1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
41
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
BitCastConstantVector(Constant * CV,VectorType * DstTy)45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
46
47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48 if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts = DstTy->getNumElements();
54 if (NumElts != CV->getType()->getVectorNumElements())
55 return nullptr;
56
57 Type *DstEltTy = DstTy->getElementType();
58
59 SmallVector<Constant*, 16> Result;
60 Type *Ty = IntegerType::get(CV->getContext(), 32);
61 for (unsigned i = 0; i != NumElts; ++i) {
62 Constant *C =
63 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
64 C = ConstantExpr::getBitCast(C, DstEltTy);
65 Result.push_back(C);
66 }
67
68 return ConstantVector::get(Result);
69 }
70
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
75 static unsigned
foldConstantCastPair(unsigned opc,ConstantExpr * Op,Type * DstTy)76 foldConstantCastPair(
77 unsigned opc, ///< opcode of the second cast constant expression
78 ConstantExpr *Op, ///< the first cast constant expression
79 Type *DstTy ///< destination type of the first cast
80 ) {
81 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
82 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
83 assert(CastInst::isCast(opc) && "Invalid cast opcode");
84
85 // The types and opcodes for the two Cast constant expressions
86 Type *SrcTy = Op->getOperand(0)->getType();
87 Type *MidTy = Op->getType();
88 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
89 Instruction::CastOps secondOp = Instruction::CastOps(opc);
90
91 // Assume that pointers are never more than 64 bits wide, and only use this
92 // for the middle type. Otherwise we could end up folding away illegal
93 // bitcasts between address spaces with different sizes.
94 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
95
96 // Let CastInst::isEliminableCastPair do the heavy lifting.
97 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
98 nullptr, FakeIntPtrTy, nullptr);
99 }
100
FoldBitCast(Constant * V,Type * DestTy)101 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
102 Type *SrcTy = V->getType();
103 if (SrcTy == DestTy)
104 return V; // no-op cast
105
106 // Check to see if we are casting a pointer to an aggregate to a pointer to
107 // the first element. If so, return the appropriate GEP instruction.
108 if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
109 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
110 if (PTy->getAddressSpace() == DPTy->getAddressSpace()
111 && PTy->getElementType()->isSized()) {
112 SmallVector<Value*, 8> IdxList;
113 Value *Zero =
114 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
115 IdxList.push_back(Zero);
116 Type *ElTy = PTy->getElementType();
117 while (ElTy != DPTy->getElementType()) {
118 if (StructType *STy = dyn_cast<StructType>(ElTy)) {
119 if (STy->getNumElements() == 0) break;
120 ElTy = STy->getElementType(0);
121 IdxList.push_back(Zero);
122 } else if (SequentialType *STy =
123 dyn_cast<SequentialType>(ElTy)) {
124 ElTy = STy->getElementType();
125 IdxList.push_back(Zero);
126 } else {
127 break;
128 }
129 }
130
131 if (ElTy == DPTy->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
134 V, IdxList);
135 }
136
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
142 "Not cast between same sized vectors!");
143 SrcTy = nullptr;
144 // First, check for null. Undef is already handled.
145 if (isa<ConstantAggregateZero>(V))
146 return Constant::getNullValue(DestTy);
147
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V, DestPTy);
150 }
151
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
156 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
157 }
158
159 // Finally, implement bitcast folding now. The code below doesn't handle
160 // bitcast right.
161 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast<PointerType>(DestTy));
163
164 // Handle integral constant input.
165 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
166 if (DestTy->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
169 return V;
170
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy->getContext(),
174 APFloat(DestTy->getFltSemantics(),
175 CI->getValue()));
176
177 // Otherwise, can't fold this (vector?)
178 return nullptr;
179 }
180
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP->getType()->isPPC_FP128Ty())
190 return nullptr;
191
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy->isIntegerTy())
194 return nullptr;
195
196 return ConstantInt::get(FP->getContext(),
197 FP->getValueAPF().bitcastToAPInt());
198 }
199
200 return nullptr;
201 }
202
203
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
207 /// of bytes used.
208 ///
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
ExtractConstantBytes(Constant * C,unsigned ByteStart,unsigned ByteSize)212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
213 unsigned ByteSize) {
214 assert(C->getType()->isIntegerTy() &&
215 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
218 assert(ByteSize && "Must be accessing some piece");
219 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
220 assert(ByteSize != CSize && "Should not extract everything");
221
222 // Constant Integers are simple.
223 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
224 APInt V = CI->getValue();
225 if (ByteStart)
226 V.lshrInPlace(ByteStart*8);
227 V = V.trunc(ByteSize*8);
228 return ConstantInt::get(CI->getContext(), V);
229 }
230
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234 if (!CE) return nullptr;
235
236 switch (CE->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or: {
239 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240 if (!RHS)
241 return nullptr;
242
243 // X | -1 -> -1.
244 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
245 if (RHSC->isMinusOne())
246 return RHSC;
247
248 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
249 if (!LHS)
250 return nullptr;
251 return ConstantExpr::getOr(LHS, RHS);
252 }
253 case Instruction::And: {
254 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
255 if (!RHS)
256 return nullptr;
257
258 // X & 0 -> 0.
259 if (RHS->isNullValue())
260 return RHS;
261
262 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
263 if (!LHS)
264 return nullptr;
265 return ConstantExpr::getAnd(LHS, RHS);
266 }
267 case Instruction::LShr: {
268 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269 if (!Amt)
270 return nullptr;
271 APInt ShAmt = Amt->getValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt & 7) != 0)
274 return nullptr;
275 ShAmt.lshrInPlace(3);
276
277 // If the extract is known to be all zeros, return zero.
278 if (ShAmt.uge(CSize - ByteStart))
279 return Constant::getNullValue(
280 IntegerType::get(CE->getContext(), ByteSize * 8));
281 // If the extract is known to be fully in the input, extract it.
282 if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
283 return ExtractConstantBytes(CE->getOperand(0),
284 ByteStart + ShAmt.getZExtValue(), ByteSize);
285
286 // TODO: Handle the 'partially zero' case.
287 return nullptr;
288 }
289
290 case Instruction::Shl: {
291 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
292 if (!Amt)
293 return nullptr;
294 APInt ShAmt = Amt->getValue();
295 // Cannot analyze non-byte shifts.
296 if ((ShAmt & 7) != 0)
297 return nullptr;
298 ShAmt.lshrInPlace(3);
299
300 // If the extract is known to be all zeros, return zero.
301 if (ShAmt.uge(ByteStart + ByteSize))
302 return Constant::getNullValue(
303 IntegerType::get(CE->getContext(), ByteSize * 8));
304 // If the extract is known to be fully in the input, extract it.
305 if (ShAmt.ule(ByteStart))
306 return ExtractConstantBytes(CE->getOperand(0),
307 ByteStart - ShAmt.getZExtValue(), ByteSize);
308
309 // TODO: Handle the 'partially zero' case.
310 return nullptr;
311 }
312
313 case Instruction::ZExt: {
314 unsigned SrcBitSize =
315 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
316
317 // If extracting something that is completely zero, return 0.
318 if (ByteStart*8 >= SrcBitSize)
319 return Constant::getNullValue(IntegerType::get(CE->getContext(),
320 ByteSize*8));
321
322 // If exactly extracting the input, return it.
323 if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
324 return CE->getOperand(0);
325
326 // If extracting something completely in the input, if the input is a
327 // multiple of 8 bits, recurse.
328 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
329 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
330
331 // Otherwise, if extracting a subset of the input, which is not multiple of
332 // 8 bits, do a shift and trunc to get the bits.
333 if ((ByteStart+ByteSize)*8 < SrcBitSize) {
334 assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
335 Constant *Res = CE->getOperand(0);
336 if (ByteStart)
337 Res = ConstantExpr::getLShr(Res,
338 ConstantInt::get(Res->getType(), ByteStart*8));
339 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
340 ByteSize*8));
341 }
342
343 // TODO: Handle the 'partially zero' case.
344 return nullptr;
345 }
346 }
347 }
348
349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
350 /// factors factored out. If Folded is false, return null if no factoring was
351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
352 /// top-level folder.
getFoldedSizeOf(Type * Ty,Type * DestTy,bool Folded)353 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) {
354 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
355 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
356 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
357 return ConstantExpr::getNUWMul(E, N);
358 }
359
360 if (StructType *STy = dyn_cast<StructType>(Ty))
361 if (!STy->isPacked()) {
362 unsigned NumElems = STy->getNumElements();
363 // An empty struct has size zero.
364 if (NumElems == 0)
365 return ConstantExpr::getNullValue(DestTy);
366 // Check for a struct with all members having the same size.
367 Constant *MemberSize =
368 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
369 bool AllSame = true;
370 for (unsigned i = 1; i != NumElems; ++i)
371 if (MemberSize !=
372 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
373 AllSame = false;
374 break;
375 }
376 if (AllSame) {
377 Constant *N = ConstantInt::get(DestTy, NumElems);
378 return ConstantExpr::getNUWMul(MemberSize, N);
379 }
380 }
381
382 // Pointer size doesn't depend on the pointee type, so canonicalize them
383 // to an arbitrary pointee.
384 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
385 if (!PTy->getElementType()->isIntegerTy(1))
386 return
387 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
388 PTy->getAddressSpace()),
389 DestTy, true);
390
391 // If there's no interesting folding happening, bail so that we don't create
392 // a constant that looks like it needs folding but really doesn't.
393 if (!Folded)
394 return nullptr;
395
396 // Base case: Get a regular sizeof expression.
397 Constant *C = ConstantExpr::getSizeOf(Ty);
398 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
399 DestTy, false),
400 C, DestTy);
401 return C;
402 }
403
404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
405 /// factors factored out. If Folded is false, return null if no factoring was
406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
407 /// top-level folder.
getFoldedAlignOf(Type * Ty,Type * DestTy,bool Folded)408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) {
409 // The alignment of an array is equal to the alignment of the
410 // array element. Note that this is not always true for vectors.
