• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a hash set that can be used to remove duplication of nodes
10 // in a graph.  This code was originally created by Chris Lattner for use with
11 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_FOLDINGSET_H
16 #define LLVM_ADT_FOLDINGSET_H
17 
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/iterator.h"
20 #include "llvm/Support/Allocator.h"
21 #include <cassert>
22 #include <cstddef>
23 #include <cstdint>
24 #include <utility>
25 
26 namespace llvm {
27 
28 /// This folding set used for two purposes:
29 ///   1. Given information about a node we want to create, look up the unique
30 ///      instance of the node in the set.  If the node already exists, return
31 ///      it, otherwise return the bucket it should be inserted into.
32 ///   2. Given a node that has already been created, remove it from the set.
33 ///
34 /// This class is implemented as a single-link chained hash table, where the
35 /// "buckets" are actually the nodes themselves (the next pointer is in the
36 /// node).  The last node points back to the bucket to simplify node removal.
37 ///
38 /// Any node that is to be included in the folding set must be a subclass of
39 /// FoldingSetNode.  The node class must also define a Profile method used to
40 /// establish the unique bits of data for the node.  The Profile method is
41 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
42 /// call one of the Add* functions defined in the FoldingSetBase::NodeID class.
43 /// NOTE: That the folding set does not own the nodes and it is the
44 /// responsibility of the user to dispose of the nodes.
45 ///
46 /// Eg.
47 ///    class MyNode : public FoldingSetNode {
48 ///    private:
49 ///      std::string Name;
50 ///      unsigned Value;
51 ///    public:
52 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
53 ///       ...
54 ///      void Profile(FoldingSetNodeID &ID) const {
55 ///        ID.AddString(Name);
56 ///        ID.AddInteger(Value);
57 ///      }
58 ///      ...
59 ///    };
60 ///
61 /// To define the folding set itself use the FoldingSet template;
62 ///
63 /// Eg.
64 ///    FoldingSet<MyNode> MyFoldingSet;
65 ///
66 /// Four public methods are available to manipulate the folding set;
67 ///
68 /// 1) If you have an existing node that you want add to the set but unsure
69 /// that the node might already exist then call;
70 ///
71 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
72 ///
73 /// If The result is equal to the input then the node has been inserted.
74 /// Otherwise, the result is the node existing in the folding set, and the
75 /// input can be discarded (use the result instead.)
76 ///
77 /// 2) If you are ready to construct a node but want to check if it already
78 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
79 /// check;
80 ///
81 ///   FoldingSetNodeID ID;
82 ///   ID.AddString(Name);
83 ///   ID.AddInteger(Value);
84 ///   void *InsertPoint;
85 ///
86 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
87 ///
88 /// If found then M will be non-NULL, else InsertPoint will point to where it
89 /// should be inserted using InsertNode.
90 ///
91 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can insert a
92 /// new node with InsertNode;
93 ///
94 ///    MyFoldingSet.InsertNode(M, InsertPoint);
95 ///
96 /// 4) Finally, if you want to remove a node from the folding set call;
97 ///
98 ///    bool WasRemoved = MyFoldingSet.RemoveNode(M);
99 ///
100 /// The result indicates whether the node existed in the folding set.
101 
102 class FoldingSetNodeID;
103 class StringRef;
104 
105 //===----------------------------------------------------------------------===//
106 /// FoldingSetBase - Implements the folding set functionality.  The main
107 /// structure is an array of buckets.  Each bucket is indexed by the hash of
108 /// the nodes it contains.  The bucket itself points to the nodes contained
109 /// in the bucket via a singly linked list.  The last node in the list points
110 /// back to the bucket to facilitate node removal.
111 ///
112 class FoldingSetBase {
113   virtual void anchor(); // Out of line virtual method.
114 
115 protected:
116   /// Buckets - Array of bucket chains.
117   void **Buckets;
118 
119   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
120   unsigned NumBuckets;
121 
122   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
123   /// is greater than twice the number of buckets.
124   unsigned NumNodes;
125 
126   explicit FoldingSetBase(unsigned Log2InitSize = 6);
127   FoldingSetBase(FoldingSetBase &&Arg);
128   FoldingSetBase &operator=(FoldingSetBase &&RHS);
129   ~FoldingSetBase();
130 
131 public:
132   //===--------------------------------------------------------------------===//
133   /// Node - This class is used to maintain the singly linked bucket list in
134   /// a folding set.
135   class Node {
136   private:
137     // NextInFoldingSetBucket - next link in the bucket list.
