1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 // of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 // widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 // of vectorization. It decides on the optimal vector width, which
26 // can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46 // Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52 // Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpander.h"
95 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
96 #include "llvm/Analysis/TargetLibraryInfo.h"
97 #include "llvm/Analysis/TargetTransformInfo.h"
98 #include "llvm/Analysis/VectorUtils.h"
99 #include "llvm/IR/Attributes.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/CFG.h"
102 #include "llvm/IR/Constant.h"
103 #include "llvm/IR/Constants.h"
104 #include "llvm/IR/DataLayout.h"
105 #include "llvm/IR/DebugInfoMetadata.h"
106 #include "llvm/IR/DebugLoc.h"
107 #include "llvm/IR/DerivedTypes.h"
108 #include "llvm/IR/DiagnosticInfo.h"
109 #include "llvm/IR/Dominators.h"
110 #include "llvm/IR/Function.h"
111 #include "llvm/IR/IRBuilder.h"
112 #include "llvm/IR/InstrTypes.h"
113 #include "llvm/IR/Instruction.h"
114 #include "llvm/IR/Instructions.h"
115 #include "llvm/IR/IntrinsicInst.h"
116 #include "llvm/IR/Intrinsics.h"
117 #include "llvm/IR/LLVMContext.h"
118 #include "llvm/IR/Metadata.h"
119 #include "llvm/IR/Module.h"
120 #include "llvm/IR/Operator.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/SizeOpts.h"
141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
142 #include <algorithm>
143 #include <cassert>
144 #include <cstdint>
145 #include <cstdlib>
146 #include <functional>
147 #include <iterator>
148 #include <limits>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153
154 using namespace llvm;
155
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158
159 /// @{
160 /// Metadata attribute names
161 static const char *const LLVMLoopVectorizeFollowupAll =
162 "llvm.loop.vectorize.followup_all";
163 static const char *const LLVMLoopVectorizeFollowupVectorized =
164 "llvm.loop.vectorize.followup_vectorized";
165 static const char *const LLVMLoopVectorizeFollowupEpilogue =
166 "llvm.loop.vectorize.followup_epilogue";
167 /// @}
168
169 STATISTIC(LoopsVectorized, "Number of loops vectorized");
170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
171
172 /// Loops with a known constant trip count below this number are vectorized only
173 /// if no scalar iteration overheads are incurred.
174 static cl::opt<unsigned> TinyTripCountVectorThreshold(
175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
176 cl::desc("Loops with a constant trip count that is smaller than this "
177 "value are vectorized only if no scalar iteration overheads "
178 "are incurred."));
179
180 // Indicates that an epilogue is undesired, predication is preferred.
181 // This means that the vectorizer will try to fold the loop-tail (epilogue)
182 // into the loop and predicate the loop body accordingly.
183 static cl::opt<bool> PreferPredicateOverEpilog(
184 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden,
185 cl::desc("Indicate that an epilogue is undesired, predication should be "
186 "used instead."));
187
188 static cl::opt<bool> MaximizeBandwidth(
189 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
190 cl::desc("Maximize bandwidth when selecting vectorization factor which "
191 "will be determined by the smallest type in loop."));
192
193 static cl::opt<bool> EnableInterleavedMemAccesses(
194 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
195 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
196
197 /// An interleave-group may need masking if it resides in a block that needs
198 /// predication, or in order to mask away gaps.
199 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
200 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
201 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
202
203 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
204 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
205 cl::desc("We don't interleave loops with a estimated constant trip count "
206 "below this number"));
207
208 static cl::opt<unsigned> ForceTargetNumScalarRegs(
209 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
210 cl::desc("A flag that overrides the target's number of scalar registers."));
211
212 static cl::opt<unsigned> ForceTargetNumVectorRegs(
213 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
214 cl::desc("A flag that overrides the target's number of vector registers."));
215
216 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
217 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
218 cl::desc("A flag that overrides the target's max interleave factor for "
219 "scalar loops."));
220
221 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
222 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
223 cl::desc("A flag that overrides the target's max interleave factor for "
224 "vectorized loops."));
225
226 static cl::opt<unsigned> ForceTargetInstructionCost(
227 "force-target-instruction-cost", cl::init(0), cl::Hidden,
228 cl::desc("A flag that overrides the target's expected cost for "
229 "an instruction to a single constant value. Mostly "
230 "useful for getting consistent testing."));
231
232 static cl::opt<unsigned> SmallLoopCost(
233 "small-loop-cost", cl::init(20), cl::Hidden,
234 cl::desc(
235 "The cost of a loop that is considered 'small' by the interleaver."));
236
237 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
238 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
239 cl::desc("Enable the use of the block frequency analysis to access PGO "
240 "heuristics minimizing code growth in cold regions and being more "
241 "aggressive in hot regions."));
242
243 // Runtime interleave loops for load/store throughput.
244 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
245 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
246 cl::desc(
247 "Enable runtime interleaving until load/store ports are saturated"));
248
249 /// The number of stores in a loop that are allowed to need predication.
250 static cl::opt<unsigned> NumberOfStoresToPredicate(
251 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
252 cl::desc("Max number of stores to be predicated behind an if."));
253
254 static cl::opt<bool> EnableIndVarRegisterHeur(
255 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
256 cl::desc("Count the induction variable only once when interleaving"));
257
258 static cl::opt<bool> EnableCondStoresVectorization(
259 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
260 cl::desc("Enable if predication of stores during vectorization."));
261
262 static cl::opt<unsigned> MaxNestedScalarReductionIC(
263 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
264 cl::desc("The maximum interleave count to use when interleaving a scalar "
265 "reduction in a nested loop."));
266
267 cl::opt<bool> EnableVPlanNativePath(
268 "enable-vplan-native-path", cl::init(false), cl::Hidden,
269 cl::desc("Enable VPlan-native vectorization path with "
270 "support for outer loop vectorization."));
271
272 // FIXME: Remove this switch once we have divergence analysis. Currently we
273 // assume divergent non-backedge branches when this switch is true.
274 cl::opt<bool> EnableVPlanPredication(
275 "enable-vplan-predication", cl::init(false), cl::Hidden,
276 cl::desc("Enable VPlan-native vectorization path predicator with "
277 "support for outer loop vectorization."));
278
279 // This flag enables the stress testing of the VPlan H-CFG construction in the
280 // VPlan-native vectorization path. It must be used in conjuction with
281 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
282 // verification of the H-CFGs built.
283 static cl::opt<bool> VPlanBuildStressTest(
284 "vplan-build-stress-test", cl::init(false), cl::Hidden,
285 cl::desc(
286 "Build VPlan for every supported loop nest in the function and bail "
287 "out right after the build (stress test the VPlan H-CFG construction "
288 "in the VPlan-native vectorization path)."));
289
290 cl::opt<bool> llvm::EnableLoopInterleaving(
291 "interleave-loops", cl::init(true), cl::Hidden,
292 cl::desc("Enable loop interleaving in Loop vectorization passes"));
293 cl::opt<bool> llvm::EnableLoopVectorization(
294 "vectorize-loops", cl::init(true), cl::Hidden,
295 cl::desc("Run the Loop vectorization passes"));
296
297 /// A helper function for converting Scalar types to vector types.
298 /// If the incoming type is void, we return void. If the VF is 1, we return
299 /// the scalar type.
ToVectorTy(Type * Scalar,unsigned VF)300 static Type *ToVectorTy(Type *Scalar, unsigned VF) {
301 if (Scalar->isVoidTy() || VF == 1)
302 return Scalar;
303 return VectorType::get(Scalar, VF);
304 }
305
306 /// A helper function that returns the type of loaded or stored value.
getMemInstValueType(Value * I)307 static Type *getMemInstValueType(Value *I) {
308 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
309 "Expected Load or Store instruction");
310 if (auto *LI = dyn_cast<LoadInst>(I))
311 return LI->getType();
312 return cast<StoreInst>(I)->getValueOperand()->getType();
313 }
314
315 /// A helper function that returns true if the given type is irregular. The
316 /// type is irregular if its allocated size doesn't equal the store size of an
317 /// element of the corresponding vector type at the given vectorization factor.
hasIrregularType(Type * Ty,const DataLayout & DL,unsigned VF)318 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
319 // Determine if an array of VF elements of type Ty is "bitcast compatible"
320 // with a <VF x Ty> vector.
321 if (VF > 1) {
322 auto *VectorTy = VectorType::get(Ty, VF);
323 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
324 }
325
326 // If the vectorization factor is one, we just check if an array of type Ty
327 // requires padding between elements.
328 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
329 }
330
331 /// A helper function that returns the reciprocal of the block probability of
332 /// predicated blocks. If we return X, we are assuming the predicated block
333 /// will execute once for every X iterations of the loop header.
334 ///
335 /// TODO: We should use actual block probability here, if available. Currently,
336 /// we always assume predicated blocks have a 50% chance of executing.
getReciprocalPredBlockProb()337 static unsigned getReciprocalPredBlockProb() { return 2; }
338
339 /// A helper function that adds a 'fast' flag to floating-point operations.
addFastMathFlag(Value * V)340 static Value *addFastMathFlag(Value *V) {
341 if (isa<FPMathOperator>(V))
342 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
343 return V;
344 }
345
addFastMathFlag(Value * V,FastMathFlags FMF)346 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
347 if (isa<FPMathOperator>(V))
348 cast<Instruction>(V)->setFastMathFlags(FMF);
349 return V;
350 }
351
352 /// A helper function that returns an integer or floating-point constant with
353 /// value C.
getSignedIntOrFpConstant(Type * Ty,int64_t C)354 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
355 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
356 : ConstantFP::get(Ty, C);
357 }
358
359 /// Returns "best known" trip count for the specified loop \p L as defined by
360 /// the following procedure:
361 /// 1) Returns exact trip count if it is known.
362 /// 2) Returns expected trip count according to profile data if any.
363 /// 3) Returns upper bound estimate if it is known.
364 /// 4) Returns None if all of the above failed.
getSmallBestKnownTC(ScalarEvolution & SE,Loop * L)365 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
366 // Check if exact trip count is known.
367 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
368 return ExpectedTC;
369
370 // Check if there is an expected trip count available from profile data.
371 if (LoopVectorizeWithBlockFrequency)
372 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
373 return EstimatedTC;
374
375 // Check if upper bound estimate is known.
376 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
377 return ExpectedTC;
378
379 return None;
380 }
381
382 namespace llvm {
383
384 /// InnerLoopVectorizer vectorizes loops which contain only one basic
385 /// block to a specified vectorization factor (VF).
386 /// This class performs the widening of scalars into vectors, or multiple
387 /// scalars. This class also implements the following features:
388 /// * It inserts an epilogue loop for handling loops that don't have iteration
389 /// counts that are known to be a multiple of the vectorization factor.
390 /// * It handles the code generation for reduction variables.
391 /// * Scalarization (implementation using scalars) of un-vectorizable
392 /// instructions.
393 /// InnerLoopVectorizer does not perform any vectorization-legality
394 /// checks, and relies on the caller to check for the different legality
395 /// aspects. The InnerLoopVectorizer relies on the
396 /// LoopVectorizationLegality class to provide information about the induction
397 /// and reduction variables that were found to a given vectorization factor.
398 class InnerLoopVectorizer {
399 public:
InnerLoopVectorizer(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,unsigned VecWidth,unsigned UnrollFactor,LoopVectorizationLegality * LVL,LoopVectorizationCostModel * CM)400 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
401 LoopInfo *LI, DominatorTree *DT,
402 const TargetLibraryInfo *TLI,
403 const TargetTransformInfo *TTI, AssumptionCache *AC,
404 OptimizationRemarkEmitter *ORE, unsigned VecWidth,
405 unsigned UnrollFactor, LoopVectorizationLegality *LVL,
406 LoopVectorizationCostModel *CM)
407 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
408 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
409 Builder(PSE.getSE()->getContext()),
410 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
411 virtual ~InnerLoopVectorizer() = default;
412
413 /// Create a new empty loop. Unlink the old loop and connect the new one.
414 /// Return the pre-header block of the new loop.
415 BasicBlock *createVectorizedLoopSkeleton();
416
417 /// Widen a single instruction within the innermost loop.
418 void widenInstruction(Instruction &I);
419
420 /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
421 void fixVectorizedLoop();
422
423 // Return true if any runtime check is added.
areSafetyChecksAdded()424 bool areSafetyChecksAdded() { return AddedSafetyChecks; }
425
426 /// A type for vectorized values in the new loop. Each value from the
427 /// original loop, when vectorized, is represented by UF vector values in the
428 /// new unrolled loop, where UF is the unroll factor.
429 using VectorParts = SmallVector<Value *, 2>;
430
431 /// Vectorize a single GetElementPtrInst based on information gathered and
432 /// decisions taken during planning.
433 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF,
434 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant);
435
436 /// Vectorize a single PHINode in a block. This method handles the induction
437 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
438 /// arbitrary length vectors.
439 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
440
441 /// A helper function to scalarize a single Instruction in the innermost loop.
442 /// Generates a sequence of scalar instances for each lane between \p MinLane
443 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
444 /// inclusive..
445 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
446 bool IfPredicateInstr);
447
448 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
449 /// is provided, the integer induction variable will first be truncated to
450 /// the corresponding type.
451 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
452
453 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
454 /// vector or scalar value on-demand if one is not yet available. When
455 /// vectorizing a loop, we visit the definition of an instruction before its
456 /// uses. When visiting the definition, we either vectorize or scalarize the
457 /// instruction, creating an entry for it in the corresponding map. (In some
458 /// cases, such as induction variables, we will create both vector and scalar
459 /// entries.) Then, as we encounter uses of the definition, we derive values
460 /// for each scalar or vector use unless such a value is already available.
461 /// For example, if we scalarize a definition and one of its uses is vector,
462 /// we build the required vector on-demand with an insertelement sequence
463 /// when visiting the use. Otherwise, if the use is scalar, we can use the
464 /// existing scalar definition.
465 ///
466 /// Return a value in the new loop corresponding to \p V from the original
467 /// loop at unroll index \p Part. If the value has already been vectorized,
468 /// the corresponding vector entry in VectorLoopValueMap is returned. If,
469 /// however, the value has a scalar entry in VectorLoopValueMap, we construct
470 /// a new vector value on-demand by inserting the scalar values into a vector
471 /// with an insertelement sequence. If the value has been neither vectorized
472 /// nor scalarized, it must be loop invariant, so we simply broadcast the
473 /// value into a vector.
474 Value *getOrCreateVectorValue(Value *V, unsigned Part);
475
476 /// Return a value in the new loop corresponding to \p V from the original
477 /// loop at unroll and vector indices \p Instance. If the value has been
478 /// vectorized but not scalarized, the necessary extractelement instruction
479 /// will be generated.
480 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
481
482 /// Construct the vector value of a scalarized value \p V one lane at a time.
483 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
484
485 /// Try to vectorize the interleaved access group that \p Instr belongs to
486 /// with the base address given in \p Addr, optionally masking the vector
487 /// operations if \p BlockInMask is non-null. Use \p State to translate given
488 /// VPValues to IR values in the vectorized loop.
489 void vectorizeInterleaveGroup(Instruction *Instr, VPTransformState &State,
490 VPValue *Addr, VPValue *BlockInMask = nullptr);
491
492 /// Vectorize Load and Store instructions with the base address given in \p
493 /// Addr, optionally masking the vector operations if \p BlockInMask is
494 /// non-null. Use \p State to translate given VPValues to IR values in the
495 /// vectorized loop.
496 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
497 VPValue *Addr,
498 VPValue *BlockInMask = nullptr);
499
500 /// Set the debug location in the builder using the debug location in
501 /// the instruction.
502 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
503
504 /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
505 void fixNonInductionPHIs(void);
506
507 protected:
508 friend class LoopVectorizationPlanner;
509
510 /// A small list of PHINodes.
511 using PhiVector = SmallVector<PHINode *, 4>;
512
513 /// A type for scalarized values in the new loop. Each value from the
514 /// original loop, when scalarized, is represented by UF x VF scalar values
515 /// in the new unrolled loop, where UF is the unroll factor and VF is the
516 /// vectorization factor.
517 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
518
519 /// Set up the values of the IVs correctly when exiting the vector loop.
520 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
521 Value *CountRoundDown, Value *EndValue,
522 BasicBlock *MiddleBlock);
523
524 /// Create a new induction variable inside L.
525 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
526 Value *Step, Instruction *DL);
527
528 /// Handle all cross-iteration phis in the header.
529 void fixCrossIterationPHIs();
530
531 /// Fix a first-order recurrence. This is the second phase of vectorizing
532 /// this phi node.
533 void fixFirstOrderRecurrence(PHINode *Phi);
534
535 /// Fix a reduction cross-iteration phi. This is the second phase of
536 /// vectorizing this phi node.
537 void fixReduction(PHINode *Phi);
538
539 /// Clear NSW/NUW flags from reduction instructions if necessary.
540 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
541
542 /// The Loop exit block may have single value PHI nodes with some
543 /// incoming value. While vectorizing we only handled real values
544 /// that were defined inside the loop and we should have one value for
545 /// each predecessor of its parent basic block. See PR14725.
546 void fixLCSSAPHIs();
547
548 /// Iteratively sink the scalarized operands of a predicated instruction into
549 /// the block that was created for it.
550 void sinkScalarOperands(Instruction *PredInst);
551
552 /// Shrinks vector element sizes to the smallest bitwidth they can be legally
553 /// represented as.
554 void truncateToMinimalBitwidths();
555
556 /// Create a broadcast instruction. This method generates a broadcast
557 /// instruction (shuffle) for loop invariant values and for the induction
558 /// value. If this is the induction variable then we extend it to N, N+1, ...
559 /// this is needed because each iteration in the loop corresponds to a SIMD
560 /// element.
561 virtual Value *getBroadcastInstrs(Value *V);
562
563 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
564 /// to each vector element of Val. The sequence starts at StartIndex.
565 /// \p Opcode is relevant for FP induction variable.
566 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
567 Instruction::BinaryOps Opcode =
568 Instruction::BinaryOpsEnd);
569
570 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
571 /// variable on which to base the steps, \p Step is the size of the step, and
572 /// \p EntryVal is the value from the original loop that maps to the steps.
573 /// Note that \p EntryVal doesn't have to be an induction variable - it
574 /// can also be a truncate instruction.
575 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
576 const InductionDescriptor &ID);
577
578 /// Create a vector induction phi node based on an existing scalar one. \p
579 /// EntryVal is the value from the original loop that maps to the vector phi
580 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
581 /// truncate instruction, instead of widening the original IV, we widen a
582 /// version of the IV truncated to \p EntryVal's type.
583 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
584 Value *Step, Instruction *EntryVal);
585
586 /// Returns true if an instruction \p I should be scalarized instead of
587 /// vectorized for the chosen vectorization factor.
588 bool shouldScalarizeInstruction(Instruction *I) const;
589
590 /// Returns true if we should generate a scalar version of \p IV.
591 bool needsScalarInduction(Instruction *IV) const;
592
593 /// If there is a cast involved in the induction variable \p ID, which should
594 /// be ignored in the vectorized loop body, this function records the
595 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
596 /// cast. We had already proved that the casted Phi is equal to the uncasted
597 /// Phi in the vectorized loop (under a runtime guard), and therefore
598 /// there is no need to vectorize the cast - the same value can be used in the
599 /// vector loop for both the Phi and the cast.
600 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
601 /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
602 ///
603 /// \p EntryVal is the value from the original loop that maps to the vector
604 /// phi node and is used to distinguish what is the IV currently being
605 /// processed - original one (if \p EntryVal is a phi corresponding to the
606 /// original IV) or the "newly-created" one based on the proof mentioned above
607 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
608 /// latter case \p EntryVal is a TruncInst and we must not record anything for
609 /// that IV, but it's error-prone to expect callers of this routine to care
610 /// about that, hence this explicit parameter.
611 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
612 const Instruction *EntryVal,
613 Value *VectorLoopValue,
614 unsigned Part,
615 unsigned Lane = UINT_MAX);
616
617 /// Generate a shuffle sequence that will reverse the vector Vec.
618 virtual Value *reverseVector(Value *Vec);
619
620 /// Returns (and creates if needed) the original loop trip count.
621 Value *getOrCreateTripCount(Loop *NewLoop);
622
623 /// Returns (and creates if needed) the trip count of the widened loop.
624 Value *getOrCreateVectorTripCount(Loop *NewLoop);
625
626 /// Returns a bitcasted value to the requested vector type.
627 /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
628 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
629 const DataLayout &DL);
630
631 /// Emit a bypass check to see if the vector trip count is zero, including if
632 /// it overflows.
633 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
634
635 /// Emit a bypass check to see if all of the SCEV assumptions we've
636 /// had to make are correct.
637 void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
638
639 /// Emit bypass checks to check any memory assumptions we may have made.
640 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
641
642 /// Compute the transformed value of Index at offset StartValue using step
643 /// StepValue.
644 /// For integer induction, returns StartValue + Index * StepValue.
645 /// For pointer induction, returns StartValue[Index * StepValue].
646 /// FIXME: The newly created binary instructions should contain nsw/nuw
647 /// flags, which can be found from the original scalar operations.
648 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
649 const DataLayout &DL,
650 const InductionDescriptor &ID) const;
651
652 /// Add additional metadata to \p To that was not present on \p Orig.
653 ///
654 /// Currently this is used to add the noalias annotations based on the
655 /// inserted memchecks. Use this for instructions that are *cloned* into the
656 /// vector loop.
657 void addNewMetadata(Instruction *To, const Instruction *Orig);
658
659 /// Add metadata from one instruction to another.
660 ///
661 /// This includes both the original MDs from \p From and additional ones (\see
662 /// addNewMetadata). Use this for *newly created* instructions in the vector
663 /// loop.
664 void addMetadata(Instruction *To, Instruction *From);
665
666 /// Similar to the previous function but it adds the metadata to a
667 /// vector of instructions.
668 void addMetadata(ArrayRef<Value *> To, Instruction *From);
669
670 /// The original loop.
671 Loop *OrigLoop;
672
673 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
674 /// dynamic knowledge to simplify SCEV expressions and converts them to a
675 /// more usable form.
676 PredicatedScalarEvolution &PSE;
677
678 /// Loop Info.
679 LoopInfo *LI;
680
681 /// Dominator Tree.
682 DominatorTree *DT;
683
684 /// Alias Analysis.
685 AliasAnalysis *AA;
686
687 /// Target Library Info.
688 const TargetLibraryInfo *TLI;
689
690 /// Target Transform Info.
691 const TargetTransformInfo *TTI;
692
693 /// Assumption Cache.
694 AssumptionCache *AC;
695
696 /// Interface to emit optimization remarks.
697 OptimizationRemarkEmitter *ORE;
698
699 /// LoopVersioning. It's only set up (non-null) if memchecks were
700 /// used.
701 ///
702 /// This is currently only used to add no-alias metadata based on the
703 /// memchecks. The actually versioning is performed manually.
704 std::unique_ptr<LoopVersioning> LVer;
705
706 /// The vectorization SIMD factor to use. Each vector will have this many
707 /// vector elements.
708 unsigned VF;
709
710 /// The vectorization unroll factor to use. Each scalar is vectorized to this
711 /// many different vector instructions.
712 unsigned UF;
713
714 /// The builder that we use
715 IRBuilder<> Builder;
716
717 // --- Vectorization state ---
718
719 /// The vector-loop preheader.
720 BasicBlock *LoopVectorPreHeader;
721
722 /// The scalar-loop preheader.
723 BasicBlock *LoopScalarPreHeader;
724
725 /// Middle Block between the vector and the scalar.
726 BasicBlock *LoopMiddleBlock;
727
728 /// The ExitBlock of the scalar loop.
729 BasicBlock *LoopExitBlock;
730
731 /// The vector loop body.
732 BasicBlock *LoopVectorBody;
733
734 /// The scalar loop body.
735 BasicBlock *LoopScalarBody;
736
737 /// A list of all bypass blocks. The first block is the entry of the loop.
738 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
739
740 /// The new Induction variable which was added to the new block.
741 PHINode *Induction = nullptr;
742
743 /// The induction variable of the old basic block.
744 PHINode *OldInduction = nullptr;
745
746 /// Maps values from the original loop to their corresponding values in the
747 /// vectorized loop. A key value can map to either vector values, scalar
748 /// values or both kinds of values, depending on whether the key was
749 /// vectorized and scalarized.
750 VectorizerValueMap VectorLoopValueMap;
751
752 /// Store instructions that were predicated.
753 SmallVector<Instruction *, 4> PredicatedInstructions;
754
755 /// Trip count of the original loop.
756 Value *TripCount = nullptr;
757
758 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
759 Value *VectorTripCount = nullptr;
760
761 /// The legality analysis.
762 LoopVectorizationLegality *Legal;
763
764 /// The profitablity analysis.
765 LoopVectorizationCostModel *Cost;
766
767 // Record whether runtime checks are added.
768 bool AddedSafetyChecks = false;
769
770 // Holds the end values for each induction variable. We save the end values
771 // so we can later fix-up the external users of the induction variables.
772 DenseMap<PHINode *, Value *> IVEndValues;
773
774 // Vector of original scalar PHIs whose corresponding widened PHIs need to be
775 // fixed up at the end of vector code generation.
776 SmallVector<PHINode *, 8> OrigPHIsToFix;
777 };
778
779 class InnerLoopUnroller : public InnerLoopVectorizer {
780 public:
InnerLoopUnroller(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,unsigned UnrollFactor,LoopVectorizationLegality * LVL,LoopVectorizationCostModel * CM)781 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
782 LoopInfo *LI, DominatorTree *DT,
783 const TargetLibraryInfo *TLI,
784 const TargetTransformInfo *TTI, AssumptionCache *AC,
785 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
786 LoopVectorizationLegality *LVL,
787 LoopVectorizationCostModel *CM)
788 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
789 UnrollFactor, LVL, CM) {}
790
791 private:
792 Value *getBroadcastInstrs(Value *V) override;
793 Value *getStepVector(Value *Val, int StartIdx, Value *Step,
794 Instruction::BinaryOps Opcode =
795 Instruction::BinaryOpsEnd) override;
796 Value *reverseVector(Value *Vec) override;
797 };
798
799 } // end namespace llvm
800
801 /// Look for a meaningful debug location on the instruction or it's
802 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)803 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
804 if (!I)
805 return I;
806
807 DebugLoc Empty;
808 if (I->getDebugLoc() != Empty)
809 return I;
810
811 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
812 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
813 if (OpInst->getDebugLoc() != Empty)
814 return OpInst;
815 }
816
817 return I;
818 }
819
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)820 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
821 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
822 const DILocation *DIL = Inst->getDebugLoc();
823 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
824 !isa<DbgInfoIntrinsic>(Inst)) {
825 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
826 if (NewDIL)
827 B.SetCurrentDebugLocation(NewDIL.getValue());
828 else
829 LLVM_DEBUG(dbgs()
830 << "Failed to create new discriminator: "
831 << DIL->getFilename() << " Line: " << DIL->getLine());
832 }
833 else
834 B.SetCurrentDebugLocation(DIL);
835 } else
836 B.SetCurrentDebugLocation(DebugLoc());
837 }
838
839 /// Write a record \p DebugMsg about vectorization failure to the debug
840 /// output stream. If \p I is passed, it is an instruction that prevents
841 /// vectorization.
842 #ifndef NDEBUG
debugVectorizationFailure(const StringRef DebugMsg,Instruction * I)843 static void debugVectorizationFailure(const StringRef DebugMsg,
844 Instruction *I) {
845 dbgs() << "LV: Not vectorizing: " << DebugMsg;
846 if (I != nullptr)
847 dbgs() << " " << *I;
848 else
849 dbgs() << '.';
850 dbgs() << '\n';
851 }
852 #endif
853
854 /// Create an analysis remark that explains why vectorization failed
855 ///
856 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
857 /// RemarkName is the identifier for the remark. If \p I is passed it is an
858 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for
859 /// the location of the remark. \return the remark object that can be
860 /// streamed to.
createLVAnalysis(const char * PassName,StringRef RemarkName,Loop * TheLoop,Instruction * I)861 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
862 StringRef RemarkName, Loop *TheLoop, Instruction *I) {
863 Value *CodeRegion = TheLoop->getHeader();
864 DebugLoc DL = TheLoop->getStartLoc();
865
866 if (I) {
867 CodeRegion = I->getParent();
868 // If there is no debug location attached to the instruction, revert back to
869 // using the loop's.
870 if (I->getDebugLoc())
871 DL = I->getDebugLoc();
872 }
873
874 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
875 R << "loop not vectorized: ";
876 return R;
877 }
878
879 namespace llvm {
880
reportVectorizationFailure(const StringRef DebugMsg,const StringRef OREMsg,const StringRef ORETag,OptimizationRemarkEmitter * ORE,Loop * TheLoop,Instruction * I)881 void reportVectorizationFailure(const StringRef DebugMsg,
882 const StringRef OREMsg, const StringRef ORETag,
883 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
884 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
885 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
886 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
887 ORETag, TheLoop, I) << OREMsg);
888 }
889
890 } // end namespace llvm
891
892 #ifndef NDEBUG
893 /// \return string containing a file name and a line # for the given loop.
getDebugLocString(const Loop * L)894 static std::string getDebugLocString(const Loop *L) {
895 std::string Result;
896 if (L) {
897 raw_string_ostream OS(Result);
898 if (const DebugLoc LoopDbgLoc = L->getStartLoc())
899 LoopDbgLoc.print(OS);
900 else
901 // Just print the module name.
902 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
903 OS.flush();
904 }
905 return Result;
906 }
907 #endif
908
addNewMetadata(Instruction * To,const Instruction * Orig)909 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
910 const Instruction *Orig) {
911 // If the loop was versioned with memchecks, add the corresponding no-alias
912 // metadata.
913 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
914 LVer->annotateInstWithNoAlias(To, Orig);
915 }
916
addMetadata(Instruction * To,Instruction * From)917 void InnerLoopVectorizer::addMetadata(Instruction *To,
918 Instruction *From) {
919 propagateMetadata(To, From);
920 addNewMetadata(To, From);
921 }
922
addMetadata(ArrayRef<Value * > To,Instruction * From)923 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
924 Instruction *From) {
925 for (Value *V : To) {
926 if (Instruction *I = dyn_cast<Instruction>(V))
927 addMetadata(I, From);
928 }
929 }
930
931 namespace llvm {
932
933 // Loop vectorization cost-model hints how the scalar epilogue loop should be
934 // lowered.
935 enum ScalarEpilogueLowering {
936
937 // The default: allowing scalar epilogues.
938 CM_ScalarEpilogueAllowed,
939
940 // Vectorization with OptForSize: don't allow epilogues.
941 CM_ScalarEpilogueNotAllowedOptSize,
942
943 // A special case of vectorisation with OptForSize: loops with a very small
944 // trip count are considered for vectorization under OptForSize, thereby
945 // making sure the cost of their loop body is dominant, free of runtime
946 // guards and scalar iteration overheads.
947 CM_ScalarEpilogueNotAllowedLowTripLoop,
948
949 // Loop hint predicate indicating an epilogue is undesired.
950 CM_ScalarEpilogueNotNeededUsePredicate
951 };
952
953 /// LoopVectorizationCostModel - estimates the expected speedups due to
954 /// vectorization.
955 /// In many cases vectorization is not profitable. This can happen because of
956 /// a number of reasons. In this class we mainly attempt to predict the
957 /// expected speedup/slowdowns due to the supported instruction set. We use the
958 /// TargetTransformInfo to query the different backends for the cost of
959 /// different operations.
960 class LoopVectorizationCostModel {
961 public:
LoopVectorizationCostModel(ScalarEpilogueLowering SEL,Loop * L,PredicatedScalarEvolution & PSE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,DemandedBits * DB,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,const Function * F,const LoopVectorizeHints * Hints,InterleavedAccessInfo & IAI)962 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
963 PredicatedScalarEvolution &PSE, LoopInfo *LI,
964 LoopVectorizationLegality *Legal,
965 const TargetTransformInfo &TTI,
966 const TargetLibraryInfo *TLI, DemandedBits *DB,
967 AssumptionCache *AC,
968 OptimizationRemarkEmitter *ORE, const Function *F,
969 const LoopVectorizeHints *Hints,
970 InterleavedAccessInfo &IAI)
971 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
972 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
973 Hints(Hints), InterleaveInfo(IAI) {}
974
975 /// \return An upper bound for the vectorization factor, or None if
976 /// vectorization and interleaving should be avoided up front.
977 Optional<unsigned> computeMaxVF();
978
979 /// \return True if runtime checks are required for vectorization, and false
980 /// otherwise.
981 bool runtimeChecksRequired();
982
983 /// \return The most profitable vectorization factor and the cost of that VF.
984 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
985 /// then this vectorization factor will be selected if vectorization is
986 /// possible.
987 VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
988
989 /// Setup cost-based decisions for user vectorization factor.
selectUserVectorizationFactor(unsigned UserVF)990 void selectUserVectorizationFactor(unsigned UserVF) {
991 collectUniformsAndScalars(UserVF);
992 collectInstsToScalarize(UserVF);
993 }
994
995 /// \return The size (in bits) of the smallest and widest types in the code
996 /// that needs to be vectorized. We ignore values that remain scalar such as
997 /// 64 bit loop indices.
998 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
999
1000 /// \return The desired interleave count.
1001 /// If interleave count has been specified by metadata it will be returned.
1002 /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1003 /// are the selected vectorization factor and the cost of the selected VF.
1004 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost);
1005
1006 /// Memory access instruction may be vectorized in more than one way.
1007 /// Form of instruction after vectorization depends on cost.
1008 /// This function takes cost-based decisions for Load/Store instructions
1009 /// and collects them in a map. This decisions map is used for building
1010 /// the lists of loop-uniform and loop-scalar instructions.
1011 /// The calculated cost is saved with widening decision in order to
1012 /// avoid redundant calculations.
1013 void setCostBasedWideningDecision(unsigned VF);
1014
1015 /// A struct that represents some properties of the register usage
1016 /// of a loop.
1017 struct RegisterUsage {
1018 /// Holds the number of loop invariant values that are used in the loop.
1019 /// The key is ClassID of target-provided register class.
1020 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1021 /// Holds the maximum number of concurrent live intervals in the loop.
1022 /// The key is ClassID of target-provided register class.
1023 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1024 };
1025
1026 /// \return Returns information about the register usages of the loop for the
1027 /// given vectorization factors.
1028 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1029
1030 /// Collect values we want to ignore in the cost model.
1031 void collectValuesToIgnore();
1032
1033 /// \returns The smallest bitwidth each instruction can be represented with.
1034 /// The vector equivalents of these instructions should be truncated to this
1035 /// type.
getMinimalBitwidths() const1036 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1037 return MinBWs;
1038 }
1039
1040 /// \returns True if it is more profitable to scalarize instruction \p I for
1041 /// vectorization factor \p VF.
isProfitableToScalarize(Instruction * I,unsigned VF) const1042 bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1043 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1044
1045 // Cost model is not run in the VPlan-native path - return conservative
1046 // result until this changes.
1047 if (EnableVPlanNativePath)
1048 return false;
1049
1050 auto Scalars = InstsToScalarize.find(VF);
1051 assert(Scalars != InstsToScalarize.end() &&
1052 "VF not yet analyzed for scalarization profitability");
1053 return Scalars->second.find(I) != Scalars->second.end();
1054 }
1055
1056 /// Returns true if \p I is known to be uniform after vectorization.
isUniformAfterVectorization(Instruction * I,unsigned VF) const1057 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1058 if (VF == 1)
1059 return true;
1060
1061 // Cost model is not run in the VPlan-native path - return conservative
1062 // result until this changes.