411 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
412 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
413 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
414 DestTy,
415 false),
416 C, DestTy);
417 return C;
418 }
419
420 if (StructType *STy = dyn_cast<StructType>(Ty)) {
421 // Packed structs always have an alignment of 1.
422 if (STy->isPacked())
423 return ConstantInt::get(DestTy, 1);
424
425 // Otherwise, struct alignment is the maximum alignment of any member.
426 // Without target data, we can't compare much, but we can check to see
427 // if all the members have the same alignment.
428 unsigned NumElems = STy->getNumElements();
429 // An empty struct has minimal alignment.
430 if (NumElems == 0)
431 return ConstantInt::get(DestTy, 1);
432 // Check for a struct with all members having the same alignment.
433 Constant *MemberAlign =
434 getFoldedAlignOf(STy->getElementType(0), DestTy, true);
435 bool AllSame = true;
436 for (unsigned i = 1; i != NumElems; ++i)
437 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
438 AllSame = false;
439 break;
440 }
441 if (AllSame)
442 return MemberAlign;
443 }
444
445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446 // to an arbitrary pointee.
447 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
448 if (!PTy->getElementType()->isIntegerTy(1))
449 return
450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
451 1),
452 PTy->getAddressSpace()),
453 DestTy, true);
454
455 // If there's no interesting folding happening, bail so that we don't create
456 // a constant that looks like it needs folding but really doesn't.
457 if (!Folded)
458 return nullptr;
459
460 // Base case: Get a regular alignof expression.
461 Constant *C = ConstantExpr::getAlignOf(Ty);
462 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
463 DestTy, false),
464 C, DestTy);
465 return C;
466 }
467
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
getFoldedOffsetOf(Type * Ty,Constant * FieldNo,Type * DestTy,bool Folded)472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy,
473 bool Folded) {
474 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
475 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
476 DestTy, false),
477 FieldNo, DestTy);
478 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
479 return ConstantExpr::getNUWMul(E, N);
480 }
481
482 if (StructType *STy = dyn_cast<StructType>(Ty))
483 if (!STy->isPacked()) {
484 unsigned NumElems = STy->getNumElements();
485 // An empty struct has no members.
486 if (NumElems == 0)
487 return nullptr;
488 // Check for a struct with all members having the same size.
489 Constant *MemberSize =
490 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
491 bool AllSame = true;
492 for (unsigned i = 1; i != NumElems; ++i)
493 if (MemberSize !=
494 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
495 AllSame = false;
496 break;
497 }
498 if (AllSame) {
499 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
500 false,
501 DestTy,
502 false),
503 FieldNo, DestTy);
504 return ConstantExpr::getNUWMul(MemberSize, N);
505 }
506 }
507
508 // If there's no interesting folding happening, bail so that we don't create
509 // a constant that looks like it needs folding but really doesn't.
510 if (!Folded)
511 return nullptr;
512
513 // Base case: Get a regular offsetof expression.
514 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
515 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
516 DestTy, false),
517 C, DestTy);
518 return C;
519 }
520
ConstantFoldCastInstruction(unsigned opc,Constant * V,Type * DestTy)521 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
522 Type *DestTy) {
523 if (isa<UndefValue>(V)) {
524 // zext(undef) = 0, because the top bits will be zero.
525 // sext(undef) = 0, because the top bits will all be the same.
526 // [us]itofp(undef) = 0, because the result value is bounded.
527 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
528 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
529 return Constant::getNullValue(DestTy);
530 return UndefValue::get(DestTy);
531 }
532
533 if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
534 opc != Instruction::AddrSpaceCast)
535 return Constant::getNullValue(DestTy);
536
537 // If the cast operand is a constant expression, there's a few things we can
538 // do to try to simplify it.
539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
540 if (CE->isCast()) {
541 // Try hard to fold cast of cast because they are often eliminable.
542 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
543 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
544 } else if (CE->getOpcode() == Instruction::GetElementPtr &&
545 // Do not fold addrspacecast (gep 0, .., 0). It might make the
546 // addrspacecast uncanonicalized.
547 opc != Instruction::AddrSpaceCast &&
548 // Do not fold bitcast (gep) with inrange index, as this loses
549 // information.
550 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
551 // Do not fold if the gep type is a vector, as bitcasting
552 // operand 0 of a vector gep will result in a bitcast between
553 // different sizes.
554 !CE->getType()->isVectorTy()) {
555 // If all of the indexes in the GEP are null values, there is no pointer
556 // adjustment going on. We might as well cast the source pointer.
557 bool isAllNull = true;
558 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
559 if (!CE->getOperand(i)->isNullValue()) {
560 isAllNull = false;
561 break;
562 }
563 if (isAllNull)
564 // This is casting one pointer type to another, always BitCast
565 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
566 }
567 }
568
569 // If the cast operand is a constant vector, perform the cast by
570 // operating on each element. In the cast of bitcasts, the element
571 // count may be mismatched; don't attempt to handle that here.
572 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
573 DestTy->isVectorTy() &&
574 DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
575 SmallVector<Constant*, 16> res;
576 VectorType *DestVecTy = cast<VectorType>(DestTy);
577 Type *DstEltTy = DestVecTy->getElementType();
578 Type *Ty = IntegerType::get(V->getContext(), 32);
579 for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
580 Constant *C =
581 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
582 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
583 }
584 return ConstantVector::get(res);
585 }
586
587 // We actually have to do a cast now. Perform the cast according to the
588 // opcode specified.
589 switch (opc) {
590 default:
591 llvm_unreachable("Failed to cast constant expression");
592 case Instruction::FPTrunc:
593 case Instruction::FPExt:
594 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
595 bool ignored;
596 APFloat Val = FPC->getValueAPF();
597 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
598 DestTy->isFloatTy() ? APFloat::IEEEsingle() :
599 DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
600 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
601 DestTy->isFP128Ty() ? APFloat::IEEEquad() :
602 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
603 APFloat::Bogus(),
604 APFloat::rmNearestTiesToEven, &ignored);
605 return ConstantFP::get(V->getContext(), Val);
606 }
607 return nullptr; // Can't fold.
608 case Instruction::FPToUI:
609 case Instruction::FPToSI:
610 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
611 const APFloat &V = FPC->getValueAPF();
612 bool ignored;
613 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
614 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
615 if (APFloat::opInvalidOp ==
616 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
617 // Undefined behavior invoked - the destination type can't represent
618 // the input constant.
619 return UndefValue::get(DestTy);
620 }
621 return ConstantInt::get(FPC->getContext(), IntVal);
622 }
623 return nullptr; // Can't fold.
624 case Instruction::IntToPtr: //always treated as unsigned
625 if (V->isNullValue()) // Is it an integral null value?
626 return ConstantPointerNull::get(cast<PointerType>(DestTy));
627 return nullptr; // Other pointer types cannot be casted
628 case Instruction::PtrToInt: // always treated as unsigned
629 // Is it a null pointer value?
630 if (V->isNullValue())
631 return ConstantInt::get(DestTy, 0);
632 // If this is a sizeof-like expression, pull out multiplications by
633 // known factors to expose them to subsequent folding. If it's an
634 // alignof-like expression, factor out known factors.
635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
636 if (CE->getOpcode() == Instruction::GetElementPtr &&
637 CE->getOperand(0)->isNullValue()) {
638 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
639 // getFoldedAlignOf() don't handle the case when DestTy is a vector of
640 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
641 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
642 // happen in one "real" C-code test case, so it does not seem to be an
643 // important optimization to handle vectors here. For now, simply bail
644 // out.
645 if (DestTy->isVectorTy())
646 return nullptr;
647 GEPOperator *GEPO = cast<GEPOperator>(CE);
648 Type *Ty = GEPO->getSourceElementType();
649 if (CE->getNumOperands() == 2) {
650 // Handle a sizeof-like expression.
651 Constant *Idx = CE->getOperand(1);
652 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
653 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
654 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
655 DestTy, false),
656 Idx, DestTy);
657 return ConstantExpr::getMul(C, Idx);
658 }
659 } else if (CE->getNumOperands() == 3 &&
660 CE->getOperand(1)->isNullValue()) {
661 // Handle an alignof-like expression.
662 if (StructType *STy = dyn_cast<StructType>(Ty))
663 if (!STy->isPacked()) {
664 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
665 if (CI->isOne() &&
666 STy->getNumElements() == 2 &&
667 STy->getElementType(0)->isIntegerTy(1)) {
668 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
669 }
670 }
671 // Handle an offsetof-like expression.
672 if (Ty->isStructTy() || Ty->isArrayTy()) {
673 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
674 DestTy, false))
675 return C;
676 }
677 }
678 }
679 // Other pointer types cannot be casted
680 return nullptr;
681 case Instruction::UIToFP:
682 case Instruction::SIToFP:
683 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
684 const APInt &api = CI->getValue();
685 APFloat apf(DestTy->getFltSemantics(),
686 APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
687 apf.convertFromAPInt(api, opc==Instruction::SIToFP,
688 APFloat::rmNearestTiesToEven);
689 return ConstantFP::get(V->getContext(), apf);
690 }
691 return nullptr;
692 case Instruction::ZExt:
693 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
694 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
695 return ConstantInt::get(V->getContext(),
696 CI->getValue().zext(BitWidth));
697 }
698 return nullptr;
699 case Instruction::SExt:
700 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
701 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
702 return ConstantInt::get(V->getContext(),
703 CI->getValue().sext(BitWidth));
704 }
705 return nullptr;
706 case Instruction::Trunc: {
707 if (V->getType()->isVectorTy())
708 return nullptr;
709
710 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
711 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
712 return ConstantInt::get(V->getContext(),
713 CI->getValue().trunc(DestBitWidth));
714 }
715
716 // The input must be a constantexpr. See if we can simplify this based on
717 // the bytes we are demanding. Only do this if the source and dest are an
718 // even multiple of a byte.