138     void *NextInFoldingSetBucket = nullptr;
139 
140   public:
141     Node() = default;
142 
143     // Accessors
getNextInBucket()144     void *getNextInBucket() const { return NextInFoldingSetBucket; }
SetNextInBucket(void * N)145     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
146   };
147 
148   /// clear - Remove all nodes from the folding set.
149   void clear();
150 
151   /// size - Returns the number of nodes in the folding set.
size()152   unsigned size() const { return NumNodes; }
153 
154   /// empty - Returns true if there are no nodes in the folding set.
empty()155   bool empty() const { return NumNodes == 0; }
156 
157   /// reserve - Increase the number of buckets such that adding the
158   /// EltCount-th node won't cause a rebucket operation. reserve is permitted
159   /// to allocate more space than requested by EltCount.
160   void reserve(unsigned EltCount);
161 
162   /// capacity - Returns the number of nodes permitted in the folding set
163   /// before a rebucket operation is performed.
capacity()164   unsigned capacity() {
165     // We allow a load factor of up to 2.0,
166     // so that means our capacity is NumBuckets * 2
167     return NumBuckets * 2;
168   }
169 
170 private:
171   /// GrowHashTable - Double the size of the hash table and rehash everything.
172   void GrowHashTable();
173 
174   /// GrowBucketCount - resize the hash table and rehash everything.
175   /// NewBucketCount must be a power of two, and must be greater than the old
176   /// bucket count.
177   void GrowBucketCount(unsigned NewBucketCount);
178 
179 protected:
180   /// GetNodeProfile - Instantiations of the FoldingSet template implement
181   /// this function to gather data bits for the given node.
182   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
183 
184   /// NodeEquals - Instantiations of the FoldingSet template implement
185   /// this function to compare the given node with the given ID.
186   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
187                           FoldingSetNodeID &TempID) const=0;
188 
189   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
190   /// this function to compute a hash value for the given node.
191   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
192 
193   // The below methods are protected to encourage subclasses to provide a more
194   // type-safe API.
195 
196   /// RemoveNode - Remove a node from the folding set, returning true if one
197   /// was removed or false if the node was not in the folding set.
198   bool RemoveNode(Node *N);
199 
200   /// GetOrInsertNode - If there is an existing simple Node exactly
201   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
202   /// it instead.
203   Node *GetOrInsertNode(Node *N);
204 
205   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
206   /// return it.  If not, return the insertion token that will make insertion
207   /// faster.
208   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
209 
210   /// InsertNode - Insert the specified node into the folding set, knowing that
211   /// it is not already in the folding set.  InsertPos must be obtained from
212   /// FindNodeOrInsertPos.
213   void InsertNode(Node *N, void *InsertPos);
214 };
215 
216 //===----------------------------------------------------------------------===//
217 
218 /// DefaultFoldingSetTrait - This class provides default implementations
219 /// for FoldingSetTrait implementations.
220 template<typename T> struct DefaultFoldingSetTrait {
ProfileDefaultFoldingSetTrait221   static void Profile(const T &X, FoldingSetNodeID &ID) {
222     X.Profile(ID);
223   }
ProfileDefaultFoldingSetTrait224   static void Profile(T &X, FoldingSetNodeID &ID) {
225     X.Profile(ID);
226   }
227 
228   // Equals - Test if the profile for X would match ID, using TempID
229   // to compute a temporary ID if necessary. The default implementation
230   // just calls Profile and does a regular comparison. Implementations
231   // can override this to provide more efficient implementations.
232   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
233                             FoldingSetNodeID &TempID);
234 
235   // ComputeHash - Compute a hash value for X, using TempID to
236   // compute a temporary ID if necessary. The default implementation
237   // just calls Profile and does a regular hash computation.
238   // Implementations can override this to provide more efficient
239   // implementations.
240   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
241 };
242 
243 /// FoldingSetTrait - This trait class is used to define behavior of how
244 /// to "profile" (in the FoldingSet parlance) an object of a given type.
245 /// The default behavior is to invoke a 'Profile' method on an object, but
246 /// through template specialization the behavior can be tailored for specific
247 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
248 /// to FoldingSets that were not originally designed to have that behavior.
249 template<typename T> struct FoldingSetTrait
250   : public DefaultFoldingSetTrait<T> {};
251 
252 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
253 /// for ContextualFoldingSets.
