1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include <cassert>
42 #include <utility>
43
44 using namespace llvm;
45 using namespace PatternMatch;
46
47 #define DEBUG_TYPE "instcombine"
48
createMinMax(InstCombiner::BuilderTy & Builder,SelectPatternFlavor SPF,Value * A,Value * B)49 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50 SelectPatternFlavor SPF, Value *A, Value *B) {
51 CmpInst::Predicate Pred = getMinMaxPred(SPF);
52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54 }
55
56 /// Replace a select operand based on an equality comparison with the identity
57 /// constant of a binop.
foldSelectBinOpIdentity(SelectInst & Sel,const TargetLibraryInfo & TLI)58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59 const TargetLibraryInfo &TLI) {
60 // The select condition must be an equality compare with a constant operand.
61 Value *X;
62 Constant *C;
63 CmpInst::Predicate Pred;
64 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65 return nullptr;
66
67 bool IsEq;
68 if (ICmpInst::isEquality(Pred))
69 IsEq = Pred == ICmpInst::ICMP_EQ;
70 else if (Pred == FCmpInst::FCMP_OEQ)
71 IsEq = true;
72 else if (Pred == FCmpInst::FCMP_UNE)
73 IsEq = false;
74 else
75 return nullptr;
76
77 // A select operand must be a binop.
78 BinaryOperator *BO;
79 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80 return nullptr;
81
82 // The compare constant must be the identity constant for that binop.
83 // If this a floating-point compare with 0.0, any zero constant will do.
84 Type *Ty = BO->getType();
85 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86 if (IdC != C) {
87 if (!IdC || !CmpInst::isFPPredicate(Pred))
88 return nullptr;
89 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90 return nullptr;
91 }
92
93 // Last, match the compare variable operand with a binop operand.
94 Value *Y;
95 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96 return nullptr;
97 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98 return nullptr;
99
100 // +0.0 compares equal to -0.0, and so it does not behave as required for this
101 // transform. Bail out if we can not exclude that possibility.
102 if (isa<FPMathOperator>(BO))
103 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104 return nullptr;
105
106 // BO = binop Y, X
107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108 // =>
109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
110 Sel.setOperand(IsEq ? 1 : 2, Y);
111 return &Sel;
112 }
113
114 /// This folds:
115 /// select (icmp eq (and X, C1)), TC, FC
116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117 /// To something like:
118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119 /// Or:
120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121 /// With some variations depending if FC is larger than TC, or the shift
122 /// isn't needed, or the bit widths don't match.
foldSelectICmpAnd(SelectInst & Sel,ICmpInst * Cmp,InstCombiner::BuilderTy & Builder)123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124 InstCombiner::BuilderTy &Builder) {
125 const APInt *SelTC, *SelFC;
126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127 !match(Sel.getFalseValue(), m_APInt(SelFC)))
128 return nullptr;
129
130 // If this is a vector select, we need a vector compare.
131 Type *SelType = Sel.getType();
132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133 return nullptr;
134
135 Value *V;
136 APInt AndMask;
137 bool CreateAnd = false;
138 ICmpInst::Predicate Pred = Cmp->getPredicate();
139 if (ICmpInst::isEquality(Pred)) {
140 if (!match(Cmp->getOperand(1), m_Zero()))
141 return nullptr;
142
143 V = Cmp->getOperand(0);
144 const APInt *AndRHS;
145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146 return nullptr;
147
148 AndMask = *AndRHS;
149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150 Pred, V, AndMask)) {
151 assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152 if (!AndMask.isPowerOf2())
153 return nullptr;
154
155 CreateAnd = true;
156 } else {
157 return nullptr;
158 }
159
160 // In general, when both constants are non-zero, we would need an offset to
161 // replace the select. This would require more instructions than we started
162 // with. But there's one special-case that we handle here because it can
163 // simplify/reduce the instructions.
164 APInt TC = *SelTC;
165 APInt FC = *SelFC;
166 if (!TC.isNullValue() && !FC.isNullValue()) {
167 // If the select constants differ by exactly one bit and that's the same
168 // bit that is masked and checked by the select condition, the select can
169 // be replaced by bitwise logic to set/clear one bit of the constant result.
170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171 return nullptr;
172 if (CreateAnd) {
173 // If we have to create an 'and', then we must kill the cmp to not
174 // increase the instruction count.
175 if (!Cmp->hasOneUse())
176 return nullptr;
177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178 }
179 bool ExtraBitInTC = TC.ugt(FC);
180 if (Pred == ICmpInst::ICMP_EQ) {
181 // If the masked bit in V is clear, clear or set the bit in the result:
182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184 Constant *C = ConstantInt::get(SelType, TC);
185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186 }
187 if (Pred == ICmpInst::ICMP_NE) {
188 // If the masked bit in V is set, set or clear the bit in the result:
189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191 Constant *C = ConstantInt::get(SelType, FC);
192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193 }
194 llvm_unreachable("Only expecting equality predicates");
195 }
196
197 // Make sure one of the select arms is a power-of-2.
198 if (!TC.isPowerOf2() && !FC.isPowerOf2())
199 return nullptr;
200
201 // Determine which shift is needed to transform result of the 'and' into the
202 // desired result.
203 const APInt &ValC = !TC.isNullValue() ? TC : FC;
204 unsigned ValZeros = ValC.logBase2();
205 unsigned AndZeros = AndMask.logBase2();
206
207 // Insert the 'and' instruction on the input to the truncate.
208 if (CreateAnd)
209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210
211 // If types don't match, we can still convert the select by introducing a zext
212 // or a trunc of the 'and'.
213 if (ValZeros > AndZeros) {
214 V = Builder.CreateZExtOrTrunc(V, SelType);
215 V = Builder.CreateShl(V, ValZeros - AndZeros);
216 } else if (ValZeros < AndZeros) {
217 V = Builder.CreateLShr(V, AndZeros - ValZeros);
218 V = Builder.CreateZExtOrTrunc(V, SelType);
219 } else {
220 V = Builder.CreateZExtOrTrunc(V, SelType);
221 }
222
223 // Okay, now we know that everything is set up, we just don't know whether we
224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225 bool ShouldNotVal = !TC.isNullValue();
226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227 if (ShouldNotVal)
228 V = Builder.CreateXor(V, ValC);
229
230 return V;
231 }
232
233 /// We want to turn code that looks like this:
234 /// %C = or %A, %B
235 /// %D = select %cond, %C, %A
236 /// into:
237 /// %C = select %cond, %B, 0
238 /// %D = or %A, %C
239 ///
240 /// Assuming that the specified instruction is an operand to the select, return
241 /// a bitmask indicating which operands of this instruction are foldable if they
242 /// equal the other incoming value of the select.
getSelectFoldableOperands(BinaryOperator * I)243 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244 switch (I->getOpcode()) {
245 case Instruction::Add:
246 case Instruction::Mul:
247 case Instruction::And:
248 case Instruction::Or:
249 case Instruction::Xor:
250 return 3; // Can fold through either operand.
251 case Instruction::Sub: // Can only fold on the amount subtracted.
252 case Instruction::Shl: // Can only fold on the shift amount.
253 case Instruction::LShr:
254 case Instruction::AShr:
255 return 1;
256 default:
257 return 0; // Cannot fold
258 }
259 }
260
261 /// For the same transformation as the previous function, return the identity
262 /// constant that goes into the select.
getSelectFoldableConstant(BinaryOperator * I)263 static APInt getSelectFoldableConstant(BinaryOperator *I) {
264 switch (I->getOpcode()) {
265 default: llvm_unreachable("This cannot happen!");
266 case Instruction::Add:
267 case Instruction::Sub:
268 case Instruction::Or:
269 case Instruction::Xor:
270 case Instruction::Shl:
271 case Instruction::LShr:
272 case Instruction::AShr:
273 return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274 case Instruction::And:
275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276 case Instruction::Mul:
277 return APInt(I->getType()->getScalarSizeInBits(), 1);
278 }
279 }
280
281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
foldSelectOpOp(SelectInst & SI,Instruction * TI,Instruction * FI)282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283 Instruction *FI) {
284 // Don't break up min/max patterns. The hasOneUse checks below prevent that
285 // for most cases, but vector min/max with bitcasts can be transformed. If the
286 // one-use restrictions are eased for other patterns, we still don't want to
287 // obfuscate min/max.
288 if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289 match(&SI, m_SMax(m_Value(), m_Value())) ||
290 match(&SI, m_UMin(m_Value(), m_Value())) ||
291 match(&SI, m_UMax(m_Value(), m_Value()))))
292 return nullptr;
293
294 // If this is a cast from the same type, merge.
295 Value *Cond = SI.getCondition();
296 Type *CondTy = Cond->getType();
297 if (TI->getNumOperands() == 1 && TI->isCast()) {
298 Type *FIOpndTy = FI->getOperand(0)->getType();
299 if (TI->getOperand(0)->getType() != FIOpndTy)
300 return nullptr;
301
302 // The select condition may be a vector. We may only change the operand
303 // type if the vector width remains the same (and matches the condition).
304 if (CondTy->isVectorTy()) {
305 if (!FIOpndTy->isVectorTy())
306 return nullptr;
307 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308 return nullptr;
309
310 // TODO: If the backend knew how to deal with casts better, we could
311 // remove this limitation. For now, there's too much potential to create
312 // worse codegen by promoting the select ahead of size-altering casts
313 // (PR28160).
314 //
315 // Note that ValueTracking's matchSelectPattern() looks through casts
316 // without checking 'hasOneUse' when it matches min/max patterns, so this
317 // transform may end up happening anyway.
318 if (TI->getOpcode() != Instruction::BitCast &&
319 (!TI->hasOneUse() || !FI->hasOneUse()))
320 return nullptr;
321 } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322 // TODO: The one-use restrictions for a scalar select could be eased if
323 // the fold of a select in visitLoadInst() was enhanced to match a pattern
324 // that includes a cast.
325 return nullptr;
326 }
327
328 // Fold this by inserting a select from the input values.
329 Value *NewSI =
330 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331 SI.getName() + ".v", &SI);
332 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333 TI->getType());
334 }
335
336 // Cond ? -X : -Y --> -(Cond ? X : Y)
337 Value *X, *Y;
338 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339 (TI->hasOneUse() || FI->hasOneUse())) {
340 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341 // TODO: Remove the hack for the binop form when the unary op is optimized
342 // properly with all IR passes.
343 if (TI->getOpcode() != Instruction::FNeg)
344 return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345 return UnaryOperator::CreateFNeg(NewSel);
346 }
347
348 // Only handle binary operators (including two-operand getelementptr) with
349 // one-use here. As with the cast case above, it may be possible to relax the
350 // one-use constraint, but that needs be examined carefully since it may not
351 // reduce the total number of instructions.
352 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354 !TI->hasOneUse() || !FI->hasOneUse())
355 return nullptr;
356
357 // Figure out if the operations have any operands in common.
