414     /// general dynamic TLS access model.
415     ///
416     /// See 'ELF Handling for Thread-Local Storage' for more details.
417     ///    SYMBOL_LABEL @TLSGD
418     MO_TLSGD,
419 
420     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
421     /// the offset of the GOT entry with the TLS index for the module that
422     /// contains the symbol. When this index is passed to a call to
423     /// __tls_get_addr, the function will return the base address of the TLS
424     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
425     ///
426     /// See 'ELF Handling for Thread-Local Storage' for more details.
427     ///    SYMBOL_LABEL @TLSLD
428     MO_TLSLD,
429 
430     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
431     /// the offset of the GOT entry with the TLS index for the module that
432     /// contains the symbol. When this index is passed to a call to
433     /// ___tls_get_addr, the function will return the base address of the TLS
434     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
435     ///
436     /// See 'ELF Handling for Thread-Local Storage' for more details.
437     ///    SYMBOL_LABEL @TLSLDM
438     MO_TLSLDM,
439 
440     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
441     /// the offset of the GOT entry with the thread-pointer offset for the
442     /// symbol. Used in the x86-64 initial exec TLS access model.
443     ///
444     /// See 'ELF Handling for Thread-Local Storage' for more details.
445     ///    SYMBOL_LABEL @GOTTPOFF
446     MO_GOTTPOFF,
447 
448     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
449     /// the absolute address of the GOT entry with the negative thread-pointer
450     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
451     /// model.
452     ///
453     /// See 'ELF Handling for Thread-Local Storage' for more details.
454     ///    SYMBOL_LABEL @INDNTPOFF
455     MO_INDNTPOFF,
456 
457     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
458     /// the thread-pointer offset for the symbol. Used in the x86-64 local
459     /// exec TLS access model.
460     ///
461     /// See 'ELF Handling for Thread-Local Storage' for more details.
462     ///    SYMBOL_LABEL @TPOFF
463     MO_TPOFF,
464 
465     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
466     /// the offset of the GOT entry with the TLS offset of the symbol. Used
467     /// in the local dynamic TLS access model.
468     ///
469     /// See 'ELF Handling for Thread-Local Storage' for more details.
470     ///    SYMBOL_LABEL @DTPOFF
471     MO_DTPOFF,
472 
473     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
474     /// the negative thread-pointer offset for the symbol. Used in the IA32
475     /// local exec TLS access model.
476     ///
477     /// See 'ELF Handling for Thread-Local Storage' for more details.
478     ///    SYMBOL_LABEL @NTPOFF
479     MO_NTPOFF,
480 
481     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
482     /// the offset of the GOT entry with the negative thread-pointer offset for
483     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
484     ///
485     /// See 'ELF Handling for Thread-Local Storage' for more details.
486     ///    SYMBOL_LABEL @GOTNTPOFF
487     MO_GOTNTPOFF,
488 
489     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
490     /// reference is actually to the "__imp_FOO" symbol.  This is used for
491     /// dllimport linkage on windows.
492     MO_DLLIMPORT,
493 
494     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
495     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
496     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
497     MO_DARWIN_NONLAZY,
498 
499     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
500     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
501     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
502     MO_DARWIN_NONLAZY_PIC_BASE,
503 
504     /// MO_TLVP - On a symbol operand this indicates that the immediate is
505     /// some TLS offset.
506     ///
507     /// This is the TLS offset for the Darwin TLS mechanism.
508     MO_TLVP,
509 
510     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
511     /// is some TLS offset from the picbase.
512     ///
513     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
514     MO_TLVP_PIC_BASE,
515 
516     /// MO_SECREL - On a symbol operand this indicates that the immediate is
517     /// the offset from beginning of section.
518     ///
519     /// This is the TLS offset for the COFF/Windows TLS mechanism.
520     MO_SECREL,
521 
522     /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
523     /// to be an absolute symbol in range [0,128), so we can use the @ABS8
524     /// symbol modifier.
525     MO_ABS8,
526 
527     /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
528     /// reference is actually to the ".refptr.FOO" symbol.  This is used for
529     /// stub symbols on windows.
530     MO_COFFSTUB,
531   };
532 
533   enum : uint64_t {
534     //===------------------------------------------------------------------===//
535     // Instruction encodings.  These are the standard/most common forms for X86
536     // instructions.
