• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 #pragma once
15 
16 #include <stdint.h>
17 #include <stdlib.h>
18 #include "multi_heap.h"
19 #include <sdkconfig.h>
20 #include "esp_err.h"
21 
22 #ifdef __cplusplus
23 extern "C" {
24 #endif
25 
26 /**
27  * @brief Flags to indicate the capabilities of the various memory systems
28  */
29 #define MALLOC_CAP_EXEC             (1<<0)  ///< Memory must be able to run executable code
30 #define MALLOC_CAP_32BIT            (1<<1)  ///< Memory must allow for aligned 32-bit data accesses
31 #define MALLOC_CAP_8BIT             (1<<2)  ///< Memory must allow for 8/16/...-bit data accesses
32 #define MALLOC_CAP_DMA              (1<<3)  ///< Memory must be able to accessed by DMA
33 #define MALLOC_CAP_PID2             (1<<4)  ///< Memory must be mapped to PID2 memory space (PIDs are not currently used)
34 #define MALLOC_CAP_PID3             (1<<5)  ///< Memory must be mapped to PID3 memory space (PIDs are not currently used)
35 #define MALLOC_CAP_PID4             (1<<6)  ///< Memory must be mapped to PID4 memory space (PIDs are not currently used)
36 #define MALLOC_CAP_PID5             (1<<7)  ///< Memory must be mapped to PID5 memory space (PIDs are not currently used)
37 #define MALLOC_CAP_PID6             (1<<8)  ///< Memory must be mapped to PID6 memory space (PIDs are not currently used)
38 #define MALLOC_CAP_PID7             (1<<9)  ///< Memory must be mapped to PID7 memory space (PIDs are not currently used)
39 #define MALLOC_CAP_SPIRAM           (1<<10) ///< Memory must be in SPI RAM
40 #define MALLOC_CAP_INTERNAL         (1<<11) ///< Memory must be internal; specifically it should not disappear when flash/spiram cache is switched off
41 #define MALLOC_CAP_DEFAULT          (1<<12) ///< Memory can be returned in a non-capability-specific memory allocation (e.g. malloc(), calloc()) call
42 #define MALLOC_CAP_IRAM_8BIT        (1<<13) ///< Memory must be in IRAM and allow unaligned access
43 #define MALLOC_CAP_RETENTION        (1<<14)
44 
45 #define MALLOC_CAP_INVALID          (1<<31) ///< Memory can't be used / list end marker
46 
47 /**
48  * @brief callback called when a allocation operation fails, if registered
49  * @param size in bytes of failed allocation
50  * @param caps capabillites requested of failed allocation
51  * @param function_name function which generated the failure
52  */
53 typedef void (*esp_alloc_failed_hook_t) (size_t size, uint32_t caps, const char * function_name);
54 
55 /**
56  * @brief registers a callback function to be invoked if a memory allocation operation fails
57  * @param callback caller defined callback to be invoked
58  * @return ESP_OK if callback was registered.
59  */
60 esp_err_t heap_caps_register_failed_alloc_callback(esp_alloc_failed_hook_t callback);
61 
62 /**
63  * @brief Allocate a chunk of memory which has the given capabilities
64  *
65  * Equivalent semantics to libc malloc(), for capability-aware memory.
66  *
67  * In IDF, ``malloc(p)`` is equivalent to ``heap_caps_malloc(p, MALLOC_CAP_8BIT)``.
68  *
69  * @param size Size, in bytes, of the amount of memory to allocate
70  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
71  *                    of memory to be returned
72  *
73  * @return A pointer to the memory allocated on success, NULL on failure
74  */
75 void *heap_caps_malloc(size_t size, uint32_t caps);
76 
77 
78 /**
79  * @brief Free memory previously allocated via heap_caps_malloc() or heap_caps_realloc().
80  *
81  * Equivalent semantics to libc free(), for capability-aware memory.
82  *
83  *  In IDF, ``free(p)`` is equivalent to ``heap_caps_free(p)``.
84  *
85  * @param ptr Pointer to memory previously returned from heap_caps_malloc() or heap_caps_realloc(). Can be NULL.