358 Value *MatchOp, *OtherOpT, *OtherOpF;
359 bool MatchIsOpZero;
360 if (TI->getOperand(0) == FI->getOperand(0)) {
361 MatchOp = TI->getOperand(0);
362 OtherOpT = TI->getOperand(1);
363 OtherOpF = FI->getOperand(1);
364 MatchIsOpZero = true;
365 } else if (TI->getOperand(1) == FI->getOperand(1)) {
366 MatchOp = TI->getOperand(1);
367 OtherOpT = TI->getOperand(0);
368 OtherOpF = FI->getOperand(0);
369 MatchIsOpZero = false;
370 } else if (!TI->isCommutative()) {
371 return nullptr;
372 } else if (TI->getOperand(0) == FI->getOperand(1)) {
373 MatchOp = TI->getOperand(0);
374 OtherOpT = TI->getOperand(1);
375 OtherOpF = FI->getOperand(0);
376 MatchIsOpZero = true;
377 } else if (TI->getOperand(1) == FI->getOperand(0)) {
378 MatchOp = TI->getOperand(1);
379 OtherOpT = TI->getOperand(0);
380 OtherOpF = FI->getOperand(1);
381 MatchIsOpZero = true;
382 } else {
383 return nullptr;
384 }
385
386 // If the select condition is a vector, the operands of the original select's
387 // operands also must be vectors. This may not be the case for getelementptr
388 // for example.
389 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390 !OtherOpF->getType()->isVectorTy()))
391 return nullptr;
392
393 // If we reach here, they do have operations in common.
394 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395 SI.getName() + ".v", &SI);
396 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398 if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400 NewBO->copyIRFlags(TI);
401 NewBO->andIRFlags(FI);
402 return NewBO;
403 }
404 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405 auto *FGEP = cast<GetElementPtrInst>(FI);
406 Type *ElementType = TGEP->getResultElementType();
407 return TGEP->isInBounds() && FGEP->isInBounds()
408 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409 : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410 }
411 llvm_unreachable("Expected BinaryOperator or GEP");
412 return nullptr;
413 }
414
isSelect01(const APInt & C1I,const APInt & C2I)415 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417 return false;
418 return C1I.isOneValue() || C1I.isAllOnesValue() ||
419 C2I.isOneValue() || C2I.isAllOnesValue();
420 }
421
422 /// Try to fold the select into one of the operands to allow further
423 /// optimization.
foldSelectIntoOp(SelectInst & SI,Value * TrueVal,Value * FalseVal)424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425 Value *FalseVal) {
426 // See the comment above GetSelectFoldableOperands for a description of the
427 // transformation we are doing here.
428 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430 if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431 unsigned OpToFold = 0;
432 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433 OpToFold = 1;
434 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435 OpToFold = 2;
436 }
437
438 if (OpToFold) {
439 APInt CI = getSelectFoldableConstant(TVI);
440 Value *OOp = TVI->getOperand(2-OpToFold);
441 // Avoid creating select between 2 constants unless it's selecting
442 // between 0, 1 and -1.
443 const APInt *OOpC;
444 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446 Value *C = ConstantInt::get(OOp->getType(), CI);
447 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448 NewSel->takeName(TVI);
449 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450 FalseVal, NewSel);
451 BO->copyIRFlags(TVI);
452 return BO;
453 }
454 }
455 }
456 }
457 }
458
459 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461 if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462 unsigned OpToFold = 0;
463 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464 OpToFold = 1;
465 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466 OpToFold = 2;
467 }
468
469 if (OpToFold) {
470 APInt CI = getSelectFoldableConstant(FVI);
471 Value *OOp = FVI->getOperand(2-OpToFold);
472 // Avoid creating select between 2 constants unless it's selecting
473 // between 0, 1 and -1.
474 const APInt *OOpC;
475 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477 Value *C = ConstantInt::get(OOp->getType(), CI);
478 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479 NewSel->takeName(FVI);
480 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481 TrueVal, NewSel);
482 BO->copyIRFlags(FVI);
483 return BO;
484 }
485 }
486 }
487 }
488 }
489
490 return nullptr;
491 }
492
493 /// We want to turn:
494 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495 /// into:
496 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497 /// Note:
498 /// Z may be 0 if lshr is missing.
499 /// Worst-case scenario is that we will replace 5 instructions with 5 different
500 /// instructions, but we got rid of select.
foldSelectICmpAndAnd(Type * SelType,const ICmpInst * Cmp,Value * TVal,Value * FVal,InstCombiner::BuilderTy & Builder)501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502 Value *TVal, Value *FVal,
503 InstCombiner::BuilderTy &Builder) {
504 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505 Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507 return nullptr;
508
509 // The TrueVal has general form of: and %B, 1
510 Value *B;
511 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512 return nullptr;
513
514 // Where %B may be optionally shifted: lshr %X, %Z.
515 Value *X, *Z;
516 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517 if (!HasShift)
518 X = B;
519
520 Value *Y;
521 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522 return nullptr;
523
524 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526 Constant *One = ConstantInt::get(SelType, 1);
527 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528 Value *FullMask = Builder.CreateOr(Y, MaskB);
529 Value *MaskedX = Builder.CreateAnd(X, FullMask);
530 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531 return new ZExtInst(ICmpNeZero, SelType);
532 }
533
534 /// We want to turn:
535 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537 /// into:
538 /// ashr (X, Y)
foldSelectICmpLshrAshr(const ICmpInst * IC,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540 Value *FalseVal,
541 InstCombiner::BuilderTy &Builder) {
542 ICmpInst::Predicate Pred = IC->getPredicate();
543 Value *CmpLHS = IC->getOperand(0);
544 Value *CmpRHS = IC->getOperand(1);
545 if (!CmpRHS->getType()->isIntOrIntVectorTy())
546 return nullptr;
547
548 Value *X, *Y;
549 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550 if ((Pred != ICmpInst::ICMP_SGT ||
551 !match(CmpRHS,
552 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553 (Pred != ICmpInst::ICMP_SLT ||
554 !match(CmpRHS,
555 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556 return nullptr;
557
558 // Canonicalize so that ashr is in FalseVal.
559 if (Pred == ICmpInst::ICMP_SLT)
560 std::swap(TrueVal, FalseVal);
561
562 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564 match(CmpLHS, m_Specific(X))) {
565 const auto *Ashr = cast<Instruction>(FalseVal);
566 // if lshr is not exact and ashr is, this new ashr must not be exact.
567 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568 return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569 }
570
571 return nullptr;
572 }
573
574 /// We want to turn:
575 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576 /// into:
577 /// (or (shl (and X, C1), C3), Y)
578 /// iff:
579 /// C1 and C2 are both powers of 2
580 /// where:
581 /// C3 = Log(C2) - Log(C1)
582 ///
583 /// This transform handles cases where:
584 /// 1. The icmp predicate is inverted
585 /// 2. The select operands are reversed
586 /// 3. The magnitude of C2 and C1 are flipped
foldSelectICmpAndOr(const ICmpInst * IC,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588 Value *FalseVal,
589 InstCombiner::BuilderTy &Builder) {
590 // Only handle integer compares. Also, if this is a vector select, we need a
591 // vector compare.
592 if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594 return nullptr;
595
596 Value *CmpLHS = IC->getOperand(0);
597 Value *CmpRHS = IC->getOperand(1);
598
599 Value *V;
600 unsigned C1Log;
601 bool IsEqualZero;
602 bool NeedAnd = false;
603 if (IC->isEquality()) {
604 if (!match(CmpRHS, m_Zero()))
605 return nullptr;
606
607 const APInt *C1;
608 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609 return nullptr;
610
611 V = CmpLHS;
612 C1Log = C1->logBase2();
613 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615 IC->getPredicate() == ICmpInst::ICMP_SGT) {
616 // We also need to recognize (icmp slt (trunc (X)), 0) and
617 // (icmp sgt (trunc (X)), -1).
618 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620 (!IsEqualZero && !match(CmpRHS, m_Zero())))
621 return nullptr;
622
623 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624 return nullptr;
625
626 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627 NeedAnd = true;
628 } else {
629 return nullptr;
630 }
631
632 const APInt *C2;
633 bool OrOnTrueVal = false;
634 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635 if (!OrOnFalseVal)
636 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637
638 if (!OrOnFalseVal && !OrOnTrueVal)
639 return nullptr;
640
641 Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642
643 unsigned C2Log = C2->logBase2();
644
645 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646 bool NeedShift = C1Log != C2Log;
647 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648 V->getType()->getScalarSizeInBits();
649
650 // Make sure we don't create more instructions than we save.
651 Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652 if ((NeedShift + NeedXor + NeedZExtTrunc) >
653 (IC->hasOneUse() + Or->hasOneUse()))
654 return nullptr;
655
656 if (NeedAnd) {
657 // Insert the AND instruction on the input to the truncate.
658 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660 }
661
662 if (C2Log > C1Log) {
663 V = Builder.CreateZExtOrTrunc(V, Y->getType());
664 V = Builder.CreateShl(V, C2Log - C1Log);
665 } else if (C1Log > C2Log) {
666 V = Builder.CreateLShr(V, C1Log - C2Log);
667 V = Builder.CreateZExtOrTrunc(V, Y->getType());
668 } else
669 V = Builder.CreateZExtOrTrunc(V, Y->getType());
670
671 if (NeedXor)
672 V = Builder.CreateXor(V, *C2);
673
674 return Builder.CreateOr(V, Y);
675 }
676
677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678 /// There are 8 commuted/swapped variants of this pattern.
679 /// TODO: Also support a - UMIN(a,b) patterns.
canonicalizeSaturatedSubtract(const ICmpInst * ICI,const Value * TrueVal,const Value * FalseVal,InstCombiner::BuilderTy & Builder)680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681 const Value *TrueVal,
682 const Value *FalseVal,
683 InstCombiner::BuilderTy &Builder) {
684 ICmpInst::Predicate Pred = ICI->getPredicate();
685 if (!ICmpInst::isUnsigned(Pred))
686 return nullptr;
687
688 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689 if (match(TrueVal, m_Zero())) {
690 Pred = ICmpInst::getInversePredicate(Pred);
691 std::swap(TrueVal, FalseVal);
692 }
693 if (!match(FalseVal, m_Zero()))
694 return nullptr;
695
696 Value *A = ICI->getOperand(0);
697 Value *B = ICI->getOperand(1);
698 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700 std::swap(A, B);
701 Pred = ICmpInst::getSwappedPredicate(Pred);
702 }
703
704 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705 "Unexpected isUnsigned predicate!");
706
707 // Ensure the sub is of the form:
708 // (a > b) ? a - b : 0 -> usub.sat(a, b)
709 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
710 // Checking for both a-b and a+(-b) as a constant.
711 bool IsNegative = false;
712 const APInt *C;
713 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
714 (match(A, m_APInt(C)) &&
715 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
716 IsNegative = true;
717 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
718 !(match(B, m_APInt(C)) &&
719 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
720 return nullptr;
721
722 // If we are adding a negate and the sub and icmp are used anywhere else, we
723 // would end up with more instructions.
724 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
725 return nullptr;
726
727 // (a > b) ? a - b : 0 -> usub.sat(a, b)
728 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
729 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
730 if (IsNegative)
731 Result = Builder.CreateNeg(Result);
732 return Result;
733 }
734
canonicalizeSaturatedAdd(ICmpInst * Cmp,Value * TVal,Value * FVal,InstCombiner::BuilderTy & Builder)735 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
736 InstCombiner::BuilderTy &Builder) {
737 if (!Cmp->hasOneUse())
738 return nullptr;
739
740 // Match unsigned saturated add with constant.