537     //
538 
539     // PseudoFrm - This represents an instruction that is a pseudo instruction
540     // or one that has not been implemented yet.  It is illegal to code generate
541     // it, but tolerated for intermediate implementation stages.
542     Pseudo         = 0,
543 
544     /// Raw - This form is for instructions that don't have any operands, so
545     /// they are just a fixed opcode value, like 'leave'.
546     RawFrm         = 1,
547 
548     /// AddRegFrm - This form is used for instructions like 'push r32' that have
549     /// their one register operand added to their opcode.
550     AddRegFrm      = 2,
551 
552     /// RawFrmMemOffs - This form is for instructions that store an absolute
553     /// memory offset as an immediate with a possible segment override.
554     RawFrmMemOffs  = 3,
555 
556     /// RawFrmSrc - This form is for instructions that use the source index
557     /// register SI/ESI/RSI with a possible segment override.
558     RawFrmSrc      = 4,
559 
560     /// RawFrmDst - This form is for instructions that use the destination index
561     /// register DI/EDI/RDI.
562     RawFrmDst      = 5,
563 
564     /// RawFrmDstSrc - This form is for instructions that use the source index
565     /// register SI/ESI/RSI with a possible segment override, and also the
566     /// destination index register DI/EDI/RDI.
567     RawFrmDstSrc   = 6,
568 
569     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
570     /// immediates, the first of which is a 16-bit immediate (specified by
571     /// the imm encoding) and the second is a 8-bit fixed value.
572     RawFrmImm8 = 7,
573 
574     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
575     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
576     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
577     /// manual, this operand is described as pntr16:32 and pntr16:16
578     RawFrmImm16 = 8,
579 
580     /// AddCCFrm - This form is used for Jcc that encode the condition code
581     /// in the lower 4 bits of the opcode.
582     AddCCFrm = 9,
583 
584     /// MRM[0-7][rm] - These forms are used to represent instructions that use
585     /// a Mod/RM byte, and use the middle field to hold extended opcode
586     /// information.  In the intel manual these are represented as /0, /1, ...
587     ///
588 
589     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
590     /// to specify a destination, which in this case is memory.
591     ///
592     MRMDestMem     = 32,
593 
594     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
595     /// to specify a source, which in this case is memory.
596     ///
597     MRMSrcMem      = 33,
598 
599     /// MRMSrcMem4VOp3 - This form is used for instructions that encode
600     /// operand 3 with VEX.VVVV and load from memory.
601     ///
602     MRMSrcMem4VOp3 = 34,
603 
604     /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
605     /// byte to specify the fourth source, which in this case is memory.
606     ///
607     MRMSrcMemOp4   = 35,
608 
609     /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
610     /// byte to specify the operands and also encodes a condition code.
611     ///
612     MRMSrcMemCC    = 36,
613 
614     /// MRMXm - This form is used for instructions that use the Mod/RM byte
615     /// to specify a memory source, but doesn't use the middle field. And has
616     /// a condition code.
617     ///
618     MRMXmCC = 38,
619 
620     /// MRMXm - This form is used for instructions that use the Mod/RM byte
621     /// to specify a memory source, but doesn't use the middle field.
622     ///
623     MRMXm = 39,
624 
625     // Next, instructions that operate on a memory r/m operand...
626     MRM0m = 40,  MRM1m = 41,  MRM2m = 42,  MRM3m = 43, // Format /0 /1 /2 /3
627     MRM4m = 44,  MRM5m = 45,  MRM6m = 46,  MRM7m = 47, // Format /4 /5 /6 /7
628 
629     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
630     /// to specify a destination, which in this case is a register.
631     ///
632     MRMDestReg     = 48,
633 
634     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
635     /// to specify a source, which in this case is a register.
636     ///
637     MRMSrcReg      = 49,
638 
639     /// MRMSrcReg4VOp3 - This form is used for instructions that encode
640     /// operand 3 with VEX.VVVV and do not load from memory.
641     ///
642     MRMSrcReg4VOp3 = 50,
643 
644     /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
645     /// byte to specify the fourth source, which in this case is a register.
646     ///
647     MRMSrcRegOp4   = 51,
648 
649     /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
650     /// byte to specify the operands and also encodes a condition code
651     ///
652     MRMSrcRegCC    = 52,
653 
654     /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
655     /// to specify a register source, but doesn't use the middle field. And has
656     /// a condition code.
657     ///
658     MRMXrCC = 54,
659 
660     /// MRMXr - This form is used for instructions that use the Mod/RM byte
661     /// to specify a register source, but doesn't use the middle field.