86  */
87 void heap_caps_free( void *ptr);
88 
89 /**
90  * @brief Reallocate memory previously allocated via heap_caps_malloc() or heap_caps_realloc().
91  *
92  * Equivalent semantics to libc realloc(), for capability-aware memory.
93  *
94  * In IDF, ``realloc(p, s)`` is equivalent to ``heap_caps_realloc(p, s, MALLOC_CAP_8BIT)``.
95  *
96  * 'caps' parameter can be different to the capabilities that any original 'ptr' was allocated with. In this way,
97  * realloc can be used to "move" a buffer if necessary to ensure it meets a new set of capabilities.
98  *
99  * @param ptr Pointer to previously allocated memory, or NULL for a new allocation.
100  * @param size Size of the new buffer requested, or 0 to free the buffer.
101  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
102  *                    of memory desired for the new allocation.
103  *
104  * @return Pointer to a new buffer of size 'size' with capabilities 'caps', or NULL if allocation failed.
105  */
106 void *heap_caps_realloc( void *ptr, size_t size, uint32_t caps);
107 
108 /**
109  * @brief Allocate a aligned chunk of memory which has the given capabilities
110  *
111  * Equivalent semantics to libc aligned_alloc(), for capability-aware memory.
112  * @param alignment  How the pointer received needs to be aligned
113  *                   must be a power of two
114  * @param size Size, in bytes, of the amount of memory to allocate
115  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
116  *                    of memory to be returned
117  *
118  * @return A pointer to the memory allocated on success, NULL on failure
119  *
120  *
121  */
122 void *heap_caps_aligned_alloc(size_t alignment, size_t size, uint32_t caps);
123 
124 /**
125  * @brief Used to deallocate memory previously allocated with heap_caps_aligned_alloc
126  *
127  * @param ptr Pointer to the memory allocated
128  * @note This function is deprecated, plase consider using heap_caps_free() instead
129  */
130 void __attribute__((deprecated))  heap_caps_aligned_free(void *ptr);
131 
132 /**
133  * @brief Allocate a aligned chunk of memory which has the given capabilities. The initialized value in the memory is set to zero.
134  *
135  * @param alignment  How the pointer received needs to be aligned
136  *                   must be a power of two
137  * @param n    Number of continuing chunks of memory to allocate
138  * @param size Size, in bytes, of a chunk of memory to allocate
139  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
140  *                    of memory to be returned
141  *
142  * @return A pointer to the memory allocated on success, NULL on failure
143  *
144  */
145 void *heap_caps_aligned_calloc(size_t alignment, size_t n, size_t size, uint32_t caps);
146 
147 
148 /**
149  * @brief Allocate a chunk of memory which has the given capabilities. The initialized value in the memory is set to zero.
150  *
151  * Equivalent semantics to libc calloc(), for capability-aware memory.
152  *
153  * In IDF, ``calloc(p)`` is equivalent to ``heap_caps_calloc(p, MALLOC_CAP_8BIT)``.
154  *
155  * @param n    Number of continuing chunks of memory to allocate
156  * @param size Size, in bytes, of a chunk of memory to allocate
157  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
158  *                    of memory to be returned
159  *
160  * @return A pointer to the memory allocated on success, NULL on failure
161  */
162 void *heap_caps_calloc(size_t n, size_t size, uint32_t caps);
163 
164 /**
165  * @brief Get the total size of all the regions that have the given capabilities
166  *
167  * This function takes all regions capable of having the given capabilities allocated in them
168  * and adds up the total space they have.
169  *
170  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
171  *                    of memory
172  *
173  * @return total size in bytes
174  */
175 
176 size_t heap_caps_get_total_size(uint32_t caps);
177 
178 /**
179  * @brief Get the total free size of all the regions that have the given capabilities
180  *
181  * This function takes all regions capable of having the given capabilities allocated in them
182  * and adds up the free space they have.
183  *
184  * Note that because of heap fragmentation it is probably not possible to allocate a single block of memory
185  * of this size. Use heap_caps_get_largest_free_block() for this purpose.