719 if ((DestBitWidth & 7) == 0 &&
720 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
721 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
722 return Res;
723
724 return nullptr;
725 }
726 case Instruction::BitCast:
727 return FoldBitCast(V, DestTy);
728 case Instruction::AddrSpaceCast:
729 return nullptr;
730 }
731 }
732
ConstantFoldSelectInstruction(Constant * Cond,Constant * V1,Constant * V2)733 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
734 Constant *V1, Constant *V2) {
735 // Check for i1 and vector true/false conditions.
736 if (Cond->isNullValue()) return V2;
737 if (Cond->isAllOnesValue()) return V1;
738
739 // If the condition is a vector constant, fold the result elementwise.
740 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
741 SmallVector<Constant*, 16> Result;
742 Type *Ty = IntegerType::get(CondV->getContext(), 32);
743 for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
744 Constant *V;
745 Constant *V1Element = ConstantExpr::getExtractElement(V1,
746 ConstantInt::get(Ty, i));
747 Constant *V2Element = ConstantExpr::getExtractElement(V2,
748 ConstantInt::get(Ty, i));
749 auto *Cond = cast<Constant>(CondV->getOperand(i));
750 if (V1Element == V2Element) {
751 V = V1Element;
752 } else if (isa<UndefValue>(Cond)) {
753 V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
754 } else {
755 if (!isa<ConstantInt>(Cond)) break;
756 V = Cond->isNullValue() ? V2Element : V1Element;
757 }
758 Result.push_back(V);
759 }
760
761 // If we were able to build the vector, return it.
762 if (Result.size() == V1->getType()->getVectorNumElements())
763 return ConstantVector::get(Result);
764 }
765
766 if (isa<UndefValue>(Cond)) {
767 if (isa<UndefValue>(V1)) return V1;
768 return V2;
769 }
770 if (isa<UndefValue>(V1)) return V2;
771 if (isa<UndefValue>(V2)) return V1;
772 if (V1 == V2) return V1;
773
774 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
775 if (TrueVal->getOpcode() == Instruction::Select)
776 if (TrueVal->getOperand(0) == Cond)
777 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
778 }
779 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
780 if (FalseVal->getOpcode() == Instruction::Select)
781 if (FalseVal->getOperand(0) == Cond)
782 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
783 }
784
785 return nullptr;
786 }
787
ConstantFoldExtractElementInstruction(Constant * Val,Constant * Idx)788 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
789 Constant *Idx) {
790 // extractelt undef, C -> undef
791 // extractelt C, undef -> undef
792 if (isa<UndefValue>(Val) || isa<UndefValue>(Idx))
793 return UndefValue::get(Val->getType()->getVectorElementType());
794
795 auto *CIdx = dyn_cast<ConstantInt>(Idx);
796 if (!CIdx)
797 return nullptr;
798
799 // ee({w,x,y,z}, wrong_value) -> undef
800 if (CIdx->uge(Val->getType()->getVectorNumElements()))
801 return UndefValue::get(Val->getType()->getVectorElementType());
802
803 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
804 if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
805 if (CE->getOpcode() == Instruction::GetElementPtr) {
806 SmallVector<Constant *, 8> Ops;
807 Ops.reserve(CE->getNumOperands());
808 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
809 Constant *Op = CE->getOperand(i);
810 if (Op->getType()->isVectorTy()) {
811 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
812 if (!ScalarOp)
813 return nullptr;
814 Ops.push_back(ScalarOp);
815 } else
816 Ops.push_back(Op);
817 }
818 return CE->getWithOperands(Ops, CE->getType()->getVectorElementType(),
819 false,
820 Ops[0]->getType()->getPointerElementType());
821 }
822 }
823
824 return Val->getAggregateElement(CIdx);
825 }
826
ConstantFoldInsertElementInstruction(Constant * Val,Constant * Elt,Constant * Idx)827 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
828 Constant *Elt,
829 Constant *Idx) {
830 if (isa<UndefValue>(Idx))
831 return UndefValue::get(Val->getType());
832
833 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
834 if (!CIdx) return nullptr;
835
836 // Do not iterate on scalable vector. The num of elements is unknown at
837 // compile-time.
838 VectorType *ValTy = cast<VectorType>(Val->getType());
839 if (ValTy->isScalable())
840 return nullptr;
841
842 unsigned NumElts = Val->getType()->getVectorNumElements();
843 if (CIdx->uge(NumElts))
844 return UndefValue::get(Val->getType());
845
846 SmallVector<Constant*, 16> Result;
847 Result.reserve(NumElts);
848 auto *Ty = Type::getInt32Ty(Val->getContext());
849 uint64_t IdxVal = CIdx->getZExtValue();
850 for (unsigned i = 0; i != NumElts; ++i) {
851 if (i == IdxVal) {
852 Result.push_back(Elt);
853 continue;
854 }
855
856 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
857 Result.push_back(C);
858 }
859
860 return ConstantVector::get(Result);
861 }
862
ConstantFoldShuffleVectorInstruction(Constant * V1,Constant * V2,Constant * Mask)863 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
864 Constant *V2,
865 Constant *Mask) {
866 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
867 Type *EltTy = V1->getType()->getVectorElementType();
868
869 // Undefined shuffle mask -> undefined value.
870 if (isa<UndefValue>(Mask))
871 return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
872
873 // Don't break the bitcode reader hack.
874 if (isa<ConstantExpr>(Mask)) return nullptr;
875
876 // Do not iterate on scalable vector. The num of elements is unknown at
877 // compile-time.
878 VectorType *ValTy = cast<VectorType>(V1->getType());
879 if (ValTy->isScalable())
880 return nullptr;
881
882 unsigned SrcNumElts = V1->getType()->getVectorNumElements();
883
884 // Loop over the shuffle mask, evaluating each element.
885 SmallVector<Constant*, 32> Result;
886 for (unsigned i = 0; i != MaskNumElts; ++i) {
887 int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
888 if (Elt == -1) {
889 Result.push_back(UndefValue::get(EltTy));
890 continue;
891 }
892 Constant *InElt;
893 if (unsigned(Elt) >= SrcNumElts*2)
894 InElt = UndefValue::get(EltTy);
895 else if (unsigned(Elt) >= SrcNumElts) {
896 Type *Ty = IntegerType::get(V2->getContext(), 32);
897 InElt =
898 ConstantExpr::getExtractElement(V2,
899 ConstantInt::get(Ty, Elt - SrcNumElts));
900 } else {
901 Type *Ty = IntegerType::get(V1->getContext(), 32);
902 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
903 }
904 Result.push_back(InElt);
905 }
906
907 return ConstantVector::get(Result);
908 }
909
ConstantFoldExtractValueInstruction(Constant * Agg,ArrayRef<unsigned> Idxs)910 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
911 ArrayRef<unsigned> Idxs) {
912 // Base case: no indices, so return the entire value.
913 if (Idxs.empty())
914 return Agg;
915
916 if (Constant *C = Agg->getAggregateElement(Idxs[0]))
917 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
918
919 return nullptr;
920 }
921
ConstantFoldInsertValueInstruction(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs)922 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
923 Constant *Val,
924 ArrayRef<unsigned> Idxs) {
925 // Base case: no indices, so replace the entire value.
926 if (Idxs.empty())
927 return Val;
928
929 unsigned NumElts;
930 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
931 NumElts = ST->getNumElements();
932 else
933 NumElts = cast<SequentialType>(Agg->getType())->getNumElements();
934
935 SmallVector<Constant*, 32> Result;
936 for (unsigned i = 0; i != NumElts; ++i) {
937 Constant *C = Agg->getAggregateElement(i);
938 if (!C) return nullptr;
939
940 if (Idxs[0] == i)
941 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
942
943 Result.push_back(C);
944 }
945
946 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
947 return ConstantStruct::get(ST, Result);
948 if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
949 return ConstantArray::get(AT, Result);
950 return ConstantVector::get(Result);
951 }
952
ConstantFoldUnaryInstruction(unsigned Opcode,Constant * C)953 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
954 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
955
956 // Handle scalar UndefValue. Vectors are always evaluated per element.
957 bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C);
958
959 if (HasScalarUndef) {
960 switch (static_cast<Instruction::UnaryOps>(Opcode)) {
961 case Instruction::FNeg:
962 return C; // -undef -> undef
963 case Instruction::UnaryOpsEnd:
964 llvm_unreachable("Invalid UnaryOp");
965 }
966 }
967
968 // Constant should not be UndefValue, unless these are vector constants.
969 assert(!HasScalarUndef && "Unexpected UndefValue");
970 // We only have FP UnaryOps right now.
971 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
972
973 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
974 const APFloat &CV = CFP->getValueAPF();
975 switch (Opcode) {
976 default:
977 break;
978 case Instruction::FNeg:
979 return ConstantFP::get(C->getContext(), neg(CV));
980 }
981 } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) {
982 // Fold each element and create a vector constant from those constants.
983 SmallVector<Constant*, 16> Result;
984 Type *Ty = IntegerType::get(VTy->getContext(), 32);
985 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
986 Constant *ExtractIdx = ConstantInt::get(Ty, i);
987 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
988
989 Result.push_back(ConstantExpr::get(Opcode, Elt));
990 }
991
992 return ConstantVector::get(Result);
993 }
994
995 // We don't know how to fold this.
996 return nullptr;
997 }
998
ConstantFoldBinaryInstruction(unsigned Opcode,Constant * C1,Constant * C2)999 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
1000 Constant *C2) {
1001 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
1002
1003 // Simplify BinOps with their identity values first. They are no-ops and we
1004 // can always return the other value, including undef or poison values.
1005 // FIXME: remove unnecessary duplicated identity patterns below.
1006 // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops,
1007 // like X << 0 = X.
1008 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType());
1009 if (Identity) {
1010 if (C1 == Identity)
1011 return C2;
1012 if (C2 == Identity)
1013 return C1;
1014 }
1015
1016 // Handle scalar UndefValue. Vectors are always evaluated per element.