662     ///
663     MRMXr = 55,
664 
665     // Instructions that operate on a register r/m operand...
666     MRM0r = 56,  MRM1r = 57,  MRM2r = 58,  MRM3r = 59, // Format /0 /1 /2 /3
667     MRM4r = 60,  MRM5r = 61,  MRM6r = 62,  MRM7r = 63, // Format /4 /5 /6 /7
668 
669     /// MRM_XX - A mod/rm byte of exactly 0xXX.
670     MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
671     MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
672     MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
673     MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
674     MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
675     MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
676     MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
677     MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
678     MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
679     MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
680     MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
681     MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
682     MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
683     MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
684     MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
685     MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
686 
687     FormMask       = 127,
688 
689     //===------------------------------------------------------------------===//
690     // Actual flags...
691 
692     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
693     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
694     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
695     // prefix in 16-bit mode.
696     OpSizeShift = 7,
697     OpSizeMask = 0x3 << OpSizeShift,
698 
699     OpSizeFixed  = 0 << OpSizeShift,
700     OpSize16     = 1 << OpSizeShift,
701     OpSize32     = 2 << OpSizeShift,
702 
703     // AsSize - AdSizeX implies this instruction determines its need of 0x67
704     // prefix from a normal ModRM memory operand. The other types indicate that
705     // an operand is encoded with a specific width and a prefix is needed if
706     // it differs from the current mode.
707     AdSizeShift = OpSizeShift + 2,
708     AdSizeMask  = 0x3 << AdSizeShift,
709 
710     AdSizeX  = 0 << AdSizeShift,
711     AdSize16 = 1 << AdSizeShift,
712     AdSize32 = 2 << AdSizeShift,
713     AdSize64 = 3 << AdSizeShift,
714 
715     //===------------------------------------------------------------------===//
716     // OpPrefix - There are several prefix bytes that are used as opcode
717     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
718     // no prefix.
719     //
720     OpPrefixShift = AdSizeShift + 2,
721     OpPrefixMask  = 0x3 << OpPrefixShift,
722 
723     // PD - Prefix code for packed double precision vector floating point
724     // operations performed in the SSE registers.
725     PD = 1 << OpPrefixShift,
726 
727     // XS, XD - These prefix codes are for single and double precision scalar
728     // floating point operations performed in the SSE registers.
729     XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
730 
731     //===------------------------------------------------------------------===//
732     // OpMap - This field determines which opcode map this instruction
733     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
734     //
735     OpMapShift = OpPrefixShift + 2,
736     OpMapMask  = 0x7 << OpMapShift,
737 
738     // OB - OneByte - Set if this instruction has a one byte opcode.
739     OB = 0 << OpMapShift,
740 
741     // TB - TwoByte - Set if this instruction has a two byte opcode, which
742     // starts with a 0x0F byte before the real opcode.
743     TB = 1 << OpMapShift,
744 
745     // T8, TA - Prefix after the 0x0F prefix.
746     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
747 
748     // XOP8 - Prefix to include use of imm byte.
749     XOP8 = 4 << OpMapShift,
750 
751     // XOP9 - Prefix to exclude use of imm byte.
752     XOP9 = 5 << OpMapShift,
753 
754     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
755     XOPA = 6 << OpMapShift,
756 
757     /// ThreeDNow - This indicates that the instruction uses the
758     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
759     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
760     /// storing a classifier in the imm8 field.  To simplify our implementation,
761     /// we handle this by storeing the classifier in the opcode field and using
762     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
763     ThreeDNow = 7 << OpMapShift,
764 
765     //===------------------------------------------------------------------===//
766     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
767     // They are used to specify GPRs and SSE registers, 64-bit operand size,
768     // etc. We only cares about REX.W and REX.R bits and only the former is
769     // statically determined.
770     //
771     REXShift    = OpMapShift + 3,
772     REX_W       = 1 << REXShift,
773 
774     //===------------------------------------------------------------------===//
775     // This three-bit field describes the size of an immediate operand.  Zero is
776     // unused so that we can tell if we forgot to set a value.
