1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/Statepoint.h"
27
28 using namespace llvm;
29
getBaseAlign(const Value * Base,const DataLayout & DL)30 static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) {
31 if (const MaybeAlign PA = Base->getPointerAlignment(DL))
32 return *PA;
33 Type *const Ty = Base->getType()->getPointerElementType();
34 if (!Ty->isSized())
35 return None;
36 return Align(DL.getABITypeAlignment(Ty));
37 }
38
isAligned(const Value * Base,const APInt & Offset,Align Alignment,const DataLayout & DL)39 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
40 const DataLayout &DL) {
41 if (MaybeAlign BA = getBaseAlign(Base, DL)) {
42 const APInt APBaseAlign(Offset.getBitWidth(), BA->value());
43 const APInt APAlign(Offset.getBitWidth(), Alignment.value());
44 assert(APAlign.isPowerOf2() && "must be a power of 2!");
45 return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1));
46 }
47 return false;
48 }
49
50 /// Test if V is always a pointer to allocated and suitably aligned memory for
51 /// a simple load or store.
isDereferenceableAndAlignedPointer(const Value * V,Align Alignment,const APInt & Size,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,SmallPtrSetImpl<const Value * > & Visited)52 static bool isDereferenceableAndAlignedPointer(
53 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
54 const Instruction *CtxI, const DominatorTree *DT,
55 SmallPtrSetImpl<const Value *> &Visited) {
56 // Already visited? Bail out, we've likely hit unreachable code.
57 if (!Visited.insert(V).second)
58 return false;
59
60 // Note that it is not safe to speculate into a malloc'd region because
61 // malloc may return null.
62
63 // bitcast instructions are no-ops as far as dereferenceability is concerned.
64 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
65 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment,
66 Size, DL, CtxI, DT, Visited);
67
68 bool CheckForNonNull = false;
69 APInt KnownDerefBytes(Size.getBitWidth(),
70 V->getPointerDereferenceableBytes(DL, CheckForNonNull));
71 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
72 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
73 // As we recursed through GEPs to get here, we've incrementally checked
74 // that each step advanced by a multiple of the alignment. If our base is
75 // properly aligned, then the original offset accessed must also be.
76 Type *Ty = V->getType();
77 assert(Ty->isSized() && "must be sized");
78 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
79 return isAligned(V, Offset, Alignment, DL);
80 }
81
82 // For GEPs, determine if the indexing lands within the allocated object.
83 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
84 const Value *Base = GEP->getPointerOperand();
85
86 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
87 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
88 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
89 .isMinValue())
90 return false;
91
92 // If the base pointer is dereferenceable for Offset+Size bytes, then the
93 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
94 // pointer is aligned to Align bytes, and the Offset is divisible by Align
95 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
96 // aligned to Align bytes.
97
98 // Offset and Size may have different bit widths if we have visited an
99 // addrspacecast, so we can't do arithmetic directly on the APInt values.
100 return isDereferenceableAndAlignedPointer(
101 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
102 CtxI, DT, Visited);
103 }
104
105 // For gc.relocate, look through relocations
106 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
107 return isDereferenceableAndAlignedPointer(
108 RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited);
109
110 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
111 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
112 Size, DL, CtxI, DT, Visited);
113
114 if (const auto *Call = dyn_cast<CallBase>(V))
115 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
116 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
117 DT, Visited);
118
119 // If we don't know, assume the worst.
120 return false;
121 }
122
isDereferenceableAndAlignedPointer(const Value * V,Align Alignment,const APInt & Size,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT)123 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
124 const APInt &Size,
125 const DataLayout &DL,
126 const Instruction *CtxI,
127 const DominatorTree *DT) {
128 // Note: At the moment, Size can be zero. This ends up being interpreted as
129 // a query of whether [Base, V] is dereferenceable and V is aligned (since
130 // that's what the implementation happened to do). It's unclear if this is
131 // the desired semantic, but at least SelectionDAG does exercise this case.
