1 /* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef GrTriangulator_DEFINED 9 #define GrTriangulator_DEFINED 10 11 #include "include/core/SkPath.h" 12 #include "include/core/SkPoint.h" 13 #include "include/private/SkColorData.h" 14 #include "src/core/SkArenaAlloc.h" 15 #include "src/gpu/GrColor.h" 16 17 class GrEagerVertexAllocator; 18 struct SkRect; 19 20 #define TRIANGULATOR_LOGGING 0 21 #define TRIANGULATOR_WIREFRAME 0 22 23 /** 24 * Provides utility functions for converting paths to a collection of triangles. 25 */ 26 class GrTriangulator { 27 public: 28 constexpr static int kArenaDefaultChunkSize = 16 * 1024; 29 PathToTriangles(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrEagerVertexAllocator * vertexAllocator,bool * isLinear)30 static int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, 31 GrEagerVertexAllocator* vertexAllocator, bool* isLinear) { 32 if (!path.isFinite()) { 33 return 0; 34 } 35 SkArenaAlloc alloc(kArenaDefaultChunkSize); 36 GrTriangulator triangulator(path, &alloc); 37 Poly* polys = triangulator.pathToPolys(tolerance, clipBounds, isLinear); 38 int count = triangulator.polysToTriangles(polys, vertexAllocator); 39 return count; 40 } 41 42 // Enums used by GrTriangulator internals. 43 typedef enum { kLeft_Side, kRight_Side } Side; 44 enum class EdgeType { kInner, kOuter, kConnector }; 45 46 // Structs used by GrTriangulator internals. 47 struct Vertex; 48 struct VertexList; 49 struct Line; 50 struct Edge; 51 struct EdgeList; 52 struct MonotonePoly; 53 struct Poly; 54 struct Comparator; 55 56 protected: GrTriangulator(const SkPath & path,SkArenaAlloc * alloc)57 GrTriangulator(const SkPath& path, SkArenaAlloc* alloc) : fPath(path), fAlloc(alloc) {} ~GrTriangulator()58 virtual ~GrTriangulator() {} 59 60 // There are six stages to the basic algorithm: 61 // 62 // 1) Linearize the path contours into piecewise linear segments: 63 void pathToContours(float tolerance, const SkRect& clipBounds, VertexList* contours, 64 bool* isLinear) const; 65 66 // 2) Build a mesh of edges connecting the vertices: 67 void contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh, 68 const Comparator&) const; 69 70 // 3) Sort the vertices in Y (and secondarily in X): 71 static void SortedMerge(VertexList* front, VertexList* back, VertexList* result, 72 const Comparator&); 73 static void SortMesh(VertexList* vertices, const Comparator&); 74 75 // 4) Simplify the mesh by inserting new vertices at intersecting edges: 76 enum class SimplifyResult : bool { 77 kAlreadySimple, 78 kFoundSelfIntersection 79 }; 80 81 SimplifyResult simplify(VertexList* mesh, const Comparator&) const; 82 83 // 5) Tessellate the simplified mesh into monotone polygons: 84 virtual Poly* tessellate(const VertexList& vertices, const Comparator&) const; 85 86 // 6) Triangulate the monotone polygons directly into a vertex buffer: 87 void* polysToTriangles(Poly* polys, void* data, SkPathFillType overrideFillType) const; 88 89 // The vertex sorting in step (3) is a merge sort, since it plays well with the linked list 90 // of vertices (and the necessity of inserting new vertices on intersection). 91 // 92 // Stages (4) and (5) use an active edge list -- a list of all edges for which the 93 // sweep line has crossed the top vertex, but not the bottom vertex. It's sorted 94 // left-to-right based on the point where both edges are active (when both top vertices 95 // have been seen, so the "lower" top vertex of the two). If the top vertices are equal 96 // (shared), it's sorted based on the last point where both edges are active, so the 97 // "upper" bottom vertex. 98 // 99 // The most complex step is the simplification (4). It's based on the Bentley-Ottman 100 // line-sweep algorithm, but due to floating point inaccuracy, the intersection points are 101 // not exact and may violate the mesh topology or active edge list ordering. We 102 // accommodate this by adjusting the topology of the mesh and AEL to match the intersection 103 // points. This occurs in two ways: 104 // 105 // A) Intersections may cause a shortened edge to no longer be ordered with respect to its 106 // neighbouring edges at the top or bottom vertex. This is handled by merging the 107 // edges (mergeCollinearVertices()). 