777     ImmShift = REXShift + 1,
778     ImmMask    = 15 << ImmShift,
779     Imm8       = 1 << ImmShift,
780     Imm8PCRel  = 2 << ImmShift,
781     Imm8Reg    = 3 << ImmShift,
782     Imm16      = 4 << ImmShift,
783     Imm16PCRel = 5 << ImmShift,
784     Imm32      = 6 << ImmShift,
785     Imm32PCRel = 7 << ImmShift,
786     Imm32S     = 8 << ImmShift,
787     Imm64      = 9 << ImmShift,
788 
789     //===------------------------------------------------------------------===//
790     // FP Instruction Classification...  Zero is non-fp instruction.
791 
792     // FPTypeMask - Mask for all of the FP types...
793     FPTypeShift = ImmShift + 4,
794     FPTypeMask  = 7 << FPTypeShift,
795 
796     // NotFP - The default, set for instructions that do not use FP registers.
797     NotFP      = 0 << FPTypeShift,
798 
799     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
800     ZeroArgFP  = 1 << FPTypeShift,
801 
802     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
803     OneArgFP   = 2 << FPTypeShift,
804 
805     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
806     // result back to ST(0).  For example, fcos, fsqrt, etc.
807     //
808     OneArgFPRW = 3 << FPTypeShift,
809 
810     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
811     // explicit argument, storing the result to either ST(0) or the implicit
812     // argument.  For example: fadd, fsub, fmul, etc...
813     TwoArgFP   = 4 << FPTypeShift,
814 
815     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
816     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
817     CompareFP  = 5 << FPTypeShift,
818 
819     // CondMovFP - "2 operand" floating point conditional move instructions.
820     CondMovFP  = 6 << FPTypeShift,
821 
822     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
823     SpecialFP  = 7 << FPTypeShift,
824 
825     // Lock prefix
826     LOCKShift = FPTypeShift + 3,
827     LOCK = 1 << LOCKShift,
828 
829     // REP prefix
830     REPShift = LOCKShift + 1,
831     REP = 1 << REPShift,
832 
833     // Execution domain for SSE instructions.
834     // 0 means normal, non-SSE instruction.
835     SSEDomainShift = REPShift + 1,
836 
837     // Encoding
838     EncodingShift = SSEDomainShift + 2,
839     EncodingMask = 0x3 << EncodingShift,
840 
841     // VEX - encoding using 0xC4/0xC5
842     VEX = 1 << EncodingShift,
843 
844     /// XOP - Opcode prefix used by XOP instructions.
845     XOP = 2 << EncodingShift,
846 
847     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
848     // syntax support up to 32 512-bit register operands and up to 7 16-bit
849     // mask operands as well as source operand data swizzling/memory operand
850     // conversion, eviction hint, and rounding mode.
851     EVEX = 3 << EncodingShift,
852 
853     // Opcode
854     OpcodeShift   = EncodingShift + 2,
855 
856     /// VEX_W - Has a opcode specific functionality, but is used in the same
857     /// way as REX_W is for regular SSE instructions.
858     VEX_WShift  = OpcodeShift + 8,
859     VEX_W       = 1ULL << VEX_WShift,
860 
861     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
862     /// address instructions in SSE are represented as 3 address ones in AVX
863     /// and the additional register is encoded in VEX_VVVV prefix.
864     VEX_4VShift = VEX_WShift + 1,
865     VEX_4V      = 1ULL << VEX_4VShift,
866 
867     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
868     /// instruction uses 256-bit wide registers. This is usually auto detected
869     /// if a VR256 register is used, but some AVX instructions also have this
870     /// field marked when using a f256 memory references.
871     VEX_LShift = VEX_4VShift + 1,
872     VEX_L       = 1ULL << VEX_LShift,
873 
874     // EVEX_K - Set if this instruction requires masking
875     EVEX_KShift = VEX_LShift + 1,
876     EVEX_K      = 1ULL << EVEX_KShift,
877 
878     // EVEX_Z - Set if this instruction has EVEX.Z field set.
879     EVEX_ZShift = EVEX_KShift + 1,
880     EVEX_Z      = 1ULL << EVEX_ZShift,
881 
882     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
883     EVEX_L2Shift = EVEX_ZShift + 1,
884     EVEX_L2     = 1ULL << EVEX_L2Shift,
885 
886     // EVEX_B - Set if this instruction has EVEX.B field set.
887     EVEX_BShift = EVEX_L2Shift + 1,
888     EVEX_B      = 1ULL << EVEX_BShift,
889 
890     // The scaling factor for the AVX512's 8-bit compressed displacement.