254 template<typename T, typename Ctx>
255 struct DefaultContextualFoldingSetTrait {
ProfileDefaultContextualFoldingSetTrait256   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
257     X.Profile(ID, Context);
258   }
259 
260   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
261                             FoldingSetNodeID &TempID, Ctx Context);
262   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
263                                      Ctx Context);
264 };
265 
266 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
267 /// ContextualFoldingSets.
268 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
269   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
270 
271 //===--------------------------------------------------------------------===//
272 /// FoldingSetNodeIDRef - This class describes a reference to an interned
273 /// FoldingSetNodeID, which can be a useful to store node id data rather
274 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
275 /// is often much larger than necessary, and the possibility of heap
276 /// allocation means it requires a non-trivial destructor call.
277 class FoldingSetNodeIDRef {
278   const unsigned *Data = nullptr;
279   size_t Size = 0;
280 
281 public:
282   FoldingSetNodeIDRef() = default;
FoldingSetNodeIDRef(const unsigned * D,size_t S)283   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
284 
285   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
286   /// used to lookup the node in the FoldingSetBase.
287   unsigned ComputeHash() const;
288 
289   bool operator==(FoldingSetNodeIDRef) const;
290 
291   bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
292 
293   /// Used to compare the "ordering" of two nodes as defined by the
294   /// profiled bits and their ordering defined by memcmp().
295   bool operator<(FoldingSetNodeIDRef) const;
296 
getData()297   const unsigned *getData() const { return Data; }
getSize()298   size_t getSize() const { return Size; }
299 };
300 
301 //===--------------------------------------------------------------------===//
302 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
303 /// a node.  When all the bits are gathered this class is used to produce a
304 /// hash value for the node.
305 class FoldingSetNodeID {
306   /// Bits - Vector of all the data bits that make the node unique.
307   /// Use a SmallVector to avoid a heap allocation in the common case.
308   SmallVector<unsigned, 32> Bits;
309 
310 public:
311   FoldingSetNodeID() = default;
312 
FoldingSetNodeID(FoldingSetNodeIDRef Ref)313   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
314     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
315 
316   /// Add* - Add various data types to Bit data.
317   void AddPointer(const void *Ptr);
318   void AddInteger(signed I);
319   void AddInteger(unsigned I);
320   void AddInteger(long I);
321   void AddInteger(unsigned long I);
322   void AddInteger(long long I);
323   void AddInteger(unsigned long long I);
AddBoolean(bool B)324   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
325   void AddString(StringRef String);
326   void AddNodeID(const FoldingSetNodeID &ID);
327 
328   template <typename T>
Add(const T & x)329   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
330 
331   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
332   /// object to be used to compute a new profile.
clear()333   inline void clear() { Bits.clear(); }
334 
335   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
336   /// to lookup the node in the FoldingSetBase.
337   unsigned ComputeHash() const;
338 
339   /// operator== - Used to compare two nodes to each other.
340   bool operator==(const FoldingSetNodeID &RHS) const;
341   bool operator==(const FoldingSetNodeIDRef RHS) const;
342 
343   bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
344   bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
345 
346   /// Used to compare the "ordering" of two nodes as defined by the
347   /// profiled bits and their ordering defined by memcmp().
348   bool operator<(const FoldingSetNodeID &RHS) const;
349   bool operator<(const FoldingSetNodeIDRef RHS) const;
350 
351   /// Intern - Copy this node's data to a memory region allocated from the
352   /// given allocator and return a FoldingSetNodeIDRef describing the
353   /// interned data.
354   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
355 };
356 
357 // Convenience type to hide the implementation of the folding set.
358 using FoldingSetNode = FoldingSetBase::Node;
359 template<class T> class FoldingSetIterator;
360 template<class T> class FoldingSetBucketIterator;
361 
362 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
363 // require the definition of FoldingSetNodeID.
364 template<typename T>
365 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID)366 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
367                                   unsigned /*IDHash*/,
368                                   FoldingSetNodeID &TempID) {
369   FoldingSetTrait<T>::Profile(X, TempID);
370   return TempID == ID;
371 }
372 template<typename T>
373 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID)374 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
375   FoldingSetTrait<T>::Profile(X, TempID);
376   return TempID.ComputeHash();
377 }
378 template<typename T, typename Ctx>
379 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID,Ctx Context)380 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
381                                                  const FoldingSetNodeID &ID,
382                                                  unsigned /*IDHash*/,
383                                                  FoldingSetNodeID &TempID,
384                                                  Ctx Context) {
385   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
386   return TempID == ID;
387 }
388 template<typename T, typename Ctx>
389 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID,Ctx Context)390 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
391                                                       FoldingSetNodeID &TempID,
392                                                       Ctx Context) {
393   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
394   return TempID.ComputeHash();
395 }
396 
397 //===----------------------------------------------------------------------===//
398 /// FoldingSetImpl - An implementation detail that lets us share code between
399 /// FoldingSet and ContextualFoldingSet.