108 // B) Intersections may cause an edge to violate the left-to-right ordering of the 109 // active edge list. This is handled by detecting potential violations and rewinding 110 // the active edge list to the vertex before they occur (rewind() during merging, 111 // rewind_if_necessary() during splitting). 112 // 113 // The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and 114 // Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it 115 // currently uses a linked list for the active edge list, rather than a 2-3 tree as the 116 // paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also 117 // become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N) 118 // insertions and removals was greater than the cost of infrequent O(N) lookups with the 119 // linked list implementation. With the latter, all removals are O(1), and most insertions 120 // are O(1), since we know the adjacent edge in the active edge list based on the topology. 121 // Only type 2 vertices (see paper) require the O(N) lookups, and these are much less 122 // frequent. There may be other data structures worth investigating, however. 123 // 124 // Note that the orientation of the line sweep algorithms is determined by the aspect ratio of 125 // the path bounds. When the path is taller than it is wide, we sort vertices based on 126 // increasing Y coordinate, and secondarily by increasing X coordinate. When the path is wider 127 // than it is tall, we sort by increasing X coordinate, but secondarily by *decreasing* Y 128 // coordinate. This is so that the "left" and "right" orientation in the code remains correct 129 // (edges to the left are increasing in Y; edges to the right are decreasing in Y). That is, the 130 // setting rotates 90 degrees counterclockwise, rather that transposing. 131 132 // Additional helpers and driver functions. 133 void* emitMonotonePoly(const MonotonePoly*, void* data) const; 134 void* emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, int winding, void* data) const; 135 void* emitPoly(const Poly*, void *data) const; 136 Poly* makePoly(Poly** head, Vertex* v, int winding) const; 137 void appendPointToContour(const SkPoint& p, VertexList* contour) const; 138 void appendQuadraticToContour(const SkPoint[3], SkScalar toleranceSqd, 139 VertexList* contour) const; 140 void generateCubicPoints(const SkPoint&, const SkPoint&, const SkPoint&, const SkPoint&, 141 SkScalar tolSqd, VertexList* contour, int pointsLeft) const; 142 bool applyFillType(int winding) const; 143 Edge* makeEdge(Vertex* prev, Vertex* next, EdgeType type, const Comparator&) const; 144 void setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 145 const Comparator&) const; 146 void setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 147 const Comparator&) const; 148 void mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current, 149 const Comparator&) const; 150 void mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current, 151 const Comparator&) const; 152 Edge* makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType, const Comparator&, 153 int windingScale = 1) const; 154 void mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh, const Comparator&) const; 155 static void FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right); 156 void mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current, 157 const Comparator&) const; 158 bool splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 159 const Comparator&) const; 160 bool intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, 161 const Comparator&) const; 162 Vertex* makeSortedVertex(const SkPoint&, uint8_t alpha, VertexList* mesh, Vertex* reference, 163 const Comparator&) const; 164 void computeBisector(Edge* edge1, Edge* edge2, Vertex*) const; 165 bool checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, 166 VertexList* mesh, const Comparator&) const; 167 void