1063 if (EnableVPlanNativePath)
1064 return false;
1065
1066 auto UniformsPerVF = Uniforms.find(VF);
1067 assert(UniformsPerVF != Uniforms.end() &&
1068 "VF not yet analyzed for uniformity");
1069 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
1070 }
1071
1072 /// Returns true if \p I is known to be scalar after vectorization.
isScalarAfterVectorization(Instruction * I,unsigned VF) const1073 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1074 if (VF == 1)
1075 return true;
1076
1077 // Cost model is not run in the VPlan-native path - return conservative
1078 // result until this changes.
1079 if (EnableVPlanNativePath)
1080 return false;
1081
1082 auto ScalarsPerVF = Scalars.find(VF);
1083 assert(ScalarsPerVF != Scalars.end() &&
1084 "Scalar values are not calculated for VF");
1085 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
1086 }
1087
1088 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1089 /// for vectorization factor \p VF.
canTruncateToMinimalBitwidth(Instruction * I,unsigned VF) const1090 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1091 return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
1092 !isProfitableToScalarize(I, VF) &&
1093 !isScalarAfterVectorization(I, VF);
1094 }
1095
1096 /// Decision that was taken during cost calculation for memory instruction.
1097 enum InstWidening {
1098 CM_Unknown,
1099 CM_Widen, // For consecutive accesses with stride +1.
1100 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1101 CM_Interleave,
1102 CM_GatherScatter,
1103 CM_Scalarize
1104 };
1105
1106 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1107 /// instruction \p I and vector width \p VF.
setWideningDecision(Instruction * I,unsigned VF,InstWidening W,unsigned Cost)1108 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1109 unsigned Cost) {
1110 assert(VF >= 2 && "Expected VF >=2");
1111 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1112 }
1113
1114 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1115 /// interleaving group \p Grp and vector width \p VF.
setWideningDecision(const InterleaveGroup<Instruction> * Grp,unsigned VF,InstWidening W,unsigned Cost)1116 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
1117 InstWidening W, unsigned Cost) {
1118 assert(VF >= 2 && "Expected VF >=2");
1119 /// Broadcast this decicion to all instructions inside the group.
1120 /// But the cost will be assigned to one instruction only.
1121 for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1122 if (auto *I = Grp->getMember(i)) {
1123 if (Grp->getInsertPos() == I)
1124 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1125 else
1126 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1127 }
1128 }
1129 }
1130
1131 /// Return the cost model decision for the given instruction \p I and vector
1132 /// width \p VF. Return CM_Unknown if this instruction did not pass
1133 /// through the cost modeling.
getWideningDecision(Instruction * I,unsigned VF)1134 InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1135 assert(VF >= 2 && "Expected VF >=2");
1136
1137 // Cost model is not run in the VPlan-native path - return conservative
1138 // result until this changes.
1139 if (EnableVPlanNativePath)
1140 return CM_GatherScatter;
1141
1142 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1143 auto Itr = WideningDecisions.find(InstOnVF);
1144 if (Itr == WideningDecisions.end())
1145 return CM_Unknown;
1146 return Itr->second.first;
1147 }
1148
1149 /// Return the vectorization cost for the given instruction \p I and vector
1150 /// width \p VF.
getWideningCost(Instruction * I,unsigned VF)1151 unsigned getWideningCost(Instruction *I, unsigned VF) {
1152 assert(VF >= 2 && "Expected VF >=2");
1153 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1154 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1155 "The cost is not calculated");
1156 return WideningDecisions[InstOnVF].second;
1157 }
1158
1159 /// Return True if instruction \p I is an optimizable truncate whose operand
1160 /// is an induction variable. Such a truncate will be removed by adding a new
1161 /// induction variable with the destination type.
isOptimizableIVTruncate(Instruction * I,unsigned VF)1162 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1163 // If the instruction is not a truncate, return false.
1164 auto *Trunc = dyn_cast<TruncInst>(I);
1165 if (!Trunc)
1166 return false;
1167
1168 // Get the source and destination types of the truncate.
1169 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1170 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1171
1172 // If the truncate is free for the given types, return false. Replacing a
1173 // free truncate with an induction variable would add an induction variable
1174 // update instruction to each iteration of the loop. We exclude from this
1175 // check the primary induction variable since it will need an update
1176 // instruction regardless.
1177 Value *Op = Trunc->getOperand(0);
1178 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1179 return false;
1180
1181 // If the truncated value is not an induction variable, return false.
1182 return Legal->isInductionPhi(Op);
1183 }
1184
1185 /// Collects the instructions to scalarize for each predicated instruction in
1186 /// the loop.
1187 void collectInstsToScalarize(unsigned VF);
1188
1189 /// Collect Uniform and Scalar values for the given \p VF.
1190 /// The sets depend on CM decision for Load/Store instructions
1191 /// that may be vectorized as interleave, gather-scatter or scalarized.
collectUniformsAndScalars(unsigned VF)1192 void collectUniformsAndScalars(unsigned VF) {
1193 // Do the analysis once.
1194 if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
1195 return;
1196 setCostBasedWideningDecision(VF);
1197 collectLoopUniforms(VF);
1198 collectLoopScalars(VF);
1199 }
1200
1201 /// Returns true if the target machine supports masked store operation
1202 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedStore(Type * DataType,Value * Ptr,MaybeAlign Alignment)1203 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) {
1204 return Legal->isConsecutivePtr(Ptr) &&
1205 TTI.isLegalMaskedStore(DataType, Alignment);
1206 }
1207
1208 /// Returns true if the target machine supports masked load operation
1209 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedLoad(Type * DataType,Value * Ptr,MaybeAlign Alignment)1210 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) {
1211 return Legal->isConsecutivePtr(Ptr) &&
1212 TTI.isLegalMaskedLoad(DataType, Alignment);
1213 }
1214
1215 /// Returns true if the target machine supports masked scatter operation
1216 /// for the given \p DataType.
isLegalMaskedScatter(Type * DataType,MaybeAlign Alignment)1217 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
1218 return TTI.isLegalMaskedScatter(DataType, Alignment);
1219 }
1220
1221 /// Returns true if the target machine supports masked gather operation
1222 /// for the given \p DataType.
isLegalMaskedGather(Type * DataType,MaybeAlign Alignment)1223 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) {
1224 return TTI.isLegalMaskedGather(DataType, Alignment);
1225 }
1226
1227 /// Returns true if the target machine can represent \p V as a masked gather
1228 /// or scatter operation.
isLegalGatherOrScatter(Value * V)1229 bool isLegalGatherOrScatter(Value *V) {
1230 bool LI = isa<LoadInst>(V);
1231 bool SI = isa<StoreInst>(V);
1232 if (!LI && !SI)
1233 return false;
1234 auto *Ty = getMemInstValueType(V);
1235 MaybeAlign Align = getLoadStoreAlignment(V);
1236 return (LI && isLegalMaskedGather(Ty, Align)) ||
1237 (SI && isLegalMaskedScatter(Ty, Align));
1238 }
1239
1240 /// Returns true if \p I is an instruction that will be scalarized with
1241 /// predication. Such instructions include conditional stores and
1242 /// instructions that may divide by zero.
1243 /// If a non-zero VF has been calculated, we check if I will be scalarized
1244 /// predication for that VF.
1245 bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
1246
1247 // Returns true if \p I is an instruction that will be predicated either
1248 // through scalar predication or masked load/store or masked gather/scatter.
1249 // Superset of instructions that return true for isScalarWithPredication.
isPredicatedInst(Instruction * I)1250 bool isPredicatedInst(Instruction *I) {
1251 if (!blockNeedsPredication(I->getParent()))
1252 return false;
1253 // Loads and stores that need some form of masked operation are predicated
1254 // instructions.
1255 if (isa<LoadInst>(I) || isa<StoreInst>(I))
1256 return Legal->isMaskRequired(I);
1257 return isScalarWithPredication(I);
1258 }
1259
1260 /// Returns true if \p I is a memory instruction with consecutive memory
1261 /// access that can be widened.
1262 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1263
1264 /// Returns true if \p I is a memory instruction in an interleaved-group
1265 /// of memory accesses that can be vectorized with wide vector loads/stores
1266 /// and shuffles.
1267 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
1268
1269 /// Check if \p Instr belongs to any interleaved access group.
isAccessInterleaved(Instruction * Instr)1270 bool isAccessInterleaved(Instruction *Instr) {
1271 return InterleaveInfo.isInterleaved(Instr);
1272 }
1273
1274 /// Get the interleaved access group that \p Instr belongs to.
1275 const InterleaveGroup<Instruction> *
getInterleavedAccessGroup(Instruction * Instr)1276 getInterleavedAccessGroup(Instruction *Instr) {
1277 return InterleaveInfo.getInterleaveGroup(Instr);
1278 }
1279
1280 /// Returns true if an interleaved group requires a scalar iteration
1281 /// to handle accesses with gaps, and there is nothing preventing us from
1282 /// creating a scalar epilogue.
requiresScalarEpilogue() const1283 bool requiresScalarEpilogue() const {
1284 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1285 }
1286
1287 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1288 /// loop hint annotation.
isScalarEpilogueAllowed() const1289 bool isScalarEpilogueAllowed() const {
1290 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1291 }
1292
1293 /// Returns true if all loop blocks should be masked to fold tail loop.
foldTailByMasking() const1294 bool foldTailByMasking() const { return FoldTailByMasking; }
1295
blockNeedsPredication(BasicBlock * BB)1296 bool blockNeedsPredication(BasicBlock *BB) {
1297 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1298 }
1299
1300 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1301 /// with factor VF. Return the cost of the instruction, including
1302 /// scalarization overhead if it's needed.
1303 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
1304
1305 /// Estimate cost of a call instruction CI if it were vectorized with factor
1306 /// VF. Return the cost of the instruction, including scalarization overhead
1307 /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1308 /// scalarized -
1309 /// i.e. either vector version isn't available, or is too expensive.
1310 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
1311
1312 private:
1313 unsigned NumPredStores = 0;
1314
1315 /// \return An upper bound for the vectorization factor, larger than zero.
1316 /// One is returned if vectorization should best be avoided due to cost.
1317 unsigned computeFeasibleMaxVF(unsigned ConstTripCount);
1318
1319 /// The vectorization cost is a combination of the cost itself and a boolean
1320 /// indicating whether any of the contributing operations will actually
1321 /// operate on
1322 /// vector values after type legalization in the backend. If this latter value
1323 /// is
1324 /// false, then all operations will be scalarized (i.e. no vectorization has
1325 /// actually taken place).
1326 using VectorizationCostTy = std::pair<unsigned, bool>;
1327
1328 /// Returns the expected execution cost. The unit of the cost does
1329 /// not matter because we use the 'cost' units to compare different
1330 /// vector widths. The cost that is returned is *not* normalized by
1331 /// the factor width.
1332 VectorizationCostTy expectedCost(unsigned VF);
1333
1334 /// Returns the execution time cost of an instruction for a given vector
1335 /// width. Vector width of one means scalar.
1336 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1337
1338 /// The cost-computation logic from getInstructionCost which provides
1339 /// the vector type as an output parameter.
1340 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1341
1342 /// Calculate vectorization cost of memory instruction \p I.
1343 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1344
1345 /// The cost computation for scalarized memory instruction.
1346 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1347
1348 /// The cost computation for interleaving group of memory instructions.
1349 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1350
1351 /// The cost computation for Gather/Scatter instruction.
1352 unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1353
1354 /// The cost computation for widening instruction \p I with consecutive
1355 /// memory access.
1356 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1357
1358 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1359 /// Load: scalar load + broadcast.
1360 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1361 /// element)
1362 unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1363
1364 /// Estimate the overhead of scalarizing an instruction. This is a
1365 /// convenience wrapper for the type-based getScalarizationOverhead API.
1366 unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
1367
1368 /// Returns whether the instruction is a load or store and will be a emitted
1369 /// as a vector operation.
1370 bool isConsecutiveLoadOrStore(Instruction *I);
1371
1372 /// Returns true if an artificially high cost for emulated masked memrefs
1373 /// should be used.
1374 bool useEmulatedMaskMemRefHack(Instruction *I);
1375
1376 /// Map of scalar integer values to the smallest bitwidth they can be legally
1377 /// represented as. The vector equivalents of these values should be truncated
1378 /// to this type.
1379 MapVector<Instruction *, uint64_t> MinBWs;
1380
1381 /// A type representing the costs for instructions if they were to be
1382 /// scalarized rather than vectorized. The entries are Instruction-Cost
1383 /// pairs.
1384 using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1385
1386 /// A set containing all BasicBlocks that are known to present after
1387 /// vectorization as a predicated block.
1388 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1389
1390 /// Records whether it is allowed to have the original scalar loop execute at
1391 /// least once. This may be needed as a fallback loop in case runtime
1392 /// aliasing/dependence checks fail, or to handle the tail/remainder
1393 /// iterations when the trip count is unknown or doesn't divide by the VF,
1394 /// or as a peel-loop to handle gaps in interleave-groups.
1395 /// Under optsize and when the trip count is very small we don't allow any
1396 /// iterations to execute in the scalar loop.
1397 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1398
1399 /// All blocks of loop are to be masked to fold tail of scalar iterations.
1400 bool FoldTailByMasking = false;
1401
1402 /// A map holding scalar costs for different vectorization factors. The
1403 /// presence of a cost for an instruction in the mapping indicates that the
1404 /// instruction will be scalarized when vectorizing with the associated
1405 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1406 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1407
1408 /// Holds the instructions known to be uniform after vectorization.
1409 /// The data is collected per VF.
1410 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1411
1412 /// Holds the instructions known to be scalar after vectorization.
1413 /// The data is collected per VF.
1414 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1415
1416 /// Holds the instructions (address computations) that are forced to be
1417 /// scalarized.
1418 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1419
1420 /// Returns the expected difference in cost from scalarizing the expression
1421 /// feeding a predicated instruction \p PredInst. The instructions to
1422 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1423 /// non-negative return value implies the expression will be scalarized.
1424 /// Currently, only single-use chains are considered for scalarization.
1425 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1426 unsigned VF);
1427
1428 /// Collect the instructions that are uniform after vectorization. An
1429 /// instruction is uniform if we represent it with a single scalar value in
1430 /// the vectorized loop corresponding to each vector iteration. Examples of
1431 /// uniform instructions include pointer operands of consecutive or
1432 /// interleaved memory accesses. Note that although uniformity implies an
1433 /// instruction will be scalar, the reverse is not true. In general, a
1434 /// scalarized instruction will be represented by VF scalar values in the
1435 /// vectorized loop, each corresponding to an iteration of the original
1436 /// scalar loop.
1437 void collectLoopUniforms(unsigned VF);
1438
1439 /// Collect the instructions that are scalar after vectorization. An
1440 /// instruction is scalar if it is known to be uniform or will be scalarized
1441 /// during vectorization. Non-uniform scalarized instructions will be
1442 /// represented by VF values in the vectorized loop, each corresponding to an
1443 /// iteration of the original scalar loop.
1444 void collectLoopScalars(unsigned VF);
1445
1446 /// Keeps cost model vectorization decision and cost for instructions.
1447 /// Right now it is used for memory instructions only.
1448 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1449 std::pair<InstWidening, unsigned>>;
1450
1451 DecisionList WideningDecisions;
1452
1453 /// Returns true if \p V is expected to be vectorized and it needs to be
1454 /// extracted.
needsExtract(Value * V,unsigned VF) const1455 bool needsExtract(Value *V, unsigned VF) const {
1456 Instruction *I = dyn_cast<Instruction>(V);
1457 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
1458 return false;
1459
1460 // Assume we can vectorize V (and hence we need extraction) if the
1461 // scalars are not computed yet. This can happen, because it is called
1462 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1463 // the scalars are collected. That should be a safe assumption in most
1464 // cases, because we check if the operands have vectorizable types
1465 // beforehand in LoopVectorizationLegality.
1466 return Scalars.find(VF) == Scalars.end() ||
1467 !isScalarAfterVectorization(I, VF);
1468 };
1469
1470 /// Returns a range containing only operands needing to be extracted.
filterExtractingOperands(Instruction::op_range Ops,unsigned VF)1471 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1472 unsigned VF) {
1473 return SmallVector<Value *, 4>(make_filter_range(
1474 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1475 }
1476
1477 public:
1478 /// The loop that we evaluate.
1479 Loop *TheLoop;
1480
1481 /// Predicated scalar evolution analysis.
1482 PredicatedScalarEvolution &PSE;
1483
1484 /// Loop Info analysis.
1485 LoopInfo *LI;
1486
1487 /// Vectorization legality.
1488 LoopVectorizationLegality *Legal;
1489
1490 /// Vector target information.
1491 const TargetTransformInfo &TTI;
1492
1493 /// Target Library Info.
1494 const TargetLibraryInfo *TLI;
1495
1496 /// Demanded bits analysis.
1497 DemandedBits *DB;
1498
1499 /// Assumption cache.
1500 AssumptionCache *AC;
1501
1502 /// Interface to emit optimization remarks.
1503 OptimizationRemarkEmitter *ORE;
1504
1505 const Function *TheFunction;
1506
1507 /// Loop Vectorize Hint.
1508 const LoopVectorizeHints *Hints;
1509
1510 /// The interleave access information contains groups of interleaved accesses
1511 /// with the same stride and close to each other.
1512 InterleavedAccessInfo &InterleaveInfo;
1513
1514 /// Values to ignore in the cost model.
1515 SmallPtrSet<const Value *, 16> ValuesToIgnore;
1516
1517 /// Values to ignore in the cost model when VF > 1.
1518 SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1519 };
1520
1521 } // end namespace llvm
1522
1523 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1524 // vectorization. The loop needs to be annotated with #pragma omp simd
1525 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1526 // vector length information is not provided, vectorization is not considered
1527 // explicit. Interleave hints are not allowed either. These limitations will be
1528 // relaxed in the future.
1529 // Please, note that we are currently forced to abuse the pragma 'clang
1530 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1531 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1532 // provides *explicit vectorization hints* (LV can bypass legal checks and
1533 // assume that vectorization is legal). However, both hints are implemented
1534 // using the same metadata (llvm.loop.vectorize, processed by
1535 // LoopVectorizeHints). This will be fixed in the future when the native IR
1536 // representation for pragma 'omp simd' is introduced.
isExplicitVecOuterLoop(Loop * OuterLp,OptimizationRemarkEmitter * ORE)1537 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1538 OptimizationRemarkEmitter *ORE) {
1539 assert(!OuterLp->empty() && "This is not an outer loop");
1540 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1541
1542 // Only outer loops with an explicit vectorization hint are supported.
1543 // Unannotated outer loops are ignored.
1544 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1545 return false;
1546
1547 Function *Fn = OuterLp->getHeader()->getParent();
1548 if (!Hints.allowVectorization(Fn, OuterLp,
1549 true /*VectorizeOnlyWhenForced*/)) {
1550 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1551 return false;
1552 }
1553
1554 if (Hints.getInterleave() > 1) {
1555 // TODO: Interleave support is future work.
1556 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1557 "outer loops.\n");
1558 Hints.emitRemarkWithHints();
1559 return false;
1560 }
1561
1562 return true;
1563 }
1564
collectSupportedLoops(Loop & L,LoopInfo * LI,OptimizationRemarkEmitter * ORE,SmallVectorImpl<Loop * > & V)1565 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1566 OptimizationRemarkEmitter *ORE,
1567 SmallVectorImpl<Loop *> &V) {
1568 // Collect inner loops and outer loops without irreducible control flow. For
1569 // now, only collect outer loops that have explicit vectorization hints. If we
1570 // are stress testing the VPlan H-CFG construction, we collect the outermost
1571 // loop of every loop nest.
1572 if (L.empty() || VPlanBuildStressTest ||
1573 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1574 LoopBlocksRPO RPOT(&L);
1575 RPOT.perform(LI);
1576 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1577 V.push_back(&L);
1578 // TODO: Collect inner loops inside marked outer loops in case
1579 // vectorization fails for the outer loop. Do not invoke
1580 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1581 // already known to be reducible. We can use an inherited attribute for
1582 // that.
1583 return;
1584 }
1585 }
1586 for (Loop *InnerL : L)
1587 collectSupportedLoops(*InnerL, LI, ORE, V);
1588 }
1589
1590 namespace {
1591
1592 /// The LoopVectorize Pass.
1593 struct LoopVectorize : public FunctionPass {
1594 /// Pass identification, replacement for typeid
1595 static char ID;
1596
1597 LoopVectorizePass Impl;
1598
LoopVectorize__anon374c8b570211::LoopVectorize1599 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1600 bool VectorizeOnlyWhenForced = false)
1601 : FunctionPass(ID) {
1602 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced;
1603 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced;
1604 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1605 }
1606
runOnFunction__anon374c8b570211::LoopVectorize1607 bool runOnFunction(Function &F) override {
1608 if (skipFunction(F))
1609 return false;
1610
1611 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1612 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1613 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1614 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1615 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1616 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1617 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1618 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1619 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1620 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1621 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1622 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1623 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1624
1625 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1626 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1627
1628 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1629 GetLAA, *ORE, PSI);
1630 }
1631
getAnalysisUsage__anon374c8b570211::LoopVectorize1632 void getAnalysisUsage(AnalysisUsage &AU) const override {
1633 AU.addRequired<AssumptionCacheTracker>();
1634 AU.addRequired<BlockFrequencyInfoWrapperPass>();
1635 AU.addRequired<DominatorTreeWrapperPass>();
1636 AU.addRequired<LoopInfoWrapperPass>();
1637 AU.addRequired<ScalarEvolutionWrapperPass>();
1638 AU.addRequired<TargetTransformInfoWrapperPass>();
1639 AU.addRequired<AAResultsWrapperPass>();
1640 AU.addRequired<LoopAccessLegacyAnalysis>();
1641 AU.addRequired<DemandedBitsWrapperPass>();
1642 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1643
1644 // We currently do not preserve loopinfo/dominator analyses with outer loop
1645 // vectorization. Until this is addressed, mark these analyses as preserved
1646 // only for non-VPlan-native path.
1647 // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1648 if (!EnableVPlanNativePath) {
1649 AU.addPreserved<LoopInfoWrapperPass>();
1650 AU.addPreserved<DominatorTreeWrapperPass>();
1651 }
1652
1653 AU.addPreserved<BasicAAWrapperPass>();
1654 AU.addPreserved<GlobalsAAWrapperPass>();
1655 AU.addRequired<ProfileSummaryInfoWrapperPass>();
1656 }
1657 };
1658
1659 } // end anonymous namespace
1660
1661 //===----------------------------------------------------------------------===//
1662 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1663 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1664 //===----------------------------------------------------------------------===//
1665
getBroadcastInstrs(Value * V)1666 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1667 // We need to place the broadcast of invariant variables outside the loop,
1668 // but only if it's proven safe to do so. Else, broadcast will be inside
1669 // vector loop body.
1670 Instruction *Instr = dyn_cast<Instruction>(V);
1671 bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1672 (!Instr ||
1673 DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1674 // Place the code for broadcasting invariant variables in the new preheader.
1675 IRBuilder<>::InsertPointGuard Guard(Builder);
1676 if (SafeToHoist)
1677 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1678
1679 // Broadcast the scalar into all locations in the vector.
1680 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1681
1682 return Shuf;
1683 }
1684
createVectorIntOrFpInductionPHI(const InductionDescriptor & II,Value * Step,Instruction * EntryVal)1685 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1686 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1687 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1688 "Expected either an induction phi-node or a truncate of it!");
1689 Value *Start = II.getStartValue();
1690
1691 // Construct the initial value of the vector IV in the vector loop preheader
1692 auto CurrIP = Builder.saveIP();
1693 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1694 if (isa<TruncInst>(EntryVal)) {
1695 assert(Start->getType()->isIntegerTy() &&
1696 "Truncation requires an integer type");
1697 auto *TruncType = cast<IntegerType>(EntryVal->getType());
1698 Step = Builder.CreateTrunc(Step, TruncType);
1699 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1700 }
1701 Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1702 Value *SteppedStart =
1703 getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1704
1705 // We create vector phi nodes for both integer and floating-point induction
1706 // variables. Here, we determine the kind of arithmetic we will perform.
1707 Instruction::BinaryOps AddOp;
1708 Instruction::BinaryOps MulOp;
1709 if (Step->getType()->isIntegerTy()) {
1710 AddOp = Instruction::Add;
1711 MulOp = Instruction::Mul;
1712 } else {
1713 AddOp = II.getInductionOpcode();
1714 MulOp = Instruction::FMul;
1715 }
1716
1717 // Multiply the vectorization factor by the step using integer or
1718 // floating-point arithmetic as appropriate.
1719 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1720 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1721
1722 // Create a vector splat to use in the induction update.
1723 //
1724 // FIXME: If the step is non-constant, we create the vector splat with
1725 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1726 // handle a constant vector splat.
1727 Value *SplatVF = isa<Constant>(Mul)
1728 ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
1729 : Builder.CreateVectorSplat(VF, Mul);
1730 Builder.restoreIP(CurrIP);
1731
1732 // We may need to add the step a number of times, depending on the unroll
1733 // factor. The last of those goes into the PHI.
1734 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1735 &*LoopVectorBody->getFirstInsertionPt());
1736 VecInd->setDebugLoc(EntryVal->getDebugLoc());
1737 Instruction *LastInduction = VecInd;
1738 for (unsigned Part = 0; Part < UF; ++Part) {
1739 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1740
1741 if (isa<TruncInst>(EntryVal))
1742 addMetadata(LastInduction, EntryVal);
1743 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1744
1745 LastInduction = cast<Instruction>(addFastMathFlag(
1746 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1747 LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1748 }
1749
1750 // Move the last step to the end of the latch block. This ensures consistent
1751 // placement of all induction updates.
1752 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1753 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1754 auto *ICmp = cast<Instruction>(Br->getCondition());
1755 LastInduction->moveBefore(ICmp);
1756 LastInduction->setName("vec.ind.next");
1757
1758 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1759 VecInd->addIncoming(LastInduction, LoopVectorLatch);
1760 }
1761
shouldScalarizeInstruction(Instruction * I) const1762 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1763 return Cost->isScalarAfterVectorization(I, VF) ||
1764 Cost->isProfitableToScalarize(I, VF);
1765 }
1766
needsScalarInduction(Instruction * IV) const1767 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1768 if (shouldScalarizeInstruction(IV))
1769 return true;
1770 auto isScalarInst = [&](User *U) -> bool {
1771 auto *I = cast<Instruction>(U);
1772 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1773 };
1774 return llvm::any_of(IV->users(), isScalarInst);
1775 }
1776
recordVectorLoopValueForInductionCast(const InductionDescriptor & ID,const Instruction * EntryVal,Value * VectorLoopVal,unsigned Part,unsigned Lane)1777 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1778 const InductionDescriptor &ID, const Instruction *EntryVal,
1779 Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1780 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1781 "Expected either an induction phi-node or a truncate of it!");
1782
1783 // This induction variable is not the phi from the original loop but the
1784 // newly-created IV based on the proof that casted Phi is equal to the
1785 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1786 // re-uses the same InductionDescriptor that original IV uses but we don't
1787 // have to do any recording in this case - that is done when original IV is
1788 // processed.
1789 if (isa<TruncInst>(EntryVal))
1790 return;
1791
1792 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1793 if (Casts.empty())
1794 return;
1795 // Only the first Cast instruction in the Casts vector is of interest.
1796 // The rest of the Casts (if exist) have no uses outside the
1797 // induction update chain itself.
1798 Instruction *CastInst = *Casts.begin();
1799 if (Lane < UINT_MAX)
1800 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1801 else
1802 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1803 }
1804
widenIntOrFpInduction(PHINode * IV,TruncInst * Trunc)1805 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1806 assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1807 "Primary induction variable must have an integer type");
1808
1809 auto II = Legal->getInductionVars()->find(IV);
1810 assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
1811
1812 auto ID = II->second;
1813 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1814
1815 // The scalar value to broadcast. This will be derived from the canonical
1816 // induction variable.
1817 Value *ScalarIV = nullptr;
1818
1819 // The value from the original loop to which we are mapping the new induction
1820 // variable.
1821 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1822
1823 // True if we have vectorized the induction variable.
1824 auto VectorizedIV = false;
1825
1826 // Determine if we want a scalar version of the induction variable. This is
1827 // true if the induction variable itself is not widened, or if it has at
1828 // least one user in the loop that is not widened.
1829 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
1830
1831 // Generate code for the induction step. Note that induction steps are
1832 // required to be loop-invariant
1833 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
1834 "Induction step should be loop invariant");
1835 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1836 Value *Step = nullptr;
1837 if (PSE.getSE()->isSCEVable(IV->getType())) {
1838 SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1839 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
1840 LoopVectorPreHeader->getTerminator());
1841 } else {
1842 Step = cast<SCEVUnknown>(ID.getStep())->getValue();
1843 }
1844
1845 // Try to create a new independent vector induction variable. If we can't
1846 // create the phi node, we will splat the scalar induction variable in each
1847 // loop iteration.
1848 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
1849 createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1850 VectorizedIV = true;
1851 }
1852
1853 // If we haven't yet vectorized the induction variable, or if we will create
1854 // a scalar one, we need to define the scalar induction variable and step
1855 // values. If we were given a truncation type, truncate the canonical
1856 // induction variable and step. Otherwise, derive these values from the
1857 // induction descriptor.
1858 if (!VectorizedIV || NeedsScalarIV) {
1859 ScalarIV = Induction;
1860 if (IV != OldInduction) {
1861 ScalarIV = IV->getType()->isIntegerTy()
1862 ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1863 : Builder.CreateCast(Instruction::SIToFP, Induction,
1864 IV->getType());
1865 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1866 ScalarIV->setName("offset.idx");
1867 }
1868 if (Trunc) {
1869 auto *TruncType = cast<IntegerType>(Trunc->getType());
1870 assert(Step->getType()->isIntegerTy() &&
1871 "Truncation requires an integer step");
1872 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1873 Step = Builder.CreateTrunc(Step, TruncType);
1874 }
1875 }
1876
1877 // If we haven't yet vectorized the induction variable, splat the scalar
1878 // induction variable, and build the necessary step vectors.
1879 // TODO: Don't do it unless the vectorized IV is really required.
1880 if (!VectorizedIV) {
1881 Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1882 for (unsigned Part = 0; Part < UF; ++Part) {
1883 Value *EntryPart =
1884 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1885 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1886 if (Trunc)
1887 addMetadata(EntryPart, Trunc);
1888 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1889 }
1890 }
1891
1892 // If an induction variable is only used for counting loop iterations or
1893 // calculating addresses, it doesn't need to be widened. Create scalar steps
1894 // that can be used by instructions we will later scalarize. Note that the
1895 // addition of the scalar steps will not increase the number of instructions
1896 // in the loop in the common case prior to InstCombine. We will be trading
1897 // one vector extract for each scalar step.
1898 if (NeedsScalarIV)
1899 buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1900 }
1901
getStepVector(Value * Val,int StartIdx,Value * Step,Instruction::BinaryOps BinOp)1902 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1903 Instruction::BinaryOps BinOp) {
1904 // Create and check the types.
1905 assert(Val->getType()->isVectorTy() && "Must be a vector");
1906 int VLen = Val->getType()->getVectorNumElements();
1907
1908 Type *STy = Val->getType()->getScalarType();
1909 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1910 "Induction Step must be an integer or FP");
1911 assert(Step->getType() == STy && "Step has wrong type");
1912
1913 SmallVector<Constant *, 8> Indices;
1914
1915 if (STy->isIntegerTy()) {
1916 // Create a vector of consecutive numbers from zero to VF.
1917 for (int i = 0; i < VLen; ++i)
1918 Indices.push_back(ConstantInt::get(STy, StartIdx + i));
1919
1920 // Add the consecutive indices to the vector value.
1921 Constant *Cv = ConstantVector::get(Indices);
1922 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1923 Step = Builder.CreateVectorSplat(VLen, Step);
1924 assert(Step->getType() == Val->getType() && "Invalid step vec");
1925 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1926 // which can be found from the original scalar operations.
1927 Step = Builder.CreateMul(Cv, Step);
1928 return Builder.CreateAdd(Val, Step, "induction");
1929 }
1930
1931 // Floating point induction.
1932 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1933 "Binary Opcode should be specified for FP induction");
1934 // Create a vector of consecutive numbers from zero to VF.
1935 for (int i = 0; i < VLen; ++i)
1936 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
1937
1938 // Add the consecutive indices to the vector value.
1939 Constant *Cv = ConstantVector::get(Indices);
1940
1941 Step = Builder.CreateVectorSplat(VLen, Step);
1942
1943 // Floating point operations had to be 'fast' to enable the induction.
1944 FastMathFlags Flags;
1945 Flags.setFast();
1946
1947 Value *MulOp = Builder.CreateFMul(Cv, Step);
1948 if (isa<Instruction>(MulOp))
1949 // Have to check, MulOp may be a constant
1950 cast<Instruction>(MulOp)->setFastMathFlags(Flags);
1951
1952 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
1953 if (isa<Instruction>(BOp))
1954 cast<Instruction>(BOp)->setFastMathFlags(Flags);
1955 return BOp;
1956 }
1957
buildScalarSteps(Value * ScalarIV,Value * Step,Instruction * EntryVal,const InductionDescriptor & ID)1958 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
1959 Instruction *EntryVal,
1960 const InductionDescriptor &ID) {
1961 // We shouldn't have to build scalar steps if we aren't vectorizing.
1962 assert(VF > 1 && "VF should be greater than one");
1963
1964 // Get the value type and ensure it and the step have the same integer type.
1965 Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
1966 assert(ScalarIVTy == Step->getType() &&
1967 "Val and Step should have the same type");
1968
1969 // We build scalar steps for both integer and floating-point induction
1970 // variables. Here, we determine the kind of arithmetic we will perform.
1971 Instruction::BinaryOps AddOp;
1972 Instruction::BinaryOps MulOp;
1973 if (ScalarIVTy->isIntegerTy()) {
1974 AddOp = Instruction::Add;
1975 MulOp = Instruction::Mul;
1976 } else {
1977 AddOp = ID.getInductionOpcode();
1978 MulOp = Instruction::FMul;
1979 }
1980
1981 // Determine the number of scalars we need to generate for each unroll
1982 // iteration. If EntryVal is uniform, we only need to generate the first
1983 // lane. Otherwise, we generate all VF values.
1984 unsigned Lanes =
1985 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
1986 : VF;
1987 // Compute the scalar steps and save the results in VectorLoopValueMap.
1988 for (unsigned Part = 0; Part < UF; ++Part) {
1989 for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
1990 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
1991 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
1992 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
1993 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
1994 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
1995 }
1996 }
1997 }
1998
getOrCreateVectorValue(Value * V,unsigned Part)1999 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2000 assert(V != Induction && "The new induction variable should not be used.");
2001 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2002 assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2003
2004 // If we have a stride that is replaced by one, do it here. Defer this for
2005 // the VPlan-native path until we start running Legal checks in that path.
2006 if (!EnableVPlanNativePath && Legal->hasStride(V))
2007 V = ConstantInt::get(V->getType(), 1);
2008
2009 // If we have a vector mapped to this value, return it.
2010 if (VectorLoopValueMap.hasVectorValue(V, Part))
2011 return VectorLoopValueMap.getVectorValue(V, Part);
2012
2013 // If the value has not been vectorized, check if it has been scalarized
2014 // instead. If it has been scalarized, and we actually need the value in
2015 // vector form, we will construct the vector values on demand.
2016 if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2017 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2018
2019 // If we've scalarized a value, that value should be an instruction.
2020 auto *I = cast<Instruction>(V);
2021
2022 // If we aren't vectorizing, we can just copy the scalar map values over to
2023 // the vector map.
2024 if (VF == 1) {
2025 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2026 return ScalarValue;
2027 }
2028
2029 // Get the last scalar instruction we generated for V and Part. If the value
2030 // is known to be uniform after vectorization, this corresponds to lane zero
2031 // of the Part unroll iteration. Otherwise, the last instruction is the one
2032 // we created for the last vector lane of the Part unroll iteration.