132
133 SmallPtrSet<const Value *, 32> Visited;
134 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
135 Visited);
136 }
137
isDereferenceableAndAlignedPointer(const Value * V,Type * Ty,MaybeAlign MA,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT)138 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
139 MaybeAlign MA,
140 const DataLayout &DL,
141 const Instruction *CtxI,
142 const DominatorTree *DT) {
143 if (!Ty->isSized())
144 return false;
145
146 // When dereferenceability information is provided by a dereferenceable
147 // attribute, we know exactly how many bytes are dereferenceable. If we can
148 // determine the exact offset to the attributed variable, we can use that
149 // information here.
150
151 // Require ABI alignment for loads without alignment specification
152 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
153 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
154 DL.getTypeStoreSize(Ty));
155 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
156 DT);
157 }
158
isDereferenceablePointer(const Value * V,Type * Ty,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT)159 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
160 const DataLayout &DL,
161 const Instruction *CtxI,
162 const DominatorTree *DT) {
163 return isDereferenceableAndAlignedPointer(V, Ty, Align::None(), DL, CtxI, DT);
164 }
165
166 /// Test if A and B will obviously have the same value.
167 ///
168 /// This includes recognizing that %t0 and %t1 will have the same
169 /// value in code like this:
170 /// \code
171 /// %t0 = getelementptr \@a, 0, 3
172 /// store i32 0, i32* %t0
173 /// %t1 = getelementptr \@a, 0, 3
174 /// %t2 = load i32* %t1
175 /// \endcode
176 ///
AreEquivalentAddressValues(const Value * A,const Value * B)177 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
178 // Test if the values are trivially equivalent.
179 if (A == B)
180 return true;
181
182 // Test if the values come from identical arithmetic instructions.
183 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
184 // this function is only used when one address use dominates the
185 // other, which means that they'll always either have the same
186 // value or one of them will have an undefined value.
187 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
188 isa<GetElementPtrInst>(A))
189 if (const Instruction *BI = dyn_cast<Instruction>(B))
190 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
191 return true;
192
193 // Otherwise they may not be equivalent.
194 return false;
195 }
196
isDereferenceableAndAlignedInLoop(LoadInst * LI,Loop * L,ScalarEvolution & SE,DominatorTree & DT)197 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
198 ScalarEvolution &SE,
199 DominatorTree &DT) {
200 auto &DL = LI->getModule()->getDataLayout();
201 Value *Ptr = LI->getPointerOperand();
202
203 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
204 DL.getTypeStoreSize(LI->getType()));
205 const Align Alignment = DL.getValueOrABITypeAlignment(
206 MaybeAlign(LI->getAlignment()), LI->getType());
207
208 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
209
210 // If given a uniform (i.e. non-varying) address, see if we can prove the
211 // access is safe within the loop w/o needing predication.
212 if (L->isLoopInvariant(Ptr))
213 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
214 HeaderFirstNonPHI, &DT);
215
216 // Otherwise, check to see if we have a repeating access pattern where we can
217 // prove that all accesses are well aligned and dereferenceable.
218 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
219 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
220 return false;
221 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
222 if (!Step)
223 return false;
224 // TODO: generalize to access patterns which have gaps
225 if (Step->getAPInt() != EltSize)
226 return false;
227
228 // TODO: If the symbolic trip count has a small bound (max count), we might
229 // be able to prove safety.
230 auto TC = SE.getSmallConstantTripCount(L);
231 if (!TC)
232 return false;
233
234 const APInt AccessSize = TC * EltSize;
235
236 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
237 if (!StartS)
238 return false;
239 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
240 Value *Base = StartS->getValue();
241
242 // For the moment, restrict ourselves to the case where the access size is a
243 // multiple of the requested alignment and the base is aligned.
244 // TODO: generalize if a case found which warrants
245 if (EltSize.urem(Alignment.value()) != 0)
246 return false;
247 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
248 HeaderFirstNonPHI, &DT);
249 }
250
251 /// Check if executing a load of this pointer value cannot trap.