1017 bool HasScalarUndef = !C1->getType()->isVectorTy() &&
1018 (isa<UndefValue>(C1) || isa<UndefValue>(C2));
1019 if (HasScalarUndef) {
1020 switch (static_cast<Instruction::BinaryOps>(Opcode)) {
1021 case Instruction::Xor:
1022 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1023 // Handle undef ^ undef -> 0 special case. This is a common
1024 // idiom (misuse).
1025 return Constant::getNullValue(C1->getType());
1026 LLVM_FALLTHROUGH;
1027 case Instruction::Add:
1028 case Instruction::Sub:
1029 return UndefValue::get(C1->getType());
1030 case Instruction::And:
1031 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
1032 return C1;
1033 return Constant::getNullValue(C1->getType()); // undef & X -> 0
1034 case Instruction::Mul: {
1035 // undef * undef -> undef
1036 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1037 return C1;
1038 const APInt *CV;
1039 // X * undef -> undef if X is odd
1040 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
1041 if ((*CV)[0])
1042 return UndefValue::get(C1->getType());
1043
1044 // X * undef -> 0 otherwise
1045 return Constant::getNullValue(C1->getType());
1046 }
1047 case Instruction::SDiv:
1048 case Instruction::UDiv:
1049 // X / undef -> undef
1050 if (isa<UndefValue>(C2))
1051 return C2;
1052 // undef / 0 -> undef
1053 // undef / 1 -> undef
1054 if (match(C2, m_Zero()) || match(C2, m_One()))
1055 return C1;
1056 // undef / X -> 0 otherwise
1057 return Constant::getNullValue(C1->getType());
1058 case Instruction::URem:
1059 case Instruction::SRem:
1060 // X % undef -> undef
1061 if (match(C2, m_Undef()))
1062 return C2;
1063 // undef % 0 -> undef
1064 if (match(C2, m_Zero()))
1065 return C1;
1066 // undef % X -> 0 otherwise
1067 return Constant::getNullValue(C1->getType());
1068 case Instruction::Or: // X | undef -> -1
1069 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1070 return C1;
1071 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1072 case Instruction::LShr:
1073 // X >>l undef -> undef
1074 if (isa<UndefValue>(C2))
1075 return C2;
1076 // undef >>l 0 -> undef
1077 if (match(C2, m_Zero()))
1078 return C1;
1079 // undef >>l X -> 0
1080 return Constant::getNullValue(C1->getType());
1081 case Instruction::AShr:
1082 // X >>a undef -> undef
1083 if (isa<UndefValue>(C2))
1084 return C2;
1085 // undef >>a 0 -> undef
1086 if (match(C2, m_Zero()))
1087 return C1;
1088 // TODO: undef >>a X -> undef if the shift is exact
1089 // undef >>a X -> 0
1090 return Constant::getNullValue(C1->getType());
1091 case Instruction::Shl:
1092 // X << undef -> undef
1093 if (isa<UndefValue>(C2))
1094 return C2;
1095 // undef << 0 -> undef
1096 if (match(C2, m_Zero()))
1097 return C1;
1098 // undef << X -> 0
1099 return Constant::getNullValue(C1->getType());
1100 case Instruction::FAdd:
1101 case Instruction::FSub:
1102 case Instruction::FMul:
1103 case Instruction::FDiv:
1104 case Instruction::FRem:
1105 // [any flop] undef, undef -> undef
1106 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1107 return C1;
1108 // [any flop] C, undef -> NaN
1109 // [any flop] undef, C -> NaN
1110 // We could potentially specialize NaN/Inf constants vs. 'normal'
1111 // constants (possibly differently depending on opcode and operand). This
1112 // would allow returning undef sometimes. But it is always safe to fold to
1113 // NaN because we can choose the undef operand as NaN, and any FP opcode
1114 // with a NaN operand will propagate NaN.
1115 return ConstantFP::getNaN(C1->getType());
1116 case Instruction::BinaryOpsEnd:
1117 llvm_unreachable("Invalid BinaryOp");
1118 }
1119 }
1120
1121 // Neither constant should be UndefValue, unless these are vector constants.
1122 assert(!HasScalarUndef && "Unexpected UndefValue");
1123
1124 // Handle simplifications when the RHS is a constant int.
1125 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1126 switch (Opcode) {
1127 case Instruction::Add:
1128 if (CI2->isZero()) return C1; // X + 0 == X
1129 break;
1130 case Instruction::Sub:
1131 if (CI2->isZero()) return C1; // X - 0 == X
1132 break;
1133 case Instruction::Mul:
1134 if (CI2->isZero()) return C2; // X * 0 == 0
1135 if (CI2->isOne())
1136 return C1; // X * 1 == X
1137 break;
1138 case Instruction::UDiv:
1139 case Instruction::SDiv:
1140 if (CI2->isOne())
1141 return C1; // X / 1 == X
1142 if (CI2->isZero())
1143 return UndefValue::get(CI2->getType()); // X / 0 == undef
1144 break;
1145 case Instruction::URem:
1146 case Instruction::SRem:
1147 if (CI2->isOne())
1148 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
1149 if (CI2->isZero())
1150 return UndefValue::get(CI2->getType()); // X % 0 == undef
1151 break;
1152 case Instruction::And:
1153 if (CI2->isZero()) return C2; // X & 0 == 0
1154 if (CI2->isMinusOne())
1155 return C1; // X & -1 == X
1156
1157 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1158 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1159 if (CE1->getOpcode() == Instruction::ZExt) {
1160 unsigned DstWidth = CI2->getType()->getBitWidth();
1161 unsigned SrcWidth =
1162 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1163 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1164 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1165 return C1;
1166 }
1167
1168 // If and'ing the address of a global with a constant, fold it.
1169 if (CE1->getOpcode() == Instruction::PtrToInt &&
1170 isa<GlobalValue>(CE1->getOperand(0))) {
1171 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1172
1173 MaybeAlign GVAlign;
1174
1175 if (Module *TheModule = GV->getParent()) {
1176 GVAlign = GV->getPointerAlignment(TheModule->getDataLayout());
1177
1178 // If the function alignment is not specified then assume that it
1179 // is 4.
1180 // This is dangerous; on x86, the alignment of the pointer
1181 // corresponds to the alignment of the function, but might be less
1182 // than 4 if it isn't explicitly specified.
1183 // However, a fix for this behaviour was reverted because it
1184 // increased code size (see https://reviews.llvm.org/D55115)
1185 // FIXME: This code should be deleted once existing targets have
1186 // appropriate defaults
1187 if (!GVAlign && isa<Function>(GV))
1188 GVAlign = Align(4);
1189 } else if (isa<Function>(GV)) {
1190 // Without a datalayout we have to assume the worst case: that the
1191 // function pointer isn't aligned at all.
1192 GVAlign = llvm::None;
1193 } else {
1194 GVAlign = MaybeAlign(GV->getAlignment());
1195 }
1196
1197 if (GVAlign && *GVAlign > 1) {
1198 unsigned DstWidth = CI2->getType()->getBitWidth();
1199 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1200 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1201
1202 // If checking bits we know are clear, return zero.
1203 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1204 return Constant::getNullValue(CI2->getType());
1205 }
1206 }
1207 }
1208 break;
1209 case Instruction::Or:
1210 if (CI2->isZero()) return C1; // X | 0 == X
1211 if (CI2->isMinusOne())
1212 return C2; // X | -1 == -1
1213 break;
1214 case Instruction::Xor:
1215 if (CI2->isZero()) return C1; // X ^ 0 == X
1216
1217 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1218 switch (CE1->getOpcode()) {
1219 default: break;
1220 case Instruction::ICmp:
1221 case Instruction::FCmp:
1222 // cmp pred ^ true -> cmp !pred
1223 assert(CI2->isOne());
1224 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1225 pred = CmpInst::getInversePredicate(pred);
1226 return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1227 CE1->getOperand(1));
1228 }
1229 }
1230 break;
1231 case Instruction::AShr:
1232 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1233 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1234 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1235 return ConstantExpr::getLShr(C1, C2);
1236 break;
1237 }
1238 } else if (isa<ConstantInt>(C1)) {
1239 // If C1 is a ConstantInt and C2 is not, swap the operands.
1240 if (Instruction::isCommutative(Opcode))
1241 return ConstantExpr::get(Opcode, C2, C1);
1242 }
1243
1244 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1245 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1246 const APInt &C1V = CI1->getValue();
1247 const APInt &C2V = CI2->getValue();
1248 switch (Opcode) {
1249 default:
1250 break;
1251 case Instruction::Add:
1252 return ConstantInt::get(CI1->getContext(), C1V + C2V);
1253 case Instruction::Sub:
1254 return ConstantInt::get(CI1->getContext(), C1V - C2V);
1255 case Instruction::Mul:
1256 return ConstantInt::get(CI1->getContext(), C1V * C2V);
1257 case Instruction::UDiv:
1258 assert(!CI2->isZero() && "Div by zero handled above");
1259 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1260 case Instruction::SDiv:
1261 assert(!CI2->isZero() && "Div by zero handled above");
1262 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1263 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
1264 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1265 case Instruction::URem:
1266 assert(!CI2->isZero() && "Div by zero handled above");
1267 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1268 case Instruction::SRem:
1269 assert(!CI2->isZero() && "Div by zero handled above");
1270 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1271 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
1272 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1273 case Instruction::And:
1274 return ConstantInt::get(CI1->getContext(), C1V & C2V);
1275 case Instruction::Or:
1276 return ConstantInt::get(CI1->getContext(), C1V | C2V);
1277 case Instruction::Xor:
1278 return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1279 case Instruction::Shl:
1280 if (C2V.ult(C1V.getBitWidth()))
1281 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1282 return UndefValue::get(C1->getType()); // too big shift is undef
1283 case Instruction::LShr:
1284 if (C2V.ult(C1V.getBitWidth()))
1285 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1286 return UndefValue::get(C1->getType()); // too big shift is undef
1287 case Instruction::AShr:
1288 if (C2V.ult(C1V.getBitWidth()))
1289 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1290 return UndefValue::get(C1->getType()); // too big shift is undef
1291 }
1292 }
1293
1294 switch (Opcode) {
1295 case Instruction::SDiv:
1296 case Instruction::UDiv:
1297 case Instruction::URem:
1298 case Instruction::SRem:
1299 case Instruction::LShr:
1300 case Instruction::AShr:
1301 case Instruction::Shl:
1302 if (CI1->isZero()) return C1;
1303 break;
1304 default:
1305 break;
1306 }
1307 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1308 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1309 const APFloat &C1V = CFP1->getValueAPF();
1310 const APFloat &C2V = CFP2->getValueAPF();
1311 APFloat C3V = C1V; // copy for modification
1312 switch (Opcode) {
1313 default:
1314 break;
1315 case Instruction::FAdd:
1316 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1317 return ConstantFP::get(C1->getContext(), C3V);
1318 case Instruction::FSub:
1319 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1320 return ConstantFP::get(C1->getContext(), C3V);
1321 case Instruction::FMul:
1322 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1323 return ConstantFP::get(C1->getContext(), C3V);
1324 case Instruction::FDiv:
1325 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1326 return ConstantFP::get(C1->getContext(), C3V);
1327 case Instruction::FRem:
1328 (void)C3V.mod(C2V);
1329 return ConstantFP::get(C1->getContext(), C3V);
1330 }
1331 }
1332 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1333 // Fold each element and create a vector constant from those constants.