2033 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2034 auto *LastInst = cast<Instruction>(
2035 VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2036
2037 // Set the insert point after the last scalarized instruction. This ensures
2038 // the insertelement sequence will directly follow the scalar definitions.
2039 auto OldIP = Builder.saveIP();
2040 auto NewIP = std::next(BasicBlock::iterator(LastInst));
2041 Builder.SetInsertPoint(&*NewIP);
2042
2043 // However, if we are vectorizing, we need to construct the vector values.
2044 // If the value is known to be uniform after vectorization, we can just
2045 // broadcast the scalar value corresponding to lane zero for each unroll
2046 // iteration. Otherwise, we construct the vector values using insertelement
2047 // instructions. Since the resulting vectors are stored in
2048 // VectorLoopValueMap, we will only generate the insertelements once.
2049 Value *VectorValue = nullptr;
2050 if (Cost->isUniformAfterVectorization(I, VF)) {
2051 VectorValue = getBroadcastInstrs(ScalarValue);
2052 VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2053 } else {
2054 // Initialize packing with insertelements to start from undef.
2055 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2056 VectorLoopValueMap.setVectorValue(V, Part, Undef);
2057 for (unsigned Lane = 0; Lane < VF; ++Lane)
2058 packScalarIntoVectorValue(V, {Part, Lane});
2059 VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2060 }
2061 Builder.restoreIP(OldIP);
2062 return VectorValue;
2063 }
2064
2065 // If this scalar is unknown, assume that it is a constant or that it is
2066 // loop invariant. Broadcast V and save the value for future uses.
2067 Value *B = getBroadcastInstrs(V);
2068 VectorLoopValueMap.setVectorValue(V, Part, B);
2069 return B;
2070 }
2071
2072 Value *
getOrCreateScalarValue(Value * V,const VPIteration & Instance)2073 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2074 const VPIteration &Instance) {
2075 // If the value is not an instruction contained in the loop, it should
2076 // already be scalar.
2077 if (OrigLoop->isLoopInvariant(V))
2078 return V;
2079
2080 assert(Instance.Lane > 0
2081 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2082 : true && "Uniform values only have lane zero");
2083
2084 // If the value from the original loop has not been vectorized, it is
2085 // represented by UF x VF scalar values in the new loop. Return the requested
2086 // scalar value.
2087 if (VectorLoopValueMap.hasScalarValue(V, Instance))
2088 return VectorLoopValueMap.getScalarValue(V, Instance);
2089
2090 // If the value has not been scalarized, get its entry in VectorLoopValueMap
2091 // for the given unroll part. If this entry is not a vector type (i.e., the
2092 // vectorization factor is one), there is no need to generate an
2093 // extractelement instruction.
2094 auto *U = getOrCreateVectorValue(V, Instance.Part);
2095 if (!U->getType()->isVectorTy()) {
2096 assert(VF == 1 && "Value not scalarized has non-vector type");
2097 return U;
2098 }
2099
2100 // Otherwise, the value from the original loop has been vectorized and is
2101 // represented by UF vector values. Extract and return the requested scalar
2102 // value from the appropriate vector lane.
2103 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2104 }
2105
packScalarIntoVectorValue(Value * V,const VPIteration & Instance)2106 void InnerLoopVectorizer::packScalarIntoVectorValue(
2107 Value *V, const VPIteration &Instance) {
2108 assert(V != Induction && "The new induction variable should not be used.");
2109 assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2110 assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2111
2112 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2113 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2114 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2115 Builder.getInt32(Instance.Lane));
2116 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2117 }
2118
reverseVector(Value * Vec)2119 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2120 assert(Vec->getType()->isVectorTy() && "Invalid type");
2121 SmallVector<Constant *, 8> ShuffleMask;
2122 for (unsigned i = 0; i < VF; ++i)
2123 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2124
2125 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2126 ConstantVector::get(ShuffleMask),
2127 "reverse");
2128 }
2129
2130 // Return whether we allow using masked interleave-groups (for dealing with
2131 // strided loads/stores that reside in predicated blocks, or for dealing
2132 // with gaps).
useMaskedInterleavedAccesses(const TargetTransformInfo & TTI)2133 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2134 // If an override option has been passed in for interleaved accesses, use it.
2135 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2136 return EnableMaskedInterleavedMemAccesses;
2137
2138 return TTI.enableMaskedInterleavedAccessVectorization();
2139 }
2140
2141 // Try to vectorize the interleave group that \p Instr belongs to.
2142 //
2143 // E.g. Translate following interleaved load group (factor = 3):
2144 // for (i = 0; i < N; i+=3) {
2145 // R = Pic[i]; // Member of index 0
2146 // G = Pic[i+1]; // Member of index 1
2147 // B = Pic[i+2]; // Member of index 2
2148 // ... // do something to R, G, B
2149 // }
2150 // To:
2151 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
2152 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
2153 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
2154 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
2155 //
2156 // Or translate following interleaved store group (factor = 3):
2157 // for (i = 0; i < N; i+=3) {
2158 // ... do something to R, G, B
2159 // Pic[i] = R; // Member of index 0
2160 // Pic[i+1] = G; // Member of index 1
2161 // Pic[i+2] = B; // Member of index 2
2162 // }
2163 // To:
2164 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2165 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2166 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2167 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
2168 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
vectorizeInterleaveGroup(Instruction * Instr,VPTransformState & State,VPValue * Addr,VPValue * BlockInMask)2169 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr,
2170 VPTransformState &State,
2171 VPValue *Addr,
2172 VPValue *BlockInMask) {
2173 const InterleaveGroup<Instruction> *Group =
2174 Cost->getInterleavedAccessGroup(Instr);
2175 assert(Group && "Fail to get an interleaved access group.");
2176
2177 // Skip if current instruction is not the insert position.
2178 if (Instr != Group->getInsertPos())
2179 return;
2180
2181 const DataLayout &DL = Instr->getModule()->getDataLayout();
2182
2183 // Prepare for the vector type of the interleaved load/store.
2184 Type *ScalarTy = getMemInstValueType(Instr);
2185 unsigned InterleaveFactor = Group->getFactor();
2186 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2187
2188 // Prepare for the new pointers.
2189 SmallVector<Value *, 2> AddrParts;
2190 unsigned Index = Group->getIndex(Instr);
2191
2192 // TODO: extend the masked interleaved-group support to reversed access.
2193 assert((!BlockInMask || !Group->isReverse()) &&
2194 "Reversed masked interleave-group not supported.");
2195
2196 // If the group is reverse, adjust the index to refer to the last vector lane
2197 // instead of the first. We adjust the index from the first vector lane,
2198 // rather than directly getting the pointer for lane VF - 1, because the
2199 // pointer operand of the interleaved access is supposed to be uniform. For
2200 // uniform instructions, we're only required to generate a value for the
2201 // first vector lane in each unroll iteration.
2202 if (Group->isReverse())
2203 Index += (VF - 1) * Group->getFactor();
2204
2205 for (unsigned Part = 0; Part < UF; Part++) {
2206 Value *AddrPart = State.get(Addr, {Part, 0});
2207 setDebugLocFromInst(Builder, AddrPart);
2208
2209 // Notice current instruction could be any index. Need to adjust the address
2210 // to the member of index 0.
2211 //
2212 // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
2213 // b = A[i]; // Member of index 0
2214 // Current pointer is pointed to A[i+1], adjust it to A[i].
2215 //
2216 // E.g. A[i+1] = a; // Member of index 1
2217 // A[i] = b; // Member of index 0
2218 // A[i+2] = c; // Member of index 2 (Current instruction)
2219 // Current pointer is pointed to A[i+2], adjust it to A[i].
2220
2221 bool InBounds = false;
2222 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2223 InBounds = gep->isInBounds();
2224 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2225 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2226
2227 // Cast to the vector pointer type.
2228 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2229 Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2230 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2231 }
2232
2233 setDebugLocFromInst(Builder, Instr);
2234 Value *UndefVec = UndefValue::get(VecTy);
2235
2236 Value *MaskForGaps = nullptr;
2237 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2238 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
2239 assert(MaskForGaps && "Mask for Gaps is required but it is null");
2240 }
2241
2242 // Vectorize the interleaved load group.
2243 if (isa<LoadInst>(Instr)) {
2244 // For each unroll part, create a wide load for the group.
2245 SmallVector<Value *, 2> NewLoads;
2246 for (unsigned Part = 0; Part < UF; Part++) {
2247 Instruction *NewLoad;
2248 if (BlockInMask || MaskForGaps) {
2249 assert(useMaskedInterleavedAccesses(*TTI) &&
2250 "masked interleaved groups are not allowed.");
2251 Value *GroupMask = MaskForGaps;
2252 if (BlockInMask) {
2253 Value *BlockInMaskPart = State.get(BlockInMask, Part);
2254 auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2255 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF);
2256 Value *ShuffledMask = Builder.CreateShuffleVector(
2257 BlockInMaskPart, Undefs, RepMask, "interleaved.mask");
2258 GroupMask = MaskForGaps
2259 ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2260 MaskForGaps)
2261 : ShuffledMask;
2262 }
2263 NewLoad =
2264 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlignment(),
2265 GroupMask, UndefVec, "wide.masked.vec");
2266 }
2267 else
2268 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2269 Group->getAlignment(), "wide.vec");
2270 Group->addMetadata(NewLoad);
2271 NewLoads.push_back(NewLoad);
2272 }
2273
2274 // For each member in the group, shuffle out the appropriate data from the
2275 // wide loads.
2276 for (unsigned I = 0; I < InterleaveFactor; ++I) {
2277 Instruction *Member = Group->getMember(I);
2278
2279 // Skip the gaps in the group.
2280 if (!Member)
2281 continue;
2282
2283 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
2284 for (unsigned Part = 0; Part < UF; Part++) {
2285 Value *StridedVec = Builder.CreateShuffleVector(
2286 NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2287
2288 // If this member has different type, cast the result type.
2289 if (Member->getType() != ScalarTy) {
2290 VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2291 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2292 }
2293
2294 if (Group->isReverse())
2295 StridedVec = reverseVector(StridedVec);
2296
2297 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2298 }
2299 }
2300 return;
2301 }
2302
2303 // The sub vector type for current instruction.
2304 VectorType *SubVT = VectorType::get(ScalarTy, VF);
2305
2306 // Vectorize the interleaved store group.
2307 for (unsigned Part = 0; Part < UF; Part++) {
2308 // Collect the stored vector from each member.
2309 SmallVector<Value *, 4> StoredVecs;
2310 for (unsigned i = 0; i < InterleaveFactor; i++) {
2311 // Interleaved store group doesn't allow a gap, so each index has a member
2312 Instruction *Member = Group->getMember(i);
2313 assert(Member && "Fail to get a member from an interleaved store group");
2314
2315 Value *StoredVec = getOrCreateVectorValue(
2316 cast<StoreInst>(Member)->getValueOperand(), Part);
2317 if (Group->isReverse())
2318 StoredVec = reverseVector(StoredVec);
2319
2320 // If this member has different type, cast it to a unified type.
2321
2322 if (StoredVec->getType() != SubVT)
2323 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2324
2325 StoredVecs.push_back(StoredVec);
2326 }
2327
2328 // Concatenate all vectors into a wide vector.
2329 Value *WideVec = concatenateVectors(Builder, StoredVecs);
2330
2331 // Interleave the elements in the wide vector.
2332 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
2333 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2334 "interleaved.vec");
2335
2336 Instruction *NewStoreInstr;
2337 if (BlockInMask) {
2338 Value *BlockInMaskPart = State.get(BlockInMask, Part);
2339 auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2340 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF);
2341 Value *ShuffledMask = Builder.CreateShuffleVector(
2342 BlockInMaskPart, Undefs, RepMask, "interleaved.mask");
2343 NewStoreInstr = Builder.CreateMaskedStore(
2344 IVec, AddrParts[Part], Group->getAlignment(), ShuffledMask);
2345 }
2346 else
2347 NewStoreInstr = Builder.CreateAlignedStore(IVec, AddrParts[Part],
2348 Group->getAlignment());
2349
2350 Group->addMetadata(NewStoreInstr);
2351 }
2352 }
2353
vectorizeMemoryInstruction(Instruction * Instr,VPTransformState & State,VPValue * Addr,VPValue * BlockInMask)2354 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2355 VPTransformState &State,
2356 VPValue *Addr,
2357 VPValue *BlockInMask) {
2358 // Attempt to issue a wide load.
2359 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2360 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2361
2362 assert((LI || SI) && "Invalid Load/Store instruction");
2363
2364 LoopVectorizationCostModel::InstWidening Decision =
2365 Cost->getWideningDecision(Instr, VF);
2366 assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
2367 "CM decision should be taken at this point");
2368 if (Decision == LoopVectorizationCostModel::CM_Interleave)
2369 return vectorizeInterleaveGroup(Instr, State, Addr, BlockInMask);
2370
2371 Type *ScalarDataTy = getMemInstValueType(Instr);
2372 Type *DataTy = VectorType::get(ScalarDataTy, VF);
2373 // An alignment of 0 means target abi alignment. We need to use the scalar's
2374 // target abi alignment in such a case.
2375 const DataLayout &DL = Instr->getModule()->getDataLayout();
2376 const Align Alignment =
2377 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy);
2378
2379 // Determine if the pointer operand of the access is either consecutive or
2380 // reverse consecutive.
2381 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2382 bool ConsecutiveStride =
2383 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2384 bool CreateGatherScatter =
2385 (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2386
2387 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2388 // gather/scatter. Otherwise Decision should have been to Scalarize.
2389 assert((ConsecutiveStride || CreateGatherScatter) &&
2390 "The instruction should be scalarized");
2391 (void)ConsecutiveStride;
2392
2393 VectorParts BlockInMaskParts(UF);
2394 bool isMaskRequired = BlockInMask;
2395 if (isMaskRequired)
2396 for (unsigned Part = 0; Part < UF; ++Part)
2397 BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2398
2399 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2400 // Calculate the pointer for the specific unroll-part.
2401 GetElementPtrInst *PartPtr = nullptr;
2402
2403 bool InBounds = false;
2404 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2405 InBounds = gep->isInBounds();
2406
2407 if (Reverse) {
2408 // If the address is consecutive but reversed, then the
2409 // wide store needs to start at the last vector element.
2410 PartPtr = cast<GetElementPtrInst>(
2411 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
2412 PartPtr->setIsInBounds(InBounds);
2413 PartPtr = cast<GetElementPtrInst>(
2414 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
2415 PartPtr->setIsInBounds(InBounds);
2416 if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2417 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2418 } else {
2419 PartPtr = cast<GetElementPtrInst>(
2420 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
2421 PartPtr->setIsInBounds(InBounds);
2422 }
2423
2424 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2425 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2426 };
2427
2428 // Handle Stores:
2429 if (SI) {
2430 setDebugLocFromInst(Builder, SI);
2431
2432 for (unsigned Part = 0; Part < UF; ++Part) {
2433 Instruction *NewSI = nullptr;
2434 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
2435 if (CreateGatherScatter) {
2436 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2437 Value *VectorGep = State.get(Addr, Part);
2438 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep,
2439 Alignment.value(), MaskPart);
2440 } else {
2441 if (Reverse) {
2442 // If we store to reverse consecutive memory locations, then we need
2443 // to reverse the order of elements in the stored value.
2444 StoredVal = reverseVector(StoredVal);
2445 // We don't want to update the value in the map as it might be used in
2446 // another expression. So don't call resetVectorValue(StoredVal).
2447 }
2448 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2449 if (isMaskRequired)
2450 NewSI = Builder.CreateMaskedStore(
2451 StoredVal, VecPtr, Alignment.value(), BlockInMaskParts[Part]);
2452 else
2453 NewSI =
2454 Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment.value());
2455 }
2456 addMetadata(NewSI, SI);
2457 }
2458 return;
2459 }
2460
2461 // Handle loads.
2462 assert(LI && "Must have a load instruction");
2463 setDebugLocFromInst(Builder, LI);
2464 for (unsigned Part = 0; Part < UF; ++Part) {
2465 Value *NewLI;
2466 if (CreateGatherScatter) {
2467 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2468 Value *VectorGep = State.get(Addr, Part);
2469 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment.value(), MaskPart,
2470 nullptr, "wide.masked.gather");
2471 addMetadata(NewLI, LI);
2472 } else {
2473 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2474 if (isMaskRequired)
2475 NewLI = Builder.CreateMaskedLoad(
2476 VecPtr, Alignment.value(), BlockInMaskParts[Part],
2477 UndefValue::get(DataTy), "wide.masked.load");
2478 else
2479 NewLI = Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment.value(),
2480 "wide.load");
2481
2482 // Add metadata to the load, but setVectorValue to the reverse shuffle.
2483 addMetadata(NewLI, LI);
2484 if (Reverse)
2485 NewLI = reverseVector(NewLI);
2486 }
2487 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2488 }
2489 }
2490
scalarizeInstruction(Instruction * Instr,const VPIteration & Instance,bool IfPredicateInstr)2491 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2492 const VPIteration &Instance,
2493 bool IfPredicateInstr) {
2494 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2495
2496 setDebugLocFromInst(Builder, Instr);
2497
2498 // Does this instruction return a value ?
2499 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2500
2501 Instruction *Cloned = Instr->clone();
2502 if (!IsVoidRetTy)
2503 Cloned->setName(Instr->getName() + ".cloned");
2504
2505 // Replace the operands of the cloned instructions with their scalar
2506 // equivalents in the new loop.
2507 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2508 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
2509 Cloned->setOperand(op, NewOp);
2510 }
2511 addNewMetadata(Cloned, Instr);
2512
2513 // Place the cloned scalar in the new loop.
2514 Builder.Insert(Cloned);
2515
2516 // Add the cloned scalar to the scalar map entry.
2517 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2518
2519 // If we just cloned a new assumption, add it the assumption cache.
2520 if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2521 if (II->getIntrinsicID() == Intrinsic::assume)
2522 AC->registerAssumption(II);
2523
2524 // End if-block.
2525 if (IfPredicateInstr)
2526 PredicatedInstructions.push_back(Cloned);
2527 }
2528
createInductionVariable(Loop * L,Value * Start,Value * End,Value * Step,Instruction * DL)2529 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2530 Value *End, Value *Step,
2531 Instruction *DL) {
2532 BasicBlock *Header = L->getHeader();
2533 BasicBlock *Latch = L->getLoopLatch();
2534 // As we're just creating this loop, it's possible no latch exists
2535 // yet. If so, use the header as this will be a single block loop.
2536 if (!Latch)
2537 Latch = Header;
2538
2539 IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2540 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2541 setDebugLocFromInst(Builder, OldInst);
2542 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2543
2544 Builder.SetInsertPoint(Latch->getTerminator());
2545 setDebugLocFromInst(Builder, OldInst);
2546
2547 // Create i+1 and fill the PHINode.
2548 Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2549 Induction->addIncoming(Start, L->getLoopPreheader());
2550 Induction->addIncoming(Next, Latch);
2551 // Create the compare.
2552 Value *ICmp = Builder.CreateICmpEQ(Next, End);
2553 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2554
2555 // Now we have two terminators. Remove the old one from the block.
2556 Latch->getTerminator()->eraseFromParent();
2557
2558 return Induction;
2559 }
2560
getOrCreateTripCount(Loop * L)2561 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2562 if (TripCount)
2563 return TripCount;
2564
2565 assert(L && "Create Trip Count for null loop.");
2566 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2567 // Find the loop boundaries.
2568 ScalarEvolution *SE = PSE.getSE();
2569 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2570 assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2571 "Invalid loop count");
2572
2573 Type *IdxTy = Legal->getWidestInductionType();
2574 assert(IdxTy && "No type for induction");
2575
2576 // The exit count might have the type of i64 while the phi is i32. This can
2577 // happen if we have an induction variable that is sign extended before the
2578 // compare. The only way that we get a backedge taken count is that the
2579 // induction variable was signed and as such will not overflow. In such a case
2580 // truncation is legal.
2581 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
2582 IdxTy->getPrimitiveSizeInBits())
2583 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2584 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2585
2586 // Get the total trip count from the count by adding 1.
2587 const SCEV *ExitCount = SE->getAddExpr(
2588 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2589
2590 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2591
2592 // Expand the trip count and place the new instructions in the preheader.
2593 // Notice that the pre-header does not change, only the loop body.
2594 SCEVExpander Exp(*SE, DL, "induction");
2595
2596 // Count holds the overall loop count (N).
2597 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2598 L->getLoopPreheader()->getTerminator());
2599
2600 if (TripCount->getType()->isPointerTy())
2601 TripCount =
2602 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2603 L->getLoopPreheader()->getTerminator());
2604
2605 return TripCount;
2606 }
2607
getOrCreateVectorTripCount(Loop * L)2608 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2609 if (VectorTripCount)
2610 return VectorTripCount;
2611
2612 Value *TC = getOrCreateTripCount(L);
2613 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2614
2615 Type *Ty = TC->getType();
2616 Constant *Step = ConstantInt::get(Ty, VF * UF);
2617
2618 // If the tail is to be folded by masking, round the number of iterations N
2619 // up to a multiple of Step instead of rounding down. This is done by first
2620 // adding Step-1 and then rounding down. Note that it's ok if this addition
2621 // overflows: the vector induction variable will eventually wrap to zero given
2622 // that it starts at zero and its Step is a power of two; the loop will then
2623 // exit, with the last early-exit vector comparison also producing all-true.
2624 if (Cost->foldTailByMasking()) {
2625 assert(isPowerOf2_32(VF * UF) &&
2626 "VF*UF must be a power of 2 when folding tail by masking");
2627 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
2628 }
2629
2630 // Now we need to generate the expression for the part of the loop that the
2631 // vectorized body will execute. This is equal to N - (N % Step) if scalar
2632 // iterations are not required for correctness, or N - Step, otherwise. Step
2633 // is equal to the vectorization factor (number of SIMD elements) times the
2634 // unroll factor (number of SIMD instructions).
2635 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2636
2637 // If there is a non-reversed interleaved group that may speculatively access
2638 // memory out-of-bounds, we need to ensure that there will be at least one
2639 // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2640 // the trip count, we set the remainder to be equal to the step. If the step
2641 // does not evenly divide the trip count, no adjustment is necessary since
2642 // there will already be scalar iterations. Note that the minimum iterations
2643 // check ensures that N >= Step.
2644 if (VF > 1 && Cost->requiresScalarEpilogue()) {
2645 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2646 R = Builder.CreateSelect(IsZero, Step, R);
2647 }
2648
2649 VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2650
2651 return VectorTripCount;
2652 }
2653
createBitOrPointerCast(Value * V,VectorType * DstVTy,const DataLayout & DL)2654 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2655 const DataLayout &DL) {
2656 // Verify that V is a vector type with same number of elements as DstVTy.
2657 unsigned VF = DstVTy->getNumElements();
2658 VectorType *SrcVecTy = cast<VectorType>(V->getType());
2659 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2660 Type *SrcElemTy = SrcVecTy->getElementType();
2661 Type *DstElemTy = DstVTy->getElementType();
2662 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2663 "Vector elements must have same size");
2664
2665 // Do a direct cast if element types are castable.
2666 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2667 return Builder.CreateBitOrPointerCast(V, DstVTy);
2668 }
2669 // V cannot be directly casted to desired vector type.
2670 // May happen when V is a floating point vector but DstVTy is a vector of
2671 // pointers or vice-versa. Handle this using a two-step bitcast using an
2672 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2673 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2674 "Only one type should be a pointer type");
2675 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2676 "Only one type should be a floating point type");
2677 Type *IntTy =
2678 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2679 VectorType *VecIntTy = VectorType::get(IntTy, VF);
2680 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2681 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2682 }
2683
emitMinimumIterationCountCheck(Loop * L,BasicBlock * Bypass)2684 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2685 BasicBlock *Bypass) {
2686 Value *Count = getOrCreateTripCount(L);
2687 // Reuse existing vector loop preheader for TC checks.
2688 // Note that new preheader block is generated for vector loop.
2689 BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2690 IRBuilder<> Builder(TCCheckBlock->getTerminator());
2691
2692 // Generate code to check if the loop's trip count is less than VF * UF, or
2693 // equal to it in case a scalar epilogue is required; this implies that the
2694 // vector trip count is zero. This check also covers the case where adding one
2695 // to the backedge-taken count overflowed leading to an incorrect trip count
2696 // of zero. In this case we will also jump to the scalar loop.
2697 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2698 : ICmpInst::ICMP_ULT;
2699
2700 // If tail is to be folded, vector loop takes care of all iterations.
2701 Value *CheckMinIters = Builder.getFalse();
2702 if (!Cost->foldTailByMasking())
2703 CheckMinIters = Builder.CreateICmp(
2704 P, Count, ConstantInt::get(Count->getType(), VF * UF),
2705 "min.iters.check");
2706
2707 // Create new preheader for vector loop.
2708 LoopVectorPreHeader =
2709 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2710 "vector.ph");
2711
2712 assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2713 DT->getNode(Bypass)->getIDom()) &&
2714 "TC check is expected to dominate Bypass");
2715
2716 // Update dominator for Bypass & LoopExit.
2717 DT->changeImmediateDominator(Bypass, TCCheckBlock);
2718 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2719
2720 ReplaceInstWithInst(
2721 TCCheckBlock->getTerminator(),
2722 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2723 LoopBypassBlocks.push_back(TCCheckBlock);
2724 }
2725
emitSCEVChecks(Loop * L,BasicBlock * Bypass)2726 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2727 // Reuse existing vector loop preheader for SCEV checks.
2728 // Note that new preheader block is generated for vector loop.
2729 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2730
2731 // Generate the code to check that the SCEV assumptions that we made.
2732 // We want the new basic block to start at the first instruction in a
2733 // sequence of instructions that form a check.
2734 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2735 "scev.check");
2736 Value *SCEVCheck = Exp.expandCodeForPredicate(
2737 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2738
2739 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2740 if (C->isZero())
2741 return;
2742
2743 assert(!SCEVCheckBlock->getParent()->hasOptSize() &&
2744 "Cannot SCEV check stride or overflow when optimizing for size");
2745
2746 SCEVCheckBlock->setName("vector.scevcheck");
2747 // Create new preheader for vector loop.
2748 LoopVectorPreHeader =
2749 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2750 nullptr, "vector.ph");
2751
2752 // Update dominator only if this is first RT check.
2753 if (LoopBypassBlocks.empty()) {
2754 DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2755 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2756 }
2757
2758 ReplaceInstWithInst(
2759 SCEVCheckBlock->getTerminator(),
2760 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2761 LoopBypassBlocks.push_back(SCEVCheckBlock);
2762 AddedSafetyChecks = true;
2763 }
2764
emitMemRuntimeChecks(Loop * L,BasicBlock * Bypass)2765 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2766 // VPlan-native path does not do any analysis for runtime checks currently.
2767 if (EnableVPlanNativePath)
2768 return;
2769
2770 // Reuse existing vector loop preheader for runtime memory checks.
2771 // Note that new preheader block is generated for vector loop.
2772 BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2773
2774 // Generate the code that checks in runtime if arrays overlap. We put the
2775 // checks into a separate block to make the more common case of few elements
2776 // faster.
2777 Instruction *FirstCheckInst;
2778 Instruction *MemRuntimeCheck;
2779 std::tie(FirstCheckInst, MemRuntimeCheck) =
2780 Legal->getLAI()->addRuntimeChecks(MemCheckBlock->getTerminator());
2781 if (!MemRuntimeCheck)
2782 return;
2783
2784 if (MemCheckBlock->getParent()->hasOptSize()) {
2785 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2786 "Cannot emit memory checks when optimizing for size, unless forced "
2787 "to vectorize.");
2788 ORE->emit([&]() {
2789 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2790 L->getStartLoc(), L->getHeader())
2791 << "Code-size may be reduced by not forcing "
2792 "vectorization, or by source-code modifications "
2793 "eliminating the need for runtime checks "
2794 "(e.g., adding 'restrict').";
2795 });
2796 }
2797
2798 MemCheckBlock->setName("vector.memcheck");
2799 // Create new preheader for vector loop.
2800 LoopVectorPreHeader =
2801 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2802 "vector.ph");
2803
2804 // Update dominator only if this is first RT check.
2805 if (LoopBypassBlocks.empty()) {
2806 DT->changeImmediateDominator(Bypass, MemCheckBlock);
2807 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2808 }
2809
2810 ReplaceInstWithInst(
2811 MemCheckBlock->getTerminator(),
2812 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck));
2813 LoopBypassBlocks.push_back(MemCheckBlock);
2814 AddedSafetyChecks = true;
2815
2816 // We currently don't use LoopVersioning for the actual loop cloning but we
2817 // still use it to add the noalias metadata.
2818 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2819 PSE.getSE());
2820 LVer->prepareNoAliasMetadata();
2821 }
2822
emitTransformedIndex(IRBuilder<> & B,Value * Index,ScalarEvolution * SE,const DataLayout & DL,const InductionDescriptor & ID) const2823 Value *InnerLoopVectorizer::emitTransformedIndex(
2824 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2825 const InductionDescriptor &ID) const {
2826
2827 SCEVExpander Exp(*SE, DL, "induction");
2828 auto Step = ID.getStep();
2829 auto StartValue = ID.getStartValue();
2830 assert(Index->getType() == Step->getType() &&
2831 "Index type does not match StepValue type");
2832
2833 // Note: the IR at this point is broken. We cannot use SE to create any new
2834 // SCEV and then expand it, hoping that SCEV's simplification will give us
2835 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2836 // lead to various SCEV crashes. So all we can do is to use builder and rely
2837 // on InstCombine for future simplifications. Here we handle some trivial
2838 // cases only.
2839 auto CreateAdd = [&B](Value *X, Value *Y) {
2840 assert(X->getType() == Y->getType() && "Types don't match!");
2841 if (auto *CX = dyn_cast<ConstantInt>(X))
2842 if (CX->isZero())
2843 return Y;
2844 if (auto *CY = dyn_cast<ConstantInt>(Y))
2845 if (CY->isZero())
2846 return X;
2847 return B.CreateAdd(X, Y);
2848 };
2849
2850 auto CreateMul = [&B](Value *X, Value *Y) {
2851 assert(X->getType() == Y->getType() && "Types don't match!");
2852 if (auto *CX = dyn_cast<ConstantInt>(X))
2853 if (CX->isOne())
2854 return Y;
2855 if (auto *CY = dyn_cast<ConstantInt>(Y))
2856 if (CY->isOne())
2857 return X;
2858 return B.CreateMul(X, Y);
2859 };
2860
2861 switch (ID.getKind()) {
2862 case InductionDescriptor::IK_IntInduction: {
2863 assert(Index->getType() == StartValue->getType() &&
2864 "Index type does not match StartValue type");
2865 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
2866 return B.CreateSub(StartValue, Index);
2867 auto *Offset = CreateMul(
2868 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
2869 return CreateAdd(StartValue, Offset);
2870 }
2871 case InductionDescriptor::IK_PtrInduction: {
2872 assert(isa<SCEVConstant>(Step) &&
2873 "Expected constant step for pointer induction");
2874 return B.CreateGEP(
2875 StartValue->getType()->getPointerElementType(), StartValue,
2876 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
2877 &*B.GetInsertPoint())));
2878 }
2879 case InductionDescriptor::IK_FpInduction: {
2880 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2881 auto InductionBinOp = ID.getInductionBinOp();
2882 assert(InductionBinOp &&
2883 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2884 InductionBinOp->getOpcode() == Instruction::FSub) &&
2885 "Original bin op should be defined for FP induction");
2886
2887 Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
2888
2889 // Floating point operations had to be 'fast' to enable the induction.
2890 FastMathFlags Flags;
2891 Flags.setFast();
2892
2893 Value *MulExp = B.CreateFMul(StepValue, Index);
2894 if (isa<Instruction>(MulExp))
2895 // We have to check, the MulExp may be a constant.
2896 cast<Instruction>(MulExp)->setFastMathFlags(Flags);
2897
2898 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2899 "induction");
2900 if (isa<Instruction>(BOp))
2901 cast<Instruction>(BOp)->setFastMathFlags(Flags);
2902
2903 return BOp;
2904 }
2905 case InductionDescriptor::IK_NoInduction:
2906 return nullptr;
2907 }
2908 llvm_unreachable("invalid enum");
2909 }
2910
createVectorizedLoopSkeleton()2911 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2912 /*
2913 In this function we generate a new loop. The new loop will contain
2914 the vectorized instructions while the old loop will continue to run the
2915 scalar remainder.
2916
2917 [ ] <-- loop iteration number check.
2918 / |
2919 / v
2920 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2921 | / |
2922 | / v
2923 || [ ] <-- vector pre header.
2924 |/ |
2925 | v
2926 | [ ] \
2927 | [ ]_| <-- vector loop.
2928 | |
2929 | v
2930 | -[ ] <--- middle-block.
2931 | / |
2932 | / v
2933 -|- >[ ] <--- new preheader.
2934 | |
2935 | v
2936 | [ ] \
2937 | [ ]_| <-- old scalar loop to handle remainder.
2938 \ |
2939 \ v
2940 >[ ] <-- exit block.
2941 ...
2942 */
2943
2944 MDNode *OrigLoopID = OrigLoop->getLoopID();
2945
2946 // Some loops have a single integer induction variable, while other loops
2947 // don't. One example is c++ iterators that often have multiple pointer
2948 // induction variables. In the code below we also support a case where we
2949 // don't have a single induction variable.
2950 //
2951 // We try to obtain an induction variable from the original loop as hard
2952 // as possible. However if we don't find one that:
2953 // - is an integer
2954 // - counts from zero, stepping by one
2955 // - is the size of the widest induction variable type
2956 // then we create a new one.
2957 OldInduction = Legal->getPrimaryInduction();
2958 Type *IdxTy = Legal->getWidestInductionType();
2959
2960 // Split the single block loop into the two loop structure described above.
2961 LoopScalarBody = OrigLoop->getHeader();
2962 LoopVectorPreHeader = OrigLoop->getLoopPreheader();
2963 LoopExitBlock = OrigLoop->getExitBlock();
2964 assert(LoopExitBlock && "Must have an exit block");
2965 assert(LoopVectorPreHeader && "Invalid loop structure");
2966
2967 LoopMiddleBlock =
2968 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2969 LI, nullptr, "middle.block");
2970 LoopScalarPreHeader =
2971 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
2972 nullptr, "scalar.ph");
2973 // We intentionally don't let SplitBlock to update LoopInfo since
2974 // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
2975 // LoopVectorBody is explicitly added to the correct place few lines later.
2976 LoopVectorBody =
2977 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2978 nullptr, nullptr, "vector.body");
2979
2980 // Update dominator for loop exit.
2981 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2982
2983 // Create and register the new vector loop.
2984 Loop *Lp = LI->AllocateLoop();
2985 Loop *ParentLoop = OrigLoop->getParentLoop();
2986
2987 // Insert the new loop into the loop nest and register the new basic blocks
2988 // before calling any utilities such as SCEV that require valid LoopInfo.
2989 if (ParentLoop) {
2990 ParentLoop->addChildLoop(Lp);
2991 } else {
2992 LI->addTopLevelLoop(Lp);
2993 }
2994 Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
2995
2996 // Find the loop boundaries.
2997 Value *Count = getOrCreateTripCount(Lp);
2998
2999 Value *StartIdx = ConstantInt::get(IdxTy, 0);
3000
3001 // Now, compare the new count to zero. If it is zero skip the vector loop and
3002 // jump to the scalar loop. This check also covers the case where the
3003 // backedge-taken count is uint##_max: adding one to it will overflow leading
3004 // to an incorrect trip count of zero. In this (rare) case we will also jump
3005 // to the scalar loop.