741 Value *Cmp0 = Cmp->getOperand(0);
742 Value *Cmp1 = Cmp->getOperand(1);
743 ICmpInst::Predicate Pred = Cmp->getPredicate();
744 Value *X;
745 const APInt *C, *CmpC;
746 if (Pred == ICmpInst::ICMP_ULT &&
747 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
748 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
749 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
750 return Builder.CreateBinaryIntrinsic(
751 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
752 }
753
754 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
755 // There are 8 commuted variants.
756 // Canonicalize -1 (saturated result) to true value of the select. Just
757 // swapping the compare operands is legal, because the selected value is the
758 // same in case of equality, so we can interchange u< and u<=.
759 if (match(FVal, m_AllOnes())) {
760 std::swap(TVal, FVal);
761 std::swap(Cmp0, Cmp1);
762 }
763 if (!match(TVal, m_AllOnes()))
764 return nullptr;
765
766 // Canonicalize predicate to 'ULT'.
767 if (Pred == ICmpInst::ICMP_UGT) {
768 Pred = ICmpInst::ICMP_ULT;
769 std::swap(Cmp0, Cmp1);
770 }
771 if (Pred != ICmpInst::ICMP_ULT)
772 return nullptr;
773
774 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
775 Value *Y;
776 if (match(Cmp0, m_Not(m_Value(X))) &&
777 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
778 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
779 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
780 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
781 }
782 // The 'not' op may be included in the sum but not the compare.
783 X = Cmp0;
784 Y = Cmp1;
785 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
786 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
787 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
788 BinaryOperator *BO = cast<BinaryOperator>(FVal);
789 return Builder.CreateBinaryIntrinsic(
790 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
791 }
792 // The overflow may be detected via the add wrapping round.
793 if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
794 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
795 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
796 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
797 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
798 }
799
800 return nullptr;
801 }
802
803 /// Fold the following code sequence:
804 /// \code
805 /// int a = ctlz(x & -x);
806 // x ? 31 - a : a;
807 /// \code
808 ///
809 /// into:
810 /// cttz(x)
foldSelectCtlzToCttz(ICmpInst * ICI,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)811 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
812 Value *FalseVal,
813 InstCombiner::BuilderTy &Builder) {
814 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
815 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
816 return nullptr;
817
818 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
819 std::swap(TrueVal, FalseVal);
820
821 if (!match(FalseVal,
822 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
823 return nullptr;
824
825 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
826 return nullptr;
827
828 Value *X = ICI->getOperand(0);
829 auto *II = cast<IntrinsicInst>(TrueVal);
830 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
831 return nullptr;
832
833 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
834 II->getType());
835 return CallInst::Create(F, {X, II->getArgOperand(1)});
836 }
837
838 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
839 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
840 ///
841 /// For example, we can fold the following code sequence:
842 /// \code
843 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
844 /// %1 = icmp ne i32 %x, 0
845 /// %2 = select i1 %1, i32 %0, i32 32
846 /// \code
847 ///
848 /// into:
849 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
foldSelectCttzCtlz(ICmpInst * ICI,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)850 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
851 InstCombiner::BuilderTy &Builder) {
852 ICmpInst::Predicate Pred = ICI->getPredicate();
853 Value *CmpLHS = ICI->getOperand(0);
854 Value *CmpRHS = ICI->getOperand(1);
855
856 // Check if the condition value compares a value for equality against zero.
857 if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
858 return nullptr;
859
860 Value *Count = FalseVal;
861 Value *ValueOnZero = TrueVal;
862 if (Pred == ICmpInst::ICMP_NE)
863 std::swap(Count, ValueOnZero);
864
865 // Skip zero extend/truncate.
866 Value *V = nullptr;
867 if (match(Count, m_ZExt(m_Value(V))) ||
868 match(Count, m_Trunc(m_Value(V))))
869 Count = V;
870
871 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
872 // input to the cttz/ctlz is used as LHS for the compare instruction.
873 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
874 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
875 return nullptr;
876
877 IntrinsicInst *II = cast<IntrinsicInst>(Count);
878
879 // Check if the value propagated on zero is a constant number equal to the
880 // sizeof in bits of 'Count'.
881 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
882 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
883 // Explicitly clear the 'undef_on_zero' flag.
884 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
885 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
886 Builder.Insert(NewI);
887 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
888 }
889
890 // If the ValueOnZero is not the bitwidth, we can at least make use of the
891 // fact that the cttz/ctlz result will not be used if the input is zero, so
892 // it's okay to relax it to undef for that case.
893 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
894 II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
895
896 return nullptr;
897 }
898
899 /// Return true if we find and adjust an icmp+select pattern where the compare
900 /// is with a constant that can be incremented or decremented to match the
901 /// minimum or maximum idiom.
adjustMinMax(SelectInst & Sel,ICmpInst & Cmp)902 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
903 ICmpInst::Predicate Pred = Cmp.getPredicate();
904 Value *CmpLHS = Cmp.getOperand(0);
905 Value *CmpRHS = Cmp.getOperand(1);
906 Value *TrueVal = Sel.getTrueValue();
907 Value *FalseVal = Sel.getFalseValue();
908
909 // We may move or edit the compare, so make sure the select is the only user.
910 const APInt *CmpC;
911 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
912 return false;
913
914 // These transforms only work for selects of integers or vector selects of
915 // integer vectors.
916 Type *SelTy = Sel.getType();
917 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
918 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
919 return false;
920
921 Constant *AdjustedRHS;
922 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
923 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
924 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
925 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
926 else
927 return false;
928
929 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
930 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
931 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
932 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
933 ; // Nothing to do here. Values match without any sign/zero extension.
934 }
935 // Types do not match. Instead of calculating this with mixed types, promote
936 // all to the larger type. This enables scalar evolution to analyze this
937 // expression.
938 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
939 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
940
941 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
942 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
943 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
944 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
945 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
946 CmpLHS = TrueVal;
947 AdjustedRHS = SextRHS;
948 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
949 SextRHS == TrueVal) {
950 CmpLHS = FalseVal;
951 AdjustedRHS = SextRHS;
952 } else if (Cmp.isUnsigned()) {
953 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
954 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
955 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
956 // zext + signed compare cannot be changed:
957 // 0xff <s 0x00, but 0x00ff >s 0x0000
958 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
959 CmpLHS = TrueVal;
960 AdjustedRHS = ZextRHS;
961 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
962 ZextRHS == TrueVal) {
963 CmpLHS = FalseVal;
964 AdjustedRHS = ZextRHS;
965 } else {
966 return false;
967 }
968 } else {
969 return false;
970 }
971 } else {
972 return false;
973 }
974
975 Pred = ICmpInst::getSwappedPredicate(Pred);
976 CmpRHS = AdjustedRHS;
977 std::swap(FalseVal, TrueVal);
978 Cmp.setPredicate(Pred);
979 Cmp.setOperand(0, CmpLHS);
980 Cmp.setOperand(1, CmpRHS);
981 Sel.setOperand(1, TrueVal);
982 Sel.setOperand(2, FalseVal);
983 Sel.swapProfMetadata();
984
985 // Move the compare instruction right before the select instruction. Otherwise
986 // the sext/zext value may be defined after the compare instruction uses it.
987 Cmp.moveBefore(&Sel);
988
989 return true;
990 }
991
992 /// If this is an integer min/max (icmp + select) with a constant operand,
993 /// create the canonical icmp for the min/max operation and canonicalize the
994 /// constant to the 'false' operand of the select:
995 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
996 /// Note: if C1 != C2, this will change the icmp constant to the existing
997 /// constant operand of the select.
998 static Instruction *
canonicalizeMinMaxWithConstant(SelectInst & Sel,ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)999 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
1000 InstCombiner::BuilderTy &Builder) {
1001 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1002 return nullptr;
1003
1004 // Canonicalize the compare predicate based on whether we have min or max.
1005 Value *LHS, *RHS;
1006 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1007 if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1008 return nullptr;
1009
1010 // Is this already canonical?
1011 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1012 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1013 Cmp.getPredicate() == CanonicalPred)
1014 return nullptr;
1015
1016 // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1017 // as this may cause an infinite combine loop. Let the sub be folded first.
1018 if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1019 match(RHS, m_Sub(m_Value(), m_Zero())))
1020 return nullptr;
1021
1022 // Create the canonical compare and plug it into the select.
1023 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
1024
1025 // If the select operands did not change, we're done.
1026 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1027 return &Sel;
1028
1029 // If we are swapping the select operands, swap the metadata too.
1030 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1031 "Unexpected results from matchSelectPattern");
1032 Sel.swapValues();
1033 Sel.swapProfMetadata();
1034 return &Sel;
1035 }
1036
1037 /// There are many select variants for each of ABS/NABS.
1038 /// In matchSelectPattern(), there are different compare constants, compare
1039 /// predicates/operands and select operands.
1040 /// In isKnownNegation(), there are different formats of negated operands.
1041 /// Canonicalize all these variants to 1 pattern.
1042 /// This makes CSE more likely.
canonicalizeAbsNabs(SelectInst & Sel,ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)1043 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1044 InstCombiner::BuilderTy &Builder) {
1045 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1046 return nullptr;
1047
1048 // Choose a sign-bit check for the compare (likely simpler for codegen).
1049 // ABS: (X <s 0) ? -X : X
1050 // NABS: (X <s 0) ? X : -X
1051 Value *LHS, *RHS;
1052 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1053 if (SPF != SelectPatternFlavor::SPF_ABS &&
1054 SPF != SelectPatternFlavor::SPF_NABS)
1055 return nullptr;
1056
1057 Value *TVal = Sel.getTrueValue();
1058 Value *FVal = Sel.getFalseValue();
1059 assert(isKnownNegation(TVal, FVal) &&
1060 "Unexpected result from matchSelectPattern");
1061
1062 // The compare may use the negated abs()/nabs() operand, or it may use
1063 // negation in non-canonical form such as: sub A, B.
1064 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1065 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1066
1067 bool CmpCanonicalized = !CmpUsesNegatedOp &&
1068 match(Cmp.getOperand(1), m_ZeroInt()) &&
1069 Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1070 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1071
1072 // Is this already canonical?
1073 if (CmpCanonicalized && RHSCanonicalized)
1074 return nullptr;
1075
1076 // If RHS is used by other instructions except compare and select, don't
1077 // canonicalize it to not increase the instruction count.
1078 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1079 return nullptr;
1080
1081 // Create the canonical compare: icmp slt LHS 0.
1082 if (!CmpCanonicalized) {
1083 Cmp.setPredicate(ICmpInst::ICMP_SLT);
1084 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1085 if (CmpUsesNegatedOp)
1086 Cmp.setOperand(0, LHS);
1087 }
1088
1089 // Create the canonical RHS: RHS = sub (0, LHS).