186 
187  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
188  *                    of memory
189  *
190  * @return Amount of free bytes in the regions
191  */
192 size_t heap_caps_get_free_size( uint32_t caps );
193 
194 
195 /**
196  * @brief Get the total minimum free memory of all regions with the given capabilities
197  *
198  * This adds all the low water marks of the regions capable of delivering the memory
199  * with the given capabilities.
200  *
201  * Note the result may be less than the global all-time minimum available heap of this kind, as "low water marks" are
202  * tracked per-region. Individual regions' heaps may have reached their "low water marks" at different points in time. However
203  * this result still gives a "worst case" indication for all-time minimum free heap.
204  *
205  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
206  *                    of memory
207  *
208  * @return Amount of free bytes in the regions
209  */
210 size_t heap_caps_get_minimum_free_size( uint32_t caps );
211 
212 /**
213  * @brief Get the largest free block of memory able to be allocated with the given capabilities.
214  *
215  * Returns the largest value of ``s`` for which ``heap_caps_malloc(s, caps)`` will succeed.
216  *
217  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
218  *                    of memory
219  *
220  * @return Size of largest free block in bytes.
221  */
222 size_t heap_caps_get_largest_free_block( uint32_t caps );
223 
224 
225 /**
226  * @brief Get heap info for all regions with the given capabilities.
227  *
228  * Calls multi_heap_info() on all heaps which share the given capabilities.  The information returned is an aggregate
229  * across all matching heaps.  The meanings of fields are the same as defined for multi_heap_info_t, except that
230  * ``minimum_free_bytes`` has the same caveats described in heap_caps_get_minimum_free_size().
231  *
232  * @param info        Pointer to a structure which will be filled with relevant
233  *                    heap metadata.
234  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
235  *                    of memory
236  *
237  */
238 void heap_caps_get_info( multi_heap_info_t *info, uint32_t caps );
239 
240 
241 /**
242  * @brief Print a summary of all memory with the given capabilities.
243  *
244  * Calls multi_heap_info on all heaps which share the given capabilities, and
245  * prints a two-line summary for each, then a total summary.
246  *
247  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
248  *                    of memory
249  *
250  */
251 void heap_caps_print_heap_info( uint32_t caps );
252 
253 /**
254  * @brief Check integrity of all heap memory in the system.
255  *
256  * Calls multi_heap_check on all heaps. Optionally print errors if heaps are corrupt.
257  *
258  * Calling this function is equivalent to calling heap_caps_check_integrity
259  * with the caps argument set to MALLOC_CAP_INVALID.
260  *
261  * @param print_errors Print specific errors if heap corruption is found.
262  *
263  * @return True if all heaps are valid, False if at least one heap is corrupt.
264  */
265 bool heap_caps_check_integrity_all(bool print_errors);
266 
267 /**
268  * @brief Check integrity of all heaps with the given capabilities.
269  *
270  * Calls multi_heap_check on all heaps which share the given capabilities. Optionally
271  * print errors if the heaps are corrupt.
272  *
273  * See also heap_caps_check_integrity_all to check all heap memory
274  * in the system and heap_caps_check_integrity_addr to check memory
275  * around a single address.
276  *
277  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
278  *                    of memory
279  * @param print_errors Print specific errors if heap corruption is found.
280  *
281  * @return True if all heaps are valid, False if at least one heap is corrupt.
282  */
283 bool heap_caps_check_integrity(uint32_t caps, bool print_errors);
284 
285 /**
286  * @brief Check integrity of heap memory around a given address.
287  *
288  * This function can be used to check the integrity of a single region of heap memory,
289  * which contains the given address.
290  *
291  * This can be useful if debugging heap integrity for corruption at a known address,
292  * as it has a lower overhead than checking all heap regions. Note that if the corrupt
293  * address moves around between runs (due to timing or other factors) then this approach
294  * won't work and you should call heap_caps_check_integrity or
295  * heap_caps_check_integrity_all instead.
296  *
297  * @note The entire heap region around the address is checked, not only the adjacent
298  * heap blocks.
299  *
300  * @param addr Address in memory. Check for corruption in region containing this address.
301  * @param print_errors Print specific errors if heap corruption is found.