3006 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3007
3008 // Generate the code to check any assumptions that we've made for SCEV
3009 // expressions.
3010 emitSCEVChecks(Lp, LoopScalarPreHeader);
3011
3012 // Generate the code that checks in runtime if arrays overlap. We put the
3013 // checks into a separate block to make the more common case of few elements
3014 // faster.
3015 emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3016
3017 // Generate the induction variable.
3018 // The loop step is equal to the vectorization factor (num of SIMD elements)
3019 // times the unroll factor (num of SIMD instructions).
3020 Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3021 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3022 Induction =
3023 createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3024 getDebugLocFromInstOrOperands(OldInduction));
3025
3026 // We are going to resume the execution of the scalar loop.
3027 // Go over all of the induction variables that we found and fix the
3028 // PHIs that are left in the scalar version of the loop.
3029 // The starting values of PHI nodes depend on the counter of the last
3030 // iteration in the vectorized loop.
3031 // If we come from a bypass edge then we need to start from the original
3032 // start value.
3033
3034 // This variable saves the new starting index for the scalar loop. It is used
3035 // to test if there are any tail iterations left once the vector loop has
3036 // completed.
3037 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3038 for (auto &InductionEntry : *List) {
3039 PHINode *OrigPhi = InductionEntry.first;
3040 InductionDescriptor II = InductionEntry.second;
3041
3042 // Create phi nodes to merge from the backedge-taken check block.
3043 PHINode *BCResumeVal =
3044 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3045 LoopScalarPreHeader->getTerminator());
3046 // Copy original phi DL over to the new one.
3047 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3048 Value *&EndValue = IVEndValues[OrigPhi];
3049 if (OrigPhi == OldInduction) {
3050 // We know what the end value is.
3051 EndValue = CountRoundDown;
3052 } else {
3053 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3054 Type *StepType = II.getStep()->getType();
3055 Instruction::CastOps CastOp =
3056 CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3057 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3058 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3059 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3060 EndValue->setName("ind.end");
3061 }
3062
3063 // The new PHI merges the original incoming value, in case of a bypass,
3064 // or the value at the end of the vectorized loop.
3065 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3066
3067 // Fix the scalar body counter (PHI node).
3068 // The old induction's phi node in the scalar body needs the truncated
3069 // value.
3070 for (BasicBlock *BB : LoopBypassBlocks)
3071 BCResumeVal->addIncoming(II.getStartValue(), BB);
3072 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3073 }
3074
3075 // We need the OrigLoop (scalar loop part) latch terminator to help
3076 // produce correct debug info for the middle block BB instructions.
3077 // The legality check stage guarantees that the loop will have a single
3078 // latch.
3079 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3080 "Scalar loop latch terminator isn't a branch");
3081 BranchInst *ScalarLatchBr =
3082 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3083
3084 // Add a check in the middle block to see if we have completed
3085 // all of the iterations in the first vector loop.
3086 // If (N - N%VF) == N, then we *don't* need to run the remainder.
3087 // If tail is to be folded, we know we don't need to run the remainder.
3088 Value *CmpN = Builder.getTrue();
3089 if (!Cost->foldTailByMasking()) {
3090 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3091 CountRoundDown, "cmp.n",
3092 LoopMiddleBlock->getTerminator());
3093
3094 // Here we use the same DebugLoc as the scalar loop latch branch instead
3095 // of the corresponding compare because they may have ended up with
3096 // different line numbers and we want to avoid awkward line stepping while
3097 // debugging. Eg. if the compare has got a line number inside the loop.
3098 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3099 }
3100
3101 BranchInst *BrInst =
3102 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3103 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3104 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3105
3106 // Get ready to start creating new instructions into the vectorized body.
3107 assert(LoopVectorPreHeader == Lp->getLoopPreheader() &&
3108 "Inconsistent vector loop preheader");
3109 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3110
3111 Optional<MDNode *> VectorizedLoopID =
3112 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3113 LLVMLoopVectorizeFollowupVectorized});
3114 if (VectorizedLoopID.hasValue()) {
3115 Lp->setLoopID(VectorizedLoopID.getValue());
3116
3117 // Do not setAlreadyVectorized if loop attributes have been defined
3118 // explicitly.
3119 return LoopVectorPreHeader;
3120 }
3121
3122 // Keep all loop hints from the original loop on the vector loop (we'll
3123 // replace the vectorizer-specific hints below).
3124 if (MDNode *LID = OrigLoop->getLoopID())
3125 Lp->setLoopID(LID);
3126
3127 LoopVectorizeHints Hints(Lp, true, *ORE);
3128 Hints.setAlreadyVectorized();
3129
3130 #ifdef EXPENSIVE_CHECKS
3131 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3132 LI->verify(*DT);
3133 #endif
3134
3135 return LoopVectorPreHeader;
3136 }
3137
3138 // Fix up external users of the induction variable. At this point, we are
3139 // in LCSSA form, with all external PHIs that use the IV having one input value,
3140 // coming from the remainder loop. We need those PHIs to also have a correct
3141 // value for the IV when arriving directly from the middle block.
fixupIVUsers(PHINode * OrigPhi,const InductionDescriptor & II,Value * CountRoundDown,Value * EndValue,BasicBlock * MiddleBlock)3142 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3143 const InductionDescriptor &II,
3144 Value *CountRoundDown, Value *EndValue,
3145 BasicBlock *MiddleBlock) {
3146 // There are two kinds of external IV usages - those that use the value
3147 // computed in the last iteration (the PHI) and those that use the penultimate
3148 // value (the value that feeds into the phi from the loop latch).
3149 // We allow both, but they, obviously, have different values.
3150
3151 assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3152
3153 DenseMap<Value *, Value *> MissingVals;
3154
3155 // An external user of the last iteration's value should see the value that
3156 // the remainder loop uses to initialize its own IV.
3157 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3158 for (User *U : PostInc->users()) {
3159 Instruction *UI = cast<Instruction>(U);
3160 if (!OrigLoop->contains(UI)) {
3161 assert(isa<PHINode>(UI) && "Expected LCSSA form");
3162 MissingVals[UI] = EndValue;
3163 }
3164 }
3165
3166 // An external user of the penultimate value need to see EndValue - Step.
3167 // The simplest way to get this is to recompute it from the constituent SCEVs,
3168 // that is Start + (Step * (CRD - 1)).
3169 for (User *U : OrigPhi->users()) {
3170 auto *UI = cast<Instruction>(U);
3171 if (!OrigLoop->contains(UI)) {
3172 const DataLayout &DL =
3173 OrigLoop->getHeader()->getModule()->getDataLayout();
3174 assert(isa<PHINode>(UI) && "Expected LCSSA form");
3175
3176 IRBuilder<> B(MiddleBlock->getTerminator());
3177 Value *CountMinusOne = B.CreateSub(
3178 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3179 Value *CMO =
3180 !II.getStep()->getType()->isIntegerTy()
3181 ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3182 II.getStep()->getType())
3183 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3184 CMO->setName("cast.cmo");
3185 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3186 Escape->setName("ind.escape");
3187 MissingVals[UI] = Escape;
3188 }
3189 }
3190
3191 for (auto &I : MissingVals) {
3192 PHINode *PHI = cast<PHINode>(I.first);
3193 // One corner case we have to handle is two IVs "chasing" each-other,
3194 // that is %IV2 = phi [...], [ %IV1, %latch ]
3195 // In this case, if IV1 has an external use, we need to avoid adding both
3196 // "last value of IV1" and "penultimate value of IV2". So, verify that we
3197 // don't already have an incoming value for the middle block.
3198 if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3199 PHI->addIncoming(I.second, MiddleBlock);
3200 }
3201 }
3202
3203 namespace {
3204
3205 struct CSEDenseMapInfo {
canHandle__anon374c8b570911::CSEDenseMapInfo3206 static bool canHandle(const Instruction *I) {
3207 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3208 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3209 }
3210
getEmptyKey__anon374c8b570911::CSEDenseMapInfo3211 static inline Instruction *getEmptyKey() {
3212 return DenseMapInfo<Instruction *>::getEmptyKey();
3213 }
3214
getTombstoneKey__anon374c8b570911::CSEDenseMapInfo3215 static inline Instruction *getTombstoneKey() {
3216 return DenseMapInfo<Instruction *>::getTombstoneKey();
3217 }
3218
getHashValue__anon374c8b570911::CSEDenseMapInfo3219 static unsigned getHashValue(const Instruction *I) {
3220 assert(canHandle(I) && "Unknown instruction!");
3221 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3222 I->value_op_end()));
3223 }
3224
isEqual__anon374c8b570911::CSEDenseMapInfo3225 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3226 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3227 LHS == getTombstoneKey() || RHS == getTombstoneKey())
3228 return LHS == RHS;
3229 return LHS->isIdenticalTo(RHS);
3230 }
3231 };
3232
3233 } // end anonymous namespace
3234
3235 ///Perform cse of induction variable instructions.
cse(BasicBlock * BB)3236 static void cse(BasicBlock *BB) {
3237 // Perform simple cse.
3238 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3239 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3240 Instruction *In = &*I++;
3241
3242 if (!CSEDenseMapInfo::canHandle(In))
3243 continue;
3244
3245 // Check if we can replace this instruction with any of the
3246 // visited instructions.
3247 if (Instruction *V = CSEMap.lookup(In)) {
3248 In->replaceAllUsesWith(V);
3249 In->eraseFromParent();
3250 continue;
3251 }
3252
3253 CSEMap[In] = In;
3254 }
3255 }
3256
getVectorCallCost(CallInst * CI,unsigned VF,bool & NeedToScalarize)3257 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3258 unsigned VF,
3259 bool &NeedToScalarize) {
3260 Function *F = CI->getCalledFunction();
3261 StringRef FnName = CI->getCalledFunction()->getName();
3262 Type *ScalarRetTy = CI->getType();
3263 SmallVector<Type *, 4> Tys, ScalarTys;
3264 for (auto &ArgOp : CI->arg_operands())
3265 ScalarTys.push_back(ArgOp->getType());
3266
3267 // Estimate cost of scalarized vector call. The source operands are assumed
3268 // to be vectors, so we need to extract individual elements from there,
3269 // execute VF scalar calls, and then gather the result into the vector return
3270 // value.
3271 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3272 if (VF == 1)
3273 return ScalarCallCost;
3274
3275 // Compute corresponding vector type for return value and arguments.
3276 Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3277 for (Type *ScalarTy : ScalarTys)
3278 Tys.push_back(ToVectorTy(ScalarTy, VF));
3279
3280 // Compute costs of unpacking argument values for the scalar calls and
3281 // packing the return values to a vector.
3282 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3283
3284 unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3285
3286 // If we can't emit a vector call for this function, then the currently found
3287 // cost is the cost we need to return.
3288 NeedToScalarize = true;
3289 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3290 return Cost;
3291
3292 // If the corresponding vector cost is cheaper, return its cost.
3293 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3294 if (VectorCallCost < Cost) {
3295 NeedToScalarize = false;
3296 return VectorCallCost;
3297 }
3298 return Cost;
3299 }
3300
getVectorIntrinsicCost(CallInst * CI,unsigned VF)3301 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3302 unsigned VF) {
3303 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3304 assert(ID && "Expected intrinsic call!");
3305
3306 FastMathFlags FMF;
3307 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3308 FMF = FPMO->getFastMathFlags();
3309
3310 SmallVector<Value *, 4> Operands(CI->arg_operands());
3311 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
3312 }
3313
smallestIntegerVectorType(Type * T1,Type * T2)3314 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3315 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3316 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3317 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3318 }
largestIntegerVectorType(Type * T1,Type * T2)3319 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3320 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3321 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3322 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3323 }
3324
truncateToMinimalBitwidths()3325 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3326 // For every instruction `I` in MinBWs, truncate the operands, create a
3327 // truncated version of `I` and reextend its result. InstCombine runs
3328 // later and will remove any ext/trunc pairs.
3329 SmallPtrSet<Value *, 4> Erased;
3330 for (const auto &KV : Cost->getMinimalBitwidths()) {
3331 // If the value wasn't vectorized, we must maintain the original scalar
3332 // type. The absence of the value from VectorLoopValueMap indicates that it
3333 // wasn't vectorized.
3334 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3335 continue;
3336 for (unsigned Part = 0; Part < UF; ++Part) {
3337 Value *I = getOrCreateVectorValue(KV.first, Part);
3338 if (Erased.find(I) != Erased.end() || I->use_empty() ||
3339 !isa<Instruction>(I))
3340 continue;
3341 Type *OriginalTy = I->getType();
3342 Type *ScalarTruncatedTy =
3343 IntegerType::get(OriginalTy->getContext(), KV.second);
3344 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3345 OriginalTy->getVectorNumElements());
3346 if (TruncatedTy == OriginalTy)
3347 continue;
3348
3349 IRBuilder<> B(cast<Instruction>(I));
3350 auto ShrinkOperand = [&](Value *V) -> Value * {
3351 if (auto *ZI = dyn_cast<ZExtInst>(V))
3352 if (ZI->getSrcTy() == TruncatedTy)
3353 return ZI->getOperand(0);
3354 return B.CreateZExtOrTrunc(V, TruncatedTy);
3355 };
3356
3357 // The actual instruction modification depends on the instruction type,
3358 // unfortunately.
3359 Value *NewI = nullptr;
3360 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3361 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3362 ShrinkOperand(BO->getOperand(1)));
3363
3364 // Any wrapping introduced by shrinking this operation shouldn't be
3365 // considered undefined behavior. So, we can't unconditionally copy
3366 // arithmetic wrapping flags to NewI.
3367 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3368 } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3369 NewI =
3370 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3371 ShrinkOperand(CI->getOperand(1)));
3372 } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3373 NewI = B.CreateSelect(SI->getCondition(),
3374 ShrinkOperand(SI->getTrueValue()),
3375 ShrinkOperand(SI->getFalseValue()));
3376 } else if (auto *CI = dyn_cast<CastInst>(I)) {
3377 switch (CI->getOpcode()) {
3378 default:
3379 llvm_unreachable("Unhandled cast!");
3380 case Instruction::Trunc:
3381 NewI = ShrinkOperand(CI->getOperand(0));
3382 break;
3383 case Instruction::SExt:
3384 NewI = B.CreateSExtOrTrunc(
3385 CI->getOperand(0),
3386 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3387 break;
3388 case Instruction::ZExt:
3389 NewI = B.CreateZExtOrTrunc(
3390 CI->getOperand(0),
3391 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3392 break;
3393 }
3394 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3395 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3396 auto *O0 = B.CreateZExtOrTrunc(
3397 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3398 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3399 auto *O1 = B.CreateZExtOrTrunc(
3400 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3401
3402 NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3403 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3404 // Don't do anything with the operands, just extend the result.
3405 continue;
3406 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3407 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3408 auto *O0 = B.CreateZExtOrTrunc(
3409 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3410 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3411 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3412 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3413 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3414 auto *O0 = B.CreateZExtOrTrunc(
3415 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3416 NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3417 } else {
3418 // If we don't know what to do, be conservative and don't do anything.
3419 continue;
3420 }
3421
3422 // Lastly, extend the result.
3423 NewI->takeName(cast<Instruction>(I));
3424 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3425 I->replaceAllUsesWith(Res);
3426 cast<Instruction>(I)->eraseFromParent();
3427 Erased.insert(I);
3428 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3429 }
3430 }
3431
3432 // We'll have created a bunch of ZExts that are now parentless. Clean up.
3433 for (const auto &KV : Cost->getMinimalBitwidths()) {
3434 // If the value wasn't vectorized, we must maintain the original scalar
3435 // type. The absence of the value from VectorLoopValueMap indicates that it
3436 // wasn't vectorized.
3437 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3438 continue;
3439 for (unsigned Part = 0; Part < UF; ++Part) {
3440 Value *I = getOrCreateVectorValue(KV.first, Part);
3441 ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3442 if (Inst && Inst->use_empty()) {
3443 Value *NewI = Inst->getOperand(0);
3444 Inst->eraseFromParent();
3445 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3446 }
3447 }
3448 }
3449 }
3450
fixVectorizedLoop()3451 void InnerLoopVectorizer::fixVectorizedLoop() {
3452 // Insert truncates and extends for any truncated instructions as hints to
3453 // InstCombine.
3454 if (VF > 1)
3455 truncateToMinimalBitwidths();
3456
3457 // Fix widened non-induction PHIs by setting up the PHI operands.
3458 if (OrigPHIsToFix.size()) {
3459 assert(EnableVPlanNativePath &&
3460 "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3461 fixNonInductionPHIs();
3462 }
3463
3464 // At this point every instruction in the original loop is widened to a
3465 // vector form. Now we need to fix the recurrences in the loop. These PHI
3466 // nodes are currently empty because we did not want to introduce cycles.
3467 // This is the second stage of vectorizing recurrences.
3468 fixCrossIterationPHIs();
3469
3470 // Forget the original basic block.
3471 PSE.getSE()->forgetLoop(OrigLoop);
3472
3473 // Fix-up external users of the induction variables.
3474 for (auto &Entry : *Legal->getInductionVars())
3475 fixupIVUsers(Entry.first, Entry.second,
3476 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3477 IVEndValues[Entry.first], LoopMiddleBlock);
3478
3479 fixLCSSAPHIs();
3480 for (Instruction *PI : PredicatedInstructions)
3481 sinkScalarOperands(&*PI);
3482
3483 // Remove redundant induction instructions.
3484 cse(LoopVectorBody);
3485 }
3486
fixCrossIterationPHIs()3487 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3488 // In order to support recurrences we need to be able to vectorize Phi nodes.
3489 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3490 // stage #2: We now need to fix the recurrences by adding incoming edges to
3491 // the currently empty PHI nodes. At this point every instruction in the
3492 // original loop is widened to a vector form so we can use them to construct
3493 // the incoming edges.
3494 for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3495 // Handle first-order recurrences and reductions that need to be fixed.
3496 if (Legal->isFirstOrderRecurrence(&Phi))
3497 fixFirstOrderRecurrence(&Phi);
3498 else if (Legal->isReductionVariable(&Phi))
3499 fixReduction(&Phi);
3500 }
3501 }
3502
fixFirstOrderRecurrence(PHINode * Phi)3503 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3504 // This is the second phase of vectorizing first-order recurrences. An
3505 // overview of the transformation is described below. Suppose we have the
3506 // following loop.
3507 //
3508 // for (int i = 0; i < n; ++i)
3509 // b[i] = a[i] - a[i - 1];
3510 //
3511 // There is a first-order recurrence on "a". For this loop, the shorthand
3512 // scalar IR looks like:
3513 //
3514 // scalar.ph:
3515 // s_init = a[-1]
3516 // br scalar.body
3517 //
3518 // scalar.body:
3519 // i = phi [0, scalar.ph], [i+1, scalar.body]
3520 // s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3521 // s2 = a[i]
3522 // b[i] = s2 - s1
3523 // br cond, scalar.body, ...
3524 //
3525 // In this example, s1 is a recurrence because it's value depends on the
3526 // previous iteration. In the first phase of vectorization, we created a
3527 // temporary value for s1. We now complete the vectorization and produce the
3528 // shorthand vector IR shown below (for VF = 4, UF = 1).
3529 //
3530 // vector.ph:
3531 // v_init = vector(..., ..., ..., a[-1])
3532 // br vector.body
3533 //
3534 // vector.body
3535 // i = phi [0, vector.ph], [i+4, vector.body]
3536 // v1 = phi [v_init, vector.ph], [v2, vector.body]
3537 // v2 = a[i, i+1, i+2, i+3];
3538 // v3 = vector(v1(3), v2(0, 1, 2))
3539 // b[i, i+1, i+2, i+3] = v2 - v3
3540 // br cond, vector.body, middle.block
3541 //
3542 // middle.block:
3543 // x = v2(3)
3544 // br scalar.ph
3545 //
3546 // scalar.ph:
3547 // s_init = phi [x, middle.block], [a[-1], otherwise]
3548 // br scalar.body
3549 //
3550 // After execution completes the vector loop, we extract the next value of
3551 // the recurrence (x) to use as the initial value in the scalar loop.
3552
3553 // Get the original loop preheader and single loop latch.
3554 auto *Preheader = OrigLoop->getLoopPreheader();
3555 auto *Latch = OrigLoop->getLoopLatch();
3556
3557 // Get the initial and previous values of the scalar recurrence.
3558 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3559 auto *Previous = Phi->getIncomingValueForBlock(Latch);
3560
3561 // Create a vector from the initial value.
3562 auto *VectorInit = ScalarInit;
3563 if (VF > 1) {
3564 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3565 VectorInit = Builder.CreateInsertElement(
3566 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3567 Builder.getInt32(VF - 1), "vector.recur.init");
3568 }
3569
3570 // We constructed a temporary phi node in the first phase of vectorization.
3571 // This phi node will eventually be deleted.
3572 Builder.SetInsertPoint(
3573 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3574
3575 // Create a phi node for the new recurrence. The current value will either be
3576 // the initial value inserted into a vector or loop-varying vector value.
3577 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3578 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3579
3580 // Get the vectorized previous value of the last part UF - 1. It appears last
3581 // among all unrolled iterations, due to the order of their construction.
3582 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3583
3584 // Find and set the insertion point after the previous value if it is an
3585 // instruction.
3586 BasicBlock::iterator InsertPt;
3587 // Note that the previous value may have been constant-folded so it is not
3588 // guaranteed to be an instruction in the vector loop.
3589 // FIXME: Loop invariant values do not form recurrences. We should deal with
3590 // them earlier.
3591 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3592 InsertPt = LoopVectorBody->getFirstInsertionPt();
3593 else {
3594 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3595 if (isa<PHINode>(PreviousLastPart))
3596 // If the previous value is a phi node, we should insert after all the phi
3597 // nodes in the block containing the PHI to avoid breaking basic block
3598 // verification. Note that the basic block may be different to
3599 // LoopVectorBody, in case we predicate the loop.
3600 InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3601 else
3602 InsertPt = ++PreviousInst->getIterator();
3603 }
3604 Builder.SetInsertPoint(&*InsertPt);
3605
3606 // We will construct a vector for the recurrence by combining the values for
3607 // the current and previous iterations. This is the required shuffle mask.
3608 SmallVector<Constant *, 8> ShuffleMask(VF);
3609 ShuffleMask[0] = Builder.getInt32(VF - 1);
3610 for (unsigned I = 1; I < VF; ++I)
3611 ShuffleMask[I] = Builder.getInt32(I + VF - 1);
3612
3613 // The vector from which to take the initial value for the current iteration
3614 // (actual or unrolled). Initially, this is the vector phi node.
3615 Value *Incoming = VecPhi;
3616
3617 // Shuffle the current and previous vector and update the vector parts.
3618 for (unsigned Part = 0; Part < UF; ++Part) {
3619 Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3620 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3621 auto *Shuffle =
3622 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3623 ConstantVector::get(ShuffleMask))
3624 : Incoming;
3625 PhiPart->replaceAllUsesWith(Shuffle);
3626 cast<Instruction>(PhiPart)->eraseFromParent();
3627 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3628 Incoming = PreviousPart;
3629 }
3630
3631 // Fix the latch value of the new recurrence in the vector loop.
3632 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3633
3634 // Extract the last vector element in the middle block. This will be the
3635 // initial value for the recurrence when jumping to the scalar loop.
3636 auto *ExtractForScalar = Incoming;
3637 if (VF > 1) {
3638 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3639 ExtractForScalar = Builder.CreateExtractElement(
3640 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3641 }
3642 // Extract the second last element in the middle block if the
3643 // Phi is used outside the loop. We need to extract the phi itself
3644 // and not the last element (the phi update in the current iteration). This
3645 // will be the value when jumping to the exit block from the LoopMiddleBlock,
3646 // when the scalar loop is not run at all.
3647 Value *ExtractForPhiUsedOutsideLoop = nullptr;
3648 if (VF > 1)
3649 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3650 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3651 // When loop is unrolled without vectorizing, initialize
3652 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3653 // `Incoming`. This is analogous to the vectorized case above: extracting the
3654 // second last element when VF > 1.
3655 else if (UF > 1)
3656 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3657
3658 // Fix the initial value of the original recurrence in the scalar loop.
3659 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3660 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3661 for (auto *BB : predecessors(LoopScalarPreHeader)) {
3662 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3663 Start->addIncoming(Incoming, BB);
3664 }
3665
3666 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3667 Phi->setName("scalar.recur");
3668
3669 // Finally, fix users of the recurrence outside the loop. The users will need
3670 // either the last value of the scalar recurrence or the last value of the
3671 // vector recurrence we extracted in the middle block. Since the loop is in
3672 // LCSSA form, we just need to find all the phi nodes for the original scalar
3673 // recurrence in the exit block, and then add an edge for the middle block.
3674 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3675 if (LCSSAPhi.getIncomingValue(0) == Phi) {
3676 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3677 }
3678 }
3679 }
3680
fixReduction(PHINode * Phi)3681 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3682 Constant *Zero = Builder.getInt32(0);
3683
3684 // Get it's reduction variable descriptor.
3685 assert(Legal->isReductionVariable(Phi) &&
3686 "Unable to find the reduction variable");
3687 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
3688
3689 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3690 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3691 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3692 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3693 RdxDesc.getMinMaxRecurrenceKind();
3694 setDebugLocFromInst(Builder, ReductionStartValue);
3695
3696 // We need to generate a reduction vector from the incoming scalar.
3697 // To do so, we need to generate the 'identity' vector and override
3698 // one of the elements with the incoming scalar reduction. We need
3699 // to do it in the vector-loop preheader.
3700 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3701
3702 // This is the vector-clone of the value that leaves the loop.
3703 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3704
3705 // Find the reduction identity variable. Zero for addition, or, xor,
3706 // one for multiplication, -1 for And.
3707 Value *Identity;
3708 Value *VectorStart;
3709 if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3710 RK == RecurrenceDescriptor::RK_FloatMinMax) {
3711 // MinMax reduction have the start value as their identify.
3712 if (VF == 1) {
3713 VectorStart = Identity = ReductionStartValue;
3714 } else {
3715 VectorStart = Identity =
3716 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3717 }
3718 } else {
3719 // Handle other reduction kinds:
3720 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3721 RK, VecTy->getScalarType());
3722 if (VF == 1) {
3723 Identity = Iden;
3724 // This vector is the Identity vector where the first element is the
3725 // incoming scalar reduction.
3726 VectorStart = ReductionStartValue;
3727 } else {
3728 Identity = ConstantVector::getSplat(VF, Iden);
3729
3730 // This vector is the Identity vector where the first element is the
3731 // incoming scalar reduction.
3732 VectorStart =
3733 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3734 }
3735 }
3736
3737 // Wrap flags are in general invalid after vectorization, clear them.
3738 clearReductionWrapFlags(RdxDesc);
3739
3740 // Fix the vector-loop phi.
3741
3742 // Reductions do not have to start at zero. They can start with
3743 // any loop invariant values.
3744 BasicBlock *Latch = OrigLoop->getLoopLatch();
3745 Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3746
3747 for (unsigned Part = 0; Part < UF; ++Part) {
3748 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3749 Value *Val = getOrCreateVectorValue(LoopVal, Part);
3750 // Make sure to add the reduction start value only to the
3751 // first unroll part.
3752 Value *StartVal = (Part == 0) ? VectorStart : Identity;
3753 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3754 cast<PHINode>(VecRdxPhi)
3755 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3756 }
3757
3758 // Before each round, move the insertion point right between
3759 // the PHIs and the values we are going to write.
3760 // This allows us to write both PHINodes and the extractelement
3761 // instructions.
3762 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3763
3764 setDebugLocFromInst(Builder, LoopExitInst);
3765
3766 // If tail is folded by masking, the vector value to leave the loop should be
3767 // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3768 // instead of the former.
3769 if (Cost->foldTailByMasking()) {
3770 for (unsigned Part = 0; Part < UF; ++Part) {
3771 Value *VecLoopExitInst =
3772 VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3773 Value *Sel = nullptr;
3774 for (User *U : VecLoopExitInst->users()) {
3775 if (isa<SelectInst>(U)) {
3776 assert(!Sel && "Reduction exit feeding two selects");
3777 Sel = U;
3778 } else
3779 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3780 }
3781 assert(Sel && "Reduction exit feeds no select");
3782 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
3783 }
3784 }
3785
3786 // If the vector reduction can be performed in a smaller type, we truncate
3787 // then extend the loop exit value to enable InstCombine to evaluate the
3788 // entire expression in the smaller type.
3789 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3790 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3791 Builder.SetInsertPoint(
3792 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3793 VectorParts RdxParts(UF);
3794 for (unsigned Part = 0; Part < UF; ++Part) {
3795 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3796 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3797 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3798 : Builder.CreateZExt(Trunc, VecTy);
3799 for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3800 UI != RdxParts[Part]->user_end();)
3801 if (*UI != Trunc) {
3802 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3803 RdxParts[Part] = Extnd;
3804 } else {
3805 ++UI;
3806 }
3807 }
3808 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3809 for (unsigned Part = 0; Part < UF; ++Part) {
3810 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3811 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3812 }
3813 }
3814
3815 // Reduce all of the unrolled parts into a single vector.
3816 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3817 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3818
3819 // The middle block terminator has already been assigned a DebugLoc here (the
3820 // OrigLoop's single latch terminator). We want the whole middle block to
3821 // appear to execute on this line because: (a) it is all compiler generated,
3822 // (b) these instructions are always executed after evaluating the latch
3823 // conditional branch, and (c) other passes may add new predecessors which
3824 // terminate on this line. This is the easiest way to ensure we don't
3825 // accidentally cause an extra step back into the loop while debugging.
3826 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
3827 for (unsigned Part = 1; Part < UF; ++Part) {
3828 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3829 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3830 // Floating point operations had to be 'fast' to enable the reduction.
3831 ReducedPartRdx = addFastMathFlag(
3832 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3833 ReducedPartRdx, "bin.rdx"),
3834 RdxDesc.getFastMathFlags());
3835 else
3836 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
3837 RdxPart);
3838 }
3839
3840 if (VF > 1) {
3841 bool NoNaN = Legal->hasFunNoNaNAttr();
3842 ReducedPartRdx =
3843 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3844 // If the reduction can be performed in a smaller type, we need to extend
3845 // the reduction to the wider type before we branch to the original loop.
3846 if (Phi->getType() != RdxDesc.getRecurrenceType())
3847 ReducedPartRdx =
3848 RdxDesc.isSigned()
3849 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3850 : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3851 }
3852
3853 // Create a phi node that merges control-flow from the backedge-taken check
3854 // block and the middle block.
3855 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3856 LoopScalarPreHeader->getTerminator());
3857 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3858 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3859 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3860
3861 // Now, we need to fix the users of the reduction variable
3862 // inside and outside of the scalar remainder loop.
3863 // We know that the loop is in LCSSA form. We need to update the
3864 // PHI nodes in the exit blocks.
3865 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3866 // All PHINodes need to have a single entry edge, or two if
3867 // we already fixed them.
3868 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3869
3870 // We found a reduction value exit-PHI. Update it with the
3871 // incoming bypass edge.
3872 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3873 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3874 } // end of the LCSSA phi scan.
3875
3876 // Fix the scalar loop reduction variable with the incoming reduction sum
3877 // from the vector body and from the backedge value.
3878 int IncomingEdgeBlockIdx =
3879 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3880 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3881 // Pick the other block.
3882 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3883 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3884 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3885 }
3886
clearReductionWrapFlags(RecurrenceDescriptor & RdxDesc)3887 void InnerLoopVectorizer::clearReductionWrapFlags(
3888 RecurrenceDescriptor &RdxDesc) {
3889 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3890 if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
3891 RK != RecurrenceDescriptor::RK_IntegerMult)
3892 return;
3893
3894 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
3895 assert(LoopExitInstr && "null loop exit instruction");
3896 SmallVector<Instruction *, 8> Worklist;
3897 SmallPtrSet<Instruction *, 8> Visited;
3898 Worklist.push_back(LoopExitInstr);
3899 Visited.insert(LoopExitInstr);
3900
3901 while (!Worklist.empty()) {
3902 Instruction *Cur = Worklist.pop_back_val();
3903 if (isa<OverflowingBinaryOperator>(Cur))
3904 for (unsigned Part = 0; Part < UF; ++Part) {
3905 Value *V = getOrCreateVectorValue(Cur, Part);
3906 cast<Instruction>(V)->dropPoisonGeneratingFlags();
3907 }
3908
3909 for (User *U : Cur->users()) {
3910 Instruction *UI = cast<Instruction>(U);
3911 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
3912 Visited.insert(UI).second)
3913 Worklist.push_back(UI);
3914 }
3915 }
3916 }
3917
fixLCSSAPHIs()3918 void InnerLoopVectorizer::fixLCSSAPHIs() {
3919 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3920 if (LCSSAPhi.getNumIncomingValues() == 1) {
3921 auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
3922 // Non-instruction incoming values will have only one value.
3923 unsigned LastLane = 0;
3924 if (isa<Instruction>(IncomingValue))
3925 LastLane = Cost->isUniformAfterVectorization(
3926 cast<Instruction>(IncomingValue), VF)
3927 ? 0
3928 : VF - 1;
3929 // Can be a loop invariant incoming value or the last scalar value to be
3930 // extracted from the vectorized loop.
3931 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3932 Value *lastIncomingValue =
3933 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
3934 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
3935 }
3936 }
3937 }
3938
sinkScalarOperands(Instruction * PredInst)3939 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3940 // The basic block and loop containing the predicated instruction.
3941 auto *PredBB = PredInst->getParent();
3942 auto *VectorLoop = LI->getLoopFor(PredBB);
3943
3944 // Initialize a worklist with the operands of the predicated instruction.
3945 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3946
3947 // Holds instructions that we need to analyze again. An instruction may be
3948 // reanalyzed if we don't yet know if we can sink it or not.
3949 SmallVector<Instruction *, 8> InstsToReanalyze;
3950
3951 // Returns true if a given use occurs in the predicated block. Phi nodes use
3952 // their operands in their corresponding predecessor blocks.
3953 auto isBlockOfUsePredicated = [&](Use &U) -> bool {
3954 auto *I = cast<Instruction>(U.getUser());
3955 BasicBlock *BB = I->getParent();
3956 if (auto *Phi = dyn_cast<PHINode>(I))
3957 BB = Phi->getIncomingBlock(
3958 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3959 return BB == PredBB;
3960 };
3961
3962 // Iteratively sink the scalarized operands of the predicated instruction
3963 // into the block we created for it. When an instruction is sunk, it's
3964 // operands are then added to the worklist. The algorithm ends after one pass
3965 // through the worklist doesn't sink a single instruction.
3966 bool Changed;
3967 do {
3968 // Add the instructions that need to be reanalyzed to the worklist, and
3969 // reset the changed indicator.
3970 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
3971 InstsToReanalyze.clear();
3972 Changed = false;
3973
3974 while (!Worklist.empty()) {
3975 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
3976
3977 // We can't sink an instruction if it is a phi node, is already in the
3978 // predicated block, is not in the loop, or may have side effects.
3979 if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
3980 !VectorLoop->contains(I) || I->mayHaveSideEffects())
3981 continue;
3982
3983 // It's legal to sink the instruction if all its uses occur in the
3984 // predicated block. Otherwise, there's nothing to do yet, and we may
3985 // need to reanalyze the instruction.
3986 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
3987 InstsToReanalyze.push_back(I);
3988 continue;
3989 }
3990
3991 // Move the instruction to the beginning of the predicated block, and add
3992 // it's operands to the worklist.
3993 I->moveBefore(&*PredBB->getFirstInsertionPt());
3994 Worklist.insert(I->op_begin(), I->op_end());
3995
3996 // The sinking may have enabled other instructions to be sunk, so we will
3997 // need to iterate.