1090 if (!RHSCanonicalized) {
1091 assert(RHS->hasOneUse() && "RHS use number is not right");
1092 RHS = Builder.CreateNeg(LHS);
1093 if (TVal == LHS) {
1094 Sel.setFalseValue(RHS);
1095 FVal = RHS;
1096 } else {
1097 Sel.setTrueValue(RHS);
1098 TVal = RHS;
1099 }
1100 }
1101
1102 // If the select operands do not change, we're done.
1103 if (SPF == SelectPatternFlavor::SPF_NABS) {
1104 if (TVal == LHS)
1105 return &Sel;
1106 assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1107 } else {
1108 if (FVal == LHS)
1109 return &Sel;
1110 assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1111 }
1112
1113 // We are swapping the select operands, so swap the metadata too.
1114 Sel.swapValues();
1115 Sel.swapProfMetadata();
1116 return &Sel;
1117 }
1118
simplifyWithOpReplaced(Value * V,Value * Op,Value * ReplaceOp,const SimplifyQuery & Q)1119 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1120 const SimplifyQuery &Q) {
1121 // If this is a binary operator, try to simplify it with the replaced op
1122 // because we know Op and ReplaceOp are equivalant.
1123 // For example: V = X + 1, Op = X, ReplaceOp = 42
1124 // Simplifies as: add(42, 1) --> 43
1125 if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1126 if (BO->getOperand(0) == Op)
1127 return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1128 if (BO->getOperand(1) == Op)
1129 return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1130 }
1131
1132 return nullptr;
1133 }
1134
1135 /// If we have a select with an equality comparison, then we know the value in
1136 /// one of the arms of the select. See if substituting this value into an arm
1137 /// and simplifying the result yields the same value as the other arm.
1138 ///
1139 /// To make this transform safe, we must drop poison-generating flags
1140 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1141 /// that poison from propagating. If the existing binop already had no
1142 /// poison-generating flags, then this transform can be done by instsimplify.
1143 ///
1144 /// Consider:
1145 /// %cmp = icmp eq i32 %x, 2147483647
1146 /// %add = add nsw i32 %x, 1
1147 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add
1148 ///
1149 /// We can't replace %sel with %add unless we strip away the flags.
1150 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
foldSelectValueEquivalence(SelectInst & Sel,ICmpInst & Cmp,const SimplifyQuery & Q)1151 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1152 const SimplifyQuery &Q) {
1153 if (!Cmp.isEquality())
1154 return nullptr;
1155
1156 // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1157 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1158 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1159 std::swap(TrueVal, FalseVal);
1160
1161 // Try each equivalence substitution possibility.
1162 // We have an 'EQ' comparison, so the select's false value will propagate.
1163 // Example:
1164 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1165 // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1166 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1167 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1168 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1169 simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1170 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1171 if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1172 FalseInst->dropPoisonGeneratingFlags();
1173 return FalseVal;
1174 }
1175 return nullptr;
1176 }
1177
1178 // See if this is a pattern like:
1179 // %old_cmp1 = icmp slt i32 %x, C2
1180 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1181 // %old_x_offseted = add i32 %x, C1
1182 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1183 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1184 // This can be rewritten as more canonical pattern:
1185 // %new_cmp1 = icmp slt i32 %x, -C1
1186 // %new_cmp2 = icmp sge i32 %x, C0-C1
1187 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1188 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1189 // Iff -C1 s<= C2 s<= C0-C1
1190 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1191 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
canonicalizeClampLike(SelectInst & Sel0,ICmpInst & Cmp0,InstCombiner::BuilderTy & Builder)1192 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1193 InstCombiner::BuilderTy &Builder) {
1194 Value *X = Sel0.getTrueValue();
1195 Value *Sel1 = Sel0.getFalseValue();
1196
1197 // First match the condition of the outermost select.
1198 // Said condition must be one-use.
1199 if (!Cmp0.hasOneUse())
1200 return nullptr;
1201 Value *Cmp00 = Cmp0.getOperand(0);
1202 Constant *C0;
1203 if (!match(Cmp0.getOperand(1),
1204 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1205 return nullptr;
1206 // Canonicalize Cmp0 into the form we expect.
1207 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1208 switch (Cmp0.getPredicate()) {
1209 case ICmpInst::Predicate::ICMP_ULT:
1210 break; // Great!
1211 case ICmpInst::Predicate::ICMP_ULE:
1212 // We'd have to increment C0 by one, and for that it must not have all-ones
1213 // element, but then it would have been canonicalized to 'ult' before
1214 // we get here. So we can't do anything useful with 'ule'.
1215 return nullptr;
1216 case ICmpInst::Predicate::ICMP_UGT:
1217 // We want to canonicalize it to 'ult', so we'll need to increment C0,
1218 // which again means it must not have any all-ones elements.
1219 if (!match(C0,
1220 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1221 APInt::getAllOnesValue(
1222 C0->getType()->getScalarSizeInBits()))))
1223 return nullptr; // Can't do, have all-ones element[s].
1224 C0 = AddOne(C0);
1225 std::swap(X, Sel1);
1226 break;
1227 case ICmpInst::Predicate::ICMP_UGE:
1228 // The only way we'd get this predicate if this `icmp` has extra uses,
1229 // but then we won't be able to do this fold.
1230 return nullptr;
1231 default:
1232 return nullptr; // Unknown predicate.
1233 }
1234
1235 // Now that we've canonicalized the ICmp, we know the X we expect;
1236 // the select in other hand should be one-use.
1237 if (!Sel1->hasOneUse())
1238 return nullptr;
1239
1240 // We now can finish matching the condition of the outermost select:
1241 // it should either be the X itself, or an addition of some constant to X.
1242 Constant *C1;
1243 if (Cmp00 == X)
1244 C1 = ConstantInt::getNullValue(Sel0.getType());
1245 else if (!match(Cmp00,
1246 m_Add(m_Specific(X),
1247 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1248 return nullptr;
1249
1250 Value *Cmp1;
1251 ICmpInst::Predicate Pred1;
1252 Constant *C2;
1253 Value *ReplacementLow, *ReplacementHigh;
1254 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1255 m_Value(ReplacementHigh))) ||
1256 !match(Cmp1,
1257 m_ICmp(Pred1, m_Specific(X),
1258 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1259 return nullptr;
1260
1261 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1262 return nullptr; // Not enough one-use instructions for the fold.
1263 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1264 // two comparisons we'll need to build.
1265
1266 // Canonicalize Cmp1 into the form we expect.
1267 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1268 switch (Pred1) {
1269 case ICmpInst::Predicate::ICMP_SLT:
1270 break;
1271 case ICmpInst::Predicate::ICMP_SLE:
1272 // We'd have to increment C2 by one, and for that it must not have signed
1273 // max element, but then it would have been canonicalized to 'slt' before
1274 // we get here. So we can't do anything useful with 'sle'.
1275 return nullptr;
1276 case ICmpInst::Predicate::ICMP_SGT:
1277 // We want to canonicalize it to 'slt', so we'll need to increment C2,
1278 // which again means it must not have any signed max elements.
1279 if (!match(C2,
1280 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1281 APInt::getSignedMaxValue(
1282 C2->getType()->getScalarSizeInBits()))))
1283 return nullptr; // Can't do, have signed max element[s].
1284 C2 = AddOne(C2);
1285 LLVM_FALLTHROUGH;
1286 case ICmpInst::Predicate::ICMP_SGE:
1287 // Also non-canonical, but here we don't need to change C2,
1288 // so we don't have any restrictions on C2, so we can just handle it.
1289 std::swap(ReplacementLow, ReplacementHigh);
1290 break;
1291 default:
1292 return nullptr; // Unknown predicate.
1293 }
1294
1295 // The thresholds of this clamp-like pattern.
1296 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1297 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1298
1299 // The fold has a precondition 1: C2 s>= ThresholdLow
1300 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1301 ThresholdLowIncl);
1302 if (!match(Precond1, m_One()))
1303 return nullptr;
1304 // The fold has a precondition 2: C2 s<= ThresholdHigh
1305 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1306 ThresholdHighExcl);
1307 if (!match(Precond2, m_One()))
1308 return nullptr;
1309
1310 // All good, finally emit the new pattern.
1311 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1312 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1313 Value *MaybeReplacedLow =
1314 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1315 Instruction *MaybeReplacedHigh =
1316 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1317
1318 return MaybeReplacedHigh;
1319 }
1320
1321 // If we have
1322 // %cmp = icmp [canonical predicate] i32 %x, C0
1323 // %r = select i1 %cmp, i32 %y, i32 C1
1324 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1325 // will have if we flip the strictness of the predicate (i.e. without changing
1326 // the result) is identical to the C1 in select. If it matches we can change
1327 // original comparison to one with swapped predicate, reuse the constant,
1328 // and swap the hands of select.
1329 static Instruction *
tryToReuseConstantFromSelectInComparison(SelectInst & Sel,ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)1330 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1331 InstCombiner::BuilderTy &Builder) {
1332 ICmpInst::Predicate Pred;
1333 Value *X;
1334 Constant *C0;
1335 if (!match(&Cmp, m_OneUse(m_ICmp(
1336 Pred, m_Value(X),
1337 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1338 return nullptr;
1339
1340 // If comparison predicate is non-relational, we won't be able to do anything.
1341 if (ICmpInst::isEquality(Pred))
1342 return nullptr;
1343
1344 // If comparison predicate is non-canonical, then we certainly won't be able
1345 // to make it canonical; canonicalizeCmpWithConstant() already tried.
1346 if (!isCanonicalPredicate(Pred))
1347 return nullptr;
1348
1349 // If the [input] type of comparison and select type are different, lets abort
1350 // for now. We could try to compare constants with trunc/[zs]ext though.
1351 if (C0->getType() != Sel.getType())
1352 return nullptr;
1353
1354 // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1355
1356 Value *SelVal0, *SelVal1; // We do not care which one is from where.
1357 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1358 // At least one of these values we are selecting between must be a constant
1359 // else we'll never succeed.
1360 if (!match(SelVal0, m_AnyIntegralConstant()) &&
1361 !match(SelVal1, m_AnyIntegralConstant()))
1362 return nullptr;
1363
1364 // Does this constant C match any of the `select` values?
1365 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1366 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1367 };
1368
1369 // If C0 *already* matches true/false value of select, we are done.
1370 if (MatchesSelectValue(C0))
1371 return nullptr;
1372
1373 // Check the constant we'd have with flipped-strictness predicate.
1374 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
1375 if (!FlippedStrictness)
1376 return nullptr;
1377
1378 // If said constant doesn't match either, then there is no hope,
1379 if (!MatchesSelectValue(FlippedStrictness->second))
1380 return nullptr;
1381
1382 // It matched! Lets insert the new comparison just before select.