1334 SmallVector<Constant*, 16> Result;
1335 Type *Ty = IntegerType::get(VTy->getContext(), 32);
1336 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1337 Constant *ExtractIdx = ConstantInt::get(Ty, i);
1338 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1339 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1340
1341 // If any element of a divisor vector is zero, the whole op is undef.
1342 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1343 return UndefValue::get(VTy);
1344
1345 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1346 }
1347
1348 return ConstantVector::get(Result);
1349 }
1350
1351 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1352 // There are many possible foldings we could do here. We should probably
1353 // at least fold add of a pointer with an integer into the appropriate
1354 // getelementptr. This will improve alias analysis a bit.
1355
1356 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1357 // (a + (b + c)).
1358 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1359 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1360 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1361 return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1362 }
1363 } else if (isa<ConstantExpr>(C2)) {
1364 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1365 // other way if possible.
1366 if (Instruction::isCommutative(Opcode))
1367 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1368 }
1369
1370 // i1 can be simplified in many cases.
1371 if (C1->getType()->isIntegerTy(1)) {
1372 switch (Opcode) {
1373 case Instruction::Add:
1374 case Instruction::Sub:
1375 return ConstantExpr::getXor(C1, C2);
1376 case Instruction::Mul:
1377 return ConstantExpr::getAnd(C1, C2);
1378 case Instruction::Shl:
1379 case Instruction::LShr:
1380 case Instruction::AShr:
1381 // We can assume that C2 == 0. If it were one the result would be
1382 // undefined because the shift value is as large as the bitwidth.
1383 return C1;
1384 case Instruction::SDiv:
1385 case Instruction::UDiv:
1386 // We can assume that C2 == 1. If it were zero the result would be
1387 // undefined through division by zero.
1388 return C1;
1389 case Instruction::URem:
1390 case Instruction::SRem:
1391 // We can assume that C2 == 1. If it were zero the result would be
1392 // undefined through division by zero.
1393 return ConstantInt::getFalse(C1->getContext());
1394 default:
1395 break;
1396 }
1397 }
1398
1399 // We don't know how to fold this.
1400 return nullptr;
1401 }
1402
1403 /// This type is zero-sized if it's an array or structure of zero-sized types.
1404 /// The only leaf zero-sized type is an empty structure.
isMaybeZeroSizedType(Type * Ty)1405 static bool isMaybeZeroSizedType(Type *Ty) {
1406 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1407 if (STy->isOpaque()) return true; // Can't say.
1408
1409 // If all of elements have zero size, this does too.
1410 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1411 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1412 return true;
1413
1414 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1415 return isMaybeZeroSizedType(ATy->getElementType());
1416 }
1417 return false;
1418 }
1419
1420 /// Compare the two constants as though they were getelementptr indices.
1421 /// This allows coercion of the types to be the same thing.
1422 ///
1423 /// If the two constants are the "same" (after coercion), return 0. If the
1424 /// first is less than the second, return -1, if the second is less than the
1425 /// first, return 1. If the constants are not integral, return -2.
1426 ///
IdxCompare(Constant * C1,Constant * C2,Type * ElTy)1427 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1428 if (C1 == C2) return 0;
1429
1430 // Ok, we found a different index. If they are not ConstantInt, we can't do
1431 // anything with them.
1432 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1433 return -2; // don't know!
1434
1435 // We cannot compare the indices if they don't fit in an int64_t.
1436 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1437 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1438 return -2; // don't know!
1439
1440 // Ok, we have two differing integer indices. Sign extend them to be the same
1441 // type.
1442 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1443 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1444
1445 if (C1Val == C2Val) return 0; // They are equal
1446
1447 // If the type being indexed over is really just a zero sized type, there is
1448 // no pointer difference being made here.
1449 if (isMaybeZeroSizedType(ElTy))
1450 return -2; // dunno.
1451
1452 // If they are really different, now that they are the same type, then we
1453 // found a difference!
1454 if (C1Val < C2Val)
1455 return -1;
1456 else
1457 return 1;
1458 }
1459
1460 /// This function determines if there is anything we can decide about the two
1461 /// constants provided. This doesn't need to handle simple things like
1462 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1463 /// If we can determine that the two constants have a particular relation to
1464 /// each other, we should return the corresponding FCmpInst predicate,
1465 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1466 /// ConstantFoldCompareInstruction.
1467 ///
1468 /// To simplify this code we canonicalize the relation so that the first
1469 /// operand is always the most "complex" of the two. We consider ConstantFP
1470 /// to be the simplest, and ConstantExprs to be the most complex.
evaluateFCmpRelation(Constant * V1,Constant * V2)1471 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1472 assert(V1->getType() == V2->getType() &&
1473 "Cannot compare values of different types!");
1474
1475 // We do not know if a constant expression will evaluate to a number or NaN.
1476 // Therefore, we can only say that the relation is unordered or equal.
1477 if (V1 == V2) return FCmpInst::FCMP_UEQ;
1478
1479 if (!isa<ConstantExpr>(V1)) {
1480 if (!isa<ConstantExpr>(V2)) {
1481 // Simple case, use the standard constant folder.
1482 ConstantInt *R = nullptr;
1483 R = dyn_cast<ConstantInt>(
1484 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1485 if (R && !R->isZero())
1486 return FCmpInst::FCMP_OEQ;
1487 R = dyn_cast<ConstantInt>(
1488 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1489 if (R && !R->isZero())
1490 return FCmpInst::FCMP_OLT;
1491 R = dyn_cast<ConstantInt>(
1492 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1493 if (R && !R->isZero())
1494 return FCmpInst::FCMP_OGT;
1495
1496 // Nothing more we can do
1497 return FCmpInst::BAD_FCMP_PREDICATE;
1498 }
1499
1500 // If the first operand is simple and second is ConstantExpr, swap operands.
1501 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1502 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1503 return FCmpInst::getSwappedPredicate(SwappedRelation);
1504 } else {
1505 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1506 // constantexpr or a simple constant.
1507 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1508 switch (CE1->getOpcode()) {
1509 case Instruction::FPTrunc:
1510 case Instruction::FPExt:
1511 case Instruction::UIToFP:
1512 case Instruction::SIToFP:
1513 // We might be able to do something with these but we don't right now.
1514 break;
1515 default:
1516 break;
1517 }
1518 }
1519 // There are MANY other foldings that we could perform here. They will
1520 // probably be added on demand, as they seem needed.
1521 return FCmpInst::BAD_FCMP_PREDICATE;
1522 }
1523
areGlobalsPotentiallyEqual(const GlobalValue * GV1,const GlobalValue * GV2)1524 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1525 const GlobalValue *GV2) {
1526 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1527 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1528 return true;
1529 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1530 Type *Ty = GVar->getValueType();
1531 // A global with opaque type might end up being zero sized.
1532 if (!Ty->isSized())
1533 return true;
1534 // A global with an empty type might lie at the address of any other
1535 // global.
1536 if (Ty->isEmptyTy())
1537 return true;
1538 }
1539 return false;
1540 };
1541 // Don't try to decide equality of aliases.
1542 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1543 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1544 return ICmpInst::ICMP_NE;
1545 return ICmpInst::BAD_ICMP_PREDICATE;
1546 }
1547
1548 /// This function determines if there is anything we can decide about the two
1549 /// constants provided. This doesn't need to handle simple things like integer
1550 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1551 /// If we can determine that the two constants have a particular relation to
1552 /// each other, we should return the corresponding ICmp predicate, otherwise
1553 /// return ICmpInst::BAD_ICMP_PREDICATE.
1554 ///
1555 /// To simplify this code we canonicalize the relation so that the first
1556 /// operand is always the most "complex" of the two. We consider simple
1557 /// constants (like ConstantInt) to be the simplest, followed by
1558 /// GlobalValues, followed by ConstantExpr's (the most complex).
1559 ///
evaluateICmpRelation(Constant * V1,Constant * V2,bool isSigned)1560 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1561 bool isSigned) {
1562 assert(V1->getType() == V2->getType() &&
1563 "Cannot compare different types of values!");
1564 if (V1 == V2) return ICmpInst::ICMP_EQ;
1565
1566 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1567 !isa<BlockAddress>(V1)) {
1568 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1569 !isa<BlockAddress>(V2)) {
1570 // We distilled this down to a simple case, use the standard constant
1571 // folder.
1572 ConstantInt *R = nullptr;
1573 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1574 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1575 if (R && !R->isZero())
1576 return pred;
1577 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1578 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1579 if (R && !R->isZero())
1580 return pred;
1581 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1582 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1583 if (R && !R->isZero())
1584 return pred;
1585
1586 // If we couldn't figure it out, bail.
