1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include "protobuf.h"
32
33 // -----------------------------------------------------------------------------
34 // Class/module creation from msgdefs and enumdefs, respectively.
35 // -----------------------------------------------------------------------------
36
Message_data(void * msg)37 void* Message_data(void* msg) {
38 return ((uint8_t *)msg) + sizeof(MessageHeader);
39 }
40
Message_mark(void * _self)41 void Message_mark(void* _self) {
42 MessageHeader* self = (MessageHeader *)_self;
43 layout_mark(self->descriptor->layout, Message_data(self));
44 }
45
Message_free(void * self)46 void Message_free(void* self) {
47 stringsink* unknown = ((MessageHeader *)self)->unknown_fields;
48 if (unknown != NULL) {
49 stringsink_uninit(unknown);
50 free(unknown);
51 }
52 xfree(self);
53 }
54
55 rb_data_type_t Message_type = {
56 "Message",
57 { Message_mark, Message_free, NULL },
58 };
59
Message_alloc(VALUE klass)60 VALUE Message_alloc(VALUE klass) {
61 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
62 Descriptor* desc = ruby_to_Descriptor(descriptor);
63 MessageHeader* msg;
64 VALUE ret;
65
66 if (desc->layout == NULL) {
67 create_layout(desc);
68 }
69
70 msg = (void*)ALLOC_N(uint8_t, sizeof(MessageHeader) + desc->layout->size);
71 msg->descriptor = desc;
72 msg->unknown_fields = NULL;
73 memcpy(Message_data(msg), desc->layout->empty_template, desc->layout->size);
74
75 ret = TypedData_Wrap_Struct(klass, &Message_type, msg);
76 rb_ivar_set(ret, descriptor_instancevar_interned, descriptor);
77
78 return ret;
79 }
80
which_oneof_field(MessageHeader * self,const upb_oneofdef * o)81 static const upb_fielddef* which_oneof_field(MessageHeader* self, const upb_oneofdef* o) {
82 uint32_t oneof_case;
83 const upb_fielddef* f;
84
85 oneof_case =
86 slot_read_oneof_case(self->descriptor->layout, Message_data(self), o);
87
88 if (oneof_case == ONEOF_CASE_NONE) {
89 return NULL;
90 }
91
92 // oneof_case is a field index, so find that field.
93 f = upb_oneofdef_itof(o, oneof_case);
94 assert(f != NULL);
95
96 return f;
97 }
98
99 enum {
100 METHOD_UNKNOWN = 0,
101 METHOD_GETTER = 1,
102 METHOD_SETTER = 2,
103 METHOD_CLEAR = 3,
104 METHOD_PRESENCE = 4,
105 METHOD_ENUM_GETTER = 5,
106 METHOD_WRAPPER_GETTER = 6,
107 METHOD_WRAPPER_SETTER = 7
108 };
109
110 // Check if the field is a well known wrapper type
is_wrapper_type_field(const upb_fielddef * field)111 bool is_wrapper_type_field(const upb_fielddef* field) {
112 const upb_msgdef *m;
113 if (upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
114 return false;
115 }
116 m = upb_fielddef_msgsubdef(field);
117 switch (upb_msgdef_wellknowntype(m)) {
118 case UPB_WELLKNOWN_DOUBLEVALUE:
119 case UPB_WELLKNOWN_FLOATVALUE:
120 case UPB_WELLKNOWN_INT64VALUE:
121 case UPB_WELLKNOWN_UINT64VALUE:
122 case UPB_WELLKNOWN_INT32VALUE:
123 case UPB_WELLKNOWN_UINT32VALUE:
124 case UPB_WELLKNOWN_STRINGVALUE:
125 case UPB_WELLKNOWN_BYTESVALUE:
126 case UPB_WELLKNOWN_BOOLVALUE:
127 return true;
128 default:
129 return false;
130 }
131 }
132
133 // Get a new Ruby wrapper type and set the initial value
ruby_wrapper_type(VALUE type_class,VALUE value)134 VALUE ruby_wrapper_type(VALUE type_class, VALUE value) {
135 if (value != Qnil) {
136 VALUE hash = rb_hash_new();
137 rb_hash_aset(hash, rb_str_new2("value"), value);
138 {
139 VALUE args[1] = {hash};
140 return rb_class_new_instance(1, args, type_class);
141 }
142 }
143 return Qnil;
144 }
145
extract_method_call(VALUE method_name,MessageHeader * self,const upb_fielddef ** f,const upb_oneofdef ** o)146 static int extract_method_call(VALUE method_name, MessageHeader* self,
147 const upb_fielddef **f, const upb_oneofdef **o) {
148 VALUE method_str;
149 char* name;
150 size_t name_len;
151 int accessor_type;
152 const upb_oneofdef* test_o;
153 const upb_fielddef* test_f;
154 bool has_field;
155
156 Check_Type(method_name, T_SYMBOL);
157
158 method_str = rb_id2str(SYM2ID(method_name));
159 name = RSTRING_PTR(method_str);
160 name_len = RSTRING_LEN(method_str);
161
162 if (name[name_len - 1] == '=') {
163 accessor_type = METHOD_SETTER;
164 name_len--;
165 // We want to ensure if the proto has something named clear_foo or has_foo?,
166 // we don't strip the prefix.