1383 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1384 Builder.SetInsertPoint(&Sel);
1385
1386 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1387 Value *NewCmp = Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1388 Cmp.getName() + ".inv");
1389 Sel.setCondition(NewCmp);
1390 Sel.swapValues();
1391 Sel.swapProfMetadata();
1392
1393 return &Sel;
1394 }
1395
1396 /// Visit a SelectInst that has an ICmpInst as its first operand.
foldSelectInstWithICmp(SelectInst & SI,ICmpInst * ICI)1397 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1398 ICmpInst *ICI) {
1399 if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1400 return replaceInstUsesWith(SI, V);
1401
1402 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1403 return NewSel;
1404
1405 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1406 return NewAbs;
1407
1408 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1409 return NewAbs;
1410
1411 if (Instruction *NewSel =
1412 tryToReuseConstantFromSelectInComparison(SI, *ICI, Builder))
1413 return NewSel;
1414
1415 bool Changed = adjustMinMax(SI, *ICI);
1416
1417 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1418 return replaceInstUsesWith(SI, V);
1419
1420 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1421 Value *TrueVal = SI.getTrueValue();
1422 Value *FalseVal = SI.getFalseValue();
1423 ICmpInst::Predicate Pred = ICI->getPredicate();
1424 Value *CmpLHS = ICI->getOperand(0);
1425 Value *CmpRHS = ICI->getOperand(1);
1426 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1427 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1428 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1429 SI.setOperand(1, CmpRHS);
1430 Changed = true;
1431 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1432 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1433 SI.setOperand(2, CmpRHS);
1434 Changed = true;
1435 }
1436 }
1437
1438 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1439 // decomposeBitTestICmp() might help.
1440 {
1441 unsigned BitWidth =
1442 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1443 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1444 Value *X;
1445 const APInt *Y, *C;
1446 bool TrueWhenUnset;
1447 bool IsBitTest = false;
1448 if (ICmpInst::isEquality(Pred) &&
1449 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1450 match(CmpRHS, m_Zero())) {
1451 IsBitTest = true;
1452 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1453 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1454 X = CmpLHS;
1455 Y = &MinSignedValue;
1456 IsBitTest = true;
1457 TrueWhenUnset = false;
1458 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1459 X = CmpLHS;
1460 Y = &MinSignedValue;
1461 IsBitTest = true;
1462 TrueWhenUnset = true;
1463 }
1464 if (IsBitTest) {
1465 Value *V = nullptr;
1466 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
1467 if (TrueWhenUnset && TrueVal == X &&
1468 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1469 V = Builder.CreateAnd(X, ~(*Y));
1470 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
1471 else if (!TrueWhenUnset && FalseVal == X &&
1472 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1473 V = Builder.CreateAnd(X, ~(*Y));
1474 // (X & Y) == 0 ? X ^ Y : X --> X | Y
1475 else if (TrueWhenUnset && FalseVal == X &&
1476 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1477 V = Builder.CreateOr(X, *Y);
1478 // (X & Y) != 0 ? X : X ^ Y --> X | Y
1479 else if (!TrueWhenUnset && TrueVal == X &&
1480 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1481 V = Builder.CreateOr(X, *Y);
1482
1483 if (V)
1484 return replaceInstUsesWith(SI, V);
1485 }
1486 }
1487
1488 if (Instruction *V =
1489 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1490 return V;
1491
1492 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1493 return V;
1494
1495 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1496 return replaceInstUsesWith(SI, V);
1497
1498 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1499 return replaceInstUsesWith(SI, V);
1500
1501 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1502 return replaceInstUsesWith(SI, V);
1503
1504 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1505 return replaceInstUsesWith(SI, V);
1506
1507 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1508 return replaceInstUsesWith(SI, V);
1509
1510 return Changed ? &SI : nullptr;
1511 }
1512
1513 /// SI is a select whose condition is a PHI node (but the two may be in
1514 /// different blocks). See if the true/false values (V) are live in all of the
1515 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1516 ///
1517 /// X = phi [ C1, BB1], [C2, BB2]
1518 /// Y = add
1519 /// Z = select X, Y, 0
1520 ///
1521 /// because Y is not live in BB1/BB2.
canSelectOperandBeMappingIntoPredBlock(const Value * V,const SelectInst & SI)1522 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1523 const SelectInst &SI) {
1524 // If the value is a non-instruction value like a constant or argument, it
1525 // can always be mapped.
1526 const Instruction *I = dyn_cast<Instruction>(V);
1527 if (!I) return true;
1528
1529 // If V is a PHI node defined in the same block as the condition PHI, we can
1530 // map the arguments.
1531 const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1532
1533 if (const PHINode *VP = dyn_cast<PHINode>(I))
1534 if (VP->getParent() == CondPHI->getParent())
1535 return true;
1536
1537 // Otherwise, if the PHI and select are defined in the same block and if V is
1538 // defined in a different block, then we can transform it.
1539 if (SI.getParent() == CondPHI->getParent() &&
1540 I->getParent() != CondPHI->getParent())
1541 return true;
1542
1543 // Otherwise we have a 'hard' case and we can't tell without doing more
1544 // detailed dominator based analysis, punt.
1545 return false;
1546 }
1547
1548 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1549 /// SPF2(SPF1(A, B), C)
foldSPFofSPF(Instruction * Inner,SelectPatternFlavor SPF1,Value * A,Value * B,Instruction & Outer,SelectPatternFlavor SPF2,Value * C)1550 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1551 SelectPatternFlavor SPF1,
1552 Value *A, Value *B,
1553 Instruction &Outer,
1554 SelectPatternFlavor SPF2, Value *C) {
1555 if (Outer.getType() != Inner->getType())
1556 return nullptr;
1557
1558 if (C == A || C == B) {
1559 // MAX(MAX(A, B), B) -> MAX(A, B)
1560 // MIN(MIN(a, b), a) -> MIN(a, b)
1561 // TODO: This could be done in instsimplify.
1562 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1563 return replaceInstUsesWith(Outer, Inner);
1564
1565 // MAX(MIN(a, b), a) -> a
1566 // MIN(MAX(a, b), a) -> a
1567 // TODO: This could be done in instsimplify.
1568 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1569 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1570 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1571 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1572 return replaceInstUsesWith(Outer, C);
1573 }
1574
1575 if (SPF1 == SPF2) {
1576 const APInt *CB, *CC;
1577 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1578 // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1579 // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1580 // TODO: This could be done in instsimplify.
1581 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1582 (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1583 (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1584 (SPF1 == SPF_SMAX && CB->sge(*CC)))
1585 return replaceInstUsesWith(Outer, Inner);
1586
1587 // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1588 // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1589 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1590 (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1591 (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1592 (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1593 Outer.replaceUsesOfWith(Inner, A);
1594 return &Outer;
1595 }
1596 }
1597 }
1598
1599 // max(max(A, B), min(A, B)) --> max(A, B)
1600 // min(min(A, B), max(A, B)) --> min(A, B)
1601 // TODO: This could be done in instsimplify.
1602 if (SPF1 == SPF2 &&
1603 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1604 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1605 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1606 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1607 return replaceInstUsesWith(Outer, Inner);
1608
1609 // ABS(ABS(X)) -> ABS(X)
1610 // NABS(NABS(X)) -> NABS(X)
1611 // TODO: This could be done in instsimplify.
1612 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1613 return replaceInstUsesWith(Outer, Inner);
1614 }
1615
1616 // ABS(NABS(X)) -> ABS(X)
1617 // NABS(ABS(X)) -> NABS(X)
1618 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1619 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1620 SelectInst *SI = cast<SelectInst>(Inner);
1621 Value *NewSI =
1622 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1623 SI->getTrueValue(), SI->getName(), SI);
1624 return replaceInstUsesWith(Outer, NewSI);
1625 }
1626
1627 auto IsFreeOrProfitableToInvert =
1628 [&](Value *V, Value *&NotV, bool &ElidesXor) {
1629 if (match(V, m_Not(m_Value(NotV)))) {
1630 // If V has at most 2 uses then we can get rid of the xor operation
1631 // entirely.
1632 ElidesXor |= !V->hasNUsesOrMore(3);
1633 return true;
1634 }
1635
1636 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1637 NotV = nullptr;
1638 return true;
1639 }
1640
1641 return false;
1642 };
1643
1644 Value *NotA, *NotB, *NotC;
1645 bool ElidesXor = false;
1646
1647 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1648 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1649 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1650 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1651 //
1652 // This transform is performance neutral if we can elide at least one xor from
1653 // the set of three operands, since we'll be tacking on an xor at the very
1654 // end.
1655 if (SelectPatternResult::isMinOrMax(SPF1) &&
1656 SelectPatternResult::isMinOrMax(SPF2) &&
1657 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1658 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1659 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1660 if (!NotA)
1661 NotA = Builder.CreateNot(A);
1662 if (!NotB)
1663 NotB = Builder.CreateNot(B);
1664 if (!NotC)
1665 NotC = Builder.CreateNot(C);
1666
1667 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1668 NotB);
1669 Value *NewOuter = Builder.CreateNot(
1670 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1671 return replaceInstUsesWith(Outer, NewOuter);
1672 }
1673
1674 return nullptr;
1675 }
1676
1677 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1678 /// This is even legal for FP.