891     CD8_Scale_Shift = EVEX_BShift + 1,
892     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
893 
894     /// Explicitly specified rounding control
895     EVEX_RCShift = CD8_Scale_Shift + 7,
896     EVEX_RC = 1ULL << EVEX_RCShift,
897 
898     // NOTRACK prefix
899     NoTrackShift = EVEX_RCShift + 1,
900     NOTRACK = 1ULL << NoTrackShift
901   };
902 
903   /// \returns the "base" X86 opcode for the specified machine
904   /// instruction.
getBaseOpcodeFor(uint64_t TSFlags)905   inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
906     return TSFlags >> X86II::OpcodeShift;
907   }
908 
hasImm(uint64_t TSFlags)909   inline bool hasImm(uint64_t TSFlags) {
910     return (TSFlags & X86II::ImmMask) != 0;
911   }
912 
913   /// Decode the "size of immediate" field from the TSFlags field of the
914   /// specified instruction.
getSizeOfImm(uint64_t TSFlags)915   inline unsigned getSizeOfImm(uint64_t TSFlags) {
916     switch (TSFlags & X86II::ImmMask) {
917     default: llvm_unreachable("Unknown immediate size");
918     case X86II::Imm8:
919     case X86II::Imm8PCRel:
920     case X86II::Imm8Reg:    return 1;
921     case X86II::Imm16:
922     case X86II::Imm16PCRel: return 2;
923     case X86II::Imm32:
924     case X86II::Imm32S:
925     case X86II::Imm32PCRel: return 4;
926     case X86II::Imm64:      return 8;
927     }
928   }
929 
930   /// \returns true if the immediate of the specified instruction's TSFlags
931   /// indicates that it is pc relative.
isImmPCRel(uint64_t TSFlags)932   inline bool isImmPCRel(uint64_t TSFlags) {
933     switch (TSFlags & X86II::ImmMask) {
934     default: llvm_unreachable("Unknown immediate size");
935     case X86II::Imm8PCRel:
936     case X86II::Imm16PCRel:
937     case X86II::Imm32PCRel:
938       return true;
939     case X86II::Imm8:
940     case X86II::Imm8Reg:
941     case X86II::Imm16:
942     case X86II::Imm32:
943     case X86II::Imm32S:
944     case X86II::Imm64:
945       return false;
946     }
947   }
948 
949   /// \returns true if the immediate of the specified instruction's
950   /// TSFlags indicates that it is signed.
isImmSigned(uint64_t TSFlags)951   inline bool isImmSigned(uint64_t TSFlags) {
952     switch (TSFlags & X86II::ImmMask) {
953     default: llvm_unreachable("Unknown immediate signedness");
954     case X86II::Imm32S:
955       return true;
956     case X86II::Imm8:
957     case X86II::Imm8PCRel:
958     case X86II::Imm8Reg:
959     case X86II::Imm16:
960     case X86II::Imm16PCRel:
961     case X86II::Imm32:
962     case X86II::Imm32PCRel:
963     case X86II::Imm64:
964       return false;
965     }
966   }
967 
968   /// Compute whether all of the def operands are repeated in the uses and
969   /// therefore should be skipped.
970   /// This determines the start of the unique operand list. We need to determine
971   /// if all of the defs have a corresponding tied operand in the uses.
972   /// Unfortunately, the tied operand information is encoded in the uses not
973   /// the defs so we have to use some heuristics to find which operands to
974   /// query.
getOperandBias(const MCInstrDesc & Desc)975   inline unsigned getOperandBias(const MCInstrDesc& Desc) {
976     unsigned NumDefs = Desc.getNumDefs();
977     unsigned NumOps = Desc.getNumOperands();
978     switch (NumDefs) {
979     default: llvm_unreachable("Unexpected number of defs");
980     case 0:
981       return 0;
982     case 1:
983       // Common two addr case.
984       if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
985         return 1;
986       // Check for AVX-512 scatter which has a TIED_TO in the second to last
987       // operand.
988       if (NumOps == 8 &&
989           Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
990         return 1;
991       return 0;
992     case 2:
993       // XCHG/XADD have two destinations and two sources.
994       if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
995           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
996         return 2;
997       // Check for gather. AVX-512 has the second tied operand early. AVX2
998       // has it as the last op.
999       if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1000           (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
1001            Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
1002         return 2;
1003       return 0;
1004     }
1005   }
1006 
1007   /// The function returns the MCInst operand # for the first field of the
1008   /// memory operand.  If the instruction doesn't have a
1009   /// memory operand, this returns -1.