1587 return ICmpInst::BAD_ICMP_PREDICATE;
1588 }
1589
1590 // If the first operand is simple, swap operands.
1591 ICmpInst::Predicate SwappedRelation =
1592 evaluateICmpRelation(V2, V1, isSigned);
1593 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1594 return ICmpInst::getSwappedPredicate(SwappedRelation);
1595
1596 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1597 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1598 ICmpInst::Predicate SwappedRelation =
1599 evaluateICmpRelation(V2, V1, isSigned);
1600 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1601 return ICmpInst::getSwappedPredicate(SwappedRelation);
1602 return ICmpInst::BAD_ICMP_PREDICATE;
1603 }
1604
1605 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1606 // constant (which, since the types must match, means that it's a
1607 // ConstantPointerNull).
1608 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1609 return areGlobalsPotentiallyEqual(GV, GV2);
1610 } else if (isa<BlockAddress>(V2)) {
1611 return ICmpInst::ICMP_NE; // Globals never equal labels.
1612 } else {
1613 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1614 // GlobalVals can never be null unless they have external weak linkage.
1615 // We don't try to evaluate aliases here.
1616 // NOTE: We should not be doing this constant folding if null pointer
1617 // is considered valid for the function. But currently there is no way to
1618 // query it from the Constant type.
1619 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1620 !NullPointerIsDefined(nullptr /* F */,
1621 GV->getType()->getAddressSpace()))
1622 return ICmpInst::ICMP_NE;
1623 }
1624 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1625 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1626 ICmpInst::Predicate SwappedRelation =
1627 evaluateICmpRelation(V2, V1, isSigned);
1628 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1629 return ICmpInst::getSwappedPredicate(SwappedRelation);
1630 return ICmpInst::BAD_ICMP_PREDICATE;
1631 }
1632
1633 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1634 // constant (which, since the types must match, means that it is a
1635 // ConstantPointerNull).
1636 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1637 // Block address in another function can't equal this one, but block
1638 // addresses in the current function might be the same if blocks are
1639 // empty.
1640 if (BA2->getFunction() != BA->getFunction())
1641 return ICmpInst::ICMP_NE;
1642 } else {
1643 // Block addresses aren't null, don't equal the address of globals.
1644 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1645 "Canonicalization guarantee!");
1646 return ICmpInst::ICMP_NE;
1647 }
1648 } else {
1649 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1650 // constantexpr, a global, block address, or a simple constant.
1651 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1652 Constant *CE1Op0 = CE1->getOperand(0);
1653
1654 switch (CE1->getOpcode()) {
1655 case Instruction::Trunc:
1656 case Instruction::FPTrunc:
1657 case Instruction::FPExt:
1658 case Instruction::FPToUI:
1659 case Instruction::FPToSI:
1660 break; // We can't evaluate floating point casts or truncations.
1661
1662 case Instruction::UIToFP:
1663 case Instruction::SIToFP:
1664 case Instruction::BitCast:
1665 case Instruction::ZExt:
1666 case Instruction::SExt:
1667 // We can't evaluate floating point casts or truncations.
1668 if (CE1Op0->getType()->isFPOrFPVectorTy())
1669 break;
1670
1671 // If the cast is not actually changing bits, and the second operand is a
1672 // null pointer, do the comparison with the pre-casted value.
1673 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1674 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1675 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1676 return evaluateICmpRelation(CE1Op0,
1677 Constant::getNullValue(CE1Op0->getType()),
1678 isSigned);
1679 }
1680 break;
1681
1682 case Instruction::GetElementPtr: {
1683 GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1684 // Ok, since this is a getelementptr, we know that the constant has a
1685 // pointer type. Check the various cases.
1686 if (isa<ConstantPointerNull>(V2)) {
1687 // If we are comparing a GEP to a null pointer, check to see if the base
1688 // of the GEP equals the null pointer.
1689 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1690 if (GV->hasExternalWeakLinkage())
1691 // Weak linkage GVals could be zero or not. We're comparing that
1692 // to null pointer so its greater-or-equal
1693 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1694 else
1695 // If its not weak linkage, the GVal must have a non-zero address
1696 // so the result is greater-than
1697 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1698 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1699 // If we are indexing from a null pointer, check to see if we have any
1700 // non-zero indices.
1701 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1702 if (!CE1->getOperand(i)->isNullValue())
1703 // Offsetting from null, must not be equal.
1704 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1705 // Only zero indexes from null, must still be zero.
1706 return ICmpInst::ICMP_EQ;
1707 }
1708 // Otherwise, we can't really say if the first operand is null or not.
1709 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1710 if (isa<ConstantPointerNull>(CE1Op0)) {
1711 if (GV2->hasExternalWeakLinkage())
1712 // Weak linkage GVals could be zero or not. We're comparing it to
1713 // a null pointer, so its less-or-equal
1714 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1715 else
1716 // If its not weak linkage, the GVal must have a non-zero address
1717 // so the result is less-than
1718 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1719 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1720 if (GV == GV2) {
1721 // If this is a getelementptr of the same global, then it must be
1722 // different. Because the types must match, the getelementptr could
1723 // only have at most one index, and because we fold getelementptr's
1724 // with a single zero index, it must be nonzero.
1725 assert(CE1->getNumOperands() == 2 &&
1726 !CE1->getOperand(1)->isNullValue() &&
1727 "Surprising getelementptr!");
1728 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1729 } else {
1730 if (CE1GEP->hasAllZeroIndices())
1731 return areGlobalsPotentiallyEqual(GV, GV2);
1732 return ICmpInst::BAD_ICMP_PREDICATE;
1733 }
1734 }
1735 } else {
1736 ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1737 Constant *CE2Op0 = CE2->getOperand(0);
1738
1739 // There are MANY other foldings that we could perform here. They will
1740 // probably be added on demand, as they seem needed.
1741 switch (CE2->getOpcode()) {
1742 default: break;
1743 case Instruction::GetElementPtr:
1744 // By far the most common case to handle is when the base pointers are
1745 // obviously to the same global.
1746 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1747 // Don't know relative ordering, but check for inequality.
1748 if (CE1Op0 != CE2Op0) {
1749 GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1750 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1751 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1752 cast<GlobalValue>(CE2Op0));
1753 return ICmpInst::BAD_ICMP_PREDICATE;
1754 }
1755 // Ok, we know that both getelementptr instructions are based on the
1756 // same global. From this, we can precisely determine the relative
1757 // ordering of the resultant pointers.
1758 unsigned i = 1;
1759
1760 // The logic below assumes that the result of the comparison
1761 // can be determined by finding the first index that differs.
1762 // This doesn't work if there is over-indexing in any
1763 // subsequent indices, so check for that case first.
1764 if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1765 !CE2->isGEPWithNoNotionalOverIndexing())
1766 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1767
1768 // Compare all of the operands the GEP's have in common.
1769 gep_type_iterator GTI = gep_type_begin(CE1);
1770 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1771 ++i, ++GTI)
1772 switch (IdxCompare(CE1->getOperand(i),
1773 CE2->getOperand(i), GTI.getIndexedType())) {
1774 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1775 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1776 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1777 }
1778
1779 // Ok, we ran out of things they have in common. If any leftovers
1780 // are non-zero then we have a difference, otherwise we are equal.
1781 for (; i < CE1->getNumOperands(); ++i)
1782 if (!CE1->getOperand(i)->isNullValue()) {
1783 if (isa<ConstantInt>(CE1->getOperand(i)))
1784 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1785 else
1786 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1787 }
1788
1789 for (; i < CE2->getNumOperands(); ++i)
1790 if (!CE2->getOperand(i)->isNullValue()) {
1791 if (isa<ConstantInt>(CE2->getOperand(i)))
1792 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1793 else
1794 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1795 }
1796 return ICmpInst::ICMP_EQ;
1797 }
1798 }
1799 }
1800 break;
1801 }
1802 default:
1803 break;
1804 }
1805 }
1806
1807 return ICmpInst::BAD_ICMP_PREDICATE;
1808 }
1809
ConstantFoldCompareInstruction(unsigned short pred,Constant * C1,Constant * C2)1810 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1811 Constant *C1, Constant *C2) {
1812 Type *ResultTy;
1813 if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1814 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1815 VT->getNumElements());
1816 else
1817 ResultTy = Type::getInt1Ty(C1->getContext());
1818
1819 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1820 if (pred == FCmpInst::FCMP_FALSE)
1821 return Constant::getNullValue(ResultTy);
1822
1823 if (pred == FCmpInst::FCMP_TRUE)
1824 return Constant::getAllOnesValue(ResultTy);
1825
1826 // Handle some degenerate cases first
1827 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1828 CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1829 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1830 // For EQ and NE, we can always pick a value for the undef to make the
1831 // predicate pass or fail, so we can return undef.
1832 // Also, if both operands are undef, we can return undef for int comparison.
1833 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1834 return UndefValue::get(ResultTy);
1835
1836 // Otherwise, for integer compare, pick the same value as the non-undef
1837 // operand, and fold it to true or false.
1838 if (isIntegerPredicate)
1839 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1840
1841 // Choosing NaN for the undef will always make unordered comparison succeed
1842 // and ordered comparison fails.
1843 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1844 }
1845
1846 // icmp eq/ne(null,GV) -> false/true
1847 if (C1->isNullValue()) {
1848 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1849 // Don't try to evaluate aliases. External weak GV can be null.
1850 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1851 !NullPointerIsDefined(nullptr /* F */,
1852 GV->getType()->getAddressSpace())) {
1853 if (pred == ICmpInst::ICMP_EQ)
1854 return ConstantInt::getFalse(C1->getContext());
1855 else if (pred == ICmpInst::ICMP_NE)
1856 return ConstantInt::getTrue(C1->getContext());
1857 }
1858 // icmp eq/ne(GV,null) -> false/true
1859 } else if (C2->isNullValue()) {
1860 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1861 // Don't try to evaluate aliases. External weak GV can be null.