sanitizeContours(VertexList* contours, int contourCnt) const; 168 bool mergeCoincidentVertices(VertexList* mesh, const Comparator&) const; 169 void buildEdges(VertexList* contours, int contourCnt, VertexList* mesh, 170 const Comparator&) const; 171 Poly* contoursToPolys(VertexList* contours, int contourCnt) const; 172 Poly* pathToPolys(float tolerance, const SkRect& clipBounds, 173 bool* isLinear) const; 174 static int64_t CountPoints(Poly* polys, SkPathFillType overrideFillType); 175 int polysToTriangles(Poly*, GrEagerVertexAllocator*) const; 176 177 // FIXME: fPath should be plumbed through function parameters instead. 178 const SkPath fPath; 179 SkArenaAlloc* const fAlloc; 180 181 // Internal control knobs. 182 bool fRoundVerticesToQuarterPixel = false; 183 bool fEmitCoverage = false; 184 bool fPreserveCollinearVertices = false; 185 bool fCollectBreadcrumbTriangles = false; 186 187 // The breadcrumb triangles serve as a glue that erases T-junctions between a path's outer 188 // curves and its inner polygon triangulation. Drawing a path's outer curves, breadcrumb 189 // triangles, and inner polygon triangulation all together into the stencil buffer has the same 190 // identical rasterized effect as stenciling a classic Redbook fan. 191 // 192 // The breadcrumb triangles track all the edge splits that led from the original inner polygon 193 // edges to the final triangulation. Every time an edge splits, we emit a razor-thin breadcrumb 194 // triangle consisting of the edge's original endpoints and the split point. (We also add 195 // supplemental breadcrumb triangles to areas where abs(winding) > 1.) 196 // 197 // a 198 // / 199 // / 200 // / 201 // x <- Edge splits at x. New breadcrumb triangle is: [a, b, x]. 202 // / 203 // / 204 // b 205 // 206 // The opposite-direction shared edges between the triangulation and breadcrumb triangles should 207 // all cancel out, leaving just the set of edges from the original polygon. 208 class BreadcrumbTriangleList { 209 public: 210 struct Node { NodeNode211 Node(SkPoint a, SkPoint b, SkPoint c) : fPts{a, b, c} {} 212 SkPoint fPts[3]; 213 Node* fNext = nullptr; 214 }; head()215 const Node* head() const { return fHead; } count()216 int count() const { return fCount; } 217 append(SkArenaAlloc * alloc,SkPoint a,SkPoint b,SkPoint c,int winding)218 void append(SkArenaAlloc* alloc, SkPoint a, SkPoint b, SkPoint c, int winding) { 219 if (a == b || a == c || b == c || winding == 0) { 220 return; 221 } 222 if (winding < 0) { 223 std::swap(a, b); 224 winding = -winding; 225 } 226 for (int i = 0; i < winding; ++i) { 227 SkASSERT(fTail && !(*fTail)); 228 *fTail = alloc->make<Node>(a, b, c); 229 fTail = &(*fTail)->fNext; 230 } 231 fCount += winding; 232 } 233 concat(BreadcrumbTriangleList && list)234 void concat(BreadcrumbTriangleList&& list) { 235 SkASSERT(fTail && !(*fTail)); 236 if (list.fHead) { 237 *fTail = list.fHead; 238 fTail = list.fTail; 239 fCount += list.fCount; 240 list.fHead = nullptr; 241 list.fTail = &list.fHead; 242 list.fCount = 0; 243 } 244 } 245 246 private: 247 Node* fHead = nullptr; 248 Node** fTail = &fHead; 249 int fCount = 0; 250 }; 251 252 mutable BreadcrumbTriangleList fBreadcrumbList; 253 }; 254 255 /** 256 * Vertices are used in three ways: first, the path contours are converted into a 257 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices 258 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing 259 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid 260 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of 261 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since 262 * an individual Vertex from the path mesh may belong to multiple 263 * MonotonePolys, so the original Vertices cannot be re-used. 264 */ 265 266 struct GrTriangulator::Vertex { VertexVertex267 Vertex(const SkPoint& point, uint8_t alpha) 268 : fPoint(point), fPrev(nullptr), fNext(nullptr) 269 , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr) 270 , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr) 271 , fLeftEnclosingEdge(nullptr), fRightEnclosingEdge(nullptr) 272 , fPartner(nullptr) 273 , fAlpha(alpha) 274 , fSynthetic(false) 275 #if TRIANGULATOR_LOGGING 276 , fID (-1.0f) 277 #endif 278 {} 279 SkPoint fPoint; // Vertex position 280 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices. 281 Vertex* fNext; // " 282 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. 