3998 Changed = true;
3999 }
4000 } while (Changed);
4001 }
4002
fixNonInductionPHIs()4003 void InnerLoopVectorizer::fixNonInductionPHIs() {
4004 for (PHINode *OrigPhi : OrigPHIsToFix) {
4005 PHINode *NewPhi =
4006 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4007 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4008
4009 SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4010 predecessors(OrigPhi->getParent()));
4011 SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4012 predecessors(NewPhi->getParent()));
4013 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4014 "Scalar and Vector BB should have the same number of predecessors");
4015
4016 // The insertion point in Builder may be invalidated by the time we get
4017 // here. Force the Builder insertion point to something valid so that we do
4018 // not run into issues during insertion point restore in
4019 // getOrCreateVectorValue calls below.
4020 Builder.SetInsertPoint(NewPhi);
4021
4022 // The predecessor order is preserved and we can rely on mapping between
4023 // scalar and vector block predecessors.
4024 for (unsigned i = 0; i < NumIncomingValues; ++i) {
4025 BasicBlock *NewPredBB = VectorBBPredecessors[i];
4026
4027 // When looking up the new scalar/vector values to fix up, use incoming
4028 // values from original phi.
4029 Value *ScIncV =
4030 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4031
4032 // Scalar incoming value may need a broadcast
4033 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4034 NewPhi->addIncoming(NewIncV, NewPredBB);
4035 }
4036 }
4037 }
4038
widenGEP(GetElementPtrInst * GEP,unsigned UF,unsigned VF,bool IsPtrLoopInvariant,SmallBitVector & IsIndexLoopInvariant)4039 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF,
4040 unsigned VF, bool IsPtrLoopInvariant,
4041 SmallBitVector &IsIndexLoopInvariant) {
4042 // Construct a vector GEP by widening the operands of the scalar GEP as
4043 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4044 // results in a vector of pointers when at least one operand of the GEP
4045 // is vector-typed. Thus, to keep the representation compact, we only use
4046 // vector-typed operands for loop-varying values.
4047
4048 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4049 // If we are vectorizing, but the GEP has only loop-invariant operands,
4050 // the GEP we build (by only using vector-typed operands for
4051 // loop-varying values) would be a scalar pointer. Thus, to ensure we
4052 // produce a vector of pointers, we need to either arbitrarily pick an
4053 // operand to broadcast, or broadcast a clone of the original GEP.
4054 // Here, we broadcast a clone of the original.
4055 //
4056 // TODO: If at some point we decide to scalarize instructions having
4057 // loop-invariant operands, this special case will no longer be
4058 // required. We would add the scalarization decision to
4059 // collectLoopScalars() and teach getVectorValue() to broadcast
4060 // the lane-zero scalar value.
4061 auto *Clone = Builder.Insert(GEP->clone());
4062 for (unsigned Part = 0; Part < UF; ++Part) {
4063 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4064 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4065 addMetadata(EntryPart, GEP);
4066 }
4067 } else {
4068 // If the GEP has at least one loop-varying operand, we are sure to
4069 // produce a vector of pointers. But if we are only unrolling, we want
4070 // to produce a scalar GEP for each unroll part. Thus, the GEP we
4071 // produce with the code below will be scalar (if VF == 1) or vector
4072 // (otherwise). Note that for the unroll-only case, we still maintain
4073 // values in the vector mapping with initVector, as we do for other
4074 // instructions.
4075 for (unsigned Part = 0; Part < UF; ++Part) {
4076 // The pointer operand of the new GEP. If it's loop-invariant, we
4077 // won't broadcast it.
4078 auto *Ptr = IsPtrLoopInvariant
4079 ? GEP->getPointerOperand()
4080 : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4081
4082 // Collect all the indices for the new GEP. If any index is
4083 // loop-invariant, we won't broadcast it.
4084 SmallVector<Value *, 4> Indices;
4085 for (auto Index : enumerate(GEP->indices())) {
4086 Value *User = Index.value().get();
4087 if (IsIndexLoopInvariant[Index.index()])
4088 Indices.push_back(User);
4089 else
4090 Indices.push_back(getOrCreateVectorValue(User, Part));
4091 }
4092
4093 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4094 // but it should be a vector, otherwise.
4095 auto *NewGEP =
4096 GEP->isInBounds()
4097 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4098 Indices)
4099 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4100 assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4101 "NewGEP is not a pointer vector");
4102 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4103 addMetadata(NewGEP, GEP);
4104 }
4105 }
4106 }
4107
widenPHIInstruction(Instruction * PN,unsigned UF,unsigned VF)4108 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4109 unsigned VF) {
4110 PHINode *P = cast<PHINode>(PN);
4111 if (EnableVPlanNativePath) {
4112 // Currently we enter here in the VPlan-native path for non-induction
4113 // PHIs where all control flow is uniform. We simply widen these PHIs.
4114 // Create a vector phi with no operands - the vector phi operands will be
4115 // set at the end of vector code generation.
4116 Type *VecTy =
4117 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4118 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4119 VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4120 OrigPHIsToFix.push_back(P);
4121
4122 return;
4123 }
4124
4125 assert(PN->getParent() == OrigLoop->getHeader() &&
4126 "Non-header phis should have been handled elsewhere");
4127
4128 // In order to support recurrences we need to be able to vectorize Phi nodes.
4129 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4130 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4131 // this value when we vectorize all of the instructions that use the PHI.
4132 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4133 for (unsigned Part = 0; Part < UF; ++Part) {
4134 // This is phase one of vectorizing PHIs.
4135 Type *VecTy =
4136 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4137 Value *EntryPart = PHINode::Create(
4138 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4139 VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4140 }
4141 return;
4142 }
4143
4144 setDebugLocFromInst(Builder, P);
4145
4146 // This PHINode must be an induction variable.
4147 // Make sure that we know about it.
4148 assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
4149
4150 InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4151 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4152
4153 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4154 // which can be found from the original scalar operations.
4155 switch (II.getKind()) {
4156 case InductionDescriptor::IK_NoInduction:
4157 llvm_unreachable("Unknown induction");
4158 case InductionDescriptor::IK_IntInduction:
4159 case InductionDescriptor::IK_FpInduction:
4160 llvm_unreachable("Integer/fp induction is handled elsewhere.");
4161 case InductionDescriptor::IK_PtrInduction: {
4162 // Handle the pointer induction variable case.
4163 assert(P->getType()->isPointerTy() && "Unexpected type.");
4164 // This is the normalized GEP that starts counting at zero.
4165 Value *PtrInd = Induction;
4166 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4167 // Determine the number of scalars we need to generate for each unroll
4168 // iteration. If the instruction is uniform, we only need to generate the
4169 // first lane. Otherwise, we generate all VF values.
4170 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4171 // These are the scalar results. Notice that we don't generate vector GEPs
4172 // because scalar GEPs result in better code.
4173 for (unsigned Part = 0; Part < UF; ++Part) {
4174 for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4175 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4176 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4177 Value *SclrGep =
4178 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4179 SclrGep->setName("next.gep");
4180 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4181 }
4182 }
4183 return;
4184 }
4185 }
4186 }
4187
4188 /// A helper function for checking whether an integer division-related
4189 /// instruction may divide by zero (in which case it must be predicated if
4190 /// executed conditionally in the scalar code).
4191 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4192 /// Non-zero divisors that are non compile-time constants will not be
4193 /// converted into multiplication, so we will still end up scalarizing
4194 /// the division, but can do so w/o predication.
mayDivideByZero(Instruction & I)4195 static bool mayDivideByZero(Instruction &I) {
4196 assert((I.getOpcode() == Instruction::UDiv ||
4197 I.getOpcode() == Instruction::SDiv ||
4198 I.getOpcode() == Instruction::URem ||
4199 I.getOpcode() == Instruction::SRem) &&
4200 "Unexpected instruction");
4201 Value *Divisor = I.getOperand(1);
4202 auto *CInt = dyn_cast<ConstantInt>(Divisor);
4203 return !CInt || CInt->isZero();
4204 }
4205
widenInstruction(Instruction & I)4206 void InnerLoopVectorizer::widenInstruction(Instruction &I) {
4207 switch (I.getOpcode()) {
4208 case Instruction::Br:
4209 case Instruction::PHI:
4210 case Instruction::GetElementPtr:
4211 llvm_unreachable("This instruction is handled by a different recipe.");
4212 case Instruction::UDiv:
4213 case Instruction::SDiv:
4214 case Instruction::SRem:
4215 case Instruction::URem:
4216 case Instruction::Add:
4217 case Instruction::FAdd:
4218 case Instruction::Sub:
4219 case Instruction::FSub:
4220 case Instruction::FNeg:
4221 case Instruction::Mul:
4222 case Instruction::FMul:
4223 case Instruction::FDiv:
4224 case Instruction::FRem:
4225 case Instruction::Shl:
4226 case Instruction::LShr:
4227 case Instruction::AShr:
4228 case Instruction::And:
4229 case Instruction::Or:
4230 case Instruction::Xor: {
4231 // Just widen unops and binops.
4232 setDebugLocFromInst(Builder, &I);
4233
4234 for (unsigned Part = 0; Part < UF; ++Part) {
4235 SmallVector<Value *, 2> Ops;
4236 for (Value *Op : I.operands())
4237 Ops.push_back(getOrCreateVectorValue(Op, Part));
4238
4239 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4240
4241 if (auto *VecOp = dyn_cast<Instruction>(V))
4242 VecOp->copyIRFlags(&I);
4243
4244 // Use this vector value for all users of the original instruction.
4245 VectorLoopValueMap.setVectorValue(&I, Part, V);
4246 addMetadata(V, &I);
4247 }
4248
4249 break;
4250 }
4251 case Instruction::Select: {
4252 // Widen selects.
4253 // If the selector is loop invariant we can create a select
4254 // instruction with a scalar condition. Otherwise, use vector-select.
4255 auto *SE = PSE.getSE();
4256 bool InvariantCond =
4257 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4258 setDebugLocFromInst(Builder, &I);
4259
4260 // The condition can be loop invariant but still defined inside the
4261 // loop. This means that we can't just use the original 'cond' value.
4262 // We have to take the 'vectorized' value and pick the first lane.
4263 // Instcombine will make this a no-op.
4264
4265 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
4266
4267 for (unsigned Part = 0; Part < UF; ++Part) {
4268 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
4269 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
4270 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
4271 Value *Sel =
4272 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
4273 VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4274 addMetadata(Sel, &I);
4275 }
4276
4277 break;
4278 }
4279
4280 case Instruction::ICmp:
4281 case Instruction::FCmp: {
4282 // Widen compares. Generate vector compares.
4283 bool FCmp = (I.getOpcode() == Instruction::FCmp);
4284 auto *Cmp = cast<CmpInst>(&I);
4285 setDebugLocFromInst(Builder, Cmp);
4286 for (unsigned Part = 0; Part < UF; ++Part) {
4287 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
4288 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
4289 Value *C = nullptr;
4290 if (FCmp) {
4291 // Propagate fast math flags.
4292 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4293 Builder.setFastMathFlags(Cmp->getFastMathFlags());
4294 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4295 } else {
4296 C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4297 }
4298 VectorLoopValueMap.setVectorValue(&I, Part, C);
4299 addMetadata(C, &I);
4300 }
4301
4302 break;
4303 }
4304
4305 case Instruction::ZExt:
4306 case Instruction::SExt:
4307 case Instruction::FPToUI:
4308 case Instruction::FPToSI:
4309 case Instruction::FPExt:
4310 case Instruction::PtrToInt:
4311 case Instruction::IntToPtr:
4312 case Instruction::SIToFP:
4313 case Instruction::UIToFP:
4314 case Instruction::Trunc:
4315 case Instruction::FPTrunc:
4316 case Instruction::BitCast: {
4317 auto *CI = cast<CastInst>(&I);
4318 setDebugLocFromInst(Builder, CI);
4319
4320 /// Vectorize casts.
4321 Type *DestTy =
4322 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4323
4324 for (unsigned Part = 0; Part < UF; ++Part) {
4325 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
4326 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4327 VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4328 addMetadata(Cast, &I);
4329 }
4330 break;
4331 }
4332
4333 case Instruction::Call: {
4334 // Ignore dbg intrinsics.
4335 if (isa<DbgInfoIntrinsic>(I))
4336 break;
4337 setDebugLocFromInst(Builder, &I);
4338
4339 Module *M = I.getParent()->getParent()->getParent();
4340 auto *CI = cast<CallInst>(&I);
4341
4342 StringRef FnName = CI->getCalledFunction()->getName();
4343 Function *F = CI->getCalledFunction();
4344 Type *RetTy = ToVectorTy(CI->getType(), VF);
4345 SmallVector<Type *, 4> Tys;
4346 for (Value *ArgOperand : CI->arg_operands())
4347 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4348
4349 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4350
4351 // The flag shows whether we use Intrinsic or a usual Call for vectorized
4352 // version of the instruction.
4353 // Is it beneficial to perform intrinsic call compared to lib call?
4354 bool NeedToScalarize;
4355 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4356 bool UseVectorIntrinsic =
4357 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4358 assert((UseVectorIntrinsic || !NeedToScalarize) &&
4359 "Instruction should be scalarized elsewhere.");
4360
4361 for (unsigned Part = 0; Part < UF; ++Part) {
4362 SmallVector<Value *, 4> Args;
4363 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4364 Value *Arg = CI->getArgOperand(i);
4365 // Some intrinsics have a scalar argument - don't replace it with a
4366 // vector.
4367 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
4368 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
4369 Args.push_back(Arg);
4370 }
4371
4372 Function *VectorF;
4373 if (UseVectorIntrinsic) {
4374 // Use vector version of the intrinsic.
4375 Type *TysForDecl[] = {CI->getType()};
4376 if (VF > 1)
4377 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4378 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4379 } else {
4380 // Use vector version of the library call.
4381 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4382 assert(!VFnName.empty() && "Vector function name is empty.");
4383 VectorF = M->getFunction(VFnName);
4384 if (!VectorF) {
4385 // Generate a declaration
4386 FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4387 VectorF =
4388 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4389 VectorF->copyAttributesFrom(F);
4390 }
4391 }
4392 assert(VectorF && "Can't create vector function.");
4393
4394 SmallVector<OperandBundleDef, 1> OpBundles;
4395 CI->getOperandBundlesAsDefs(OpBundles);
4396 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4397
4398 if (isa<FPMathOperator>(V))
4399 V->copyFastMathFlags(CI);
4400
4401 VectorLoopValueMap.setVectorValue(&I, Part, V);
4402 addMetadata(V, &I);
4403 }
4404
4405 break;
4406 }
4407
4408 default:
4409 // This instruction is not vectorized by simple widening.
4410 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4411 llvm_unreachable("Unhandled instruction!");
4412 } // end of switch.
4413 }
4414
collectLoopScalars(unsigned VF)4415 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4416 // We should not collect Scalars more than once per VF. Right now, this
4417 // function is called from collectUniformsAndScalars(), which already does
4418 // this check. Collecting Scalars for VF=1 does not make any sense.
4419 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
4420 "This function should not be visited twice for the same VF");
4421
4422 SmallSetVector<Instruction *, 8> Worklist;
4423
4424 // These sets are used to seed the analysis with pointers used by memory
4425 // accesses that will remain scalar.
4426 SmallSetVector<Instruction *, 8> ScalarPtrs;
4427 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4428
4429 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4430 // The pointer operands of loads and stores will be scalar as long as the
4431 // memory access is not a gather or scatter operation. The value operand of a
4432 // store will remain scalar if the store is scalarized.
4433 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4434 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4435 assert(WideningDecision != CM_Unknown &&
4436 "Widening decision should be ready at this moment");
4437 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4438 if (Ptr == Store->getValueOperand())
4439 return WideningDecision == CM_Scalarize;
4440 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4441 "Ptr is neither a value or pointer operand");
4442 return WideningDecision != CM_GatherScatter;
4443 };
4444
4445 // A helper that returns true if the given value is a bitcast or
4446 // getelementptr instruction contained in the loop.
4447 auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4448 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4449 isa<GetElementPtrInst>(V)) &&
4450 !TheLoop->isLoopInvariant(V);
4451 };
4452
4453 // A helper that evaluates a memory access's use of a pointer. If the use
4454 // will be a scalar use, and the pointer is only used by memory accesses, we
4455 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4456 // PossibleNonScalarPtrs.
4457 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4458 // We only care about bitcast and getelementptr instructions contained in
4459 // the loop.
4460 if (!isLoopVaryingBitCastOrGEP(Ptr))
4461 return;
4462
4463 // If the pointer has already been identified as scalar (e.g., if it was
4464 // also identified as uniform), there's nothing to do.
4465 auto *I = cast<Instruction>(Ptr);
4466 if (Worklist.count(I))
4467 return;
4468
4469 // If the use of the pointer will be a scalar use, and all users of the
4470 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4471 // place the pointer in PossibleNonScalarPtrs.
4472 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4473 return isa<LoadInst>(U) || isa<StoreInst>(U);
4474 }))
4475 ScalarPtrs.insert(I);
4476 else
4477 PossibleNonScalarPtrs.insert(I);
4478 };
4479
4480 // We seed the scalars analysis with three classes of instructions: (1)
4481 // instructions marked uniform-after-vectorization, (2) bitcast and
4482 // getelementptr instructions used by memory accesses requiring a scalar use,
4483 // and (3) pointer induction variables and their update instructions (we
4484 // currently only scalarize these).
4485 //
4486 // (1) Add to the worklist all instructions that have been identified as
4487 // uniform-after-vectorization.
4488 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4489
4490 // (2) Add to the worklist all bitcast and getelementptr instructions used by
4491 // memory accesses requiring a scalar use. The pointer operands of loads and
4492 // stores will be scalar as long as the memory accesses is not a gather or
4493 // scatter operation. The value operand of a store will remain scalar if the
4494 // store is scalarized.
4495 for (auto *BB : TheLoop->blocks())
4496 for (auto &I : *BB) {
4497 if (auto *Load = dyn_cast<LoadInst>(&I)) {
4498 evaluatePtrUse(Load, Load->getPointerOperand());
4499 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4500 evaluatePtrUse(Store, Store->getPointerOperand());
4501 evaluatePtrUse(Store, Store->getValueOperand());
4502 }
4503 }
4504 for (auto *I : ScalarPtrs)
4505 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
4506 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4507 Worklist.insert(I);
4508 }
4509
4510 // (3) Add to the worklist all pointer induction variables and their update
4511 // instructions.
4512 //
4513 // TODO: Once we are able to vectorize pointer induction variables we should
4514 // no longer insert them into the worklist here.
4515 auto *Latch = TheLoop->getLoopLatch();
4516 for (auto &Induction : *Legal->getInductionVars()) {
4517 auto *Ind = Induction.first;
4518 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4519 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4520 continue;
4521 Worklist.insert(Ind);
4522 Worklist.insert(IndUpdate);
4523 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4524 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4525 << "\n");
4526 }
4527
4528 // Insert the forced scalars.
4529 // FIXME: Currently widenPHIInstruction() often creates a dead vector
4530 // induction variable when the PHI user is scalarized.
4531 auto ForcedScalar = ForcedScalars.find(VF);
4532 if (ForcedScalar != ForcedScalars.end())
4533 for (auto *I : ForcedScalar->second)
4534 Worklist.insert(I);
4535
4536 // Expand the worklist by looking through any bitcasts and getelementptr
4537 // instructions we've already identified as scalar. This is similar to the
4538 // expansion step in collectLoopUniforms(); however, here we're only
4539 // expanding to include additional bitcasts and getelementptr instructions.
4540 unsigned Idx = 0;
4541 while (Idx != Worklist.size()) {
4542 Instruction *Dst = Worklist[Idx++];
4543 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4544 continue;
4545 auto *Src = cast<Instruction>(Dst->getOperand(0));
4546 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4547 auto *J = cast<Instruction>(U);
4548 return !TheLoop->contains(J) || Worklist.count(J) ||
4549 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4550 isScalarUse(J, Src));
4551 })) {
4552 Worklist.insert(Src);
4553 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4554 }
4555 }
4556
4557 // An induction variable will remain scalar if all users of the induction
4558 // variable and induction variable update remain scalar.
4559 for (auto &Induction : *Legal->getInductionVars()) {
4560 auto *Ind = Induction.first;
4561 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4562
4563 // We already considered pointer induction variables, so there's no reason
4564 // to look at their users again.
4565 //
4566 // TODO: Once we are able to vectorize pointer induction variables we
4567 // should no longer skip over them here.
4568 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4569 continue;
4570
4571 // Determine if all users of the induction variable are scalar after
4572 // vectorization.
4573 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4574 auto *I = cast<Instruction>(U);
4575 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4576 });
4577 if (!ScalarInd)
4578 continue;
4579
4580 // Determine if all users of the induction variable update instruction are
4581 // scalar after vectorization.
4582 auto ScalarIndUpdate =
4583 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4584 auto *I = cast<Instruction>(U);
4585 return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4586 });
4587 if (!ScalarIndUpdate)
4588 continue;
4589
4590 // The induction variable and its update instruction will remain scalar.
4591 Worklist.insert(Ind);
4592 Worklist.insert(IndUpdate);
4593 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4594 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4595 << "\n");
4596 }
4597
4598 Scalars[VF].insert(Worklist.begin(), Worklist.end());
4599 }
4600
isScalarWithPredication(Instruction * I,unsigned VF)4601 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
4602 if (!blockNeedsPredication(I->getParent()))
4603 return false;
4604 switch(I->getOpcode()) {
4605 default:
4606 break;
4607 case Instruction::Load:
4608 case Instruction::Store: {
4609 if (!Legal->isMaskRequired(I))
4610 return false;
4611 auto *Ptr = getLoadStorePointerOperand(I);
4612 auto *Ty = getMemInstValueType(I);
4613 // We have already decided how to vectorize this instruction, get that
4614 // result.
4615 if (VF > 1) {
4616 InstWidening WideningDecision = getWideningDecision(I, VF);
4617 assert(WideningDecision != CM_Unknown &&
4618 "Widening decision should be ready at this moment");
4619 return WideningDecision == CM_Scalarize;
4620 }
4621 const MaybeAlign Alignment = getLoadStoreAlignment(I);
4622 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4623 isLegalMaskedGather(Ty, Alignment))
4624 : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4625 isLegalMaskedScatter(Ty, Alignment));
4626 }
4627 case Instruction::UDiv:
4628 case Instruction::SDiv:
4629 case Instruction::SRem:
4630 case Instruction::URem:
4631 return mayDivideByZero(*I);
4632 }
4633 return false;
4634 }
4635
interleavedAccessCanBeWidened(Instruction * I,unsigned VF)4636 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
4637 unsigned VF) {
4638 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4639 assert(getWideningDecision(I, VF) == CM_Unknown &&
4640 "Decision should not be set yet.");
4641 auto *Group = getInterleavedAccessGroup(I);
4642 assert(Group && "Must have a group.");
4643
4644 // If the instruction's allocated size doesn't equal it's type size, it
4645 // requires padding and will be scalarized.
4646 auto &DL = I->getModule()->getDataLayout();
4647 auto *ScalarTy = getMemInstValueType(I);
4648 if (hasIrregularType(ScalarTy, DL, VF))
4649 return false;
4650
4651 // Check if masking is required.
4652 // A Group may need masking for one of two reasons: it resides in a block that
4653 // needs predication, or it was decided to use masking to deal with gaps.
4654 bool PredicatedAccessRequiresMasking =
4655 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4656 bool AccessWithGapsRequiresMasking =
4657 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4658 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4659 return true;
4660
4661 // If masked interleaving is required, we expect that the user/target had
4662 // enabled it, because otherwise it either wouldn't have been created or
4663 // it should have been invalidated by the CostModel.
4664 assert(useMaskedInterleavedAccesses(TTI) &&
4665 "Masked interleave-groups for predicated accesses are not enabled.");
4666
4667 auto *Ty = getMemInstValueType(I);
4668 const MaybeAlign Alignment = getLoadStoreAlignment(I);
4669 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4670 : TTI.isLegalMaskedStore(Ty, Alignment);
4671 }
4672
memoryInstructionCanBeWidened(Instruction * I,unsigned VF)4673 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4674 unsigned VF) {
4675 // Get and ensure we have a valid memory instruction.
4676 LoadInst *LI = dyn_cast<LoadInst>(I);
4677 StoreInst *SI = dyn_cast<StoreInst>(I);
4678 assert((LI || SI) && "Invalid memory instruction");
4679
4680 auto *Ptr = getLoadStorePointerOperand(I);
4681
4682 // In order to be widened, the pointer should be consecutive, first of all.
4683 if (!Legal->isConsecutivePtr(Ptr))
4684 return false;
4685
4686 // If the instruction is a store located in a predicated block, it will be
4687 // scalarized.
4688 if (isScalarWithPredication(I))
4689 return false;
4690
4691 // If the instruction's allocated size doesn't equal it's type size, it
4692 // requires padding and will be scalarized.
4693 auto &DL = I->getModule()->getDataLayout();
4694 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4695 if (hasIrregularType(ScalarTy, DL, VF))
4696 return false;
4697
4698 return true;
4699 }
4700
collectLoopUniforms(unsigned VF)4701 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4702 // We should not collect Uniforms more than once per VF. Right now,
4703 // this function is called from collectUniformsAndScalars(), which
4704 // already does this check. Collecting Uniforms for VF=1 does not make any
4705 // sense.
4706
4707 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
4708 "This function should not be visited twice for the same VF");
4709
4710 // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4711 // not analyze again. Uniforms.count(VF) will return 1.
4712 Uniforms[VF].clear();
4713
4714 // We now know that the loop is vectorizable!
4715 // Collect instructions inside the loop that will remain uniform after
4716 // vectorization.
4717
4718 // Global values, params and instructions outside of current loop are out of
4719 // scope.
4720 auto isOutOfScope = [&](Value *V) -> bool {
4721 Instruction *I = dyn_cast<Instruction>(V);
4722 return (!I || !TheLoop->contains(I));
4723 };
4724
4725 SetVector<Instruction *> Worklist;
4726 BasicBlock *Latch = TheLoop->getLoopLatch();
4727
4728 // Instructions that are scalar with predication must not be considered
4729 // uniform after vectorization, because that would create an erroneous
4730 // replicating region where only a single instance out of VF should be formed.
4731 // TODO: optimize such seldom cases if found important, see PR40816.
4732 auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4733 if (isScalarWithPredication(I, VF)) {
4734 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4735 << *I << "\n");
4736 return;
4737 }
4738 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4739 Worklist.insert(I);
4740 };
4741
4742 // Start with the conditional branch. If the branch condition is an
4743 // instruction contained in the loop that is only used by the branch, it is
4744 // uniform.
4745 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4746 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4747 addToWorklistIfAllowed(Cmp);
4748
4749 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4750 // are pointers that are treated like consecutive pointers during
4751 // vectorization. The pointer operands of interleaved accesses are an
4752 // example.
4753 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4754
4755 // Holds pointer operands of instructions that are possibly non-uniform.
4756 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4757
4758 auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4759 InstWidening WideningDecision = getWideningDecision(I, VF);
4760 assert(WideningDecision != CM_Unknown &&
4761 "Widening decision should be ready at this moment");
4762
4763 return (WideningDecision == CM_Widen ||
4764 WideningDecision == CM_Widen_Reverse ||
4765 WideningDecision == CM_Interleave);
4766 };
4767 // Iterate over the instructions in the loop, and collect all
4768 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4769 // that a consecutive-like pointer operand will be scalarized, we collect it
4770 // in PossibleNonUniformPtrs instead. We use two sets here because a single
4771 // getelementptr instruction can be used by both vectorized and scalarized
4772 // memory instructions. For example, if a loop loads and stores from the same
4773 // location, but the store is conditional, the store will be scalarized, and
4774 // the getelementptr won't remain uniform.
4775 for (auto *BB : TheLoop->blocks())
4776 for (auto &I : *BB) {
4777 // If there's no pointer operand, there's nothing to do.
4778 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4779 if (!Ptr)
4780 continue;
4781
4782 // True if all users of Ptr are memory accesses that have Ptr as their
4783 // pointer operand.
4784 auto UsersAreMemAccesses =
4785 llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4786 return getLoadStorePointerOperand(U) == Ptr;
4787 });
4788
4789 // Ensure the memory instruction will not be scalarized or used by
4790 // gather/scatter, making its pointer operand non-uniform. If the pointer
4791 // operand is used by any instruction other than a memory access, we
4792 // conservatively assume the pointer operand may be non-uniform.
4793 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4794 PossibleNonUniformPtrs.insert(Ptr);
4795
4796 // If the memory instruction will be vectorized and its pointer operand
4797 // is consecutive-like, or interleaving - the pointer operand should
4798 // remain uniform.
4799 else
4800 ConsecutiveLikePtrs.insert(Ptr);
4801 }
4802
4803 // Add to the Worklist all consecutive and consecutive-like pointers that
4804 // aren't also identified as possibly non-uniform.
4805 for (auto *V : ConsecutiveLikePtrs)
4806 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end())
4807 addToWorklistIfAllowed(V);
4808
4809 // Expand Worklist in topological order: whenever a new instruction
4810 // is added , its users should be already inside Worklist. It ensures
4811 // a uniform instruction will only be used by uniform instructions.
4812 unsigned idx = 0;
4813 while (idx != Worklist.size()) {
4814 Instruction *I = Worklist[idx++];
4815
4816 for (auto OV : I->operand_values()) {
4817 // isOutOfScope operands cannot be uniform instructions.
4818 if (isOutOfScope(OV))
4819 continue;
4820 // First order recurrence Phi's should typically be considered
4821 // non-uniform.
4822 auto *OP = dyn_cast<PHINode>(OV);
4823 if (OP && Legal->isFirstOrderRecurrence(OP))
4824 continue;
4825 // If all the users of the operand are uniform, then add the
4826 // operand into the uniform worklist.
4827 auto *OI = cast<Instruction>(OV);
4828 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4829 auto *J = cast<Instruction>(U);
4830 return Worklist.count(J) ||
4831 (OI == getLoadStorePointerOperand(J) &&
4832 isUniformDecision(J, VF));
4833 }))
4834 addToWorklistIfAllowed(OI);
4835 }
4836 }
4837
4838 // Returns true if Ptr is the pointer operand of a memory access instruction
4839 // I, and I is known to not require scalarization.
4840 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4841 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4842 };
4843
4844 // For an instruction to be added into Worklist above, all its users inside
4845 // the loop should also be in Worklist. However, this condition cannot be
4846 // true for phi nodes that form a cyclic dependence. We must process phi
4847 // nodes separately. An induction variable will remain uniform if all users
4848 // of the induction variable and induction variable update remain uniform.
4849 // The code below handles both pointer and non-pointer induction variables.
4850 for (auto &Induction : *Legal->getInductionVars()) {
4851 auto *Ind = Induction.first;
4852 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4853
4854 // Determine if all users of the induction variable are uniform after
4855 // vectorization.
4856 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4857 auto *I = cast<Instruction>(U);
4858 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4859 isVectorizedMemAccessUse(I, Ind);
4860 });
4861 if (!UniformInd)
4862 continue;
4863
4864 // Determine if all users of the induction variable update instruction are
4865 // uniform after vectorization.
4866 auto UniformIndUpdate =
4867 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4868 auto *I = cast<Instruction>(U);
4869 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4870 isVectorizedMemAccessUse(I, IndUpdate);
4871 });
4872 if (!UniformIndUpdate)
4873 continue;
4874
4875 // The induction variable and its update instruction will remain uniform.
4876 addToWorklistIfAllowed(Ind);
4877 addToWorklistIfAllowed(IndUpdate);
4878 }
4879
4880 Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4881 }
4882
runtimeChecksRequired()4883 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4884 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4885
4886 if (Legal->getRuntimePointerChecking()->Need) {
4887 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4888 "runtime pointer checks needed. Enable vectorization of this "
4889 "loop with '#pragma clang loop vectorize(enable)' when "
4890 "compiling with -Os/-Oz",
4891 "CantVersionLoopWithOptForSize", ORE, TheLoop);
4892 return true;
4893 }
4894
4895 if (!PSE.getUnionPredicate().getPredicates().empty()) {
4896 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4897 "runtime SCEV checks needed. Enable vectorization of this "
4898 "loop with '#pragma clang loop vectorize(enable)' when "
4899 "compiling with -Os/-Oz",
4900 "CantVersionLoopWithOptForSize", ORE, TheLoop);
4901 return true;
4902 }
4903
4904 // FIXME: Avoid specializing for stride==1 instead of bailing out.
4905 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4906 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz",
4907 "runtime stride == 1 checks needed. Enable vectorization of "
4908 "this loop with '#pragma clang loop vectorize(enable)' when "
4909 "compiling with -Os/-Oz",
4910 "CantVersionLoopWithOptForSize", ORE, TheLoop);
4911 return true;
4912 }
4913
4914 return false;
4915 }
4916
computeMaxVF()4917 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() {
4918 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4919 // TODO: It may by useful to do since it's still likely to be dynamically
4920 // uniform if the target can skip.
4921 reportVectorizationFailure(
4922 "Not inserting runtime ptr check for divergent target",
4923 "runtime pointer checks needed. Not enabled for divergent target",
4924 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4925 return None;
4926 }
4927
4928 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4929 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4930 if (TC == 1) {
4931 reportVectorizationFailure("Single iteration (non) loop",
4932 "loop trip count is one, irrelevant for vectorization",
4933 "SingleIterationLoop", ORE, TheLoop);
4934 return None;
4935 }
4936
4937 switch (ScalarEpilogueStatus) {
4938 case CM_ScalarEpilogueAllowed:
4939 return computeFeasibleMaxVF(TC);
4940 case CM_ScalarEpilogueNotNeededUsePredicate:
4941 LLVM_DEBUG(
4942 dbgs() << "LV: vector predicate hint/switch found.\n"
4943 << "LV: Not allowing scalar epilogue, creating predicated "
4944 << "vector loop.\n");
4945 break;
4946 case CM_ScalarEpilogueNotAllowedLowTripLoop:
4947 // fallthrough as a special case of OptForSize
4948 case CM_ScalarEpilogueNotAllowedOptSize:
4949 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4950 LLVM_DEBUG(
4951 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4952 else
4953 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4954 << "count.\n");
4955
4956 // Bail if runtime checks are required, which are not good when optimising
4957 // for size.
4958 if (runtimeChecksRequired())
4959 return None;
4960 break;
4961 }
4962
4963 // Now try the tail folding
4964
4965 // Invalidate interleave groups that require an epilogue if we can't mask
4966 // the interleave-group.
4967 if (!useMaskedInterleavedAccesses(TTI))
4968 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
4969
4970 unsigned MaxVF = computeFeasibleMaxVF(TC);
4971 if (TC > 0 && TC % MaxVF == 0) {
4972 // Accept MaxVF if we do not have a tail.
4973 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
4974 return MaxVF;
4975 }
4976
4977 // If we don't know the precise trip count, or if the trip count that we
4978 // found modulo the vectorization factor is not zero, try to fold the tail
4979 // by masking.
4980 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
4981 if (Legal->prepareToFoldTailByMasking()) {
4982 FoldTailByMasking = true;
4983 return MaxVF;
4984 }
4985
4986 if (TC == 0) {
4987 reportVectorizationFailure(
4988 "Unable to calculate the loop count due to complex control flow",
4989 "unable to calculate the loop count due to complex control flow",
4990 "UnknownLoopCountComplexCFG", ORE, TheLoop);
4991 return None;
4992 }
4993
4994 reportVectorizationFailure(
4995 "Cannot optimize for size and vectorize at the same time.",
4996 "cannot optimize for size and vectorize at the same time. "
4997 "Enable vectorization of this loop with '#pragma clang loop "
4998 "vectorize(enable)' when compiling with -Os/-Oz",
4999 "NoTailLoopWithOptForSize", ORE, TheLoop);
5000 return None;
5001 }
5002
5003 unsigned
computeFeasibleMaxVF(unsigned ConstTripCount)5004 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5005 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5006 unsigned SmallestType, WidestType;
5007 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5008 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5009
5010 // Get the maximum safe dependence distance in bits computed by LAA.