1862 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1863 !NullPointerIsDefined(nullptr /* F */,
1864 GV->getType()->getAddressSpace())) {
1865 if (pred == ICmpInst::ICMP_EQ)
1866 return ConstantInt::getFalse(C1->getContext());
1867 else if (pred == ICmpInst::ICMP_NE)
1868 return ConstantInt::getTrue(C1->getContext());
1869 }
1870 }
1871
1872 // If the comparison is a comparison between two i1's, simplify it.
1873 if (C1->getType()->isIntegerTy(1)) {
1874 switch(pred) {
1875 case ICmpInst::ICMP_EQ:
1876 if (isa<ConstantInt>(C2))
1877 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1878 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1879 case ICmpInst::ICMP_NE:
1880 return ConstantExpr::getXor(C1, C2);
1881 default:
1882 break;
1883 }
1884 }
1885
1886 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1887 const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1888 const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1889 switch (pred) {
1890 default: llvm_unreachable("Invalid ICmp Predicate");
1891 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
1892 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
1893 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1894 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1895 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1896 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1897 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1898 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1899 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1900 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1901 }
1902 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1903 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1904 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1905 APFloat::cmpResult R = C1V.compare(C2V);
1906 switch (pred) {
1907 default: llvm_unreachable("Invalid FCmp Predicate");
1908 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1909 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
1910 case FCmpInst::FCMP_UNO:
1911 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1912 case FCmpInst::FCMP_ORD:
1913 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1914 case FCmpInst::FCMP_UEQ:
1915 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1916 R==APFloat::cmpEqual);
1917 case FCmpInst::FCMP_OEQ:
1918 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1919 case FCmpInst::FCMP_UNE:
1920 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1921 case FCmpInst::FCMP_ONE:
1922 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1923 R==APFloat::cmpGreaterThan);
1924 case FCmpInst::FCMP_ULT:
1925 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1926 R==APFloat::cmpLessThan);
1927 case FCmpInst::FCMP_OLT:
1928 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1929 case FCmpInst::FCMP_UGT:
1930 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1931 R==APFloat::cmpGreaterThan);
1932 case FCmpInst::FCMP_OGT:
1933 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1934 case FCmpInst::FCMP_ULE:
1935 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1936 case FCmpInst::FCMP_OLE:
1937 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1938 R==APFloat::cmpEqual);
1939 case FCmpInst::FCMP_UGE:
1940 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1941 case FCmpInst::FCMP_OGE:
1942 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1943 R==APFloat::cmpEqual);
1944 }
1945 } else if (C1->getType()->isVectorTy()) {
1946 // If we can constant fold the comparison of each element, constant fold
1947 // the whole vector comparison.
1948 SmallVector<Constant*, 4> ResElts;
1949 Type *Ty = IntegerType::get(C1->getContext(), 32);
1950 // Compare the elements, producing an i1 result or constant expr.
1951 for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1952 Constant *C1E =
1953 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1954 Constant *C2E =
1955 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1956
1957 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1958 }
1959
1960 return ConstantVector::get(ResElts);
1961 }
1962
1963 if (C1->getType()->isFloatingPointTy() &&
1964 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1965 // infinite recursive loop
1966 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1967 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1968 switch (evaluateFCmpRelation(C1, C2)) {
1969 default: llvm_unreachable("Unknown relation!");
1970 case FCmpInst::FCMP_UNO:
1971 case FCmpInst::FCMP_ORD:
1972 case FCmpInst::FCMP_UNE:
1973 case FCmpInst::FCMP_ULT:
1974 case FCmpInst::FCMP_UGT:
1975 case FCmpInst::FCMP_ULE:
1976 case FCmpInst::FCMP_UGE:
1977 case FCmpInst::FCMP_TRUE:
1978 case FCmpInst::FCMP_FALSE:
1979 case FCmpInst::BAD_FCMP_PREDICATE:
1980 break; // Couldn't determine anything about these constants.
1981 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1982 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1983 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1984 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1985 break;
1986 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1987 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1988 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1989 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1990 break;
1991 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1992 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1993 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1994 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1995 break;
1996 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1997 // We can only partially decide this relation.
1998 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1999 Result = 0;
2000 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2001 Result = 1;
2002 break;
2003 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
2004 // We can only partially decide this relation.
2005 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2006 Result = 0;
2007 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2008 Result = 1;
2009 break;
2010 case FCmpInst::FCMP_ONE: // We know that C1 != C2
2011 // We can only partially decide this relation.
2012 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
2013 Result = 0;
2014 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
2015 Result = 1;
2016 break;
2017 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
2018 // We can only partially decide this relation.
2019 if (pred == FCmpInst::FCMP_ONE)
2020 Result = 0;
2021 else if (pred == FCmpInst::FCMP_UEQ)
2022 Result = 1;
2023 break;
2024 }
2025
2026 // If we evaluated the result, return it now.
2027 if (Result != -1)
2028 return ConstantInt::get(ResultTy, Result);
2029
2030 } else {
2031 // Evaluate the relation between the two constants, per the predicate.
2032 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
2033 switch (evaluateICmpRelation(C1, C2,
2034 CmpInst::isSigned((CmpInst::Predicate)pred))) {
2035 default: llvm_unreachable("Unknown relational!");
2036 case ICmpInst::BAD_ICMP_PREDICATE:
2037 break; // Couldn't determine anything about these constants.
2038 case ICmpInst::ICMP_EQ: // We know the constants are equal!
2039 // If we know the constants are equal, we can decide the result of this
2040 // computation precisely.
2041 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2042 break;
2043 case ICmpInst::ICMP_ULT:
2044 switch (pred) {
2045 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2046 Result = 1; break;
2047 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2048 Result = 0; break;
2049 }
2050 break;
2051 case ICmpInst::ICMP_SLT:
2052 switch (pred) {
2053 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2054 Result = 1; break;
2055 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2056 Result = 0; break;
2057 }
2058 break;
2059 case ICmpInst::ICMP_UGT:
2060 switch (pred) {
2061 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2062 Result = 1; break;
2063 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2064 Result = 0; break;
2065 }
2066 break;
2067 case ICmpInst::ICMP_SGT:
2068 switch (pred) {
2069 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2070 Result = 1; break;
2071 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2072 Result = 0; break;
2073 }
2074 break;
2075 case ICmpInst::ICMP_ULE:
2076 if (pred == ICmpInst::ICMP_UGT) Result = 0;
2077 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2078 break;
2079 case ICmpInst::ICMP_SLE:
2080 if (pred == ICmpInst::ICMP_SGT) Result = 0;
2081 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2082 break;
2083 case ICmpInst::ICMP_UGE:
2084 if (pred == ICmpInst::ICMP_ULT) Result = 0;
2085 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2086 break;
2087 case ICmpInst::ICMP_SGE:
2088 if (pred == ICmpInst::ICMP_SLT) Result = 0;
2089 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2090 break;
2091 case ICmpInst::ICMP_NE:
2092 if (pred == ICmpInst::ICMP_EQ) Result = 0;
2093 if (pred == ICmpInst::ICMP_NE) Result = 1;
2094 break;
2095 }
2096
2097 // If we evaluated the result, return it now.
2098 if (Result != -1)
2099 return ConstantInt::get(ResultTy, Result);
2100
2101 // If the right hand side is a bitcast, try using its inverse to simplify
2102 // it by moving it to the left hand side. We can't do this if it would turn
2103 // a vector compare into a scalar compare or visa versa, or if it would turn
2104 // the operands into FP values.
2105 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2106 Constant *CE2Op0 = CE2->getOperand(0);
2107 if (CE2->getOpcode() == Instruction::BitCast &&
2108 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2109 !CE2Op0->getType()->isFPOrFPVectorTy()) {
2110 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2111 return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2112 }
2113 }
2114
2115 // If the left hand side is an extension, try eliminating it.
2116 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2117 if ((CE1->getOpcode() == Instruction::SExt &&
2118 ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2119 (CE1->getOpcode() == Instruction::ZExt &&
2120 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2121 Constant *CE1Op0 = CE1->getOperand(0);
2122 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2123 if (CE1Inverse == CE1Op0) {
2124 // Check whether we can safely truncate the right hand side.
2125 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2126 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2127 C2->getType()) == C2)
2128 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2129 }
2130 }
2131 }
2132
2133 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2134 (C1->isNullValue() && !C2->isNullValue())) {
2135 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2136 // other way if possible.
2137 // Also, if C1 is null and C2 isn't, flip them around.
2138 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2139 return ConstantExpr::getICmp(pred, C2, C1);
2140 }
2141 }
2142 return nullptr;
2143 }
2144
2145 /// Test whether the given sequence of *normalized* indices is "inbounds".
2146 template<typename IndexTy>
isInBoundsIndices(ArrayRef<IndexTy> Idxs)2147 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2148 // No indices means nothing that could be out of bounds.
2149 if (Idxs.empty()) return true;
2150
2151 // If the first index is zero, it's in bounds.
2152 if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2153
2154 // If the first index is one and all the rest are zero, it's in bounds,
2155 // by the one-past-the-end rule.
2156 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2157 if (!CI->isOne())
2158 return false;
2159 } else {
2160 auto *CV = cast<ConstantDataVector>(Idxs[0]);
2161 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2162 if (!CI || !CI->isOne())
2163 return false;
2164 }
2165
2166 for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2167 if (!cast<Constant>(Idxs[i])->isNullValue())
2168 return false;
2169 return true;
2170 }
2171
2172 /// Test whether a given ConstantInt is in-range for a SequentialType.
isIndexInRangeOfArrayType(uint64_t NumElements,const ConstantInt * CI)2173 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2174 const ConstantInt *CI) {
2175 // We cannot bounds check the index if it doesn't fit in an int64_t.
2176 if (CI->getValue().getMinSignedBits() > 64)
2177 return false;
2178
2179 // A negative index or an index past the end of our sequential type is
2180 // considered out-of-range.
2181 int64_t IndexVal = CI->getSExtValue();
2182 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2183 return false;
2184
2185 // Otherwise, it is in-range.