283 Edge* fLastEdgeAbove; // " 284 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. 285 Edge* fLastEdgeBelow; // " 286 Edge* fLeftEnclosingEdge; // Nearest edge in the AEL left of this vertex. 287 Edge* fRightEnclosingEdge; // Nearest edge in the AEL right of this vertex. 288 Vertex* fPartner; // Corresponding inner or outer vertex (for AA). 289 uint8_t fAlpha; 290 bool fSynthetic; // Is this a synthetic vertex? 291 #if TRIANGULATOR_LOGGING 292 float fID; // Identifier used for logging. 293 #endif isConnectedVertex294 bool isConnected() const { return this->fFirstEdgeAbove || this->fFirstEdgeBelow; } 295 }; 296 297 struct GrTriangulator::VertexList { VertexListVertexList298 VertexList() : fHead(nullptr), fTail(nullptr) {} VertexListVertexList299 VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {} 300 Vertex* fHead; 301 Vertex* fTail; 302 void insert(Vertex* v, Vertex* prev, Vertex* next); appendVertexList303 void append(Vertex* v) { insert(v, fTail, nullptr); } appendVertexList304 void append(const VertexList& list) { 305 if (!list.fHead) { 306 return; 307 } 308 if (fTail) { 309 fTail->fNext = list.fHead; 310 list.fHead->fPrev = fTail; 311 } else { 312 fHead = list.fHead; 313 } 314 fTail = list.fTail; 315 } prependVertexList316 void prepend(Vertex* v) { insert(v, nullptr, fHead); } 317 void remove(Vertex* v); closeVertexList318 void close() { 319 if (fHead && fTail) { 320 fTail->fNext = fHead; 321 fHead->fPrev = fTail; 322 } 323 } 324 #if TRIANGULATOR_LOGGING 325 void dump() const; 326 #endif 327 }; 328 329 // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line. 330 struct GrTriangulator::Line { LineLine331 Line(double a, double b, double c) : fA(a), fB(b), fC(c) {} LineLine332 Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {} LineLine333 Line(const SkPoint& p, const SkPoint& q) 334 : fA(static_cast<double>(q.fY) - p.fY) // a = dY 335 , fB(static_cast<double>(p.fX) - q.fX) // b = -dX 336 , fC(static_cast<double>(p.fY) * q.fX - // c = cross(q, p) 337 static_cast<double>(p.fX) * q.fY) {} distLine338 double dist(const SkPoint& p) const { return fA * p.fX + fB * p.fY + fC; } 339 Line operator*(double v) const { return Line(fA * v, fB * v, fC * v); } magSqLine340 double magSq() const { return fA * fA + fB * fB; } normalizeLine341 void normalize() { 342 double len = sqrt(this->magSq()); 343 if (len == 0.0) { 344 return; 345 } 346 double scale = 1.0f / len; 347 fA *= scale; 348 fB *= scale; 349 fC *= scale; 350 } nearParallelLine351 bool nearParallel(const Line& o) const { 352 return fabs(o.fA - fA) < 0.00001 && fabs(o.fB - fB) < 0.00001; 353 } 354 355 // Compute the intersection of two (infinite) Lines. 356 bool intersect(const Line& other, SkPoint* point) const; 357 double fA, fB, fC; 358 }; 359 360 /** 361 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and 362 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf(). 363 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating 364 * point). For speed, that case is only tested by the callers that require it (e.g., 365 * rewind_if_necessary()). Edges also handle checking for intersection with other edges. 366 * Currently, this converts the edges to the parametric form, in order to avoid doing a division 367 * until an intersection has been confirmed. This is slightly slower in the "found" case, but 368 * a lot faster in the "not found" case. 369 * 370 * The coefficients of the line equation stored in double precision to avoid catastrophic 371 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is 372 * correct in float, since it's a polynomial of degree 2. The intersect() function, being 373 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its 374 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of 375 * this file). 