167 } else if (strncmp("clear_", name, 6) == 0 &&
168 !upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
169 &test_f, &test_o)) {
170 accessor_type = METHOD_CLEAR;
171 name = name + 6;
172 name_len = name_len - 6;
173 } else if (strncmp("has_", name, 4) == 0 && name[name_len - 1] == '?' &&
174 !upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
175 &test_f, &test_o)) {
176 accessor_type = METHOD_PRESENCE;
177 name = name + 4;
178 name_len = name_len - 5;
179 } else {
180 accessor_type = METHOD_GETTER;
181 }
182
183 has_field = upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
184 &test_f, &test_o);
185
186 // Look for wrapper type accessor of the form <field_name>_as_value
187 if (!has_field &&
188 (accessor_type == METHOD_GETTER || accessor_type == METHOD_SETTER) &&
189 name_len > 9 && strncmp(name + name_len - 9, "_as_value", 9) == 0) {
190 const upb_oneofdef* test_o_wrapper;
191 const upb_fielddef* test_f_wrapper;
192 char wrapper_field_name[name_len - 8];
193
194 // Find the field name
195 strncpy(wrapper_field_name, name, name_len - 9);
196 wrapper_field_name[name_len - 9] = '\0';
197
198 // Check if field exists and is a wrapper type
199 if (upb_msgdef_lookupname(self->descriptor->msgdef, wrapper_field_name,
200 name_len - 9, &test_f_wrapper, &test_o_wrapper) &&
201 is_wrapper_type_field(test_f_wrapper)) {
202 // It does exist!
203 has_field = true;
204 if (accessor_type == METHOD_SETTER) {
205 accessor_type = METHOD_WRAPPER_SETTER;
206 } else {
207 accessor_type = METHOD_WRAPPER_GETTER;
208 }
209 test_o = test_o_wrapper;
210 test_f = test_f_wrapper;
211 }
212 }
213
214 // Look for enum accessor of the form <enum_name>_const
215 if (!has_field && accessor_type == METHOD_GETTER &&
216 name_len > 6 && strncmp(name + name_len - 6, "_const", 6) == 0) {
217 const upb_oneofdef* test_o_enum;
218 const upb_fielddef* test_f_enum;
219 char enum_name[name_len - 5];
220
221 // Find enum field name
222 strncpy(enum_name, name, name_len - 6);
223 enum_name[name_len - 6] = '\0';
224
225 // Check if enum field exists
226 if (upb_msgdef_lookupname(self->descriptor->msgdef, enum_name, name_len - 6,
227 &test_f_enum, &test_o_enum) &&
228 upb_fielddef_type(test_f_enum) == UPB_TYPE_ENUM) {
229 // It does exist!
230 has_field = true;
231 accessor_type = METHOD_ENUM_GETTER;
232 test_o = test_o_enum;
233 test_f = test_f_enum;
234 }
235 }
236
237 // Verify the name corresponds to a oneof or field in this message.
238 if (!has_field) {
239 return METHOD_UNKNOWN;
240 }
241
242 // Method calls like 'has_foo?' are not allowed if field "foo" does not have
243 // a hasbit (e.g. repeated fields or non-message type fields for proto3
244 // syntax).
245 if (accessor_type == METHOD_PRESENCE && test_f != NULL) {
246 if (!upb_fielddef_haspresence(test_f)) return METHOD_UNKNOWN;
247
248 // TODO(haberman): remove this case, allow for proto3 oneofs.