5011 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5012 // the memory accesses that is most restrictive (involved in the smallest
5013 // dependence distance).
5014 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5015
5016 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5017
5018 unsigned MaxVectorSize = WidestRegister / WidestType;
5019
5020 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5021 << " / " << WidestType << " bits.\n");
5022 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5023 << WidestRegister << " bits.\n");
5024
5025 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5026 " into one vector!");
5027 if (MaxVectorSize == 0) {
5028 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5029 MaxVectorSize = 1;
5030 return MaxVectorSize;
5031 } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5032 isPowerOf2_32(ConstTripCount)) {
5033 // We need to clamp the VF to be the ConstTripCount. There is no point in
5034 // choosing a higher viable VF as done in the loop below.
5035 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5036 << ConstTripCount << "\n");
5037 MaxVectorSize = ConstTripCount;
5038 return MaxVectorSize;
5039 }
5040
5041 unsigned MaxVF = MaxVectorSize;
5042 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5043 (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5044 // Collect all viable vectorization factors larger than the default MaxVF
5045 // (i.e. MaxVectorSize).
5046 SmallVector<unsigned, 8> VFs;
5047 unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5048 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5049 VFs.push_back(VS);
5050
5051 // For each VF calculate its register usage.
5052 auto RUs = calculateRegisterUsage(VFs);
5053
5054 // Select the largest VF which doesn't require more registers than existing
5055 // ones.
5056 for (int i = RUs.size() - 1; i >= 0; --i) {
5057 bool Selected = true;
5058 for (auto& pair : RUs[i].MaxLocalUsers) {
5059 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5060 if (pair.second > TargetNumRegisters)
5061 Selected = false;
5062 }
5063 if (Selected) {
5064 MaxVF = VFs[i];
5065 break;
5066 }
5067 }
5068 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5069 if (MaxVF < MinVF) {
5070 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5071 << ") with target's minimum: " << MinVF << '\n');
5072 MaxVF = MinVF;
5073 }
5074 }
5075 }
5076 return MaxVF;
5077 }
5078
5079 VectorizationFactor
selectVectorizationFactor(unsigned MaxVF)5080 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5081 float Cost = expectedCost(1).first;
5082 const float ScalarCost = Cost;
5083 unsigned Width = 1;
5084 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5085
5086 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5087 if (ForceVectorization && MaxVF > 1) {
5088 // Ignore scalar width, because the user explicitly wants vectorization.
5089 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5090 // evaluation.
5091 Cost = std::numeric_limits<float>::max();
5092 }
5093
5094 for (unsigned i = 2; i <= MaxVF; i *= 2) {
5095 // Notice that the vector loop needs to be executed less times, so
5096 // we need to divide the cost of the vector loops by the width of
5097 // the vector elements.
5098 VectorizationCostTy C = expectedCost(i);
5099 float VectorCost = C.first / (float)i;
5100 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5101 << " costs: " << (int)VectorCost << ".\n");
5102 if (!C.second && !ForceVectorization) {
5103 LLVM_DEBUG(
5104 dbgs() << "LV: Not considering vector loop of width " << i
5105 << " because it will not generate any vector instructions.\n");
5106 continue;
5107 }
5108 if (VectorCost < Cost) {
5109 Cost = VectorCost;
5110 Width = i;
5111 }
5112 }
5113
5114 if (!EnableCondStoresVectorization && NumPredStores) {
5115 reportVectorizationFailure("There are conditional stores.",
5116 "store that is conditionally executed prevents vectorization",
5117 "ConditionalStore", ORE, TheLoop);
5118 Width = 1;
5119 Cost = ScalarCost;
5120 }
5121
5122 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5123 << "LV: Vectorization seems to be not beneficial, "
5124 << "but was forced by a user.\n");
5125 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5126 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5127 return Factor;
5128 }
5129
5130 std::pair<unsigned, unsigned>
getSmallestAndWidestTypes()5131 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5132 unsigned MinWidth = -1U;
5133 unsigned MaxWidth = 8;
5134 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5135
5136 // For each block.
5137 for (BasicBlock *BB : TheLoop->blocks()) {
5138 // For each instruction in the loop.
5139 for (Instruction &I : BB->instructionsWithoutDebug()) {
5140 Type *T = I.getType();
5141
5142 // Skip ignored values.
5143 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
5144 continue;
5145
5146 // Only examine Loads, Stores and PHINodes.
5147 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5148 continue;
5149
5150 // Examine PHI nodes that are reduction variables. Update the type to
5151 // account for the recurrence type.
5152 if (auto *PN = dyn_cast<PHINode>(&I)) {
5153 if (!Legal->isReductionVariable(PN))
5154 continue;
5155 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
5156 T = RdxDesc.getRecurrenceType();
5157 }
5158
5159 // Examine the stored values.
5160 if (auto *ST = dyn_cast<StoreInst>(&I))
5161 T = ST->getValueOperand()->getType();
5162
5163 // Ignore loaded pointer types and stored pointer types that are not
5164 // vectorizable.
5165 //
5166 // FIXME: The check here attempts to predict whether a load or store will
5167 // be vectorized. We only know this for certain after a VF has
5168 // been selected. Here, we assume that if an access can be
5169 // vectorized, it will be. We should also look at extending this
5170 // optimization to non-pointer types.
5171 //
5172 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5173 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5174 continue;
5175
5176 MinWidth = std::min(MinWidth,
5177 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5178 MaxWidth = std::max(MaxWidth,
5179 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5180 }
5181 }
5182
5183 return {MinWidth, MaxWidth};
5184 }
5185
selectInterleaveCount(unsigned VF,unsigned LoopCost)5186 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF,
5187 unsigned LoopCost) {
5188 // -- The interleave heuristics --
5189 // We interleave the loop in order to expose ILP and reduce the loop overhead.
5190 // There are many micro-architectural considerations that we can't predict
5191 // at this level. For example, frontend pressure (on decode or fetch) due to
5192 // code size, or the number and capabilities of the execution ports.
5193 //
5194 // We use the following heuristics to select the interleave count:
5195 // 1. If the code has reductions, then we interleave to break the cross
5196 // iteration dependency.
5197 // 2. If the loop is really small, then we interleave to reduce the loop
5198 // overhead.
5199 // 3. We don't interleave if we think that we will spill registers to memory
5200 // due to the increased register pressure.
5201
5202 if (!isScalarEpilogueAllowed())
5203 return 1;
5204
5205 // We used the distance for the interleave count.
5206 if (Legal->getMaxSafeDepDistBytes() != -1U)
5207 return 1;
5208
5209 // Do not interleave loops with a relatively small known or estimated trip
5210 // count.
5211 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5212 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold)
5213 return 1;
5214
5215 RegisterUsage R = calculateRegisterUsage({VF})[0];
5216 // We divide by these constants so assume that we have at least one
5217 // instruction that uses at least one register.
5218 for (auto& pair : R.MaxLocalUsers) {
5219 pair.second = std::max(pair.second, 1U);
5220 }
5221
5222 // We calculate the interleave count using the following formula.
5223 // Subtract the number of loop invariants from the number of available
5224 // registers. These registers are used by all of the interleaved instances.
5225 // Next, divide the remaining registers by the number of registers that is
5226 // required by the loop, in order to estimate how many parallel instances
5227 // fit without causing spills. All of this is rounded down if necessary to be
5228 // a power of two. We want power of two interleave count to simplify any
5229 // addressing operations or alignment considerations.
5230 // We also want power of two interleave counts to ensure that the induction
5231 // variable of the vector loop wraps to zero, when tail is folded by masking;
5232 // this currently happens when OptForSize, in which case IC is set to 1 above.
5233 unsigned IC = UINT_MAX;
5234
5235 for (auto& pair : R.MaxLocalUsers) {
5236 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5237 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5238 << " registers of "
5239 << TTI.getRegisterClassName(pair.first) << " register class\n");
5240 if (VF == 1) {
5241 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5242 TargetNumRegisters = ForceTargetNumScalarRegs;
5243 } else {
5244 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5245 TargetNumRegisters = ForceTargetNumVectorRegs;
5246 }
5247 unsigned MaxLocalUsers = pair.second;
5248 unsigned LoopInvariantRegs = 0;
5249 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5250 LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5251
5252 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5253 // Don't count the induction variable as interleaved.
5254 if (EnableIndVarRegisterHeur) {
5255 TmpIC =
5256 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5257 std::max(1U, (MaxLocalUsers - 1)));
5258 }
5259
5260 IC = std::min(IC, TmpIC);
5261 }
5262
5263 // Clamp the interleave ranges to reasonable counts.
5264 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5265
5266 // Check if the user has overridden the max.
5267 if (VF == 1) {
5268 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5269 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5270 } else {
5271 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5272 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5273 }
5274
5275 // If trip count is known or estimated compile time constant, limit the
5276 // interleave count to be less than the trip count divided by VF.
5277 if (BestKnownTC) {
5278 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount);
5279 }
5280
5281 // If we did not calculate the cost for VF (because the user selected the VF)
5282 // then we calculate the cost of VF here.
5283 if (LoopCost == 0)
5284 LoopCost = expectedCost(VF).first;
5285
5286 assert(LoopCost && "Non-zero loop cost expected");
5287
5288 // Clamp the calculated IC to be between the 1 and the max interleave count
5289 // that the target and trip count allows.
5290 if (IC > MaxInterleaveCount)
5291 IC = MaxInterleaveCount;
5292 else if (IC < 1)
5293 IC = 1;
5294
5295 // Interleave if we vectorized this loop and there is a reduction that could
5296 // benefit from interleaving.
5297 if (VF > 1 && !Legal->getReductionVars()->empty()) {
5298 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5299 return IC;
5300 }
5301
5302 // Note that if we've already vectorized the loop we will have done the
5303 // runtime check and so interleaving won't require further checks.
5304 bool InterleavingRequiresRuntimePointerCheck =
5305 (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5306
5307 // We want to interleave small loops in order to reduce the loop overhead and
5308 // potentially expose ILP opportunities.
5309 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5310 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5311 // We assume that the cost overhead is 1 and we use the cost model
5312 // to estimate the cost of the loop and interleave until the cost of the
5313 // loop overhead is about 5% of the cost of the loop.
5314 unsigned SmallIC =
5315 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5316
5317 // Interleave until store/load ports (estimated by max interleave count) are
5318 // saturated.
5319 unsigned NumStores = Legal->getNumStores();
5320 unsigned NumLoads = Legal->getNumLoads();
5321 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5322 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5323
5324 // If we have a scalar reduction (vector reductions are already dealt with
5325 // by this point), we can increase the critical path length if the loop
5326 // we're interleaving is inside another loop. Limit, by default to 2, so the
5327 // critical path only gets increased by one reduction operation.
5328 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
5329 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5330 SmallIC = std::min(SmallIC, F);
5331 StoresIC = std::min(StoresIC, F);
5332 LoadsIC = std::min(LoadsIC, F);
5333 }
5334
5335 if (EnableLoadStoreRuntimeInterleave &&
5336 std::max(StoresIC, LoadsIC) > SmallIC) {
5337 LLVM_DEBUG(
5338 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5339 return std::max(StoresIC, LoadsIC);
5340 }
5341
5342 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5343 return SmallIC;
5344 }
5345
5346 // Interleave if this is a large loop (small loops are already dealt with by
5347 // this point) that could benefit from interleaving.
5348 bool HasReductions = !Legal->getReductionVars()->empty();
5349 if (TTI.enableAggressiveInterleaving(HasReductions)) {
5350 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5351 return IC;
5352 }
5353
5354 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5355 return 1;
5356 }
5357
5358 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
calculateRegisterUsage(ArrayRef<unsigned> VFs)5359 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5360 // This function calculates the register usage by measuring the highest number
5361 // of values that are alive at a single location. Obviously, this is a very
5362 // rough estimation. We scan the loop in a topological order in order and
5363 // assign a number to each instruction. We use RPO to ensure that defs are
5364 // met before their users. We assume that each instruction that has in-loop
5365 // users starts an interval. We record every time that an in-loop value is
5366 // used, so we have a list of the first and last occurrences of each
5367 // instruction. Next, we transpose this data structure into a multi map that
5368 // holds the list of intervals that *end* at a specific location. This multi
5369 // map allows us to perform a linear search. We scan the instructions linearly
5370 // and record each time that a new interval starts, by placing it in a set.
5371 // If we find this value in the multi-map then we remove it from the set.
5372 // The max register usage is the maximum size of the set.
5373 // We also search for instructions that are defined outside the loop, but are
5374 // used inside the loop. We need this number separately from the max-interval
5375 // usage number because when we unroll, loop-invariant values do not take
5376 // more register.
5377 LoopBlocksDFS DFS(TheLoop);
5378 DFS.perform(LI);
5379
5380 RegisterUsage RU;
5381
5382 // Each 'key' in the map opens a new interval. The values
5383 // of the map are the index of the 'last seen' usage of the
5384 // instruction that is the key.
5385 using IntervalMap = DenseMap<Instruction *, unsigned>;
5386
5387 // Maps instruction to its index.
5388 SmallVector<Instruction *, 64> IdxToInstr;
5389 // Marks the end of each interval.
5390 IntervalMap EndPoint;
5391 // Saves the list of instruction indices that are used in the loop.
5392 SmallPtrSet<Instruction *, 8> Ends;
5393 // Saves the list of values that are used in the loop but are
5394 // defined outside the loop, such as arguments and constants.
5395 SmallPtrSet<Value *, 8> LoopInvariants;
5396
5397 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5398 for (Instruction &I : BB->instructionsWithoutDebug()) {
5399 IdxToInstr.push_back(&I);
5400
5401 // Save the end location of each USE.
5402 for (Value *U : I.operands()) {
5403 auto *Instr = dyn_cast<Instruction>(U);
5404
5405 // Ignore non-instruction values such as arguments, constants, etc.
5406 if (!Instr)
5407 continue;
5408
5409 // If this instruction is outside the loop then record it and continue.
5410 if (!TheLoop->contains(Instr)) {
5411 LoopInvariants.insert(Instr);
5412 continue;
5413 }
5414
5415 // Overwrite previous end points.
5416 EndPoint[Instr] = IdxToInstr.size();
5417 Ends.insert(Instr);
5418 }
5419 }
5420 }
5421
5422 // Saves the list of intervals that end with the index in 'key'.
5423 using InstrList = SmallVector<Instruction *, 2>;
5424 DenseMap<unsigned, InstrList> TransposeEnds;
5425
5426 // Transpose the EndPoints to a list of values that end at each index.
5427 for (auto &Interval : EndPoint)
5428 TransposeEnds[Interval.second].push_back(Interval.first);
5429
5430 SmallPtrSet<Instruction *, 8> OpenIntervals;
5431
5432 // Get the size of the widest register.
5433 unsigned MaxSafeDepDist = -1U;
5434 if (Legal->getMaxSafeDepDistBytes() != -1U)
5435 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5436 unsigned WidestRegister =
5437 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5438 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5439
5440 SmallVector<RegisterUsage, 8> RUs(VFs.size());
5441 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5442
5443 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5444
5445 // A lambda that gets the register usage for the given type and VF.
5446 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5447 if (Ty->isTokenTy())
5448 return 0U;
5449 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5450 return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5451 };
5452
5453 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5454 Instruction *I = IdxToInstr[i];
5455
5456 // Remove all of the instructions that end at this location.
5457 InstrList &List = TransposeEnds[i];
5458 for (Instruction *ToRemove : List)
5459 OpenIntervals.erase(ToRemove);
5460
5461 // Ignore instructions that are never used within the loop.
5462 if (Ends.find(I) == Ends.end())
5463 continue;
5464
5465 // Skip ignored values.
5466 if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
5467 continue;
5468
5469 // For each VF find the maximum usage of registers.
5470 for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5471 // Count the number of live intervals.
5472 SmallMapVector<unsigned, unsigned, 4> RegUsage;
5473
5474 if (VFs[j] == 1) {
5475 for (auto Inst : OpenIntervals) {
5476 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5477 if (RegUsage.find(ClassID) == RegUsage.end())
5478 RegUsage[ClassID] = 1;
5479 else
5480 RegUsage[ClassID] += 1;
5481 }
5482 } else {
5483 collectUniformsAndScalars(VFs[j]);
5484 for (auto Inst : OpenIntervals) {
5485 // Skip ignored values for VF > 1.
5486 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end())
5487 continue;
5488 if (isScalarAfterVectorization(Inst, VFs[j])) {
5489 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5490 if (RegUsage.find(ClassID) == RegUsage.end())
5491 RegUsage[ClassID] = 1;
5492 else
5493 RegUsage[ClassID] += 1;
5494 } else {
5495 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5496 if (RegUsage.find(ClassID) == RegUsage.end())
5497 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5498 else
5499 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5500 }
5501 }
5502 }
5503
5504 for (auto& pair : RegUsage) {
5505 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5506 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5507 else
5508 MaxUsages[j][pair.first] = pair.second;
5509 }
5510 }
5511
5512 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5513 << OpenIntervals.size() << '\n');
5514
5515 // Add the current instruction to the list of open intervals.
5516 OpenIntervals.insert(I);
5517 }
5518
5519 for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5520 SmallMapVector<unsigned, unsigned, 4> Invariant;
5521
5522 for (auto Inst : LoopInvariants) {
5523 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5524 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType());
5525 if (Invariant.find(ClassID) == Invariant.end())
5526 Invariant[ClassID] = Usage;
5527 else
5528 Invariant[ClassID] += Usage;
5529 }
5530
5531 LLVM_DEBUG({
5532 dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5533 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5534 << " item\n";
5535 for (const auto &pair : MaxUsages[i]) {
5536 dbgs() << "LV(REG): RegisterClass: "
5537 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5538 << " registers\n";
5539 }
5540 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5541 << " item\n";
5542 for (const auto &pair : Invariant) {
5543 dbgs() << "LV(REG): RegisterClass: "
5544 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5545 << " registers\n";
5546 }
5547 });
5548
5549 RU.LoopInvariantRegs = Invariant;
5550 RU.MaxLocalUsers = MaxUsages[i];
5551 RUs[i] = RU;
5552 }
5553
5554 return RUs;
5555 }
5556
useEmulatedMaskMemRefHack(Instruction * I)5557 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5558 // TODO: Cost model for emulated masked load/store is completely
5559 // broken. This hack guides the cost model to use an artificially
5560 // high enough value to practically disable vectorization with such
5561 // operations, except where previously deployed legality hack allowed
5562 // using very low cost values. This is to avoid regressions coming simply
5563 // from moving "masked load/store" check from legality to cost model.
5564 // Masked Load/Gather emulation was previously never allowed.
5565 // Limited number of Masked Store/Scatter emulation was allowed.
5566 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5567 return isa<LoadInst>(I) ||
5568 (isa<StoreInst>(I) &&
5569 NumPredStores > NumberOfStoresToPredicate);
5570 }
5571
collectInstsToScalarize(unsigned VF)5572 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5573 // If we aren't vectorizing the loop, or if we've already collected the
5574 // instructions to scalarize, there's nothing to do. Collection may already
5575 // have occurred if we have a user-selected VF and are now computing the
5576 // expected cost for interleaving.
5577 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
5578 return;
5579
5580 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5581 // not profitable to scalarize any instructions, the presence of VF in the
5582 // map will indicate that we've analyzed it already.
5583 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5584
5585 // Find all the instructions that are scalar with predication in the loop and
5586 // determine if it would be better to not if-convert the blocks they are in.
5587 // If so, we also record the instructions to scalarize.
5588 for (BasicBlock *BB : TheLoop->blocks()) {
5589 if (!blockNeedsPredication(BB))
5590 continue;
5591 for (Instruction &I : *BB)
5592 if (isScalarWithPredication(&I)) {
5593 ScalarCostsTy ScalarCosts;
5594 // Do not apply discount logic if hacked cost is needed
5595 // for emulated masked memrefs.
5596 if (!useEmulatedMaskMemRefHack(&I) &&
5597 computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5598 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5599 // Remember that BB will remain after vectorization.
5600 PredicatedBBsAfterVectorization.insert(BB);
5601 }
5602 }
5603 }
5604
computePredInstDiscount(Instruction * PredInst,DenseMap<Instruction *,unsigned> & ScalarCosts,unsigned VF)5605 int LoopVectorizationCostModel::computePredInstDiscount(
5606 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5607 unsigned VF) {
5608 assert(!isUniformAfterVectorization(PredInst, VF) &&
5609 "Instruction marked uniform-after-vectorization will be predicated");
5610
5611 // Initialize the discount to zero, meaning that the scalar version and the
5612 // vector version cost the same.
5613 int Discount = 0;
5614
5615 // Holds instructions to analyze. The instructions we visit are mapped in
5616 // ScalarCosts. Those instructions are the ones that would be scalarized if
5617 // we find that the scalar version costs less.
5618 SmallVector<Instruction *, 8> Worklist;
5619
5620 // Returns true if the given instruction can be scalarized.
5621 auto canBeScalarized = [&](Instruction *I) -> bool {
5622 // We only attempt to scalarize instructions forming a single-use chain
5623 // from the original predicated block that would otherwise be vectorized.
5624 // Although not strictly necessary, we give up on instructions we know will
5625 // already be scalar to avoid traversing chains that are unlikely to be
5626 // beneficial.
5627 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5628 isScalarAfterVectorization(I, VF))
5629 return false;
5630
5631 // If the instruction is scalar with predication, it will be analyzed
5632 // separately. We ignore it within the context of PredInst.
5633 if (isScalarWithPredication(I))
5634 return false;
5635
5636 // If any of the instruction's operands are uniform after vectorization,
5637 // the instruction cannot be scalarized. This prevents, for example, a
5638 // masked load from being scalarized.
5639 //
5640 // We assume we will only emit a value for lane zero of an instruction
5641 // marked uniform after vectorization, rather than VF identical values.
5642 // Thus, if we scalarize an instruction that uses a uniform, we would
5643 // create uses of values corresponding to the lanes we aren't emitting code
5644 // for. This behavior can be changed by allowing getScalarValue to clone
5645 // the lane zero values for uniforms rather than asserting.
5646 for (Use &U : I->operands())
5647 if (auto *J = dyn_cast<Instruction>(U.get()))
5648 if (isUniformAfterVectorization(J, VF))
5649 return false;
5650
5651 // Otherwise, we can scalarize the instruction.
5652 return true;
5653 };
5654
5655 // Compute the expected cost discount from scalarizing the entire expression
5656 // feeding the predicated instruction. We currently only consider expressions
5657 // that are single-use instruction chains.
5658 Worklist.push_back(PredInst);
5659 while (!Worklist.empty()) {
5660 Instruction *I = Worklist.pop_back_val();
5661
5662 // If we've already analyzed the instruction, there's nothing to do.
5663 if (ScalarCosts.find(I) != ScalarCosts.end())
5664 continue;
5665
5666 // Compute the cost of the vector instruction. Note that this cost already
5667 // includes the scalarization overhead of the predicated instruction.
5668 unsigned VectorCost = getInstructionCost(I, VF).first;
5669
5670 // Compute the cost of the scalarized instruction. This cost is the cost of
5671 // the instruction as if it wasn't if-converted and instead remained in the
5672 // predicated block. We will scale this cost by block probability after
5673 // computing the scalarization overhead.
5674 unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5675
5676 // Compute the scalarization overhead of needed insertelement instructions
5677 // and phi nodes.
5678 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5679 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
5680 true, false);
5681 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
5682 }
5683
5684 // Compute the scalarization overhead of needed extractelement
5685 // instructions. For each of the instruction's operands, if the operand can
5686 // be scalarized, add it to the worklist; otherwise, account for the
5687 // overhead.
5688 for (Use &U : I->operands())
5689 if (auto *J = dyn_cast<Instruction>(U.get())) {
5690 assert(VectorType::isValidElementType(J->getType()) &&
5691 "Instruction has non-scalar type");
5692 if (canBeScalarized(J))
5693 Worklist.push_back(J);
5694 else if (needsExtract(J, VF))
5695 ScalarCost += TTI.getScalarizationOverhead(
5696 ToVectorTy(J->getType(),VF), false, true);
5697 }
5698
5699 // Scale the total scalar cost by block probability.
5700 ScalarCost /= getReciprocalPredBlockProb();
5701
5702 // Compute the discount. A non-negative discount means the vector version
5703 // of the instruction costs more, and scalarizing would be beneficial.
5704 Discount += VectorCost - ScalarCost;
5705 ScalarCosts[I] = ScalarCost;
5706 }
5707
5708 return Discount;
5709 }
5710
5711 LoopVectorizationCostModel::VectorizationCostTy
expectedCost(unsigned VF)5712 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5713 VectorizationCostTy Cost;
5714
5715 // For each block.
5716 for (BasicBlock *BB : TheLoop->blocks()) {
5717 VectorizationCostTy BlockCost;
5718
5719 // For each instruction in the old loop.
5720 for (Instruction &I : BB->instructionsWithoutDebug()) {
5721 // Skip ignored values.
5722 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
5723 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
5724 continue;
5725
5726 VectorizationCostTy C = getInstructionCost(&I, VF);
5727
5728 // Check if we should override the cost.
5729 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5730 C.first = ForceTargetInstructionCost;
5731
5732 BlockCost.first += C.first;
5733 BlockCost.second |= C.second;
5734 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5735 << " for VF " << VF << " For instruction: " << I
5736 << '\n');
5737 }
5738
5739 // If we are vectorizing a predicated block, it will have been
5740 // if-converted. This means that the block's instructions (aside from
5741 // stores and instructions that may divide by zero) will now be
5742 // unconditionally executed. For the scalar case, we may not always execute
5743 // the predicated block. Thus, scale the block's cost by the probability of
5744 // executing it.
5745 if (VF == 1 && blockNeedsPredication(BB))
5746 BlockCost.first /= getReciprocalPredBlockProb();
5747
5748 Cost.first += BlockCost.first;
5749 Cost.second |= BlockCost.second;
5750 }
5751
5752 return Cost;
5753 }
5754
5755 /// Gets Address Access SCEV after verifying that the access pattern
5756 /// is loop invariant except the induction variable dependence.
5757 ///
5758 /// This SCEV can be sent to the Target in order to estimate the address
5759 /// calculation cost.
getAddressAccessSCEV(Value * Ptr,LoopVectorizationLegality * Legal,PredicatedScalarEvolution & PSE,const Loop * TheLoop)5760 static const SCEV *getAddressAccessSCEV(
5761 Value *Ptr,
5762 LoopVectorizationLegality *Legal,
5763 PredicatedScalarEvolution &PSE,
5764 const Loop *TheLoop) {
5765
5766 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5767 if (!Gep)
5768 return nullptr;
5769
5770 // We are looking for a gep with all loop invariant indices except for one
5771 // which should be an induction variable.
5772 auto SE = PSE.getSE();
5773 unsigned NumOperands = Gep->getNumOperands();
5774 for (unsigned i = 1; i < NumOperands; ++i) {
5775 Value *Opd = Gep->getOperand(i);
5776 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5777 !Legal->isInductionVariable(Opd))
5778 return nullptr;
5779 }
5780
5781 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5782 return PSE.getSCEV(Ptr);
5783 }
5784
isStrideMul(Instruction * I,LoopVectorizationLegality * Legal)5785 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5786 return Legal->hasStride(I->getOperand(0)) ||
5787 Legal->hasStride(I->getOperand(1));
5788 }
5789
getMemInstScalarizationCost(Instruction * I,unsigned VF)5790 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5791 unsigned VF) {
5792 assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
5793 Type *ValTy = getMemInstValueType(I);
5794 auto SE = PSE.getSE();
5795
5796 unsigned AS = getLoadStoreAddressSpace(I);
5797 Value *Ptr = getLoadStorePointerOperand(I);
5798 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5799
5800 // Figure out whether the access is strided and get the stride value
5801 // if it's known in compile time
5802 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5803
5804 // Get the cost of the scalar memory instruction and address computation.
5805 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5806
5807 // Don't pass *I here, since it is scalar but will actually be part of a
5808 // vectorized loop where the user of it is a vectorized instruction.
5809 const MaybeAlign Alignment = getLoadStoreAlignment(I);
5810 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5811 Alignment, AS);
5812
5813 // Get the overhead of the extractelement and insertelement instructions
5814 // we might create due to scalarization.
5815 Cost += getScalarizationOverhead(I, VF);
5816
5817 // If we have a predicated store, it may not be executed for each vector
5818 // lane. Scale the cost by the probability of executing the predicated
5819 // block.
5820 if (isPredicatedInst(I)) {
5821 Cost /= getReciprocalPredBlockProb();
5822
5823 if (useEmulatedMaskMemRefHack(I))
5824 // Artificially setting to a high enough value to practically disable
5825 // vectorization with such operations.
5826 Cost = 3000000;
5827 }
5828
5829 return Cost;
5830 }
5831
getConsecutiveMemOpCost(Instruction * I,unsigned VF)5832 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5833 unsigned VF) {
5834 Type *ValTy = getMemInstValueType(I);
5835 Type *VectorTy = ToVectorTy(ValTy, VF);
5836 Value *Ptr = getLoadStorePointerOperand(I);
5837 unsigned AS = getLoadStoreAddressSpace(I);
5838 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5839
5840 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5841 "Stride should be 1 or -1 for consecutive memory access");
5842 const MaybeAlign Alignment = getLoadStoreAlignment(I);
5843 unsigned Cost = 0;
5844 if (Legal->isMaskRequired(I))
5845 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy,
5846 Alignment ? Alignment->value() : 0, AS);
5847 else
5848 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
5849
5850 bool Reverse = ConsecutiveStride < 0;
5851 if (Reverse)
5852 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5853 return Cost;
5854 }
5855
getUniformMemOpCost(Instruction * I,unsigned VF)5856 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5857 unsigned VF) {
5858 Type *ValTy = getMemInstValueType(I);
5859 Type *VectorTy = ToVectorTy(ValTy, VF);
5860 const MaybeAlign Alignment = getLoadStoreAlignment(I);
5861 unsigned AS = getLoadStoreAddressSpace(I);
5862 if (isa<LoadInst>(I)) {
5863 return TTI.getAddressComputationCost(ValTy) +
5864 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
5865 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5866 }
5867 StoreInst *SI = cast<StoreInst>(I);
5868
5869 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
5870 return TTI.getAddressComputationCost(ValTy) +
5871 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) +
5872 (isLoopInvariantStoreValue
5873 ? 0
5874 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5875 VF - 1));
5876 }
5877
getGatherScatterCost(Instruction * I,unsigned VF)5878 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5879 unsigned VF) {
5880 Type *ValTy = getMemInstValueType(I);
5881 Type *VectorTy = ToVectorTy(ValTy, VF);
5882 const MaybeAlign Alignment = getLoadStoreAlignment(I);
5883 Value *Ptr = getLoadStorePointerOperand(I);
5884
5885 return TTI.getAddressComputationCost(VectorTy) +
5886 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5887 Legal->isMaskRequired(I),
5888 Alignment ? Alignment->value() : 0);
5889 }
5890
getInterleaveGroupCost(Instruction * I,unsigned VF)5891 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5892 unsigned VF) {
5893 Type *ValTy = getMemInstValueType(I);
5894 Type *VectorTy = ToVectorTy(ValTy, VF);
5895 unsigned AS = getLoadStoreAddressSpace(I);
5896
5897 auto Group = getInterleavedAccessGroup(I);
5898 assert(Group && "Fail to get an interleaved access group.");
5899
5900 unsigned InterleaveFactor = Group->getFactor();
5901 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5902
5903 // Holds the indices of existing members in an interleaved load group.
5904 // An interleaved store group doesn't need this as it doesn't allow gaps.
5905 SmallVector<unsigned, 4> Indices;
5906 if (isa<LoadInst>(I)) {
5907 for (unsigned i = 0; i < InterleaveFactor; i++)
5908 if (Group->getMember(i))
5909 Indices.push_back(i);
5910 }
5911
5912 // Calculate the cost of the whole interleaved group.
5913 bool UseMaskForGaps =
5914 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5915 unsigned Cost = TTI.getInterleavedMemoryOpCost(
5916 I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5917 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps);
5918
5919 if (Group->isReverse()) {
5920 // TODO: Add support for reversed masked interleaved access.
5921 assert(!Legal->isMaskRequired(I) &&
5922 "Reverse masked interleaved access not supported.");
5923 Cost += Group->getNumMembers() *
5924 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5925 }
5926 return Cost;
5927 }
5928
getMemoryInstructionCost(Instruction * I,unsigned VF)5929 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5930 unsigned VF) {
5931 // Calculate scalar cost only. Vectorization cost should be ready at this
5932 // moment.
5933 if (VF == 1) {
5934 Type *ValTy = getMemInstValueType(I);
5935 const MaybeAlign Alignment = getLoadStoreAlignment(I);
5936 unsigned AS = getLoadStoreAddressSpace(I);
5937
5938 return TTI.getAddressComputationCost(ValTy) +
5939 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
5940 }
5941 return getWideningCost(I, VF);
5942 }
5943
5944 LoopVectorizationCostModel::VectorizationCostTy
getInstructionCost(Instruction * I,unsigned VF)5945 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5946 // If we know that this instruction will remain uniform, check the cost of
5947 // the scalar version.
5948 if (isUniformAfterVectorization(I, VF))
5949 VF = 1;
5950
5951 if (VF > 1 && isProfitableToScalarize(I, VF))
5952 return VectorizationCostTy(InstsToScalarize[VF][I], false);
5953
5954 // Forced scalars do not have any scalarization overhead.
5955 auto ForcedScalar = ForcedScalars.find(VF);
5956 if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
5957 auto InstSet = ForcedScalar->second;
5958 if (InstSet.find(I) != InstSet.end())
5959 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
5960 }
5961
5962 Type *VectorTy;
5963 unsigned C = getInstructionCost(I, VF, VectorTy);
5964
5965 bool TypeNotScalarized =
5966 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
5967 return VectorizationCostTy(C, TypeNotScalarized);
5968 }
5969
getScalarizationOverhead(Instruction * I,unsigned VF)5970 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5971 unsigned VF) {
5972
5973 if (VF == 1)
5974 return 0;
5975
5976 unsigned Cost = 0;
5977 Type *RetTy = ToVectorTy(I->getType(), VF);
5978 if (!RetTy->isVoidTy() &&
5979 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
5980 Cost += TTI.getScalarizationOverhead(RetTy, true, false);
5981
5982 // Some targets keep addresses scalar.
5983 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
5984 return Cost;
5985
5986 // Some targets support efficient element stores.
5987 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
5988 return Cost;
5989
5990 // Collect operands to consider.
5991 CallInst *CI = dyn_cast<CallInst>(I);
5992 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
5993
5994 // Skip operands that do not require extraction/scalarization and do not incur
5995 // any overhead.
5996 return Cost + TTI.getOperandsScalarizationOverhead(
5997 filterExtractingOperands(Ops, VF), VF);
5998 }
5999
setCostBasedWideningDecision(unsigned VF)6000 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6001 if (VF == 1)
6002 return;
6003 NumPredStores = 0;
6004 for (BasicBlock *BB : TheLoop->blocks()) {
6005 // For each instruction in the old loop.
6006 for (Instruction &I : *BB) {
6007 Value *Ptr = getLoadStorePointerOperand(&I);
6008 if (!Ptr)
6009 continue;
6010
6011 // TODO: We should generate better code and update the cost model for
6012 // predicated uniform stores. Today they are treated as any other
6013 // predicated store (see added test cases in
6014 // invariant-store-vectorization.ll).
6015 if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6016 NumPredStores++;
6017
6018 if (Legal->isUniform(Ptr) &&
6019 // Conditional loads and stores should be scalarized and predicated.