302  *
303  * @return True if the heap containing the specified address is valid,
304  * False if at least one heap is corrupt or the address doesn't belong to a heap region.
305  */
306 bool heap_caps_check_integrity_addr(intptr_t addr, bool print_errors);
307 
308 /**
309  * @brief Enable malloc() in external memory and set limit below which
310  *        malloc() attempts are placed in internal memory.
311  *
312  * When external memory is in use, the allocation strategy is to initially try to
313  * satisfy smaller allocation requests with internal memory and larger requests
314  * with external memory. This sets the limit between the two, as well as generally
315  * enabling allocation in external memory.
316  *
317  * @param limit       Limit, in bytes.
318  */
319 void heap_caps_malloc_extmem_enable(size_t limit);
320 
321 /**
322  * @brief Allocate a chunk of memory as preference in decreasing order.
323  *
324  * @attention The variable parameters are bitwise OR of MALLOC_CAP_* flags indicating the type of memory.
325  *            This API prefers to allocate memory with the first parameter. If failed, allocate memory with
326  *            the next parameter. It will try in this order until allocating a chunk of memory successfully
327  *            or fail to allocate memories with any of the parameters.
328  *
329  * @param size Size, in bytes, of the amount of memory to allocate
330  * @param num Number of variable paramters
331  *
332  * @return A pointer to the memory allocated on success, NULL on failure
333  */
334 void *heap_caps_malloc_prefer( size_t size, size_t num, ... );
335 
336 /**
337  * @brief Allocate a chunk of memory as preference in decreasing order.
338  *
339  * @param ptr Pointer to previously allocated memory, or NULL for a new allocation.
340  * @param size Size of the new buffer requested, or 0 to free the buffer.
341  * @param num Number of variable paramters
342  *
343  * @return Pointer to a new buffer of size 'size', or NULL if allocation failed.
344  */
345 void *heap_caps_realloc_prefer( void *ptr, size_t size, size_t num, ... );
346 
347 /**
348  * @brief Allocate a chunk of memory as preference in decreasing order.
349  *
350  * @param n    Number of continuing chunks of memory to allocate
351  * @param size Size, in bytes, of a chunk of memory to allocate
352  * @param num  Number of variable paramters
353  *
354  * @return A pointer to the memory allocated on success, NULL on failure
355  */
356 void *heap_caps_calloc_prefer( size_t n, size_t size, size_t num, ... );
357 
358 /**
359  * @brief Dump the full structure of all heaps with matching capabilities.
360  *
361  * Prints a large amount of output to serial (because of locking limitations,
362  * the output bypasses stdout/stderr). For each (variable sized) block
363  * in each matching heap, the following output is printed on a single line:
364  *
365  * - Block address (the data buffer returned by malloc is 4 bytes after this
366  *   if heap debugging is set to Basic, or 8 bytes otherwise).
367  * - Data size (the data size may be larger than the size requested by malloc,
368  *   either due to heap fragmentation or because of heap debugging level).
369  * - Address of next block in the heap.
370  * - If the block is free, the address of the next free block is also printed.
371  *
372  * @param caps        Bitwise OR of MALLOC_CAP_* flags indicating the type
373  *                    of memory
374  */
375 void heap_caps_dump(uint32_t caps);
376 
377 /**
378  * @brief Dump the full structure of all heaps.
379  *
380  * Covers all registered heaps. Prints a large amount of output to serial.
381  *
382  * Output is the same as for heap_caps_dump.
383  *
384  */
385 void heap_caps_dump_all(void);
386 
387 /**
388  * @brief Return the size that a particular pointer was allocated with.
389  *
390  * @param ptr Pointer to currently allocated heap memory. Must be a pointer value previously
391  * returned by heap_caps_malloc,malloc,calloc, etc. and not yet freed.
392  *
393  * @note The app will crash with an assertion failure if the pointer is not valid.
394  *
395  * @return Size of the memory allocated at this block.
396  *
397  */
398 size_t heap_caps_get_allocated_size( void *ptr );
399 
400 #ifdef __cplusplus
401 }
402 #endif
403