foldAddSubSelect(SelectInst & SI,InstCombiner::BuilderTy & Builder)1679 static Instruction *foldAddSubSelect(SelectInst &SI,
1680 InstCombiner::BuilderTy &Builder) {
1681 Value *CondVal = SI.getCondition();
1682 Value *TrueVal = SI.getTrueValue();
1683 Value *FalseVal = SI.getFalseValue();
1684 auto *TI = dyn_cast<Instruction>(TrueVal);
1685 auto *FI = dyn_cast<Instruction>(FalseVal);
1686 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1687 return nullptr;
1688
1689 Instruction *AddOp = nullptr, *SubOp = nullptr;
1690 if ((TI->getOpcode() == Instruction::Sub &&
1691 FI->getOpcode() == Instruction::Add) ||
1692 (TI->getOpcode() == Instruction::FSub &&
1693 FI->getOpcode() == Instruction::FAdd)) {
1694 AddOp = FI;
1695 SubOp = TI;
1696 } else if ((FI->getOpcode() == Instruction::Sub &&
1697 TI->getOpcode() == Instruction::Add) ||
1698 (FI->getOpcode() == Instruction::FSub &&
1699 TI->getOpcode() == Instruction::FAdd)) {
1700 AddOp = TI;
1701 SubOp = FI;
1702 }
1703
1704 if (AddOp) {
1705 Value *OtherAddOp = nullptr;
1706 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1707 OtherAddOp = AddOp->getOperand(1);
1708 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1709 OtherAddOp = AddOp->getOperand(0);
1710 }
1711
1712 if (OtherAddOp) {
1713 // So at this point we know we have (Y -> OtherAddOp):
1714 // select C, (add X, Y), (sub X, Z)
1715 Value *NegVal; // Compute -Z
1716 if (SI.getType()->isFPOrFPVectorTy()) {
1717 NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1718 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1719 FastMathFlags Flags = AddOp->getFastMathFlags();
1720 Flags &= SubOp->getFastMathFlags();
1721 NegInst->setFastMathFlags(Flags);
1722 }
1723 } else {
1724 NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1725 }
1726
1727 Value *NewTrueOp = OtherAddOp;
1728 Value *NewFalseOp = NegVal;
1729 if (AddOp != TI)
1730 std::swap(NewTrueOp, NewFalseOp);
1731 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1732 SI.getName() + ".p", &SI);
1733
1734 if (SI.getType()->isFPOrFPVectorTy()) {
1735 Instruction *RI =
1736 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1737
1738 FastMathFlags Flags = AddOp->getFastMathFlags();
1739 Flags &= SubOp->getFastMathFlags();
1740 RI->setFastMathFlags(Flags);
1741 return RI;
1742 } else
1743 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1744 }
1745 }
1746 return nullptr;
1747 }
1748
1749 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1750 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1751 /// Along with a number of patterns similar to:
1752 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1753 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1754 static Instruction *
foldOverflowingAddSubSelect(SelectInst & SI,InstCombiner::BuilderTy & Builder)1755 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1756 Value *CondVal = SI.getCondition();
1757 Value *TrueVal = SI.getTrueValue();
1758 Value *FalseVal = SI.getFalseValue();
1759
1760 WithOverflowInst *II;
1761 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1762 !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1763 return nullptr;
1764
1765 Value *X = II->getLHS();
1766 Value *Y = II->getRHS();
1767
1768 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1769 Type *Ty = Limit->getType();
1770
1771 ICmpInst::Predicate Pred;
1772 Value *TrueVal, *FalseVal, *Op;
1773 const APInt *C;
1774 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1775 m_Value(TrueVal), m_Value(FalseVal))))
1776 return false;
1777
1778 auto IsZeroOrOne = [](const APInt &C) {
1779 return C.isNullValue() || C.isOneValue();
1780 };
1781 auto IsMinMax = [&](Value *Min, Value *Max) {
1782 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1783 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1784 return match(Min, m_SpecificInt(MinVal)) &&
1785 match(Max, m_SpecificInt(MaxVal));
1786 };
1787
1788 if (Op != X && Op != Y)
1789 return false;
1790
1791 if (IsAdd) {
1792 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1793 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1794 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1795 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1796 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1797 IsMinMax(TrueVal, FalseVal))
1798 return true;
1799 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1800 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1801 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1802 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1803 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1804 IsMinMax(FalseVal, TrueVal))
1805 return true;
1806 } else {
1807 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1808 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1809 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1810 IsMinMax(TrueVal, FalseVal))
1811 return true;
1812 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1813 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1814 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1815 IsMinMax(FalseVal, TrueVal))
1816 return true;
1817 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1818 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1819 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1820 IsMinMax(FalseVal, TrueVal))
1821 return true;
1822 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1823 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1824 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1825 IsMinMax(TrueVal, FalseVal))
1826 return true;
1827 }
1828
1829 return false;
1830 };
1831
1832 Intrinsic::ID NewIntrinsicID;
1833 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1834 match(TrueVal, m_AllOnes()))
1835 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1836 NewIntrinsicID = Intrinsic::uadd_sat;
1837 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1838 match(TrueVal, m_Zero()))
1839 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1840 NewIntrinsicID = Intrinsic::usub_sat;
1841 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1842 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1843 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1844 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1845 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1846 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1847 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1848 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1849 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1850 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1851 NewIntrinsicID = Intrinsic::sadd_sat;
1852 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1853 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1854 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1855 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1856 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1857 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1858 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1859 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1860 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1861 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1862 NewIntrinsicID = Intrinsic::ssub_sat;
1863 else
1864 return nullptr;
1865
1866 Function *F =
1867 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1868 return CallInst::Create(F, {X, Y});
1869 }
1870
foldSelectExtConst(SelectInst & Sel)1871 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1872 Constant *C;
1873 if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1874 !match(Sel.getFalseValue(), m_Constant(C)))
1875 return nullptr;
1876
1877 Instruction *ExtInst;
1878 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1879 !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1880 return nullptr;
1881
1882 auto ExtOpcode = ExtInst->getOpcode();
1883 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1884 return nullptr;
1885
1886 // If we are extending from a boolean type or if we can create a select that
1887 // has the same size operands as its condition, try to narrow the select.
1888 Value *X = ExtInst->getOperand(0);
1889 Type *SmallType = X->getType();
1890 Value *Cond = Sel.getCondition();
1891 auto *Cmp = dyn_cast<CmpInst>(Cond);
1892 if (!SmallType->isIntOrIntVectorTy(1) &&
1893 (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1894 return nullptr;
1895
1896 // If the constant is the same after truncation to the smaller type and
1897 // extension to the original type, we can narrow the select.
1898 Type *SelType = Sel.getType();
1899 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1900 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1901 if (ExtC == C) {
1902 Value *TruncCVal = cast<Value>(TruncC);
1903 if (ExtInst == Sel.getFalseValue())
1904 std::swap(X, TruncCVal);
1905
1906 // select Cond, (ext X), C --> ext(select Cond, X, C')
1907 // select Cond, C, (ext X) --> ext(select Cond, C', X)
1908 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1909 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1910 }
1911
1912 // If one arm of the select is the extend of the condition, replace that arm
1913 // with the extension of the appropriate known bool value.
1914 if (Cond == X) {
1915 if (ExtInst == Sel.getTrueValue()) {
1916 // select X, (sext X), C --> select X, -1, C
1917 // select X, (zext X), C --> select X, 1, C
1918 Constant *One = ConstantInt::getTrue(SmallType);
1919 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1920 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1921 } else {
1922 // select X, C, (sext X) --> select X, C, 0
1923 // select X, C, (zext X) --> select X, C, 0
1924 Constant *Zero = ConstantInt::getNullValue(SelType);
1925 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1926 }
1927 }
1928
1929 return nullptr;
1930 }
1931
1932 /// Try to transform a vector select with a constant condition vector into a
1933 /// shuffle for easier combining with other shuffles and insert/extract.
canonicalizeSelectToShuffle(SelectInst & SI)1934 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1935 Value *CondVal = SI.getCondition();
1936 Constant *CondC;
1937 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1938 return nullptr;
1939
1940 unsigned NumElts = CondVal->getType()->getVectorNumElements();
1941 SmallVector<Constant *, 16> Mask;
1942 Mask.reserve(NumElts);
1943 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1944 for (unsigned i = 0; i != NumElts; ++i) {
1945 Constant *Elt = CondC->getAggregateElement(i);
1946 if (!Elt)
1947 return nullptr;
1948
1949 if (Elt->isOneValue()) {
1950 // If the select condition element is true, choose from the 1st vector.
1951 Mask.push_back(ConstantInt::get(Int32Ty, i));
1952 } else if (Elt->isNullValue()) {
1953 // If the select condition element is false, choose from the 2nd vector.
1954 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1955 } else if (isa<UndefValue>(Elt)) {
1956 // Undef in a select condition (choose one of the operands) does not mean
1957 // the same thing as undef in a shuffle mask (any value is acceptable), so
1958 // give up.
1959 return nullptr;
1960 } else {
1961 // Bail out on a constant expression.
1962 return nullptr;
1963 }
1964 }
1965
1966 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1967 ConstantVector::get(Mask));
1968 }
1969
1970 /// If we have a select of vectors with a scalar condition, try to convert that
1971 /// to a vector select by splatting the condition. A splat may get folded with
1972 /// other operations in IR and having all operands of a select be vector types
1973 /// is likely better for vector codegen.
canonicalizeScalarSelectOfVecs(SelectInst & Sel,InstCombiner::BuilderTy & Builder)1974 static Instruction *canonicalizeScalarSelectOfVecs(
1975 SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
1976 Type *Ty = Sel.getType();
1977 if (!Ty->isVectorTy())
1978 return nullptr;
1979
1980 // We can replace a single-use extract with constant index.
1981 Value *Cond = Sel.getCondition();
1982 if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt()))))
1983 return nullptr;
1984
1985 // select (extelt V, Index), T, F --> select (splat V, Index), T, F
1986 // Splatting the extracted condition reduces code (we could directly create a
1987 // splat shuffle of the source vector to eliminate the intermediate step).
1988 unsigned NumElts = Ty->getVectorNumElements();
1989 Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond);
1990 Sel.setCondition(SplatCond);
1991 return &Sel;
1992 }
1993
1994 /// Reuse bitcasted operands between a compare and select:
1995 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1996 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
foldSelectCmpBitcasts(SelectInst & Sel,InstCombiner::BuilderTy & Builder)1997 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1998 InstCombiner::BuilderTy &Builder) {
1999 Value *Cond = Sel.getCondition();
2000 Value *TVal = Sel.getTrueValue();
2001 Value *FVal = Sel.getFalseValue();
2002
2003 CmpInst::Predicate Pred;
2004 Value *A, *B;
2005 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2006 return nullptr;
2007
2008 // The select condition is a compare instruction. If the select's true/false
2009 // values are already the same as the compare operands, there's nothing to do.
2010 if (TVal == A || TVal == B || FVal == A || FVal == B)
2011 return nullptr;
2012
2013 Value *C, *D;
2014 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2015 return nullptr;
2016
2017 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2018 Value *TSrc, *FSrc;
2019 if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2020 !match(FVal, m_BitCast(m_Value(FSrc))))
2021 return nullptr;
2022
2023 // If the select true/false values are *different bitcasts* of the same source
2024 // operands, make the select operands the same as the compare operands and
2025 // cast the result. This is the canonical select form for min/max.
2026 Value *NewSel;
2027 if (TSrc == C && FSrc == D) {
2028 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2029 // bitcast (select (cmp A, B), A, B)
2030 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2031 } else if (TSrc == D && FSrc == C) {
2032 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2033 // bitcast (select (cmp A, B), B, A)
2034 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2035 } else {
2036 return nullptr;
2037 }
2038 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2039 }
2040
2041 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2042 /// instructions.
2043 ///
2044 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2045 /// selects between the returned value of the cmpxchg instruction its compare
2046 /// operand, the result of the select will always be equal to its false value.
2047 /// For example:
2048 ///
2049 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2050 /// %1 = extractvalue { i64, i1 } %0, 1
2051 /// %2 = extractvalue { i64, i1 } %0, 0
2052 /// %3 = select i1 %1, i64 %compare, i64 %2
2053 /// ret i64 %3
2054 ///
2055 /// The returned value of the cmpxchg instruction (%2) is the original value
2056 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2057 /// must have been equal to %compare. Thus, the result of the select is always
2058 /// equal to %2, and the code can be simplified to:
2059 ///
2060 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2061 /// %1 = extractvalue { i64, i1 } %0, 0
2062 /// ret i64 %1
2063 ///
foldSelectCmpXchg(SelectInst & SI)2064 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
2065 // A helper that determines if V is an extractvalue instruction whose
2066 // aggregate operand is a cmpxchg instruction and whose single index is equal
2067 // to I. If such conditions are true, the helper returns the cmpxchg
2068 // instruction; otherwise, a nullptr is returned.
2069 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2070 auto *Extract = dyn_cast<ExtractValueInst>(V);
2071 if (!Extract)
2072 return nullptr;
2073 if (Extract->getIndices()[0] != I)
2074 return nullptr;
2075 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2076 };
2077
2078 // If the select has a single user, and this user is a select instruction that
2079 // we can simplify, skip the cmpxchg simplification for now.
2080 if (SI.hasOneUse())
2081 if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2082 if (Select->getCondition() == SI.getCondition())
2083 if (Select->getFalseValue() == SI.getTrueValue() ||
2084 Select->getTrueValue() == SI.getFalseValue())
2085 return nullptr;
2086
2087 // Ensure the select condition is the returned flag of a cmpxchg instruction.