6020 // isScalarWithPredication cannot be used here since masked
6021 // gather/scatters are not considered scalar with predication.
6022 !Legal->blockNeedsPredication(I.getParent())) {
6023 // TODO: Avoid replicating loads and stores instead of
6024 // relying on instcombine to remove them.
6025 // Load: Scalar load + broadcast
6026 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6027 unsigned Cost = getUniformMemOpCost(&I, VF);
6028 setWideningDecision(&I, VF, CM_Scalarize, Cost);
6029 continue;
6030 }
6031
6032 // We assume that widening is the best solution when possible.
6033 if (memoryInstructionCanBeWidened(&I, VF)) {
6034 unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6035 int ConsecutiveStride =
6036 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6037 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6038 "Expected consecutive stride.");
6039 InstWidening Decision =
6040 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6041 setWideningDecision(&I, VF, Decision, Cost);
6042 continue;
6043 }
6044
6045 // Choose between Interleaving, Gather/Scatter or Scalarization.
6046 unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6047 unsigned NumAccesses = 1;
6048 if (isAccessInterleaved(&I)) {
6049 auto Group = getInterleavedAccessGroup(&I);
6050 assert(Group && "Fail to get an interleaved access group.");
6051
6052 // Make one decision for the whole group.
6053 if (getWideningDecision(&I, VF) != CM_Unknown)
6054 continue;
6055
6056 NumAccesses = Group->getNumMembers();
6057 if (interleavedAccessCanBeWidened(&I, VF))
6058 InterleaveCost = getInterleaveGroupCost(&I, VF);
6059 }
6060
6061 unsigned GatherScatterCost =
6062 isLegalGatherOrScatter(&I)
6063 ? getGatherScatterCost(&I, VF) * NumAccesses
6064 : std::numeric_limits<unsigned>::max();
6065
6066 unsigned ScalarizationCost =
6067 getMemInstScalarizationCost(&I, VF) * NumAccesses;
6068
6069 // Choose better solution for the current VF,
6070 // write down this decision and use it during vectorization.
6071 unsigned Cost;
6072 InstWidening Decision;
6073 if (InterleaveCost <= GatherScatterCost &&
6074 InterleaveCost < ScalarizationCost) {
6075 Decision = CM_Interleave;
6076 Cost = InterleaveCost;
6077 } else if (GatherScatterCost < ScalarizationCost) {
6078 Decision = CM_GatherScatter;
6079 Cost = GatherScatterCost;
6080 } else {
6081 Decision = CM_Scalarize;
6082 Cost = ScalarizationCost;
6083 }
6084 // If the instructions belongs to an interleave group, the whole group
6085 // receives the same decision. The whole group receives the cost, but
6086 // the cost will actually be assigned to one instruction.
6087 if (auto Group = getInterleavedAccessGroup(&I))
6088 setWideningDecision(Group, VF, Decision, Cost);
6089 else
6090 setWideningDecision(&I, VF, Decision, Cost);
6091 }
6092 }
6093
6094 // Make sure that any load of address and any other address computation
6095 // remains scalar unless there is gather/scatter support. This avoids
6096 // inevitable extracts into address registers, and also has the benefit of
6097 // activating LSR more, since that pass can't optimize vectorized
6098 // addresses.
6099 if (TTI.prefersVectorizedAddressing())
6100 return;
6101
6102 // Start with all scalar pointer uses.
6103 SmallPtrSet<Instruction *, 8> AddrDefs;
6104 for (BasicBlock *BB : TheLoop->blocks())
6105 for (Instruction &I : *BB) {
6106 Instruction *PtrDef =
6107 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6108 if (PtrDef && TheLoop->contains(PtrDef) &&
6109 getWideningDecision(&I, VF) != CM_GatherScatter)
6110 AddrDefs.insert(PtrDef);
6111 }
6112
6113 // Add all instructions used to generate the addresses.
6114 SmallVector<Instruction *, 4> Worklist;
6115 for (auto *I : AddrDefs)
6116 Worklist.push_back(I);
6117 while (!Worklist.empty()) {
6118 Instruction *I = Worklist.pop_back_val();
6119 for (auto &Op : I->operands())
6120 if (auto *InstOp = dyn_cast<Instruction>(Op))
6121 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6122 AddrDefs.insert(InstOp).second)
6123 Worklist.push_back(InstOp);
6124 }
6125
6126 for (auto *I : AddrDefs) {
6127 if (isa<LoadInst>(I)) {
6128 // Setting the desired widening decision should ideally be handled in
6129 // by cost functions, but since this involves the task of finding out
6130 // if the loaded register is involved in an address computation, it is
6131 // instead changed here when we know this is the case.
6132 InstWidening Decision = getWideningDecision(I, VF);
6133 if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6134 // Scalarize a widened load of address.
6135 setWideningDecision(I, VF, CM_Scalarize,
6136 (VF * getMemoryInstructionCost(I, 1)));
6137 else if (auto Group = getInterleavedAccessGroup(I)) {
6138 // Scalarize an interleave group of address loads.
6139 for (unsigned I = 0; I < Group->getFactor(); ++I) {
6140 if (Instruction *Member = Group->getMember(I))
6141 setWideningDecision(Member, VF, CM_Scalarize,
6142 (VF * getMemoryInstructionCost(Member, 1)));
6143 }
6144 }
6145 } else
6146 // Make sure I gets scalarized and a cost estimate without
6147 // scalarization overhead.
6148 ForcedScalars[VF].insert(I);
6149 }
6150 }
6151
getInstructionCost(Instruction * I,unsigned VF,Type * & VectorTy)6152 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6153 unsigned VF,
6154 Type *&VectorTy) {
6155 Type *RetTy = I->getType();
6156 if (canTruncateToMinimalBitwidth(I, VF))
6157 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6158 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6159 auto SE = PSE.getSE();
6160
6161 // TODO: We need to estimate the cost of intrinsic calls.
6162 switch (I->getOpcode()) {
6163 case Instruction::GetElementPtr:
6164 // We mark this instruction as zero-cost because the cost of GEPs in
6165 // vectorized code depends on whether the corresponding memory instruction
6166 // is scalarized or not. Therefore, we handle GEPs with the memory
6167 // instruction cost.
6168 return 0;
6169 case Instruction::Br: {
6170 // In cases of scalarized and predicated instructions, there will be VF
6171 // predicated blocks in the vectorized loop. Each branch around these
6172 // blocks requires also an extract of its vector compare i1 element.
6173 bool ScalarPredicatedBB = false;
6174 BranchInst *BI = cast<BranchInst>(I);
6175 if (VF > 1 && BI->isConditional() &&
6176 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
6177 PredicatedBBsAfterVectorization.end() ||
6178 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
6179 PredicatedBBsAfterVectorization.end()))
6180 ScalarPredicatedBB = true;
6181
6182 if (ScalarPredicatedBB) {
6183 // Return cost for branches around scalarized and predicated blocks.
6184 Type *Vec_i1Ty =
6185 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6186 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
6187 (TTI.getCFInstrCost(Instruction::Br) * VF));
6188 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6189 // The back-edge branch will remain, as will all scalar branches.
6190 return TTI.getCFInstrCost(Instruction::Br);
6191 else
6192 // This branch will be eliminated by if-conversion.
6193 return 0;
6194 // Note: We currently assume zero cost for an unconditional branch inside
6195 // a predicated block since it will become a fall-through, although we
6196 // may decide in the future to call TTI for all branches.
6197 }
6198 case Instruction::PHI: {
6199 auto *Phi = cast<PHINode>(I);
6200
6201 // First-order recurrences are replaced by vector shuffles inside the loop.
6202 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6203 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6204 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6205 VectorTy, VF - 1, VectorType::get(RetTy, 1));
6206
6207 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6208 // converted into select instructions. We require N - 1 selects per phi
6209 // node, where N is the number of incoming values.
6210 if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6211 return (Phi->getNumIncomingValues() - 1) *
6212 TTI.getCmpSelInstrCost(
6213 Instruction::Select, ToVectorTy(Phi->getType(), VF),
6214 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
6215
6216 return TTI.getCFInstrCost(Instruction::PHI);
6217 }
6218 case Instruction::UDiv:
6219 case Instruction::SDiv:
6220 case Instruction::URem:
6221 case Instruction::SRem:
6222 // If we have a predicated instruction, it may not be executed for each
6223 // vector lane. Get the scalarization cost and scale this amount by the
6224 // probability of executing the predicated block. If the instruction is not
6225 // predicated, we fall through to the next case.
6226 if (VF > 1 && isScalarWithPredication(I)) {
6227 unsigned Cost = 0;
6228
6229 // These instructions have a non-void type, so account for the phi nodes
6230 // that we will create. This cost is likely to be zero. The phi node
6231 // cost, if any, should be scaled by the block probability because it
6232 // models a copy at the end of each predicated block.
6233 Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
6234
6235 // The cost of the non-predicated instruction.
6236 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
6237
6238 // The cost of insertelement and extractelement instructions needed for
6239 // scalarization.
6240 Cost += getScalarizationOverhead(I, VF);
6241
6242 // Scale the cost by the probability of executing the predicated blocks.
6243 // This assumes the predicated block for each vector lane is equally
6244 // likely.
6245 return Cost / getReciprocalPredBlockProb();
6246 }
6247 LLVM_FALLTHROUGH;
6248 case Instruction::Add:
6249 case Instruction::FAdd:
6250 case Instruction::Sub:
6251 case Instruction::FSub:
6252 case Instruction::Mul:
6253 case Instruction::FMul:
6254 case Instruction::FDiv:
6255 case Instruction::FRem:
6256 case Instruction::Shl:
6257 case Instruction::LShr:
6258 case Instruction::AShr:
6259 case Instruction::And:
6260 case Instruction::Or:
6261 case Instruction::Xor: {
6262 // Since we will replace the stride by 1 the multiplication should go away.
6263 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6264 return 0;
6265 // Certain instructions can be cheaper to vectorize if they have a constant
6266 // second vector operand. One example of this are shifts on x86.
6267 Value *Op2 = I->getOperand(1);
6268 TargetTransformInfo::OperandValueProperties Op2VP;
6269 TargetTransformInfo::OperandValueKind Op2VK =
6270 TTI.getOperandInfo(Op2, Op2VP);
6271 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6272 Op2VK = TargetTransformInfo::OK_UniformValue;
6273
6274 SmallVector<const Value *, 4> Operands(I->operand_values());
6275 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6276 return N * TTI.getArithmeticInstrCost(
6277 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue,
6278 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6279 }
6280 case Instruction::FNeg: {
6281 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6282 return N * TTI.getArithmeticInstrCost(
6283 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue,
6284 TargetTransformInfo::OK_AnyValue,
6285 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6286 I->getOperand(0), I);
6287 }
6288 case Instruction::Select: {
6289 SelectInst *SI = cast<SelectInst>(I);
6290 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6291 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6292 Type *CondTy = SI->getCondition()->getType();
6293 if (!ScalarCond)
6294 CondTy = VectorType::get(CondTy, VF);
6295
6296 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
6297 }
6298 case Instruction::ICmp:
6299 case Instruction::FCmp: {
6300 Type *ValTy = I->getOperand(0)->getType();
6301 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6302 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6303 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6304 VectorTy = ToVectorTy(ValTy, VF);
6305 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
6306 }
6307 case Instruction::Store:
6308 case Instruction::Load: {
6309 unsigned Width = VF;
6310 if (Width > 1) {
6311 InstWidening Decision = getWideningDecision(I, Width);
6312 assert(Decision != CM_Unknown &&
6313 "CM decision should be taken at this point");
6314 if (Decision == CM_Scalarize)
6315 Width = 1;
6316 }
6317 VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6318 return getMemoryInstructionCost(I, VF);
6319 }
6320 case Instruction::ZExt:
6321 case Instruction::SExt:
6322 case Instruction::FPToUI:
6323 case Instruction::FPToSI:
6324 case Instruction::FPExt:
6325 case Instruction::PtrToInt:
6326 case Instruction::IntToPtr:
6327 case Instruction::SIToFP:
6328 case Instruction::UIToFP:
6329 case Instruction::Trunc:
6330 case Instruction::FPTrunc:
6331 case Instruction::BitCast: {
6332 // We optimize the truncation of induction variables having constant
6333 // integer steps. The cost of these truncations is the same as the scalar
6334 // operation.
6335 if (isOptimizableIVTruncate(I, VF)) {
6336 auto *Trunc = cast<TruncInst>(I);
6337 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6338 Trunc->getSrcTy(), Trunc);
6339 }
6340
6341 Type *SrcScalarTy = I->getOperand(0)->getType();
6342 Type *SrcVecTy =
6343 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6344 if (canTruncateToMinimalBitwidth(I, VF)) {
6345 // This cast is going to be shrunk. This may remove the cast or it might
6346 // turn it into slightly different cast. For example, if MinBW == 16,
6347 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6348 //
6349 // Calculate the modified src and dest types.
6350 Type *MinVecTy = VectorTy;
6351 if (I->getOpcode() == Instruction::Trunc) {
6352 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6353 VectorTy =
6354 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6355 } else if (I->getOpcode() == Instruction::ZExt ||
6356 I->getOpcode() == Instruction::SExt) {
6357 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6358 VectorTy =
6359 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6360 }
6361 }
6362
6363 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6364 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
6365 }
6366 case Instruction::Call: {
6367 bool NeedToScalarize;
6368 CallInst *CI = cast<CallInst>(I);
6369 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6370 if (getVectorIntrinsicIDForCall(CI, TLI))
6371 return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6372 return CallCost;
6373 }
6374 default:
6375 // The cost of executing VF copies of the scalar instruction. This opcode
6376 // is unknown. Assume that it is the same as 'mul'.
6377 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
6378 getScalarizationOverhead(I, VF);
6379 } // end of switch.
6380 }
6381
6382 char LoopVectorize::ID = 0;
6383
6384 static const char lv_name[] = "Loop Vectorization";
6385
6386 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6387 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6388 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6389 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6390 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6391 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6392 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6393 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6394 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6395 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6396 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6397 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6398 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6399 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6400 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6401
6402 namespace llvm {
6403
createLoopVectorizePass()6404 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6405
createLoopVectorizePass(bool InterleaveOnlyWhenForced,bool VectorizeOnlyWhenForced)6406 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6407 bool VectorizeOnlyWhenForced) {
6408 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6409 }
6410
6411 } // end namespace llvm
6412
isConsecutiveLoadOrStore(Instruction * Inst)6413 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6414 // Check if the pointer operand of a load or store instruction is
6415 // consecutive.
6416 if (auto *Ptr = getLoadStorePointerOperand(Inst))
6417 return Legal->isConsecutivePtr(Ptr);
6418 return false;
6419 }
6420
collectValuesToIgnore()6421 void LoopVectorizationCostModel::collectValuesToIgnore() {
6422 // Ignore ephemeral values.
6423 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6424
6425 // Ignore type-promoting instructions we identified during reduction
6426 // detection.
6427 for (auto &Reduction : *Legal->getReductionVars()) {
6428 RecurrenceDescriptor &RedDes = Reduction.second;
6429 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6430 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6431 }
6432 // Ignore type-casting instructions we identified during induction
6433 // detection.
6434 for (auto &Induction : *Legal->getInductionVars()) {
6435 InductionDescriptor &IndDes = Induction.second;
6436 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6437 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6438 }
6439 }
6440
6441 // TODO: we could return a pair of values that specify the max VF and
6442 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6443 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6444 // doesn't have a cost model that can choose which plan to execute if
6445 // more than one is generated.
determineVPlanVF(const unsigned WidestVectorRegBits,LoopVectorizationCostModel & CM)6446 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6447 LoopVectorizationCostModel &CM) {
6448 unsigned WidestType;
6449 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6450 return WidestVectorRegBits / WidestType;
6451 }
6452
6453 VectorizationFactor
planInVPlanNativePath(unsigned UserVF)6454 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) {
6455 unsigned VF = UserVF;
6456 // Outer loop handling: They may require CFG and instruction level
6457 // transformations before even evaluating whether vectorization is profitable.
6458 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6459 // the vectorization pipeline.
6460 if (!OrigLoop->empty()) {
6461 // If the user doesn't provide a vectorization factor, determine a
6462 // reasonable one.
6463 if (!UserVF) {
6464 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
6465 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6466
6467 // Make sure we have a VF > 1 for stress testing.
6468 if (VPlanBuildStressTest && VF < 2) {
6469 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6470 << "overriding computed VF.\n");
6471 VF = 4;
6472 }
6473 }
6474 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6475 assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
6476 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
6477 << " to build VPlans.\n");
6478 buildVPlans(VF, VF);
6479
6480 // For VPlan build stress testing, we bail out after VPlan construction.
6481 if (VPlanBuildStressTest)
6482 return VectorizationFactor::Disabled();
6483
6484 return {VF, 0};
6485 }
6486
6487 LLVM_DEBUG(
6488 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6489 "VPlan-native path.\n");
6490 return VectorizationFactor::Disabled();
6491 }
6492
plan(unsigned UserVF)6493 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) {
6494 assert(OrigLoop->empty() && "Inner loop expected.");
6495 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF();
6496 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6497 return None;
6498
6499 // Invalidate interleave groups if all blocks of loop will be predicated.
6500 if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6501 !useMaskedInterleavedAccesses(*TTI)) {
6502 LLVM_DEBUG(
6503 dbgs()
6504 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6505 "which requires masked-interleaved support.\n");
6506 CM.InterleaveInfo.reset();
6507 }
6508
6509 if (UserVF) {
6510 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6511 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6512 // Collect the instructions (and their associated costs) that will be more
6513 // profitable to scalarize.
6514 CM.selectUserVectorizationFactor(UserVF);
6515 buildVPlansWithVPRecipes(UserVF, UserVF);
6516 LLVM_DEBUG(printPlans(dbgs()));
6517 return {{UserVF, 0}};
6518 }
6519
6520 unsigned MaxVF = MaybeMaxVF.getValue();
6521 assert(MaxVF != 0 && "MaxVF is zero.");
6522
6523 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6524 // Collect Uniform and Scalar instructions after vectorization with VF.
6525 CM.collectUniformsAndScalars(VF);
6526
6527 // Collect the instructions (and their associated costs) that will be more
6528 // profitable to scalarize.
6529 if (VF > 1)
6530 CM.collectInstsToScalarize(VF);
6531 }
6532
6533 buildVPlansWithVPRecipes(1, MaxVF);
6534 LLVM_DEBUG(printPlans(dbgs()));
6535 if (MaxVF == 1)
6536 return VectorizationFactor::Disabled();
6537
6538 // Select the optimal vectorization factor.
6539 return CM.selectVectorizationFactor(MaxVF);
6540 }
6541
setBestPlan(unsigned VF,unsigned UF)6542 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6543 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6544 << '\n');
6545 BestVF = VF;
6546 BestUF = UF;
6547
6548 erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6549 return !Plan->hasVF(VF);
6550 });
6551 assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6552 }
6553
executePlan(InnerLoopVectorizer & ILV,DominatorTree * DT)6554 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6555 DominatorTree *DT) {
6556 // Perform the actual loop transformation.
6557
6558 // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6559 VPCallbackILV CallbackILV(ILV);
6560
6561 VPTransformState State{BestVF, BestUF, LI,
6562 DT, ILV.Builder, ILV.VectorLoopValueMap,
6563 &ILV, CallbackILV};
6564 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6565 State.TripCount = ILV.getOrCreateTripCount(nullptr);
6566
6567 //===------------------------------------------------===//
6568 //
6569 // Notice: any optimization or new instruction that go
6570 // into the code below should also be implemented in
6571 // the cost-model.
6572 //
6573 //===------------------------------------------------===//
6574
6575 // 2. Copy and widen instructions from the old loop into the new loop.
6576 assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6577 VPlans.front()->execute(&State);
6578
6579 // 3. Fix the vectorized code: take care of header phi's, live-outs,
6580 // predication, updating analyses.
6581 ILV.fixVectorizedLoop();
6582 }
6583
collectTriviallyDeadInstructions(SmallPtrSetImpl<Instruction * > & DeadInstructions)6584 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6585 SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6586 BasicBlock *Latch = OrigLoop->getLoopLatch();
6587
6588 // We create new control-flow for the vectorized loop, so the original
6589 // condition will be dead after vectorization if it's only used by the
6590 // branch.
6591 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6592 if (Cmp && Cmp->hasOneUse())
6593 DeadInstructions.insert(Cmp);
6594
6595 // We create new "steps" for induction variable updates to which the original
6596 // induction variables map. An original update instruction will be dead if
6597 // all its users except the induction variable are dead.
6598 for (auto &Induction : *Legal->getInductionVars()) {
6599 PHINode *Ind = Induction.first;
6600 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6601 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6602 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
6603 DeadInstructions.end();
6604 }))
6605 DeadInstructions.insert(IndUpdate);
6606
6607 // We record as "Dead" also the type-casting instructions we had identified
6608 // during induction analysis. We don't need any handling for them in the
6609 // vectorized loop because we have proven that, under a proper runtime
6610 // test guarding the vectorized loop, the value of the phi, and the casted
6611 // value of the phi, are the same. The last instruction in this casting chain
6612 // will get its scalar/vector/widened def from the scalar/vector/widened def
6613 // of the respective phi node. Any other casts in the induction def-use chain
6614 // have no other uses outside the phi update chain, and will be ignored.
6615 InductionDescriptor &IndDes = Induction.second;
6616 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6617 DeadInstructions.insert(Casts.begin(), Casts.end());
6618 }
6619 }
6620
reverseVector(Value * Vec)6621 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6622
getBroadcastInstrs(Value * V)6623 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6624
getStepVector(Value * Val,int StartIdx,Value * Step,Instruction::BinaryOps BinOp)6625 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6626 Instruction::BinaryOps BinOp) {
6627 // When unrolling and the VF is 1, we only need to add a simple scalar.
6628 Type *Ty = Val->getType();
6629 assert(!Ty->isVectorTy() && "Val must be a scalar");
6630
6631 if (Ty->isFloatingPointTy()) {
6632 Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6633
6634 // Floating point operations had to be 'fast' to enable the unrolling.
6635 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6636 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6637 }
6638 Constant *C = ConstantInt::get(Ty, StartIdx);
6639 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6640 }
6641
AddRuntimeUnrollDisableMetaData(Loop * L)6642 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6643 SmallVector<Metadata *, 4> MDs;
6644 // Reserve first location for self reference to the LoopID metadata node.
6645 MDs.push_back(nullptr);
6646 bool IsUnrollMetadata = false;
6647 MDNode *LoopID = L->getLoopID();
6648 if (LoopID) {
6649 // First find existing loop unrolling disable metadata.
6650 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6651 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6652 if (MD) {
6653 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6654 IsUnrollMetadata =
6655 S && S->getString().startswith("llvm.loop.unroll.disable");
6656 }
6657 MDs.push_back(LoopID->getOperand(i));
6658 }
6659 }
6660
6661 if (!IsUnrollMetadata) {
6662 // Add runtime unroll disable metadata.
6663 LLVMContext &Context = L->getHeader()->getContext();
6664 SmallVector<Metadata *, 1> DisableOperands;
6665 DisableOperands.push_back(
6666 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6667 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6668 MDs.push_back(DisableNode);
6669 MDNode *NewLoopID = MDNode::get(Context, MDs);
6670 // Set operand 0 to refer to the loop id itself.
6671 NewLoopID->replaceOperandWith(0, NewLoopID);
6672 L->setLoopID(NewLoopID);
6673 }
6674 }
6675
getDecisionAndClampRange(const std::function<bool (unsigned)> & Predicate,VFRange & Range)6676 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6677 const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6678 assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6679 bool PredicateAtRangeStart = Predicate(Range.Start);
6680
6681 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6682 if (Predicate(TmpVF) != PredicateAtRangeStart) {
6683 Range.End = TmpVF;
6684 break;
6685 }
6686
6687 return PredicateAtRangeStart;
6688 }
6689
6690 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6691 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6692 /// of VF's starting at a given VF and extending it as much as possible. Each
6693 /// vectorization decision can potentially shorten this sub-range during
6694 /// buildVPlan().
buildVPlans(unsigned MinVF,unsigned MaxVF)6695 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6696 for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6697 VFRange SubRange = {VF, MaxVF + 1};
6698 VPlans.push_back(buildVPlan(SubRange));
6699 VF = SubRange.End;
6700 }
6701 }
6702
createEdgeMask(BasicBlock * Src,BasicBlock * Dst,VPlanPtr & Plan)6703 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6704 VPlanPtr &Plan) {
6705 assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6706
6707 // Look for cached value.
6708 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6709 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6710 if (ECEntryIt != EdgeMaskCache.end())
6711 return ECEntryIt->second;
6712
6713 VPValue *SrcMask = createBlockInMask(Src, Plan);
6714
6715 // The terminator has to be a branch inst!
6716 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6717 assert(BI && "Unexpected terminator found");
6718
6719 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
6720 return EdgeMaskCache[Edge] = SrcMask;
6721
6722 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6723 assert(EdgeMask && "No Edge Mask found for condition");
6724
6725 if (BI->getSuccessor(0) != Dst)
6726 EdgeMask = Builder.createNot(EdgeMask);
6727
6728 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6729 EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6730
6731 return EdgeMaskCache[Edge] = EdgeMask;
6732 }
6733
createBlockInMask(BasicBlock * BB,VPlanPtr & Plan)6734 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6735 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6736
6737 // Look for cached value.
6738 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6739 if (BCEntryIt != BlockMaskCache.end())
6740 return BCEntryIt->second;
6741
6742 // All-one mask is modelled as no-mask following the convention for masked
6743 // load/store/gather/scatter. Initialize BlockMask to no-mask.
6744 VPValue *BlockMask = nullptr;
6745
6746 if (OrigLoop->getHeader() == BB) {
6747 if (!CM.blockNeedsPredication(BB))
6748 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
6749
6750 // Introduce the early-exit compare IV <= BTC to form header block mask.
6751 // This is used instead of IV < TC because TC may wrap, unlike BTC.
6752 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction());
6753 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
6754 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
6755 return BlockMaskCache[BB] = BlockMask;
6756 }
6757
6758 // This is the block mask. We OR all incoming edges.
6759 for (auto *Predecessor : predecessors(BB)) {
6760 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6761 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6762 return BlockMaskCache[BB] = EdgeMask;
6763
6764 if (!BlockMask) { // BlockMask has its initialized nullptr value.
6765 BlockMask = EdgeMask;
6766 continue;
6767 }
6768
6769 BlockMask = Builder.createOr(BlockMask, EdgeMask);
6770 }
6771
6772 return BlockMaskCache[BB] = BlockMask;
6773 }
6774
6775 VPWidenMemoryInstructionRecipe *
tryToWidenMemory(Instruction * I,VFRange & Range,VPlanPtr & Plan)6776 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6777 VPlanPtr &Plan) {
6778 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
6779 return nullptr;
6780
6781 auto willWiden = [&](unsigned VF) -> bool {
6782 if (VF == 1)
6783 return false;
6784 LoopVectorizationCostModel::InstWidening Decision =
6785 CM.getWideningDecision(I, VF);
6786 assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6787 "CM decision should be taken at this point.");
6788 if (Decision == LoopVectorizationCostModel::CM_Interleave)
6789 return true;
6790 if (CM.isScalarAfterVectorization(I, VF) ||
6791 CM.isProfitableToScalarize(I, VF))
6792 return false;
6793 return Decision != LoopVectorizationCostModel::CM_Scalarize;
6794 };
6795
6796 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6797 return nullptr;
6798
6799 VPValue *Mask = nullptr;
6800 if (Legal->isMaskRequired(I))
6801 Mask = createBlockInMask(I->getParent(), Plan);
6802
6803 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
6804 return new VPWidenMemoryInstructionRecipe(*I, Addr, Mask);
6805 }
6806
6807 VPWidenIntOrFpInductionRecipe *
tryToOptimizeInduction(Instruction * I,VFRange & Range)6808 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) {
6809 if (PHINode *Phi = dyn_cast<PHINode>(I)) {
6810 // Check if this is an integer or fp induction. If so, build the recipe that
6811 // produces its scalar and vector values.
6812 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
6813 if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6814 II.getKind() == InductionDescriptor::IK_FpInduction)
6815 return new VPWidenIntOrFpInductionRecipe(Phi);
6816
6817 return nullptr;
6818 }
6819
6820 // Optimize the special case where the source is a constant integer
6821 // induction variable. Notice that we can only optimize the 'trunc' case
6822 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6823 // (c) other casts depend on pointer size.
6824
6825 // Determine whether \p K is a truncation based on an induction variable that
6826 // can be optimized.
6827 auto isOptimizableIVTruncate =
6828 [&](Instruction *K) -> std::function<bool(unsigned)> {
6829 return
6830 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6831 };
6832
6833 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange(
6834 isOptimizableIVTruncate(I), Range))
6835 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6836 cast<TruncInst>(I));
6837 return nullptr;
6838 }
6839
tryToBlend(Instruction * I,VPlanPtr & Plan)6840 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) {
6841 PHINode *Phi = dyn_cast<PHINode>(I);
6842 if (!Phi || Phi->getParent() == OrigLoop->getHeader())
6843 return nullptr;
6844
6845 // We know that all PHIs in non-header blocks are converted into selects, so
6846 // we don't have to worry about the insertion order and we can just use the
6847 // builder. At this point we generate the predication tree. There may be
6848 // duplications since this is a simple recursive scan, but future
6849 // optimizations will clean it up.
6850
6851 SmallVector<VPValue *, 2> Masks;
6852 unsigned NumIncoming = Phi->getNumIncomingValues();
6853 for (unsigned In = 0; In < NumIncoming; In++) {
6854 VPValue *EdgeMask =
6855 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6856 assert((EdgeMask || NumIncoming == 1) &&
6857 "Multiple predecessors with one having a full mask");
6858 if (EdgeMask)
6859 Masks.push_back(EdgeMask);
6860 }
6861 return new VPBlendRecipe(Phi, Masks);
6862 }
6863
tryToWiden(Instruction * I,VPBasicBlock * VPBB,VFRange & Range)6864 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
6865 VFRange &Range) {
6866
6867 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6868 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
6869
6870 if (IsPredicated)
6871 return false;
6872
6873 auto IsVectorizableOpcode = [](unsigned Opcode) {
6874 switch (Opcode) {
6875 case Instruction::Add:
6876 case Instruction::And:
6877 case Instruction::AShr:
6878 case Instruction::BitCast:
6879 case Instruction::Br:
6880 case Instruction::Call:
6881 case Instruction::FAdd:
6882 case Instruction::FCmp:
6883 case Instruction::FDiv:
6884 case Instruction::FMul:
6885 case Instruction::FNeg:
6886 case Instruction::FPExt:
6887 case Instruction::FPToSI:
6888 case Instruction::FPToUI:
6889 case Instruction::FPTrunc:
6890 case Instruction::FRem:
6891 case Instruction::FSub:
6892 case Instruction::ICmp:
6893 case Instruction::IntToPtr:
6894 case Instruction::Load:
6895 case Instruction::LShr:
6896 case Instruction::Mul:
6897 case Instruction::Or:
6898 case Instruction::PHI:
6899 case Instruction::PtrToInt:
6900 case Instruction::SDiv:
6901 case Instruction::Select:
6902 case Instruction::SExt:
6903 case Instruction::Shl:
6904 case Instruction::SIToFP:
6905 case Instruction::SRem:
6906 case Instruction::Store:
6907 case Instruction::Sub:
6908 case Instruction::Trunc:
6909 case Instruction::UDiv:
6910 case Instruction::UIToFP:
6911 case Instruction::URem:
6912 case Instruction::Xor:
6913 case Instruction::ZExt:
6914 return true;
6915 }
6916 return false;
6917 };
6918
6919 if (!IsVectorizableOpcode(I->getOpcode()))
6920 return false;
6921
6922 if (CallInst *CI = dyn_cast<CallInst>(I)) {
6923 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6924 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6925 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6926 return false;
6927 }
6928
6929 auto willWiden = [&](unsigned VF) -> bool {
6930 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
6931 CM.isProfitableToScalarize(I, VF)))
6932 return false;
6933 if (CallInst *CI = dyn_cast<CallInst>(I)) {
6934 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6935 // The following case may be scalarized depending on the VF.
6936 // The flag shows whether we use Intrinsic or a usual Call for vectorized
6937 // version of the instruction.
6938 // Is it beneficial to perform intrinsic call compared to lib call?
6939 bool NeedToScalarize;
6940 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
6941 bool UseVectorIntrinsic =
6942 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
6943 return UseVectorIntrinsic || !NeedToScalarize;
6944 }
6945 if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
6946 assert(CM.getWideningDecision(I, VF) ==
6947 LoopVectorizationCostModel::CM_Scalarize &&
6948 "Memory widening decisions should have been taken care by now");
6949 return false;
6950 }
6951 return true;
6952 };
6953
6954 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6955 return false;
6956 // If this ingredient's recipe is to be recorded, keep its recipe a singleton
6957 // to avoid having to split recipes later.
6958 bool IsSingleton = Ingredient2Recipe.count(I);
6959
6960 // Success: widen this instruction.
6961
6962 // Use the default widening recipe. We optimize the common case where
6963 // consecutive instructions can be represented by a single recipe.
6964 if (!IsSingleton && !VPBB->empty() && LastExtensibleRecipe == &VPBB->back() &&
6965 LastExtensibleRecipe->appendInstruction(I))
6966 return true;
6967
6968 VPWidenRecipe *WidenRecipe = new VPWidenRecipe(I);
6969 if (!IsSingleton)
6970 LastExtensibleRecipe = WidenRecipe;
6971 setRecipe(I, WidenRecipe);
6972 VPBB->appendRecipe(WidenRecipe);
6973 return true;
6974 }
6975
handleReplication(Instruction * I,VFRange & Range,VPBasicBlock * VPBB,DenseMap<Instruction *,VPReplicateRecipe * > & PredInst2Recipe,VPlanPtr & Plan)6976 VPBasicBlock *VPRecipeBuilder::handleReplication(
6977 Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
6978 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
6979 VPlanPtr &Plan) {
6980 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
6981 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
6982 Range);
6983
6984 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6985 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
6986
6987 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
6988 setRecipe(I, Recipe);
6989
6990 // Find if I uses a predicated instruction. If so, it will use its scalar
6991 // value. Avoid hoisting the insert-element which packs the scalar value into
6992 // a vector value, as that happens iff all users use the vector value.
6993 for (auto &Op : I->operands())
6994 if (auto *PredInst = dyn_cast<Instruction>(Op))
6995 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
6996 PredInst2Recipe[PredInst]->setAlsoPack(false);
6997
6998 // Finalize the recipe for Instr, first if it is not predicated.
6999 if (!IsPredicated) {
7000 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7001 VPBB->appendRecipe(Recipe);
7002 return VPBB;
7003 }
7004 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7005 assert(VPBB->getSuccessors().empty() &&
7006 "VPBB has successors when handling predicated replication.");
7007 // Record predicated instructions for above packing optimizations.
7008 PredInst2Recipe[I] = Recipe;
7009 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7010 VPBlockUtils::insertBlockAfter(Region, VPBB);
7011 auto *RegSucc = new VPBasicBlock();
7012 VPBlockUtils::insertBlockAfter(RegSucc, Region);
7013 return RegSucc;
7014 }
7015
createReplicateRegion(Instruction * Instr,VPRecipeBase * PredRecipe,VPlanPtr & Plan)7016 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7017 VPRecipeBase *PredRecipe,
7018 VPlanPtr &Plan) {
7019 // Instructions marked for predication are replicated and placed under an
7020 // if-then construct to prevent side-effects.
7021
7022 // Generate recipes to compute the block mask for this region.
7023 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7024
7025 // Build the triangular if-then region.