400 template <class T> class FoldingSetImpl : public FoldingSetBase {
401 protected:
FoldingSetImpl(unsigned Log2InitSize)402   explicit FoldingSetImpl(unsigned Log2InitSize)
403       : FoldingSetBase(Log2InitSize) {}
404 
405   FoldingSetImpl(FoldingSetImpl &&Arg) = default;
406   FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default;
407   ~FoldingSetImpl() = default;
408 
409 public:
410   using iterator = FoldingSetIterator<T>;
411 
begin()412   iterator begin() { return iterator(Buckets); }
end()413   iterator end() { return iterator(Buckets+NumBuckets); }
414 
415   using const_iterator = FoldingSetIterator<const T>;
416 
begin()417   const_iterator begin() const { return const_iterator(Buckets); }
end()418   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
419 
420   using bucket_iterator = FoldingSetBucketIterator<T>;
421 
bucket_begin(unsigned hash)422   bucket_iterator bucket_begin(unsigned hash) {
423     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
424   }
425 
bucket_end(unsigned hash)426   bucket_iterator bucket_end(unsigned hash) {
427     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
428   }
429 
430   /// RemoveNode - Remove a node from the folding set, returning true if one
431   /// was removed or false if the node was not in the folding set.
RemoveNode(T * N)432   bool RemoveNode(T *N) { return FoldingSetBase::RemoveNode(N); }
433 
434   /// GetOrInsertNode - If there is an existing simple Node exactly
435   /// equal to the specified node, return it.  Otherwise, insert 'N' and
436   /// return it instead.
GetOrInsertNode(T * N)437   T *GetOrInsertNode(T *N) {
438     return static_cast<T *>(FoldingSetBase::GetOrInsertNode(N));
439   }
440 
441   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
442   /// return it.  If not, return the insertion token that will make insertion
443   /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)444   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
445     return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos(ID, InsertPos));
446   }
447 
448   /// InsertNode - Insert the specified node into the folding set, knowing that
449   /// it is not already in the folding set.  InsertPos must be obtained from
450   /// FindNodeOrInsertPos.
InsertNode(T * N,void * InsertPos)451   void InsertNode(T *N, void *InsertPos) {
452     FoldingSetBase::InsertNode(N, InsertPos);
453   }
454 
455   /// InsertNode - Insert the specified node into the folding set, knowing that
456   /// it is not already in the folding set.
InsertNode(T * N)457   void InsertNode(T *N) {
458     T *Inserted = GetOrInsertNode(N);
459     (void)Inserted;
460     assert(Inserted == N && "Node already inserted!");
461   }
462 };
463 
464 //===----------------------------------------------------------------------===//
465 /// FoldingSet - This template class is used to instantiate a specialized
466 /// implementation of the folding set to the node class T.  T must be a
467 /// subclass of FoldingSetNode and implement a Profile function.
468 ///
469 /// Note that this set type is movable and move-assignable. However, its
470 /// moved-from state is not a valid state for anything other than
471 /// move-assigning and destroying. This is primarily to enable movable APIs
472 /// that incorporate these objects.
473 template <class T> class FoldingSet final : public FoldingSetImpl<T> {
474   using Super = FoldingSetImpl<T>;
475   using Node = typename Super::Node;
476 
477   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
478   /// way to convert nodes into a unique specifier.
GetNodeProfile(Node * N,FoldingSetNodeID & ID)479   void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
480     T *TN = static_cast<T *>(N);
481     FoldingSetTrait<T>::Profile(*TN, ID);
482   }
483 
484   /// NodeEquals - Instantiations may optionally provide a way to compare a
485   /// node with a specified ID.
NodeEquals(Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)486   bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
487                   FoldingSetNodeID &TempID) const override {
488     T *TN = static_cast<T *>(N);
489     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
490   }
491 
492   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
493   /// hash value directly from a node.