252 ///
253 /// If DT and ScanFrom are specified this method performs context-sensitive
254 /// analysis and returns true if it is safe to load immediately before ScanFrom.
255 ///
256 /// If it is not obviously safe to load from the specified pointer, we do
257 /// a quick local scan of the basic block containing \c ScanFrom, to determine
258 /// if the address is already accessed.
259 ///
260 /// This uses the pointee type to determine how many bytes need to be safe to
261 /// load from the pointer.
isSafeToLoadUnconditionally(Value * V,MaybeAlign MA,APInt & Size,const DataLayout & DL,Instruction * ScanFrom,const DominatorTree * DT)262 bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size,
263 const DataLayout &DL,
264 Instruction *ScanFrom,
265 const DominatorTree *DT) {
266 // Zero alignment means that the load has the ABI alignment for the target
267 const Align Alignment =
268 DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType());
269
270 // If DT is not specified we can't make context-sensitive query
271 const Instruction* CtxI = DT ? ScanFrom : nullptr;
272 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT))
273 return true;
274
275 if (!ScanFrom)
276 return false;
277
278 if (Size.getBitWidth() > 64)
279 return false;
280 const uint64_t LoadSize = Size.getZExtValue();
281
282 // Otherwise, be a little bit aggressive by scanning the local block where we
283 // want to check to see if the pointer is already being loaded or stored
284 // from/to. If so, the previous load or store would have already trapped,
285 // so there is no harm doing an extra load (also, CSE will later eliminate
286 // the load entirely).
287 BasicBlock::iterator BBI = ScanFrom->getIterator(),
288 E = ScanFrom->getParent()->begin();
289
290 // We can at least always strip pointer casts even though we can't use the
291 // base here.
292 V = V->stripPointerCasts();
293
294 while (BBI != E) {
295 --BBI;
296
297 // If we see a free or a call which may write to memory (i.e. which might do
298 // a free) the pointer could be marked invalid.
299 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
300 !isa<DbgInfoIntrinsic>(BBI))
301 return false;
302
303 Value *AccessedPtr;
304 MaybeAlign MaybeAccessedAlign;
305 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
306 // Ignore volatile loads. The execution of a volatile load cannot
307 // be used to prove an address is backed by regular memory; it can,
308 // for example, point to an MMIO register.
309 if (LI->isVolatile())
310 continue;
311 AccessedPtr = LI->getPointerOperand();
312 MaybeAccessedAlign = MaybeAlign(LI->getAlignment());
313 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
314 // Ignore volatile stores (see comment for loads).
315 if (SI->isVolatile())
316 continue;
317 AccessedPtr = SI->getPointerOperand();
318 MaybeAccessedAlign = MaybeAlign(SI->getAlignment());
319 } else
320 continue;
321
322 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
323
324 const Align AccessedAlign =
325 DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy);
326 if (AccessedAlign < Alignment)
327 continue;
328
329 // Handle trivial cases.
330 if (AccessedPtr == V &&
331 LoadSize <= DL.getTypeStoreSize(AccessedTy))
332 return true;
333
334 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
335 LoadSize <= DL.getTypeStoreSize(AccessedTy))
336 return true;
337 }
338 return false;
339 }
340
isSafeToLoadUnconditionally(Value * V,Type * Ty,MaybeAlign Alignment,const DataLayout & DL,Instruction * ScanFrom,const DominatorTree * DT)341 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment,
342 const DataLayout &DL,
343 Instruction *ScanFrom,
344 const DominatorTree *DT) {
345 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
346 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT);
347 }
348
349 /// DefMaxInstsToScan - the default number of maximum instructions
350 /// to scan in the block, used by FindAvailableLoadedValue().
351 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
352 /// threading in part by eliminating partially redundant loads.
353 /// At that point, the value of MaxInstsToScan was already set to '6'
354 /// without documented explanation.