7026 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7027 assert(Instr->getParent() && "Predicated instruction not in any basic block");
7028 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7029 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7030 auto *PHIRecipe =
7031 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7032 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7033 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7034 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7035
7036 // Note: first set Entry as region entry and then connect successors starting
7037 // from it in order, to propagate the "parent" of each VPBasicBlock.
7038 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7039 VPBlockUtils::connectBlocks(Pred, Exit);
7040
7041 return Region;
7042 }
7043
tryToCreateRecipe(Instruction * Instr,VFRange & Range,VPlanPtr & Plan,VPBasicBlock * VPBB)7044 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range,
7045 VPlanPtr &Plan, VPBasicBlock *VPBB) {
7046 VPRecipeBase *Recipe = nullptr;
7047
7048 // First, check for specific widening recipes that deal with memory
7049 // operations, inductions and Phi nodes.
7050 if ((Recipe = tryToWidenMemory(Instr, Range, Plan)) ||
7051 (Recipe = tryToOptimizeInduction(Instr, Range)) ||
7052 (Recipe = tryToBlend(Instr, Plan)) ||
7053 (isa<PHINode>(Instr) &&
7054 (Recipe = new VPWidenPHIRecipe(cast<PHINode>(Instr))))) {
7055 setRecipe(Instr, Recipe);
7056 VPBB->appendRecipe(Recipe);
7057 return true;
7058 }
7059
7060 // Handle GEP widening.
7061 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
7062 auto Scalarize = [&](unsigned VF) {
7063 return CM.isScalarWithPredication(Instr, VF) ||
7064 CM.isScalarAfterVectorization(Instr, VF) ||
7065 CM.isProfitableToScalarize(Instr, VF);
7066 };
7067 if (LoopVectorizationPlanner::getDecisionAndClampRange(Scalarize, Range))
7068 return false;
7069 VPWidenGEPRecipe *Recipe = new VPWidenGEPRecipe(GEP, OrigLoop);
7070 setRecipe(Instr, Recipe);
7071 VPBB->appendRecipe(Recipe);
7072 return true;
7073 }
7074
7075 // Check if Instr is to be widened by a general VPWidenRecipe, after
7076 // having first checked for specific widening recipes.
7077 if (tryToWiden(Instr, VPBB, Range))
7078 return true;
7079
7080 return false;
7081 }
7082
buildVPlansWithVPRecipes(unsigned MinVF,unsigned MaxVF)7083 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
7084 unsigned MaxVF) {
7085 assert(OrigLoop->empty() && "Inner loop expected.");
7086
7087 // Collect conditions feeding internal conditional branches; they need to be
7088 // represented in VPlan for it to model masking.
7089 SmallPtrSet<Value *, 1> NeedDef;
7090
7091 auto *Latch = OrigLoop->getLoopLatch();
7092 for (BasicBlock *BB : OrigLoop->blocks()) {
7093 if (BB == Latch)
7094 continue;
7095 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7096 if (Branch && Branch->isConditional())
7097 NeedDef.insert(Branch->getCondition());
7098 }
7099
7100 // If the tail is to be folded by masking, the primary induction variable
7101 // needs to be represented in VPlan for it to model early-exit masking.
7102 // Also, both the Phi and the live-out instruction of each reduction are
7103 // required in order to introduce a select between them in VPlan.
7104 if (CM.foldTailByMasking()) {
7105 NeedDef.insert(Legal->getPrimaryInduction());
7106 for (auto &Reduction : *Legal->getReductionVars()) {
7107 NeedDef.insert(Reduction.first);
7108 NeedDef.insert(Reduction.second.getLoopExitInstr());
7109 }
7110 }
7111
7112 // Collect instructions from the original loop that will become trivially dead
7113 // in the vectorized loop. We don't need to vectorize these instructions. For
7114 // example, original induction update instructions can become dead because we
7115 // separately emit induction "steps" when generating code for the new loop.
7116 // Similarly, we create a new latch condition when setting up the structure
7117 // of the new loop, so the old one can become dead.
7118 SmallPtrSet<Instruction *, 4> DeadInstructions;
7119 collectTriviallyDeadInstructions(DeadInstructions);
7120
7121 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7122 // Dead instructions do not need sinking. Remove them from SinkAfter.
7123 for (Instruction *I : DeadInstructions)
7124 SinkAfter.erase(I);
7125
7126 for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7127 VFRange SubRange = {VF, MaxVF + 1};
7128 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7129 DeadInstructions, SinkAfter));
7130 VF = SubRange.End;
7131 }
7132 }
7133
buildVPlanWithVPRecipes(VFRange & Range,SmallPtrSetImpl<Value * > & NeedDef,SmallPtrSetImpl<Instruction * > & DeadInstructions,const DenseMap<Instruction *,Instruction * > & SinkAfter)7134 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7135 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7136 SmallPtrSetImpl<Instruction *> &DeadInstructions,
7137 const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7138
7139 // Hold a mapping from predicated instructions to their recipes, in order to
7140 // fix their AlsoPack behavior if a user is determined to replicate and use a
7141 // scalar instead of vector value.
7142 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7143
7144 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7145
7146 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder);
7147
7148 // ---------------------------------------------------------------------------
7149 // Pre-construction: record ingredients whose recipes we'll need to further
7150 // process after constructing the initial VPlan.
7151 // ---------------------------------------------------------------------------
7152
7153 // Mark instructions we'll need to sink later and their targets as
7154 // ingredients whose recipe we'll need to record.
7155 for (auto &Entry : SinkAfter) {
7156 RecipeBuilder.recordRecipeOf(Entry.first);
7157 RecipeBuilder.recordRecipeOf(Entry.second);
7158 }
7159
7160 // For each interleave group which is relevant for this (possibly trimmed)
7161 // Range, add it to the set of groups to be later applied to the VPlan and add
7162 // placeholders for its members' Recipes which we'll be replacing with a
7163 // single VPInterleaveRecipe.
7164 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7165 auto applyIG = [IG, this](unsigned VF) -> bool {
7166 return (VF >= 2 && // Query is illegal for VF == 1
7167 CM.getWideningDecision(IG->getInsertPos(), VF) ==
7168 LoopVectorizationCostModel::CM_Interleave);
7169 };
7170 if (!getDecisionAndClampRange(applyIG, Range))
7171 continue;
7172 InterleaveGroups.insert(IG);
7173 for (unsigned i = 0; i < IG->getFactor(); i++)
7174 if (Instruction *Member = IG->getMember(i))
7175 RecipeBuilder.recordRecipeOf(Member);
7176 };
7177
7178 // ---------------------------------------------------------------------------
7179 // Build initial VPlan: Scan the body of the loop in a topological order to
7180 // visit each basic block after having visited its predecessor basic blocks.
7181 // ---------------------------------------------------------------------------
7182
7183 // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7184 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7185 auto Plan = std::make_unique<VPlan>(VPBB);
7186
7187 // Represent values that will have defs inside VPlan.
7188 for (Value *V : NeedDef)
7189 Plan->addVPValue(V);
7190
7191 // Scan the body of the loop in a topological order to visit each basic block
7192 // after having visited its predecessor basic blocks.
7193 LoopBlocksDFS DFS(OrigLoop);
7194 DFS.perform(LI);
7195
7196 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7197 // Relevant instructions from basic block BB will be grouped into VPRecipe
7198 // ingredients and fill a new VPBasicBlock.
7199 unsigned VPBBsForBB = 0;
7200 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7201 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7202 VPBB = FirstVPBBForBB;
7203 Builder.setInsertPoint(VPBB);
7204
7205 // Introduce each ingredient into VPlan.
7206 for (Instruction &I : BB->instructionsWithoutDebug()) {
7207 Instruction *Instr = &I;
7208
7209 // First filter out irrelevant instructions, to ensure no recipes are
7210 // built for them.
7211 if (isa<BranchInst>(Instr) ||
7212 DeadInstructions.find(Instr) != DeadInstructions.end())
7213 continue;
7214
7215 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB))
7216 continue;
7217
7218 // Otherwise, if all widening options failed, Instruction is to be
7219 // replicated. This may create a successor for VPBB.
7220 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7221 Instr, Range, VPBB, PredInst2Recipe, Plan);
7222 if (NextVPBB != VPBB) {
7223 VPBB = NextVPBB;
7224 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7225 : "");
7226 }
7227 }
7228 }
7229
7230 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7231 // may also be empty, such as the last one VPBB, reflecting original
7232 // basic-blocks with no recipes.
7233 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7234 assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7235 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7236 VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7237 delete PreEntry;
7238
7239 // ---------------------------------------------------------------------------
7240 // Transform initial VPlan: Apply previously taken decisions, in order, to
7241 // bring the VPlan to its final state.
7242 // ---------------------------------------------------------------------------
7243
7244 // Apply Sink-After legal constraints.
7245 for (auto &Entry : SinkAfter) {
7246 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7247 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7248 Sink->moveAfter(Target);
7249 }
7250
7251 // Interleave memory: for each Interleave Group we marked earlier as relevant
7252 // for this VPlan, replace the Recipes widening its memory instructions with a
7253 // single VPInterleaveRecipe at its insertion point.
7254 for (auto IG : InterleaveGroups) {
7255 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7256 RecipeBuilder.getRecipe(IG->getInsertPos()));
7257 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7258 ->insertBefore(Recipe);
7259
7260 for (unsigned i = 0; i < IG->getFactor(); ++i)
7261 if (Instruction *Member = IG->getMember(i)) {
7262 RecipeBuilder.getRecipe(Member)->eraseFromParent();
7263 }
7264 }
7265
7266 // Finally, if tail is folded by masking, introduce selects between the phi
7267 // and the live-out instruction of each reduction, at the end of the latch.
7268 if (CM.foldTailByMasking()) {
7269 Builder.setInsertPoint(VPBB);
7270 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7271 for (auto &Reduction : *Legal->getReductionVars()) {
7272 VPValue *Phi = Plan->getVPValue(Reduction.first);
7273 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr());
7274 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7275 }
7276 }
7277
7278 std::string PlanName;
7279 raw_string_ostream RSO(PlanName);
7280 unsigned VF = Range.Start;
7281 Plan->addVF(VF);
7282 RSO << "Initial VPlan for VF={" << VF;
7283 for (VF *= 2; VF < Range.End; VF *= 2) {
7284 Plan->addVF(VF);
7285 RSO << "," << VF;
7286 }
7287 RSO << "},UF>=1";
7288 RSO.flush();
7289 Plan->setName(PlanName);
7290
7291 return Plan;
7292 }
7293
buildVPlan(VFRange & Range)7294 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7295 // Outer loop handling: They may require CFG and instruction level
7296 // transformations before even evaluating whether vectorization is profitable.
7297 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7298 // the vectorization pipeline.
7299 assert(!OrigLoop->empty());
7300 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7301
7302 // Create new empty VPlan
7303 auto Plan = std::make_unique<VPlan>();
7304
7305 // Build hierarchical CFG
7306 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7307 HCFGBuilder.buildHierarchicalCFG();
7308
7309 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
7310 Plan->addVF(VF);
7311
7312 if (EnableVPlanPredication) {
7313 VPlanPredicator VPP(*Plan);
7314 VPP.predicate();
7315
7316 // Avoid running transformation to recipes until masked code generation in
7317 // VPlan-native path is in place.
7318 return Plan;
7319 }
7320
7321 SmallPtrSet<Instruction *, 1> DeadInstructions;
7322 VPlanTransforms::VPInstructionsToVPRecipes(
7323 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7324 return Plan;
7325 }
7326
7327 Value* LoopVectorizationPlanner::VPCallbackILV::
getOrCreateVectorValues(Value * V,unsigned Part)7328 getOrCreateVectorValues(Value *V, unsigned Part) {
7329 return ILV.getOrCreateVectorValue(V, Part);
7330 }
7331
getOrCreateScalarValue(Value * V,const VPIteration & Instance)7332 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7333 Value *V, const VPIteration &Instance) {
7334 return ILV.getOrCreateScalarValue(V, Instance);
7335 }
7336
print(raw_ostream & O,const Twine & Indent) const7337 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
7338 O << " +\n"
7339 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7340 IG->getInsertPos()->printAsOperand(O, false);
7341 O << ", ";
7342 getAddr()->printAsOperand(O);
7343 VPValue *Mask = getMask();
7344 if (Mask) {
7345 O << ", ";
7346 Mask->printAsOperand(O);
7347 }
7348 O << "\\l\"";
7349 for (unsigned i = 0; i < IG->getFactor(); ++i)
7350 if (Instruction *I = IG->getMember(i))
7351 O << " +\n"
7352 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\"";
7353 }
7354
execute(VPTransformState & State)7355 void VPWidenRecipe::execute(VPTransformState &State) {
7356 for (auto &Instr : make_range(Begin, End))
7357 State.ILV->widenInstruction(Instr);
7358 }
7359
execute(VPTransformState & State)7360 void VPWidenGEPRecipe::execute(VPTransformState &State) {
7361 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant,
7362 IsIndexLoopInvariant);
7363 }
7364
execute(VPTransformState & State)7365 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7366 assert(!State.Instance && "Int or FP induction being replicated.");
7367 State.ILV->widenIntOrFpInduction(IV, Trunc);
7368 }
7369
execute(VPTransformState & State)7370 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7371 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7372 }
7373
execute(VPTransformState & State)7374 void VPBlendRecipe::execute(VPTransformState &State) {
7375 State.ILV->setDebugLocFromInst(State.Builder, Phi);
7376 // We know that all PHIs in non-header blocks are converted into
7377 // selects, so we don't have to worry about the insertion order and we
7378 // can just use the builder.
7379 // At this point we generate the predication tree. There may be
7380 // duplications since this is a simple recursive scan, but future
7381 // optimizations will clean it up.
7382
7383 unsigned NumIncoming = Phi->getNumIncomingValues();
7384
7385 assert((User || NumIncoming == 1) &&
7386 "Multiple predecessors with predecessors having a full mask");
7387 // Generate a sequence of selects of the form:
7388 // SELECT(Mask3, In3,
7389 // SELECT(Mask2, In2,
7390 // ( ...)))
7391 InnerLoopVectorizer::VectorParts Entry(State.UF);
7392 for (unsigned In = 0; In < NumIncoming; ++In) {
7393 for (unsigned Part = 0; Part < State.UF; ++Part) {
7394 // We might have single edge PHIs (blocks) - use an identity
7395 // 'select' for the first PHI operand.
7396 Value *In0 =
7397 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
7398 if (In == 0)
7399 Entry[Part] = In0; // Initialize with the first incoming value.
7400 else {
7401 // Select between the current value and the previous incoming edge
7402 // based on the incoming mask.
7403 Value *Cond = State.get(User->getOperand(In), Part);
7404 Entry[Part] =
7405 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7406 }
7407 }
7408 }
7409 for (unsigned Part = 0; Part < State.UF; ++Part)
7410 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7411 }
7412
execute(VPTransformState & State)7413 void VPInterleaveRecipe::execute(VPTransformState &State) {
7414 assert(!State.Instance && "Interleave group being replicated.");
7415 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), State, getAddr(),
7416 getMask());
7417 }
7418
execute(VPTransformState & State)7419 void VPReplicateRecipe::execute(VPTransformState &State) {
7420 if (State.Instance) { // Generate a single instance.
7421 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
7422 // Insert scalar instance packing it into a vector.
7423 if (AlsoPack && State.VF > 1) {
7424 // If we're constructing lane 0, initialize to start from undef.
7425 if (State.Instance->Lane == 0) {
7426 Value *Undef =
7427 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
7428 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7429 }
7430 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7431 }
7432 return;
7433 }
7434
7435 // Generate scalar instances for all VF lanes of all UF parts, unless the
7436 // instruction is uniform inwhich case generate only the first lane for each
7437 // of the UF parts.
7438 unsigned EndLane = IsUniform ? 1 : State.VF;
7439 for (unsigned Part = 0; Part < State.UF; ++Part)
7440 for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7441 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
7442 }
7443
execute(VPTransformState & State)7444 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7445 assert(State.Instance && "Branch on Mask works only on single instance.");
7446
7447 unsigned Part = State.Instance->Part;
7448 unsigned Lane = State.Instance->Lane;
7449
7450 Value *ConditionBit = nullptr;
7451 if (!User) // Block in mask is all-one.
7452 ConditionBit = State.Builder.getTrue();
7453 else {
7454 VPValue *BlockInMask = User->getOperand(0);
7455 ConditionBit = State.get(BlockInMask, Part);
7456 if (ConditionBit->getType()->isVectorTy())
7457 ConditionBit = State.Builder.CreateExtractElement(
7458 ConditionBit, State.Builder.getInt32(Lane));
7459 }
7460
7461 // Replace the temporary unreachable terminator with a new conditional branch,
7462 // whose two destinations will be set later when they are created.
7463 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7464 assert(isa<UnreachableInst>(CurrentTerminator) &&
7465 "Expected to replace unreachable terminator with conditional branch.");
7466 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7467 CondBr->setSuccessor(0, nullptr);
7468 ReplaceInstWithInst(CurrentTerminator, CondBr);
7469 }
7470
execute(VPTransformState & State)7471 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7472 assert(State.Instance && "Predicated instruction PHI works per instance.");
7473 Instruction *ScalarPredInst = cast<Instruction>(
7474 State.ValueMap.getScalarValue(PredInst, *State.Instance));
7475 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7476 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7477 assert(PredicatingBB && "Predicated block has no single predecessor.");
7478
7479 // By current pack/unpack logic we need to generate only a single phi node: if
7480 // a vector value for the predicated instruction exists at this point it means
7481 // the instruction has vector users only, and a phi for the vector value is
7482 // needed. In this case the recipe of the predicated instruction is marked to
7483 // also do that packing, thereby "hoisting" the insert-element sequence.
7484 // Otherwise, a phi node for the scalar value is needed.
7485 unsigned Part = State.Instance->Part;
7486 if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7487 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7488 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7489 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7490 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7491 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7492 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7493 } else {
7494 Type *PredInstType = PredInst->getType();
7495 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7496 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7497 Phi->addIncoming(ScalarPredInst, PredicatedBB);
7498 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7499 }
7500 }
7501
execute(VPTransformState & State)7502 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7503 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), getMask());
7504 }
7505
7506 // Determine how to lower the scalar epilogue, which depends on 1) optimising
7507 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
7508 // predication, and 4) a TTI hook that analyses whether the loop is suitable
7509 // for predication.
getScalarEpilogueLowering(Function * F,Loop * L,LoopVectorizeHints & Hints,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,TargetTransformInfo * TTI,TargetLibraryInfo * TLI,AssumptionCache * AC,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,LoopVectorizationLegality & LVL)7510 static ScalarEpilogueLowering getScalarEpilogueLowering(
7511 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
7512 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
7513 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
7514 LoopVectorizationLegality &LVL) {
7515 bool OptSize =
7516 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
7517 PGSOQueryType::IRPass);
7518 // 1) OptSize takes precedence over all other options, i.e. if this is set,
7519 // don't look at hints or options, and don't request a scalar epilogue.
7520 if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled)
7521 return CM_ScalarEpilogueNotAllowedOptSize;
7522
7523 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() &&
7524 !PreferPredicateOverEpilog;
7525
7526 // 2) Next, if disabling predication is requested on the command line, honour
7527 // this and request a scalar epilogue. Also do this if we don't have a
7528 // primary induction variable, which is required for predication.
7529 if (PredicateOptDisabled || !LVL.getPrimaryInduction())
7530 return CM_ScalarEpilogueAllowed;
7531
7532 // 3) and 4) look if enabling predication is requested on the command line,
7533 // with a loop hint, or if the TTI hook indicates this is profitable, request
7534 // predication .
7535 if (PreferPredicateOverEpilog ||
7536 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
7537 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
7538 LVL.getLAI()) &&
7539 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
7540 return CM_ScalarEpilogueNotNeededUsePredicate;
7541
7542 return CM_ScalarEpilogueAllowed;
7543 }
7544
7545 // Process the loop in the VPlan-native vectorization path. This path builds
7546 // VPlan upfront in the vectorization pipeline, which allows to apply
7547 // VPlan-to-VPlan transformations from the very beginning without modifying the
7548 // input LLVM IR.
processLoopInVPlanNativePath(Loop * L,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,LoopVectorizationLegality * LVL,TargetTransformInfo * TTI,TargetLibraryInfo * TLI,DemandedBits * DB,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,LoopVectorizeHints & Hints)7549 static bool processLoopInVPlanNativePath(
7550 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7551 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7552 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7553 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
7554 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
7555
7556 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7557 Function *F = L->getHeader()->getParent();
7558 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7559
7560 ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7561 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
7562
7563 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7564 &Hints, IAI);
7565 // Use the planner for outer loop vectorization.
7566 // TODO: CM is not used at this point inside the planner. Turn CM into an
7567 // optional argument if we don't need it in the future.
7568 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI);
7569
7570 // Get user vectorization factor.
7571 const unsigned UserVF = Hints.getWidth();
7572
7573 // Plan how to best vectorize, return the best VF and its cost.
7574 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
7575
7576 // If we are stress testing VPlan builds, do not attempt to generate vector
7577 // code. Masked vector code generation support will follow soon.
7578 // Also, do not attempt to vectorize if no vector code will be produced.
7579 if (VPlanBuildStressTest || EnableVPlanPredication ||
7580 VectorizationFactor::Disabled() == VF)
7581 return false;
7582
7583 LVP.setBestPlan(VF.Width, 1);
7584
7585 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
7586 &CM);
7587 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
7588 << L->getHeader()->getParent()->getName() << "\"\n");
7589 LVP.executePlan(LB, DT);
7590
7591 // Mark the loop as already vectorized to avoid vectorizing again.
7592 Hints.setAlreadyVectorized();
7593
7594 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
7595 return true;
7596 }
7597
processLoop(Loop * L)7598 bool LoopVectorizePass::processLoop(Loop *L) {
7599 assert((EnableVPlanNativePath || L->empty()) &&
7600 "VPlan-native path is not enabled. Only process inner loops.");
7601
7602 #ifndef NDEBUG
7603 const std::string DebugLocStr = getDebugLocString(L);
7604 #endif /* NDEBUG */
7605
7606 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7607 << L->getHeader()->getParent()->getName() << "\" from "
7608 << DebugLocStr << "\n");
7609
7610 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
7611
7612 LLVM_DEBUG(
7613 dbgs() << "LV: Loop hints:"
7614 << " force="
7615 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7616 ? "disabled"
7617 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7618 ? "enabled"
7619 : "?"))
7620 << " width=" << Hints.getWidth()
7621 << " unroll=" << Hints.getInterleave() << "\n");
7622
7623 // Function containing loop
7624 Function *F = L->getHeader()->getParent();
7625
7626 // Looking at the diagnostic output is the only way to determine if a loop
7627 // was vectorized (other than looking at the IR or machine code), so it
7628 // is important to generate an optimization remark for each loop. Most of
7629 // these messages are generated as OptimizationRemarkAnalysis. Remarks
7630 // generated as OptimizationRemark and OptimizationRemarkMissed are
7631 // less verbose reporting vectorized loops and unvectorized loops that may
7632 // benefit from vectorization, respectively.
7633
7634 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
7635 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7636 return false;
7637 }
7638
7639 PredicatedScalarEvolution PSE(*SE, *L);
7640
7641 // Check if it is legal to vectorize the loop.
7642 LoopVectorizationRequirements Requirements(*ORE);
7643 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
7644 &Requirements, &Hints, DB, AC);
7645 if (!LVL.canVectorize(EnableVPlanNativePath)) {
7646 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7647 Hints.emitRemarkWithHints();
7648 return false;
7649 }
7650
7651 // Check the function attributes and profiles to find out if this function
7652 // should be optimized for size.
7653 ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7654 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
7655
7656 // Entrance to the VPlan-native vectorization path. Outer loops are processed
7657 // here. They may require CFG and instruction level transformations before
7658 // even evaluating whether vectorization is profitable. Since we cannot modify
7659 // the incoming IR, we need to build VPlan upfront in the vectorization
7660 // pipeline.
7661 if (!L->empty())
7662 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7663 ORE, BFI, PSI, Hints);
7664
7665 assert(L->empty() && "Inner loop expected.");
7666
7667 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7668 // count by optimizing for size, to minimize overheads.
7669 auto ExpectedTC = getSmallBestKnownTC(*SE, L);
7670 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
7671 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7672 << "This loop is worth vectorizing only if no scalar "
7673 << "iteration overheads are incurred.");
7674 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7675 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7676 else {
7677 LLVM_DEBUG(dbgs() << "\n");
7678 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
7679 }
7680 }
7681
7682 // Check the function attributes to see if implicit floats are allowed.
7683 // FIXME: This check doesn't seem possibly correct -- what if the loop is
7684 // an integer loop and the vector instructions selected are purely integer
7685 // vector instructions?
7686 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7687 reportVectorizationFailure(
7688 "Can't vectorize when the NoImplicitFloat attribute is used",
7689 "loop not vectorized due to NoImplicitFloat attribute",
7690 "NoImplicitFloat", ORE, L);
7691 Hints.emitRemarkWithHints();
7692 return false;
7693 }
7694
7695 // Check if the target supports potentially unsafe FP vectorization.
7696 // FIXME: Add a check for the type of safety issue (denormal, signaling)
7697 // for the target we're vectorizing for, to make sure none of the
7698 // additional fp-math flags can help.
7699 if (Hints.isPotentiallyUnsafe() &&
7700 TTI->isFPVectorizationPotentiallyUnsafe()) {
7701 reportVectorizationFailure(
7702 "Potentially unsafe FP op prevents vectorization",
7703 "loop not vectorized due to unsafe FP support.",
7704 "UnsafeFP", ORE, L);
7705 Hints.emitRemarkWithHints();
7706 return false;
7707 }
7708
7709 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7710 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7711
7712 // If an override option has been passed in for interleaved accesses, use it.
7713 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7714 UseInterleaved = EnableInterleavedMemAccesses;
7715
7716 // Analyze interleaved memory accesses.
7717 if (UseInterleaved) {
7718 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
7719 }
7720
7721 // Use the cost model.
7722 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
7723 F, &Hints, IAI);
7724 CM.collectValuesToIgnore();
7725
7726 // Use the planner for vectorization.
7727 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI);
7728
7729 // Get user vectorization factor.
7730 unsigned UserVF = Hints.getWidth();
7731
7732 // Plan how to best vectorize, return the best VF and its cost.
7733 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF);
7734
7735 VectorizationFactor VF = VectorizationFactor::Disabled();
7736 unsigned IC = 1;
7737 unsigned UserIC = Hints.getInterleave();
7738
7739 if (MaybeVF) {
7740 VF = *MaybeVF;
7741 // Select the interleave count.
7742 IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
7743 }
7744
7745 // Identify the diagnostic messages that should be produced.
7746 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7747 bool VectorizeLoop = true, InterleaveLoop = true;
7748 if (Requirements.doesNotMeet(F, L, Hints)) {
7749 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7750 "requirements.\n");
7751 Hints.emitRemarkWithHints();
7752 return false;
7753 }
7754
7755 if (VF.Width == 1) {
7756 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7757 VecDiagMsg = std::make_pair(
7758 "VectorizationNotBeneficial",
7759 "the cost-model indicates that vectorization is not beneficial");
7760 VectorizeLoop = false;
7761 }
7762
7763 if (!MaybeVF && UserIC > 1) {
7764 // Tell the user interleaving was avoided up-front, despite being explicitly
7765 // requested.
7766 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
7767 "interleaving should be avoided up front\n");
7768 IntDiagMsg = std::make_pair(
7769 "InterleavingAvoided",
7770 "Ignoring UserIC, because interleaving was avoided up front");
7771 InterleaveLoop = false;
7772 } else if (IC == 1 && UserIC <= 1) {
7773 // Tell the user interleaving is not beneficial.
7774 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7775 IntDiagMsg = std::make_pair(
7776 "InterleavingNotBeneficial",
7777 "the cost-model indicates that interleaving is not beneficial");
7778 InterleaveLoop = false;
7779 if (UserIC == 1) {
7780 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7781 IntDiagMsg.second +=
7782 " and is explicitly disabled or interleave count is set to 1";
7783 }
7784 } else if (IC > 1 && UserIC == 1) {
7785 // Tell the user interleaving is beneficial, but it explicitly disabled.
7786 LLVM_DEBUG(
7787 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7788 IntDiagMsg = std::make_pair(
7789 "InterleavingBeneficialButDisabled",
7790 "the cost-model indicates that interleaving is beneficial "
7791 "but is explicitly disabled or interleave count is set to 1");
7792 InterleaveLoop = false;
7793 }
7794
7795 // Override IC if user provided an interleave count.
7796 IC = UserIC > 0 ? UserIC : IC;
7797
7798 // Emit diagnostic messages, if any.
7799 const char *VAPassName = Hints.vectorizeAnalysisPassName();
7800 if (!VectorizeLoop && !InterleaveLoop) {
7801 // Do not vectorize or interleaving the loop.
7802 ORE->emit([&]() {
7803 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7804 L->getStartLoc(), L->getHeader())
7805 << VecDiagMsg.second;
7806 });
7807 ORE->emit([&]() {
7808 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7809 L->getStartLoc(), L->getHeader())
7810 << IntDiagMsg.second;
7811 });
7812 return false;
7813 } else if (!VectorizeLoop && InterleaveLoop) {
7814 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7815 ORE->emit([&]() {
7816 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7817 L->getStartLoc(), L->getHeader())
7818 << VecDiagMsg.second;
7819 });
7820 } else if (VectorizeLoop && !InterleaveLoop) {
7821 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7822 << ") in " << DebugLocStr << '\n');
7823 ORE->emit([&]() {
7824 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7825 L->getStartLoc(), L->getHeader())
7826 << IntDiagMsg.second;
7827 });
7828 } else if (VectorizeLoop && InterleaveLoop) {
7829 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7830 << ") in " << DebugLocStr << '\n');
7831 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7832 }
7833
7834 LVP.setBestPlan(VF.Width, IC);
7835
7836 using namespace ore;
7837 bool DisableRuntimeUnroll = false;
7838 MDNode *OrigLoopID = L->getLoopID();
7839
7840 if (!VectorizeLoop) {
7841 assert(IC > 1 && "interleave count should not be 1 or 0");
7842 // If we decided that it is not legal to vectorize the loop, then
7843 // interleave it.
7844 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7845 &CM);
7846 LVP.executePlan(Unroller, DT);
7847
7848 ORE->emit([&]() {
7849 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7850 L->getHeader())
7851 << "interleaved loop (interleaved count: "
7852 << NV("InterleaveCount", IC) << ")";
7853 });
7854 } else {
7855 // If we decided that it is *legal* to vectorize the loop, then do it.
7856 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7857 &LVL, &CM);
7858 LVP.executePlan(LB, DT);
7859 ++LoopsVectorized;
7860
7861 // Add metadata to disable runtime unrolling a scalar loop when there are
7862 // no runtime checks about strides and memory. A scalar loop that is
7863 // rarely used is not worth unrolling.
7864 if (!LB.areSafetyChecksAdded())
7865 DisableRuntimeUnroll = true;
7866
7867 // Report the vectorization decision.
7868 ORE->emit([&]() {
7869 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7870 L->getHeader())
7871 << "vectorized loop (vectorization width: "
7872 << NV("VectorizationFactor", VF.Width)
7873 << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7874 });
7875 }
7876
7877 Optional<MDNode *> RemainderLoopID =
7878 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7879 LLVMLoopVectorizeFollowupEpilogue});
7880 if (RemainderLoopID.hasValue()) {
7881 L->setLoopID(RemainderLoopID.getValue());
7882 } else {
7883 if (DisableRuntimeUnroll)
7884 AddRuntimeUnrollDisableMetaData(L);
7885
7886 // Mark the loop as already vectorized to avoid vectorizing again.
7887 Hints.setAlreadyVectorized();
7888 }
7889
7890 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
7891 return true;
7892 }
7893
runImpl(Function & F,ScalarEvolution & SE_,LoopInfo & LI_,TargetTransformInfo & TTI_,DominatorTree & DT_,BlockFrequencyInfo & BFI_,TargetLibraryInfo * TLI_,DemandedBits & DB_,AliasAnalysis & AA_,AssumptionCache & AC_,std::function<const LoopAccessInfo & (Loop &)> & GetLAA_,OptimizationRemarkEmitter & ORE_,ProfileSummaryInfo * PSI_)7894 bool LoopVectorizePass::runImpl(
7895 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7896 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7897 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7898 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7899 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
7900 SE = &SE_;
7901 LI = &LI_;
7902 TTI = &TTI_;
7903 DT = &DT_;
7904 BFI = &BFI_;
7905 TLI = TLI_;
7906 AA = &AA_;
7907 AC = &AC_;
7908 GetLAA = &GetLAA_;
7909 DB = &DB_;
7910 ORE = &ORE_;
7911 PSI = PSI_;
7912
7913 // Don't attempt if
7914 // 1. the target claims to have no vector registers, and
7915 // 2. interleaving won't help ILP.
7916 //
7917 // The second condition is necessary because, even if the target has no
7918 // vector registers, loop vectorization may still enable scalar
7919 // interleaving.
7920 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
7921 TTI->getMaxInterleaveFactor(1) < 2)
7922 return false;
7923
7924 bool Changed = false;
7925
7926 // The vectorizer requires loops to be in simplified form.
7927 // Since simplification may add new inner loops, it has to run before the
7928 // legality and profitability checks. This means running the loop vectorizer
7929 // will simplify all loops, regardless of whether anything end up being
7930 // vectorized.
7931 for (auto &L : *LI)
7932 Changed |=
7933 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
7934
7935 // Build up a worklist of inner-loops to vectorize. This is necessary as
7936 // the act of vectorizing or partially unrolling a loop creates new loops
7937 // and can invalidate iterators across the loops.
7938 SmallVector<Loop *, 8> Worklist;
7939
7940 for (Loop *L : *LI)
7941 collectSupportedLoops(*L, LI, ORE, Worklist);
7942
7943 LoopsAnalyzed += Worklist.size();
7944
7945 // Now walk the identified inner loops.
7946 while (!Worklist.empty()) {
7947 Loop *L = Worklist.pop_back_val();
7948
7949 // For the inner loops we actually process, form LCSSA to simplify the
7950 // transform.
7951 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
7952
7953 Changed |= processLoop(L);
7954 }
7955
7956 // Process each loop nest in the function.
7957 return Changed;
7958 }
7959
run(Function & F,FunctionAnalysisManager & AM)7960 PreservedAnalyses LoopVectorizePass::run(Function &F,
7961 FunctionAnalysisManager &AM) {
7962 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
7963 auto &LI = AM.getResult<LoopAnalysis>(F);
7964 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
7965 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
7966 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
7967 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
7968 auto &AA = AM.getResult<AAManager>(F);
7969 auto &AC = AM.getResult<AssumptionAnalysis>(F);
7970 auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
7971 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
7972 MemorySSA *MSSA = EnableMSSALoopDependency
7973 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
7974 : nullptr;
7975
7976 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
7977 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
7978 [&](Loop &L) -> const LoopAccessInfo & {
7979 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
7980 return LAM.getResult<LoopAccessAnalysis>(L, AR);
7981 };
7982 const ModuleAnalysisManager &MAM =
7983 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
7984 ProfileSummaryInfo *PSI =
7985 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
7986 bool Changed =
7987 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
7988 if (!Changed)
7989 return PreservedAnalyses::all();
7990 PreservedAnalyses PA;
7991
7992 // We currently do not preserve loopinfo/dominator analyses with outer loop
7993 // vectorization. Until this is addressed, mark these analyses as preserved
7994 // only for non-VPlan-native path.
7995 // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
7996 if (!EnableVPlanNativePath) {
7997 PA.preserve<LoopAnalysis>();
7998 PA.preserve<DominatorTreeAnalysis>();
7999 }
8000 PA.preserve<BasicAA>();
8001 PA.preserve<GlobalsAA>();
8002 return PA;
8003 }
8004