2186 return true;
2187 }
2188
ConstantFoldGetElementPtr(Type * PointeeTy,Constant * C,bool InBounds,Optional<unsigned> InRangeIndex,ArrayRef<Value * > Idxs)2189 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2190 bool InBounds,
2191 Optional<unsigned> InRangeIndex,
2192 ArrayRef<Value *> Idxs) {
2193 if (Idxs.empty()) return C;
2194
2195 Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2196 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2197
2198 if (isa<UndefValue>(C))
2199 return UndefValue::get(GEPTy);
2200
2201 Constant *Idx0 = cast<Constant>(Idxs[0]);
2202 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2203 return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2204 ? ConstantVector::getSplat(
2205 cast<VectorType>(GEPTy)->getNumElements(), C)
2206 : C;
2207
2208 if (C->isNullValue()) {
2209 bool isNull = true;
2210 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2211 if (!isa<UndefValue>(Idxs[i]) &&
2212 !cast<Constant>(Idxs[i])->isNullValue()) {
2213 isNull = false;
2214 break;
2215 }
2216 if (isNull) {
2217 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2218 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2219
2220 assert(Ty && "Invalid indices for GEP!");
2221 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2222 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2223 if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2224 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2225
2226 // The GEP returns a vector of pointers when one of more of
2227 // its arguments is a vector.
2228 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2229 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2230 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2231 break;
2232 }
2233 }
2234
2235 return Constant::getNullValue(GEPTy);
2236 }
2237 }
2238
2239 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2240 // Combine Indices - If the source pointer to this getelementptr instruction
2241 // is a getelementptr instruction, combine the indices of the two
2242 // getelementptr instructions into a single instruction.
2243 //
2244 if (CE->getOpcode() == Instruction::GetElementPtr) {
2245 gep_type_iterator LastI = gep_type_end(CE);
2246 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2247 I != E; ++I)
2248 LastI = I;
2249
2250 // We cannot combine indices if doing so would take us outside of an
2251 // array or vector. Doing otherwise could trick us if we evaluated such a
2252 // GEP as part of a load.
2253 //
2254 // e.g. Consider if the original GEP was:
2255 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2256 // i32 0, i32 0, i64 0)
2257 //
2258 // If we then tried to offset it by '8' to get to the third element,
2259 // an i8, we should *not* get:
2260 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2261 // i32 0, i32 0, i64 8)
2262 //
2263 // This GEP tries to index array element '8 which runs out-of-bounds.
2264 // Subsequent evaluation would get confused and produce erroneous results.
2265 //
2266 // The following prohibits such a GEP from being formed by checking to see
2267 // if the index is in-range with respect to an array.
2268 // TODO: This code may be extended to handle vectors as well.
2269 bool PerformFold = false;
2270 if (Idx0->isNullValue())
2271 PerformFold = true;
2272 else if (LastI.isSequential())
2273 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2274 PerformFold = (!LastI.isBoundedSequential() ||
2275 isIndexInRangeOfArrayType(
2276 LastI.getSequentialNumElements(), CI)) &&
2277 !CE->getOperand(CE->getNumOperands() - 1)
2278 ->getType()
2279 ->isVectorTy();
2280
2281 if (PerformFold) {
2282 SmallVector<Value*, 16> NewIndices;
2283 NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2284 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2285
2286 // Add the last index of the source with the first index of the new GEP.
2287 // Make sure to handle the case when they are actually different types.
2288 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2289 // Otherwise it must be an array.
2290 if (!Idx0->isNullValue()) {
2291 Type *IdxTy = Combined->getType();
2292 if (IdxTy != Idx0->getType()) {
2293 unsigned CommonExtendedWidth =
2294 std::max(IdxTy->getIntegerBitWidth(),
2295 Idx0->getType()->getIntegerBitWidth());
2296 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2297
2298 Type *CommonTy =
2299 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2300 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2301 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2302 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2303 } else {
2304 Combined =
2305 ConstantExpr::get(Instruction::Add, Idx0, Combined);
2306 }
2307 }
2308
2309 NewIndices.push_back(Combined);
2310 NewIndices.append(Idxs.begin() + 1, Idxs.end());
2311
2312 // The combined GEP normally inherits its index inrange attribute from
2313 // the inner GEP, but if the inner GEP's last index was adjusted by the
2314 // outer GEP, any inbounds attribute on that index is invalidated.
2315 Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex();
2316 if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue())
2317 IRIndex = None;
2318
2319 return ConstantExpr::getGetElementPtr(
2320 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2321 NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(),
2322 IRIndex);
2323 }
2324 }
2325
2326 // Attempt to fold casts to the same type away. For example, folding:
2327 //
2328 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2329 // i64 0, i64 0)
2330 // into:
2331 //
2332 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2333 //
2334 // Don't fold if the cast is changing address spaces.
2335 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2336 PointerType *SrcPtrTy =
2337 dyn_cast<PointerType>(CE->getOperand(0)->getType());
2338 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2339 if (SrcPtrTy && DstPtrTy) {
2340 ArrayType *SrcArrayTy =
2341 dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2342 ArrayType *DstArrayTy =
2343 dyn_cast<ArrayType>(DstPtrTy->getElementType());
2344 if (SrcArrayTy && DstArrayTy
2345 && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2346 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2347 return ConstantExpr::getGetElementPtr(SrcArrayTy,
2348 (Constant *)CE->getOperand(0),
2349 Idxs, InBounds, InRangeIndex);
2350 }
2351 }
2352 }
2353
2354 // Check to see if any array indices are not within the corresponding
2355 // notional array or vector bounds. If so, try to determine if they can be
2356 // factored out into preceding dimensions.
2357 SmallVector<Constant *, 8> NewIdxs;
2358 Type *Ty = PointeeTy;
2359 Type *Prev = C->getType();
2360 bool Unknown =
2361 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2362 for (unsigned i = 1, e = Idxs.size(); i != e;
2363 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2364 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2365 // We don't know if it's in range or not.
2366 Unknown = true;
2367 continue;
2368 }
2369 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2370 // Skip if the type of the previous index is not supported.
2371 continue;
2372 if (InRangeIndex && i == *InRangeIndex + 1) {
2373 // If an index is marked inrange, we cannot apply this canonicalization to
2374 // the following index, as that will cause the inrange index to point to
2375 // the wrong element.
2376 continue;
2377 }
2378 if (isa<StructType>(Ty)) {
2379 // The verify makes sure that GEPs into a struct are in range.
2380 continue;
2381 }
2382 auto *STy = cast<SequentialType>(Ty);
2383 if (isa<VectorType>(STy)) {
2384 // There can be awkward padding in after a non-power of two vector.
2385 Unknown = true;
2386 continue;
2387 }
2388 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2389 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2390 // It's in range, skip to the next index.
2391 continue;
2392 if (CI->getSExtValue() < 0) {
2393 // It's out of range and negative, don't try to factor it.
2394 Unknown = true;
2395 continue;
2396 }
2397 } else {
2398 auto *CV = cast<ConstantDataVector>(Idxs[i]);
2399 bool InRange = true;
2400 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2401 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2402 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2403 if (CI->getSExtValue() < 0) {
2404 Unknown = true;
2405 break;
2406 }
2407 }
2408 if (InRange || Unknown)
2409 // It's in range, skip to the next index.
2410 // It's out of range and negative, don't try to factor it.
2411 continue;
2412 }
2413 if (isa<StructType>(Prev)) {
2414 // It's out of range, but the prior dimension is a struct
2415 // so we can't do anything about it.
2416 Unknown = true;
2417 continue;
2418 }
2419 // It's out of range, but we can factor it into the prior
2420 // dimension.
2421 NewIdxs.resize(Idxs.size());
2422 // Determine the number of elements in our sequential type.
2423 uint64_t NumElements = STy->getArrayNumElements();
2424
2425 // Expand the current index or the previous index to a vector from a scalar
2426 // if necessary.
2427 Constant *CurrIdx = cast<Constant>(Idxs[i]);
2428 auto *PrevIdx =
2429 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2430 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2431 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2432 bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2433
2434 if (!IsCurrIdxVector && IsPrevIdxVector)
2435 CurrIdx = ConstantDataVector::getSplat(
2436 PrevIdx->getType()->getVectorNumElements(), CurrIdx);
2437
2438 if (!IsPrevIdxVector && IsCurrIdxVector)
2439 PrevIdx = ConstantDataVector::getSplat(
2440 CurrIdx->getType()->getVectorNumElements(), PrevIdx);
2441
2442 Constant *Factor =
2443 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2444 if (UseVector)
2445 Factor = ConstantDataVector::getSplat(
2446 IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements()
2447 : CurrIdx->getType()->getVectorNumElements(),
2448 Factor);
2449
2450 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2451
2452 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2453
2454 unsigned CommonExtendedWidth =
2455 std::max(PrevIdx->getType()->getScalarSizeInBits(),
2456 Div->getType()->getScalarSizeInBits());
2457 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2458
2459 // Before adding, extend both operands to i64 to avoid
2460 // overflow trouble.
2461 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2462 if (UseVector)
2463 ExtendedTy = VectorType::get(
2464 ExtendedTy, IsPrevIdxVector
2465 ? PrevIdx->getType()->getVectorNumElements()
2466 : CurrIdx->getType()->getVectorNumElements());
2467
2468 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2469 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2470
2471 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2472 Div = ConstantExpr::getSExt(Div, ExtendedTy);
2473
2474 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2475 }
2476
2477 // If we did any factoring, start over with the adjusted indices.
2478 if (!NewIdxs.empty()) {
2479 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2480 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2481 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2482 InRangeIndex);
2483 }
2484
2485 // If all indices are known integers and normalized, we can do a simple
2486 // check for the "inbounds" property.
2487 if (!Unknown && !InBounds)
2488 if (auto *GV = dyn_cast<GlobalVariable>(C))
2489 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2490 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2491 /*InBounds=*/true, InRangeIndex);
2492
2493 return nullptr;
2494 }
2495