ComputeNodeHash(Node * N,FoldingSetNodeID & TempID)494   unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
495     T *TN = static_cast<T *>(N);
496     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
497   }
498 
499 public:
Super(Log2InitSize)500   explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {}
501   FoldingSet(FoldingSet &&Arg) = default;
502   FoldingSet &operator=(FoldingSet &&RHS) = default;
503 };
504 
505 //===----------------------------------------------------------------------===//
506 /// ContextualFoldingSet - This template class is a further refinement
507 /// of FoldingSet which provides a context argument when calling
508 /// Profile on its nodes.  Currently, that argument is fixed at
509 /// initialization time.
510 ///
511 /// T must be a subclass of FoldingSetNode and implement a Profile
512 /// function with signature
513 ///   void Profile(FoldingSetNodeID &, Ctx);
514 template <class T, class Ctx>
515 class ContextualFoldingSet final : public FoldingSetImpl<T> {
516   // Unfortunately, this can't derive from FoldingSet<T> because the
517   // construction of the vtable for FoldingSet<T> requires
518   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
519   // requires a single-argument T::Profile().
520 
521   using Super = FoldingSetImpl<T>;
522   using Node = typename Super::Node;
523 
524   Ctx Context;
525 
526   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
527   /// way to convert nodes into a unique specifier.
GetNodeProfile(Node * N,FoldingSetNodeID & ID)528   void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
529     T *TN = static_cast<T *>(N);
530     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
531   }
532 
NodeEquals(Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)533   bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
534                   FoldingSetNodeID &TempID) const override {
535     T *TN = static_cast<T *>(N);
536     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
537                                                      Context);
538   }
539 
ComputeNodeHash(Node * N,FoldingSetNodeID & TempID)540   unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
541     T *TN = static_cast<T *>(N);
542     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
543   }
544 
545 public:
546   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
Super(Log2InitSize)547       : Super(Log2InitSize), Context(Context) {}
548 
getContext()549   Ctx getContext() const { return Context; }
550 };
551 
552 //===----------------------------------------------------------------------===//
553 /// FoldingSetVector - This template class combines a FoldingSet and a vector
554 /// to provide the interface of FoldingSet but with deterministic iteration
555 /// order based on the insertion order. T must be a subclass of FoldingSetNode
556 /// and implement a Profile function.
557 template <class T, class VectorT = SmallVector<T*, 8>>
558 class FoldingSetVector {
559   FoldingSet<T> Set;
560   VectorT Vector;
561 
562 public:
Set(Log2InitSize)563   explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {}
564 
565   using iterator = pointee_iterator<typename VectorT::iterator>;
566 
begin()567   iterator begin() { return Vector.begin(); }
end()568   iterator end()   { return Vector.end(); }
569 
570   using const_iterator = pointee_iterator<typename VectorT::const_iterator>;
571 
begin()572   const_iterator begin() const { return Vector.begin(); }
end()573   const_iterator end()   const { return Vector.end(); }
574 
575   /// clear - Remove all nodes from the folding set.
clear()576   void clear() { Set.clear(); Vector.clear(); }
577 
578   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
579   /// return it.  If not, return the insertion token that will make insertion
580   /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)581   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
582     return Set.FindNodeOrInsertPos(ID, InsertPos);
583   }
584 
585   /// GetOrInsertNode - If there is an existing simple Node exactly
586   /// equal to the specified node, return it.  Otherwise, insert 'N' and
587   /// return it instead.
GetOrInsertNode(T * N)588   T *GetOrInsertNode(T *N) {
589     T *Result = Set.GetOrInsertNode(N);
590     if (Result == N) Vector.push_back(N);
591     return Result;
592   }
593 
594   /// InsertNode - Insert the specified node into the folding set, knowing that
595   /// it is not already in the folding set.  InsertPos must be obtained from
596   /// FindNodeOrInsertPos.
InsertNode(T * N,void * InsertPos)597   void InsertNode(T *N, void *InsertPos) {
598     Set.InsertNode(N, InsertPos);
599     Vector.push_back(N);
600   }
601 
602   /// InsertNode - Insert the specified node into the folding set, knowing that
603   /// it is not already in the folding set.
InsertNode(T * N)604   void InsertNode(T *N) {
605     Set.InsertNode(N);
606     Vector.push_back(N);
607   }
608 
609   /// size - Returns the number of nodes in the folding set.
size()610   unsigned size() const { return Set.size(); }
611 
612   /// empty - Returns true if there are no nodes in the folding set.
empty()613   bool empty() const { return Set.empty(); }
614 };
615 
616 //===----------------------------------------------------------------------===//
617 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
618 /// folding sets, which knows how to walk the folding set hash table.