2088 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2089 if (!CmpXchg)
2090 return nullptr;
2091
2092 // Check the true value case: The true value of the select is the returned
2093 // value of the same cmpxchg used by the condition, and the false value is the
2094 // cmpxchg instruction's compare operand.
2095 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2096 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
2097 SI.setTrueValue(SI.getFalseValue());
2098 return &SI;
2099 }
2100
2101 // Check the false value case: The false value of the select is the returned
2102 // value of the same cmpxchg used by the condition, and the true value is the
2103 // cmpxchg instruction's compare operand.
2104 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2105 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
2106 SI.setTrueValue(SI.getFalseValue());
2107 return &SI;
2108 }
2109
2110 return nullptr;
2111 }
2112
moveAddAfterMinMax(SelectPatternFlavor SPF,Value * X,Value * Y,InstCombiner::BuilderTy & Builder)2113 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2114 Value *Y,
2115 InstCombiner::BuilderTy &Builder) {
2116 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2117 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2118 SPF == SelectPatternFlavor::SPF_UMAX;
2119 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2120 // the constant value check to an assert.
2121 Value *A;
2122 const APInt *C1, *C2;
2123 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2124 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2125 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2126 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2127 Value *NewMinMax = createMinMax(Builder, SPF, A,
2128 ConstantInt::get(X->getType(), *C2 - *C1));
2129 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2130 ConstantInt::get(X->getType(), *C1));
2131 }
2132
2133 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2134 match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2135 bool Overflow;
2136 APInt Diff = C2->ssub_ov(*C1, Overflow);
2137 if (!Overflow) {
2138 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2139 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2140 Value *NewMinMax = createMinMax(Builder, SPF, A,
2141 ConstantInt::get(X->getType(), Diff));
2142 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2143 ConstantInt::get(X->getType(), *C1));
2144 }
2145 }
2146
2147 return nullptr;
2148 }
2149
2150 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
matchSAddSubSat(SelectInst & MinMax1)2151 Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
2152 Type *Ty = MinMax1.getType();
2153
2154 // We are looking for a tree of:
2155 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2156 // Where the min and max could be reversed
2157 Instruction *MinMax2;
2158 BinaryOperator *AddSub;
2159 const APInt *MinValue, *MaxValue;
2160 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2161 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2162 return nullptr;
2163 } else if (match(&MinMax1,
2164 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2165 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2166 return nullptr;
2167 } else
2168 return nullptr;
2169
2170 // Check that the constants clamp a saturate, and that the new type would be
2171 // sensible to convert to.
2172 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2173 return nullptr;
2174 // In what bitwidth can this be treated as saturating arithmetics?
2175 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2176 // FIXME: This isn't quite right for vectors, but using the scalar type is a
2177 // good first approximation for what should be done there.
2178 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2179 return nullptr;
2180
2181 // Also make sure that the number of uses is as expected. The "3"s are for the
2182 // the two items of min/max (the compare and the select).
2183 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2184 return nullptr;
2185
2186 // Create the new type (which can be a vector type)
2187 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2188 // Match the two extends from the add/sub
2189 Value *A, *B;
2190 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2191 return nullptr;
2192 // And check the incoming values are of a type smaller than or equal to the
2193 // size of the saturation. Otherwise the higher bits can cause different
2194 // results.
2195 if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2196 B->getType()->getScalarSizeInBits() > NewBitWidth)
2197 return nullptr;
2198
2199 Intrinsic::ID IntrinsicID;
2200 if (AddSub->getOpcode() == Instruction::Add)
2201 IntrinsicID = Intrinsic::sadd_sat;
2202 else if (AddSub->getOpcode() == Instruction::Sub)
2203 IntrinsicID = Intrinsic::ssub_sat;
2204 else
2205 return nullptr;
2206
2207 // Finally create and return the sat intrinsic, truncated to the new type
2208 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2209 Value *AT = Builder.CreateSExt(A, NewTy);
2210 Value *BT = Builder.CreateSExt(B, NewTy);
2211 Value *Sat = Builder.CreateCall(F, {AT, BT});
2212 return CastInst::Create(Instruction::SExt, Sat, Ty);
2213 }
2214
2215 /// Reduce a sequence of min/max with a common operand.
factorizeMinMaxTree(SelectPatternFlavor SPF,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)2216 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2217 Value *RHS,
2218 InstCombiner::BuilderTy &Builder) {
2219 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2220 // TODO: Allow FP min/max with nnan/nsz.
2221 if (!LHS->getType()->isIntOrIntVectorTy())
2222 return nullptr;
2223
2224 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2225 Value *A, *B, *C, *D;
2226 SelectPatternResult L = matchSelectPattern(LHS, A, B);
2227 SelectPatternResult R = matchSelectPattern(RHS, C, D);
2228 if (SPF != L.Flavor || L.Flavor != R.Flavor)
2229 return nullptr;
2230
2231 // Look for a common operand. The use checks are different than usual because
2232 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2233 // the select.
2234 Value *MinMaxOp = nullptr;
2235 Value *ThirdOp = nullptr;
2236 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2237 // If the LHS is only used in this chain and the RHS is used outside of it,
2238 // reuse the RHS min/max because that will eliminate the LHS.
2239 if (D == A || C == A) {
2240 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2241 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2242 MinMaxOp = RHS;
2243 ThirdOp = B;
2244 } else if (D == B || C == B) {
2245 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2246 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2247 MinMaxOp = RHS;
2248 ThirdOp = A;
2249 }
2250 } else if (!RHS->hasNUsesOrMore(3)) {
2251 // Reuse the LHS. This will eliminate the RHS.
2252 if (D == A || D == B) {
2253 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2254 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2255 MinMaxOp = LHS;
2256 ThirdOp = C;
2257 } else if (C == A || C == B) {
2258 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2259 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2260 MinMaxOp = LHS;
2261 ThirdOp = D;
2262 }
2263 }
2264 if (!MinMaxOp || !ThirdOp)
2265 return nullptr;
2266
2267 CmpInst::Predicate P = getMinMaxPred(SPF);
2268 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2269 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2270 }
2271
2272 /// Try to reduce a rotate pattern that includes a compare and select into a
2273 /// funnel shift intrinsic. Example:
2274 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2275 /// --> call llvm.fshl.i32(a, a, b)
foldSelectRotate(SelectInst & Sel)2276 static Instruction *foldSelectRotate(SelectInst &Sel) {
2277 // The false value of the select must be a rotate of the true value.
2278 Value *Or0, *Or1;
2279 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
2280 return nullptr;
2281
2282 Value *TVal = Sel.getTrueValue();
2283 Value *SA0, *SA1;
2284 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
2285 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
2286 return nullptr;
2287
2288 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
2289 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
2290 if (ShiftOpcode0 == ShiftOpcode1)
2291 return nullptr;
2292
2293 // We have one of these patterns so far:
2294 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
2295 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
2296 // This must be a power-of-2 rotate for a bitmasking transform to be valid.
2297 unsigned Width = Sel.getType()->getScalarSizeInBits();
2298 if (!isPowerOf2_32(Width))
2299 return nullptr;
2300
2301 // Check the shift amounts to see if they are an opposite pair.
2302 Value *ShAmt;
2303 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2304 ShAmt = SA0;
2305 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2306 ShAmt = SA1;
2307 else
2308 return nullptr;
2309
2310 // Finally, see if the select is filtering out a shift-by-zero.
2311 Value *Cond = Sel.getCondition();
2312 ICmpInst::Predicate Pred;
2313 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2314 Pred != ICmpInst::ICMP_EQ)
2315 return nullptr;
2316
2317 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2318 // Convert to funnel shift intrinsic.
2319 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
2320 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
2321 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2322 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2323 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
2324 }
2325
visitSelectInst(SelectInst & SI)2326 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
2327 Value *CondVal = SI.getCondition();
2328 Value *TrueVal = SI.getTrueValue();
2329 Value *FalseVal = SI.getFalseValue();
2330 Type *SelType = SI.getType();
2331
2332 // FIXME: Remove this workaround when freeze related patches are done.
2333 // For select with undef operand which feeds into an equality comparison,
2334 // don't simplify it so loop unswitch can know the equality comparison
2335 // may have an undef operand. This is a workaround for PR31652 caused by
2336 // descrepancy about branch on undef between LoopUnswitch and GVN.
2337 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2338 if (llvm::any_of(SI.users(), [&](User *U) {
2339 ICmpInst *CI = dyn_cast<ICmpInst>(U);
2340 if (CI && CI->isEquality())
2341 return true;
2342 return false;
2343 })) {
2344 return nullptr;
2345 }
2346 }
2347
2348 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2349 SQ.getWithInstruction(&SI)))
2350 return replaceInstUsesWith(SI, V);
2351
2352 if (Instruction *I = canonicalizeSelectToShuffle(SI))
2353 return I;
2354
2355 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder))
2356 return I;
2357
2358 // Canonicalize a one-use integer compare with a non-canonical predicate by
2359 // inverting the predicate and swapping the select operands. This matches a
2360 // compare canonicalization for conditional branches.
2361 // TODO: Should we do the same for FP compares?
2362 CmpInst::Predicate Pred;
2363 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
2364 !isCanonicalPredicate(Pred)) {
2365 // Swap true/false values and condition.
2366 CmpInst *Cond = cast<CmpInst>(CondVal);
2367 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2368 SI.setOperand(1, FalseVal);
2369 SI.setOperand(2, TrueVal);
2370 SI.swapProfMetadata();
2371 Worklist.Add(Cond);
2372 return &SI;
2373 }
2374
2375 if (SelType->isIntOrIntVectorTy(1) &&
2376 TrueVal->getType() == CondVal->getType()) {
2377 if (match(TrueVal, m_One())) {
2378 // Change: A = select B, true, C --> A = or B, C
2379 return BinaryOperator::CreateOr(CondVal, FalseVal);
2380 }
2381 if (match(TrueVal, m_Zero())) {
2382 // Change: A = select B, false, C --> A = and !B, C
2383 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2384 return BinaryOperator::CreateAnd(NotCond, FalseVal);
2385 }
2386 if (match(FalseVal, m_Zero())) {
2387 // Change: A = select B, C, false --> A = and B, C
2388 return BinaryOperator::CreateAnd(CondVal, TrueVal);
2389 }
2390 if (match(FalseVal, m_One())) {
2391 // Change: A = select B, C, true --> A = or !B, C
2392 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2393 return BinaryOperator::CreateOr(NotCond, TrueVal);
2394 }
2395
2396 // select a, a, b -> a | b
2397 // select a, b, a -> a & b
2398 if (CondVal == TrueVal)
2399 return BinaryOperator::CreateOr(CondVal, FalseVal);
2400 if (CondVal == FalseVal)
2401 return BinaryOperator::CreateAnd(CondVal, TrueVal);
2402
2403 // select a, ~a, b -> (~a) & b
2404 // select a, b, ~a -> (~a) | b
2405 if (match(TrueVal, m_Not(m_Specific(CondVal))))
2406 return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2407 if (match(FalseVal, m_Not(m_Specific(CondVal))))
2408 return BinaryOperator::CreateOr(TrueVal, FalseVal);
2409 }
2410
2411 // Selecting between two integer or vector splat integer constants?