376 */ 377 378 struct GrTriangulator::Edge { EdgeEdge379 Edge(Vertex* top, Vertex* bottom, int winding, EdgeType type) 380 : fWinding(winding) 381 , fTop(top) 382 , fBottom(bottom) 383 , fType(type) 384 , fLeft(nullptr) 385 , fRight(nullptr) 386 , fPrevEdgeAbove(nullptr) 387 , fNextEdgeAbove(nullptr) 388 , fPrevEdgeBelow(nullptr) 389 , fNextEdgeBelow(nullptr) 390 , fLeftPoly(nullptr) 391 , fRightPoly(nullptr) 392 , fLeftPolyPrev(nullptr) 393 , fLeftPolyNext(nullptr) 394 , fRightPolyPrev(nullptr) 395 , fRightPolyNext(nullptr) 396 , fUsedInLeftPoly(false) 397 , fUsedInRightPoly(false) 398 , fLine(top, bottom) { 399 } 400 int fWinding; // 1 == edge goes downward; -1 = edge goes upward. 401 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt). 402 Vertex* fBottom; // The bottom vertex in vertex-sort-order. 403 EdgeType fType; 404 Edge* fLeft; // The linked list of edges in the active edge list. 405 Edge* fRight; // " 406 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above". 407 Edge* fNextEdgeAbove; // " 408 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below". 409 Edge* fNextEdgeBelow; // " 410 Poly* fLeftPoly; // The Poly to the left of this edge, if any. 411 Poly* fRightPoly; // The Poly to the right of this edge, if any. 412 Edge* fLeftPolyPrev; 413 Edge* fLeftPolyNext; 414 Edge* fRightPolyPrev; 415 Edge* fRightPolyNext; 416 bool fUsedInLeftPoly; 417 bool fUsedInRightPoly; 418 Line fLine; 419 distEdge420 double dist(const SkPoint& p) const { 421 // Coerce points coincident with the vertices to have dist = 0, since converting from 422 // a double intersection point back to float storage might construct a point that's no 423 // longer on the ideal line. 424 return (p == fTop->fPoint || p == fBottom->fPoint) ? 0.0 : fLine.dist(p); 425 } isRightOfEdge426 bool isRightOf(Vertex* v) const { return this->dist(v->fPoint) < 0.0; } isLeftOfEdge427 bool isLeftOf(Vertex* v) const { return this->dist(v->fPoint) > 0.0; } recomputeEdge428 void recompute() { fLine = Line(fTop, fBottom); } 429 void insertAbove(Vertex*, const Comparator&); 430 void insertBelow(Vertex*, const Comparator&); 431 void disconnect(); 432 bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const; 433 }; 434 435 struct GrTriangulator::EdgeList { EdgeListEdgeList436 EdgeList() : fHead(nullptr), fTail(nullptr) {} 437 Edge* fHead; 438 Edge* fTail; 439 void insert(Edge* edge, Edge* prev, Edge* next); 440 void insert(Edge* edge, Edge* prev); appendEdgeList441 void append(Edge* e) { insert(e, fTail, nullptr); } 442 void remove(Edge* edge); removeAllEdgeList443 void removeAll() { 444 while (fHead) { 445 this->remove(fHead); 446 } 447 } closeEdgeList448 void close() { 449 if (fHead && fTail) { 450 fTail->fRight = fHead; 451 fHead->fLeft = fTail; 452 } 453 } containsEdgeList454 bool contains(Edge* edge) const { return edge->fLeft || edge->fRight || fHead == edge; } 455 }; 456 457 struct GrTriangulator::MonotonePoly { MonotonePolyMonotonePoly458 MonotonePoly(Edge* edge, Side side, int winding) 459 : fSide(side) 460 , fFirstEdge(nullptr) 461 , fLastEdge(nullptr) 462 , fPrev(nullptr) 463 , fNext(nullptr) 464 , fWinding(winding) { 465 this->addEdge(edge); 466 } 467 Side fSide; 468 Edge* fFirstEdge; 469 Edge* fLastEdge; 470 MonotonePoly* fPrev; 471 MonotonePoly* fNext; 472 int fWinding; 473 void addEdge(Edge*); 474 }; 475 476 struct GrTriangulator::Poly { 477 Poly(Vertex* v, int winding); 478 479 Poly* addEdge(Edge* e, Side side, SkArenaAlloc* alloc); lastVertexPoly480 Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; } 481 Vertex* fFirstVertex; 482 int fWinding; 483 MonotonePoly* fHead; 484 MonotonePoly* fTail; 485 Poly* fNext; 486 Poly* fPartner; 487 int fCount; 488 #if TRIANGULATOR_LOGGING 489 int fID; 490 #endif 491 }; 492 493 struct GrTriangulator::Comparator { 494 enum class Direction { kVertical, kHorizontal }; ComparatorComparator495 Comparator(Direction direction) : fDirection(direction) {} 496 bool sweep_lt(const SkPoint& a, const SkPoint& b) const; 497 Direction fDirection; 498 }; 499 500 #endif 501