619 class FoldingSetIteratorImpl {
620 protected:
621   FoldingSetNode *NodePtr;
622 
623   FoldingSetIteratorImpl(void **Bucket);
624 
625   void advance();
626 
627 public:
628   bool operator==(const FoldingSetIteratorImpl &RHS) const {
629     return NodePtr == RHS.NodePtr;
630   }
631   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
632     return NodePtr != RHS.NodePtr;
633   }
634 };
635 
636 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
637 public:
FoldingSetIterator(void ** Bucket)638   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
639 
640   T &operator*() const {
641     return *static_cast<T*>(NodePtr);
642   }
643 
644   T *operator->() const {
645     return static_cast<T*>(NodePtr);
646   }
647 
648   inline FoldingSetIterator &operator++() {          // Preincrement
649     advance();
650     return *this;
651   }
652   FoldingSetIterator operator++(int) {        // Postincrement
653     FoldingSetIterator tmp = *this; ++*this; return tmp;
654   }
655 };
656 
657 //===----------------------------------------------------------------------===//
658 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
659 /// shared by all folding sets, which knows how to walk a particular bucket
660 /// of a folding set hash table.
661 class FoldingSetBucketIteratorImpl {
662 protected:
663   void *Ptr;
664 
665   explicit FoldingSetBucketIteratorImpl(void **Bucket);
666 
FoldingSetBucketIteratorImpl(void ** Bucket,bool)667   FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {}
668 
advance()669   void advance() {
670     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
671     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
672     Ptr = reinterpret_cast<void*>(x);
673   }
674 
675 public:
676   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
677     return Ptr == RHS.Ptr;
678   }
679   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
680     return Ptr != RHS.Ptr;
681   }
682 };
683 
684 template <class T>
685 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
686 public:
FoldingSetBucketIterator(void ** Bucket)687   explicit FoldingSetBucketIterator(void **Bucket) :
688     FoldingSetBucketIteratorImpl(Bucket) {}
689 
FoldingSetBucketIterator(void ** Bucket,bool)690   FoldingSetBucketIterator(void **Bucket, bool) :
691     FoldingSetBucketIteratorImpl(Bucket, true) {}
692 
693   T &operator*() const { return *static_cast<T*>(Ptr); }
694   T *operator->() const { return static_cast<T*>(Ptr); }
695 
696   inline FoldingSetBucketIterator &operator++() { // Preincrement
697     advance();
698     return *this;
699   }
700   FoldingSetBucketIterator operator++(int) {      // Postincrement
701     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
702   }
703 };
704 
705 //===----------------------------------------------------------------------===//
706 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
707 /// types in an enclosing object so that they can be inserted into FoldingSets.
708 template <typename T>
709 class FoldingSetNodeWrapper : public FoldingSetNode {
710   T data;
711 
712 public:
713   template <typename... Ts>
FoldingSetNodeWrapper(Ts &&...Args)714   explicit FoldingSetNodeWrapper(Ts &&... Args)
715       : data(std::forward<Ts>(Args)...) {}
716 
Profile(FoldingSetNodeID & ID)717   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
718 
getValue()719   T &getValue() { return data; }
getValue()720   const T &getValue() const { return data; }
721 
722   operator T&() { return data; }
723   operator const T&() const { return data; }
724 };
725 
726 //===----------------------------------------------------------------------===//
727 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
728 /// a FoldingSetNodeID value rather than requiring the node to recompute it
729 /// each time it is needed. This trades space for speed (which can be
730 /// significant if the ID is long), and it also permits nodes to drop
731 /// information that would otherwise only be required for recomputing an ID.
732 class FastFoldingSetNode : public FoldingSetNode {
733   FoldingSetNodeID FastID;
734 
735 protected:
FastFoldingSetNode(const FoldingSetNodeID & ID)736   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
737 
738 public:
Profile(FoldingSetNodeID & ID)739   void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
740 };
741 
742 //===----------------------------------------------------------------------===//
743 // Partial specializations of FoldingSetTrait.
744 
745 template<typename T> struct FoldingSetTrait<T*> {
746   static inline void Profile(T *X, FoldingSetNodeID &ID) {
747     ID.AddPointer(X);
748   }
749 };
750 template <typename T1, typename T2>
751 struct FoldingSetTrait<std::pair<T1, T2>> {
752   static inline void Profile(const std::pair<T1, T2> &P,
753                              FoldingSetNodeID &ID) {
754     ID.Add(P.first);
755     ID.Add(P.second);
756   }
757 };
758 
759 } // end namespace llvm
760 
761 #endif // LLVM_ADT_FOLDINGSET_H
762