2412 //
2413 // Note that we don't handle a scalar select of vectors:
2414 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2415 // because that may need 3 instructions to splat the condition value:
2416 // extend, insertelement, shufflevector.
2417 if (SelType->isIntOrIntVectorTy() &&
2418 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2419 // select C, 1, 0 -> zext C to int
2420 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2421 return new ZExtInst(CondVal, SelType);
2422
2423 // select C, -1, 0 -> sext C to int
2424 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2425 return new SExtInst(CondVal, SelType);
2426
2427 // select C, 0, 1 -> zext !C to int
2428 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2429 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2430 return new ZExtInst(NotCond, SelType);
2431 }
2432
2433 // select C, 0, -1 -> sext !C to int
2434 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2435 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2436 return new SExtInst(NotCond, SelType);
2437 }
2438 }
2439
2440 // See if we are selecting two values based on a comparison of the two values.
2441 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2442 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2443 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2444 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2445 // Canonicalize to use ordered comparisons by swapping the select
2446 // operands.
2447 //
2448 // e.g.
2449 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2450 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2451 FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2452 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2453 // FIXME: The FMF should propagate from the select, not the fcmp.
2454 Builder.setFastMathFlags(FCI->getFastMathFlags());
2455 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2456 FCI->getName() + ".inv");
2457 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2458 return replaceInstUsesWith(SI, NewSel);
2459 }
2460
2461 // NOTE: if we wanted to, this is where to detect MIN/MAX
2462 }
2463 }
2464
2465 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2466 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2467 // also require nnan because we do not want to unintentionally change the
2468 // sign of a NaN value.
2469 // FIXME: These folds should test/propagate FMF from the select, not the
2470 // fsub or fneg.
2471 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2472 Instruction *FSub;
2473 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2474 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2475 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2476 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2477 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2478 return replaceInstUsesWith(SI, Fabs);
2479 }
2480 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
2481 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2482 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2483 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2484 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2485 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2486 return replaceInstUsesWith(SI, Fabs);
2487 }
2488 // With nnan and nsz:
2489 // (X < +/-0.0) ? -X : X --> fabs(X)
2490 // (X <= +/-0.0) ? -X : X --> fabs(X)
2491 Instruction *FNeg;
2492 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2493 match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2494 match(TrueVal, m_Instruction(FNeg)) &&
2495 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2496 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2497 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2498 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2499 return replaceInstUsesWith(SI, Fabs);
2500 }
2501 // With nnan and nsz:
2502 // (X > +/-0.0) ? X : -X --> fabs(X)
2503 // (X >= +/-0.0) ? X : -X --> fabs(X)
2504 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2505 match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2506 match(FalseVal, m_Instruction(FNeg)) &&
2507 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2508 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2509 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2510 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2511 return replaceInstUsesWith(SI, Fabs);
2512 }
2513
2514 // See if we are selecting two values based on a comparison of the two values.
2515 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2516 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2517 return Result;
2518
2519 if (Instruction *Add = foldAddSubSelect(SI, Builder))
2520 return Add;
2521 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2522 return Add;
2523
2524 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2525 auto *TI = dyn_cast<Instruction>(TrueVal);
2526 auto *FI = dyn_cast<Instruction>(FalseVal);
2527 if (TI && FI && TI->getOpcode() == FI->getOpcode())
2528 if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2529 return IV;
2530
2531 if (Instruction *I = foldSelectExtConst(SI))
2532 return I;
2533
2534 // See if we can fold the select into one of our operands.
2535 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2536 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2537 return FoldI;
2538
2539 Value *LHS, *RHS;
2540 Instruction::CastOps CastOp;
2541 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2542 auto SPF = SPR.Flavor;
2543 if (SPF) {
2544 Value *LHS2, *RHS2;
2545 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2546 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2547 RHS2, SI, SPF, RHS))
2548 return R;
2549 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2550 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2551 RHS2, SI, SPF, LHS))
2552 return R;
2553 // TODO.
2554 // ABS(-X) -> ABS(X)
2555 }
2556
2557 if (SelectPatternResult::isMinOrMax(SPF)) {
2558 // Canonicalize so that
2559 // - type casts are outside select patterns.
2560 // - float clamp is transformed to min/max pattern
2561
2562 bool IsCastNeeded = LHS->getType() != SelType;
2563 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2564 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2565 if (IsCastNeeded ||
2566 (LHS->getType()->isFPOrFPVectorTy() &&
2567 ((CmpLHS != LHS && CmpLHS != RHS) ||
2568 (CmpRHS != LHS && CmpRHS != RHS)))) {
2569 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2570
2571 Value *Cmp;
2572 if (CmpInst::isIntPredicate(MinMaxPred)) {
2573 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2574 } else {
2575 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2576 auto FMF =
2577 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2578 Builder.setFastMathFlags(FMF);
2579 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2580 }
2581
2582 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2583 if (!IsCastNeeded)
2584 return replaceInstUsesWith(SI, NewSI);
2585
2586 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2587 return replaceInstUsesWith(SI, NewCast);
2588 }
2589
2590 // MAX(~a, ~b) -> ~MIN(a, b)
2591 // MAX(~a, C) -> ~MIN(a, ~C)
2592 // MIN(~a, ~b) -> ~MAX(a, b)
2593 // MIN(~a, C) -> ~MAX(a, ~C)
2594 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2595 Value *A;
2596 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2597 !isFreeToInvert(A, A->hasOneUse()) &&
2598 // Passing false to only consider m_Not and constants.
2599 isFreeToInvert(Y, false)) {
2600 Value *B = Builder.CreateNot(Y);
2601 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2602 A, B);
2603 // Copy the profile metadata.
2604 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2605 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2606 // Swap the metadata if the operands are swapped.
2607 if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2608 cast<SelectInst>(NewMinMax)->swapProfMetadata();
2609 }
2610
2611 return BinaryOperator::CreateNot(NewMinMax);
2612 }
2613
2614 return nullptr;
2615 };
2616
2617 if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2618 return I;
2619 if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2620 return I;
2621
2622 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2623 return I;
2624
2625 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2626 return I;
2627 if (Instruction *I = matchSAddSubSat(SI))
2628 return I;
2629 }
2630 }
2631
2632 // Canonicalize select of FP values where NaN and -0.0 are not valid as
2633 // minnum/maxnum intrinsics.
2634 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2635 Value *X, *Y;
2636 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2637 return replaceInstUsesWith(
2638 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2639
2640 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2641 return replaceInstUsesWith(
2642 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2643 }
2644
2645 // See if we can fold the select into a phi node if the condition is a select.
2646 if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2647 // The true/false values have to be live in the PHI predecessor's blocks.
2648 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2649 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2650 if (Instruction *NV = foldOpIntoPhi(SI, PN))
2651 return NV;
2652
2653 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2654 if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2655 // select(C, select(C, a, b), c) -> select(C, a, c)
2656 if (TrueSI->getCondition() == CondVal) {
2657 if (SI.getTrueValue() == TrueSI->getTrueValue())
2658 return nullptr;
2659 SI.setOperand(1, TrueSI->getTrueValue());
2660 return &SI;
2661 }
2662 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2663 // We choose this as normal form to enable folding on the And and shortening
2664 // paths for the values (this helps GetUnderlyingObjects() for example).
2665 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2666 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2667 SI.setOperand(0, And);
2668 SI.setOperand(1, TrueSI->getTrueValue());
2669 return &SI;
2670 }
2671 }
2672 }
2673 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2674 if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2675 // select(C, a, select(C, b, c)) -> select(C, a, c)
2676 if (FalseSI->getCondition() == CondVal) {
2677 if (SI.getFalseValue() == FalseSI->getFalseValue())
2678 return nullptr;
2679 SI.setOperand(2, FalseSI->getFalseValue());
2680 return &SI;
2681 }
2682 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2683 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2684 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2685 SI.setOperand(0, Or);
2686 SI.setOperand(2, FalseSI->getFalseValue());
2687 return &SI;
2688 }
2689 }
2690 }
2691
2692 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2693 // The select might be preventing a division by 0.
2694 switch (BO->getOpcode()) {
2695 default:
2696 return true;
2697 case Instruction::SRem:
2698 case Instruction::URem:
2699 case Instruction::SDiv:
2700 case Instruction::UDiv:
2701 return false;
2702 }
2703 };
2704
2705 // Try to simplify a binop sandwiched between 2 selects with the same
2706 // condition.
2707 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2708 BinaryOperator *TrueBO;
2709 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2710 canMergeSelectThroughBinop(TrueBO)) {
2711 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2712 if (TrueBOSI->getCondition() == CondVal) {
2713 TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2714 Worklist.Add(TrueBO);
2715 return &SI;
2716 }
2717 }
2718 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2719 if (TrueBOSI->getCondition() == CondVal) {
2720 TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2721 Worklist.Add(TrueBO);
2722 return &SI;
2723 }
2724 }
2725 }
2726
2727 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2728 BinaryOperator *FalseBO;
2729 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2730 canMergeSelectThroughBinop(FalseBO)) {
2731 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2732 if (FalseBOSI->getCondition() == CondVal) {
2733 FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2734 Worklist.Add(FalseBO);
2735 return &SI;
2736 }
2737 }
2738 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2739 if (FalseBOSI->getCondition() == CondVal) {
2740 FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2741 Worklist.Add(FalseBO);
2742 return &SI;
2743 }
2744 }
2745 }
2746
2747 Value *NotCond;
2748 if (match(CondVal, m_Not(m_Value(NotCond)))) {
2749 SI.setOperand(0, NotCond);
2750 SI.setOperand(1, FalseVal);
2751 SI.setOperand(2, TrueVal);
2752 SI.swapProfMetadata();
2753 return &SI;
2754 }
2755
2756 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2757 unsigned VWidth = VecTy->getNumElements();
2758 APInt UndefElts(VWidth, 0);
2759 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2760 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2761 if (V != &SI)
2762 return replaceInstUsesWith(SI, V);
2763 return &SI;
2764 }
2765 }
2766
2767 // If we can compute the condition, there's no need for a select.
2768 // Like the above fold, we are attempting to reduce compile-time cost by
2769 // putting this fold here with limitations rather than in InstSimplify.
2770 // The motivation for this call into value tracking is to take advantage of
2771 // the assumption cache, so make sure that is populated.
2772 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2773 KnownBits Known(1);
2774 computeKnownBits(CondVal, Known, 0, &SI);
2775 if (Known.One.isOneValue())
2776 return replaceInstUsesWith(SI, TrueVal);
2777 if (Known.Zero.isOneValue())
2778 return replaceInstUsesWith(SI, FalseVal);
2779 }
2780
2781 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2782 return BitCastSel;
2783
2784 // Simplify selects that test the returned flag of cmpxchg instructions.
2785 if (Instruction *Select = foldSelectCmpXchg(SI))
2786 return Select;
2787
2788 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2789 return Select;
2790
2791 if (Instruction *Rot = foldSelectRotate(SI))
2792 return Rot;
2793
2794 return nullptr;
2795 }
2796