1010   ///
1011   /// Note that this ignores tied operands.  If there is a tied register which
1012   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
1013   /// counted as one operand.
1014   ///
getMemoryOperandNo(uint64_t TSFlags)1015   inline int getMemoryOperandNo(uint64_t TSFlags) {
1016     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1017     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1018 
1019     switch (TSFlags & X86II::FormMask) {
1020     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1021     case X86II::Pseudo:
1022     case X86II::RawFrm:
1023     case X86II::AddRegFrm:
1024     case X86II::RawFrmImm8:
1025     case X86II::RawFrmImm16:
1026     case X86II::RawFrmMemOffs:
1027     case X86II::RawFrmSrc:
1028     case X86II::RawFrmDst:
1029     case X86II::RawFrmDstSrc:
1030     case X86II::AddCCFrm:
1031       return -1;
1032     case X86II::MRMDestMem:
1033       return 0;
1034     case X86II::MRMSrcMem:
1035       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1036       // mask register.
1037       return 1 + HasVEX_4V + HasEVEX_K;
1038     case X86II::MRMSrcMem4VOp3:
1039       // Skip registers encoded in reg.
1040       return 1 + HasEVEX_K;
1041     case X86II::MRMSrcMemOp4:
1042       // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1043       return 3;
1044     case X86II::MRMSrcMemCC:
1045       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1046       // mask register.
1047       return 1;
1048     case X86II::MRMDestReg:
1049     case X86II::MRMSrcReg:
1050     case X86II::MRMSrcReg4VOp3:
1051     case X86II::MRMSrcRegOp4:
1052     case X86II::MRMSrcRegCC:
1053     case X86II::MRMXrCC:
1054     case X86II::MRMXr:
1055     case X86II::MRM0r: case X86II::MRM1r:
1056     case X86II::MRM2r: case X86II::MRM3r:
1057     case X86II::MRM4r: case X86II::MRM5r:
1058     case X86II::MRM6r: case X86II::MRM7r:
1059       return -1;
1060     case X86II::MRMXmCC:
1061     case X86II::MRMXm:
1062     case X86II::MRM0m: case X86II::MRM1m:
1063     case X86II::MRM2m: case X86II::MRM3m:
1064     case X86II::MRM4m: case X86II::MRM5m:
1065     case X86II::MRM6m: case X86II::MRM7m:
1066       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1067       return 0 + HasVEX_4V + HasEVEX_K;
1068     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1069     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1070     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1071     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1072     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1073     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1074     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1075     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1076     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1077     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1078     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1079     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1080     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1081     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1082     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1083     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1084     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1085     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1086     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1087     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1088     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1089     case X86II::MRM_FF:
1090       return -1;
1091     }
1092   }
1093 
1094   /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1095   /// higher) register,  e.g. r8, xmm8, xmm13, etc.
isX86_64ExtendedReg(unsigned RegNo)1096   inline bool isX86_64ExtendedReg(unsigned RegNo) {
1097     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
1098         (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
1099         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1100       return true;
1101 
1102     switch (RegNo) {
1103     default: break;
1104     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
1105     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
1106     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
1107     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
1108     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
1109     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
1110     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
1111     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
1112     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
1113     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
1114     case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
1115     case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
1116       return true;
1117     }
1118     return false;
1119   }
1120 
1121   /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1122   /// registers, e.g. zmm21, etc.
is32ExtendedReg(unsigned RegNo)1123   static inline bool is32ExtendedReg(unsigned RegNo) {
1124     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1125             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1126             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1127   }
1128 
1129 
isX86_64NonExtLowByteReg(unsigned reg)1130   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1131     return (reg == X86::SPL || reg == X86::BPL ||
1132             reg == X86::SIL || reg == X86::DIL);
1133   }
1134 
1135   /// \returns true if this is a masked instruction.
isKMasked(uint64_t TSFlags)1136   inline bool isKMasked(uint64_t TSFlags) {
1137     return (TSFlags & X86II::EVEX_K) != 0;
1138   }
1139 
1140   /// \returns true if this is a merge masked instruction.
isKMergeMasked(uint64_t TSFlags)1141   inline bool isKMergeMasked(uint64_t TSFlags) {
1142     return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1143   }
1144 }
1145 
1146 } // end namespace llvm;
1147 
1148 #endif
1149