355 cl::opt<unsigned>
356 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
357 cl::desc("Use this to specify the default maximum number of instructions "
358 "to scan backward from a given instruction, when searching for "
359 "available loaded value"));
360
FindAvailableLoadedValue(LoadInst * Load,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,AliasAnalysis * AA,bool * IsLoad,unsigned * NumScanedInst)361 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
362 BasicBlock *ScanBB,
363 BasicBlock::iterator &ScanFrom,
364 unsigned MaxInstsToScan,
365 AliasAnalysis *AA, bool *IsLoad,
366 unsigned *NumScanedInst) {
367 // Don't CSE load that is volatile or anything stronger than unordered.
368 if (!Load->isUnordered())
369 return nullptr;
370
371 return FindAvailablePtrLoadStore(
372 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
373 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
374 }
375
FindAvailablePtrLoadStore(Value * Ptr,Type * AccessTy,bool AtLeastAtomic,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,AliasAnalysis * AA,bool * IsLoadCSE,unsigned * NumScanedInst)376 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
377 bool AtLeastAtomic, BasicBlock *ScanBB,
378 BasicBlock::iterator &ScanFrom,
379 unsigned MaxInstsToScan,
380 AliasAnalysis *AA, bool *IsLoadCSE,
381 unsigned *NumScanedInst) {
382 if (MaxInstsToScan == 0)
383 MaxInstsToScan = ~0U;
384
385 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
386 Value *StrippedPtr = Ptr->stripPointerCasts();
387
388 while (ScanFrom != ScanBB->begin()) {
389 // We must ignore debug info directives when counting (otherwise they
390 // would affect codegen).
391 Instruction *Inst = &*--ScanFrom;
392 if (isa<DbgInfoIntrinsic>(Inst))
393 continue;
394
395 // Restore ScanFrom to expected value in case next test succeeds
396 ScanFrom++;
397
398 if (NumScanedInst)
399 ++(*NumScanedInst);
400
401 // Don't scan huge blocks.
402 if (MaxInstsToScan-- == 0)
403 return nullptr;
404
405 --ScanFrom;
406 // If this is a load of Ptr, the loaded value is available.
407 // (This is true even if the load is volatile or atomic, although
408 // those cases are unlikely.)
409 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
410 if (AreEquivalentAddressValues(
411 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
412 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
413
414 // We can value forward from an atomic to a non-atomic, but not the
415 // other way around.
416 if (LI->isAtomic() < AtLeastAtomic)
417 return nullptr;
418
419 if (IsLoadCSE)
420 *IsLoadCSE = true;
421 return LI;
422 }
423
424 // Try to get the store size for the type.
425 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
426
427 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
428 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
429 // If this is a store through Ptr, the value is available!
430 // (This is true even if the store is volatile or atomic, although
431 // those cases are unlikely.)
432 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
433 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
434 AccessTy, DL)) {
435
436 // We can value forward from an atomic to a non-atomic, but not the
437 // other way around.
438 if (SI->isAtomic() < AtLeastAtomic)
439 return nullptr;
440
441 if (IsLoadCSE)
442 *IsLoadCSE = false;
443 return SI->getOperand(0);
444 }
445
446 // If both StrippedPtr and StorePtr reach all the way to an alloca or
447 // global and they are different, ignore the store. This is a trivial form
448 // of alias analysis that is important for reg2mem'd code.
449 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
450 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
451 StrippedPtr != StorePtr)
452 continue;
453
454 // If we have alias analysis and it says the store won't modify the loaded
455 // value, ignore the store.
456 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
457 continue;
458
459 // Otherwise the store that may or may not alias the pointer, bail out.
460 ++ScanFrom;
461 return nullptr;
462 }
463
464 // If this is some other instruction that may clobber Ptr, bail out.
465 if (Inst->mayWriteToMemory()) {
466 // If alias analysis claims that it really won't modify the load,
467 // ignore it.
468 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
469 continue;
470
471 // May modify the pointer, bail out.
472 ++ScanFrom;
473 return nullptr;
474 }
475 }
476
477 // Got to the start of the block, we didn't find it, but are done for this
478 // block.
479 return nullptr;
480 }
481