249 if (upb_fielddef_realcontainingoneof(test_f) &&
250 upb_filedef_syntax(upb_fielddef_file(test_f)) == UPB_SYNTAX_PROTO3) {
251 return METHOD_UNKNOWN;
252 }
253 }
254
255 *o = test_o;
256 *f = test_f;
257 return accessor_type;
258 }
259
260 /*
261 * call-seq:
262 * Message.method_missing(*args)
263 *
264 * Provides accessors and setters and methods to clear and check for presence of
265 * message fields according to their field names.
266 *
267 * For any field whose name does not conflict with a built-in method, an
268 * accessor is provided with the same name as the field, and a setter is
269 * provided with the name of the field plus the '=' suffix. Thus, given a
270 * message instance 'msg' with field 'foo', the following code is valid:
271 *
272 * msg.foo = 42
273 * puts msg.foo
274 *
275 * This method also provides read-only accessors for oneofs. If a oneof exists
276 * with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to
277 * the name of the field in that oneof that is currently set, or nil if none.
278 *
279 * It also provides methods of the form 'clear_fieldname' to clear the value
280 * of the field 'fieldname'. For basic data types, this will set the default
281 * value of the field.
282 *
283 * Additionally, it provides methods of the form 'has_fieldname?', which returns
284 * true if the field 'fieldname' is set in the message object, else false. For
285 * 'proto3' syntax, calling this for a basic type field will result in an error.
286 */
Message_method_missing(int argc,VALUE * argv,VALUE _self)287 VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) {
288 MessageHeader* self;
289 const upb_oneofdef* o;
290 const upb_fielddef* f;
291 int accessor_type;
292
293 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
294 if (argc < 1) {
295 rb_raise(rb_eArgError, "Expected method name as first argument.");
296 }
297
298 accessor_type = extract_method_call(argv[0], self, &f, &o);
299 if (accessor_type == METHOD_UNKNOWN || (o == NULL && f == NULL) ) {
300 return rb_call_super(argc, argv);
301 } else if (accessor_type == METHOD_SETTER || accessor_type == METHOD_WRAPPER_SETTER) {
302 if (argc != 2) {
303 rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc);
304 }
305 rb_check_frozen(_self);
306 } else if (argc != 1) {
307 rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc);
308 }
309
310 // Return which of the oneof fields are set
311 if (o != NULL) {
312 const upb_fielddef* oneof_field = which_oneof_field(self, o);
313
314 if (accessor_type == METHOD_SETTER) {
315 rb_raise(rb_eRuntimeError, "Oneof accessors are read-only.");
316 }
317
318 if (accessor_type == METHOD_PRESENCE) {
319 return oneof_field == NULL ? Qfalse : Qtrue;
320 } else if (accessor_type == METHOD_CLEAR) {
321 if (oneof_field != NULL) {
322 layout_clear(self->descriptor->layout, Message_data(self), oneof_field);
323 }
324 return Qnil;
325 } else {
326 // METHOD_ACCESSOR
327 return oneof_field == NULL ? Qnil :
328 ID2SYM(rb_intern(upb_fielddef_name(oneof_field)));
329 }
330 // Otherwise we're operating on a single proto field
331 } else if (accessor_type == METHOD_SETTER) {
332 layout_set(self->descriptor->layout, Message_data(self), f, argv[1]);
333 return Qnil;
334 } else if (accessor_type == METHOD_CLEAR) {
335 layout_clear(self->descriptor->layout, Message_data(self), f);
336 return Qnil;
337 } else if (accessor_type == METHOD_PRESENCE) {
338 return layout_has(self->descriptor->layout, Message_data(self), f);
339 } else if (accessor_type == METHOD_WRAPPER_GETTER) {
340 VALUE value = layout_get(self->descriptor->layout, Message_data(self), f);
341 switch (TYPE(value)) {
342 case T_DATA:
343 return rb_funcall(value, rb_intern("value"), 0);
344 case T_NIL:
345 return Qnil;
346 default:
347 return value;
348 }
349 } else if (accessor_type == METHOD_WRAPPER_SETTER) {
350 VALUE wrapper = ruby_wrapper_type(
351 field_type_class(self->descriptor->layout, f), argv[1]);
352 layout_set(self->descriptor->layout, Message_data(self), f, wrapper);
353 return Qnil;
354 } else if (accessor_type == METHOD_ENUM_GETTER) {
355 VALUE enum_type = field_type_class(self->descriptor->layout, f);
356 VALUE method = rb_intern("const_get");
357 VALUE raw_value = layout_get(self->descriptor->layout, Message_data(self), f);
358
359 // Map repeated fields to a new type with ints
360 if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) {
361 int array_size = FIX2INT(rb_funcall(raw_value, rb_intern("length"), 0));
362 int i;
363 VALUE array_args[1] = { ID2SYM(rb_intern("int64")) };
364 VALUE array = rb_class_new_instance(1, array_args, CLASS_OF(raw_value));
365 for (i = 0; i < array_size; i++) {
366 VALUE entry = rb_funcall(enum_type, method, 1, rb_funcall(raw_value,
367 rb_intern("at"), 1, INT2NUM(i)));
368 rb_funcall(array, rb_intern("push"), 1, entry);
369 }
370 return array;
371 }
372 // Convert the value for singular fields
373 return rb_funcall(enum_type, method, 1, raw_value);
374 } else {
375 return layout_get(self->descriptor->layout, Message_data(self), f);
376 }
377 }
378
379
Message_respond_to_missing(int argc,VALUE * argv,VALUE _self)380 VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) {
381 MessageHeader* self;
382 const upb_oneofdef* o;
383 const upb_fielddef* f;
384 int accessor_type;
385
386 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
387 if (argc < 1) {
388 rb_raise(rb_eArgError, "Expected method name as first argument.");
389 }
390
391 accessor_type = extract_method_call(argv[0], self, &f, &o);
392 if (accessor_type == METHOD_UNKNOWN) {
393 return rb_call_super(argc, argv);
394 } else if (o != NULL) {
395 return accessor_type == METHOD_SETTER ? Qfalse : Qtrue;
396 } else {
397 return Qtrue;
398 }
399 }
400
create_submsg_from_hash(const MessageLayout * layout,const upb_fielddef * f,VALUE hash)401 VALUE create_submsg_from_hash(const MessageLayout* layout,
402 const upb_fielddef* f, VALUE hash) {
403 VALUE args[1] = { hash };
404 return rb_class_new_instance(1, args, field_type_class(layout, f));
405 }
406
Message_initialize_kwarg(VALUE key,VALUE val,VALUE _self)407 int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) {
408 MessageHeader* self;
409 char *name;
410 const upb_fielddef* f;
411 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
412
413 if (TYPE(key) == T_STRING) {
414 name = RSTRING_PTR(key);
415 } else if (TYPE(key) == T_SYMBOL) {
416 name = RSTRING_PTR(rb_id2str(SYM2ID(key)));
417 } else {
418 rb_raise(rb_eArgError,
419 "Expected string or symbols as hash keys when initializing proto from hash.");
420 }
421
422 f = upb_msgdef_ntofz(self->descriptor->msgdef, name);
423 if (f == NULL) {
424 rb_raise(rb_eArgError,
425 "Unknown field name '%s' in initialization map entry.", name);
426 }
427
428 if (TYPE(val) == T_NIL) {
429 return 0;
430 }
431
432 if (is_map_field(f)) {
433 VALUE map;
434
435 if (TYPE(val) != T_HASH) {
436 rb_raise(rb_eArgError,
437 "Expected Hash object as initializer value for map field '%s' (given %s).",
438 name, rb_class2name(CLASS_OF(val)));
439 }
440 map = layout_get(self->descriptor->layout, Message_data(self), f);
441 Map_merge_into_self(map, val);
442 } else if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) {
443 VALUE ary;
444 int i;
445
446 if (TYPE(val) != T_ARRAY) {
447 rb_raise(rb_eArgError,
448 "Expected array as initializer value for repeated field '%s' (given %s).",
449 name, rb_class2name(CLASS_OF(val)));
450 }
451 ary = layout_get(self->descriptor->layout, Message_data(self), f);
452 for (i = 0; i < RARRAY_LEN(val); i++) {
453 VALUE entry = rb_ary_entry(val, i);
454 if (TYPE(entry) == T_HASH && upb_fielddef_issubmsg(f)) {
455 entry = create_submsg_from_hash(self->descriptor->layout, f, entry);
456 }
457
458 RepeatedField_push(ary, entry);
459 }
460 } else {
461 if (TYPE(val) == T_HASH && upb_fielddef_issubmsg(f)) {
462 val = create_submsg_from_hash(self->descriptor->layout, f, val);
463 }
464
465 layout_set(self->descriptor->layout, Message_data(self), f, val);
466 }
467 return 0;
468 }
469
470 /*
471 * call-seq:
472 * Message.new(kwargs) => new_message
473 *
474 * Creates a new instance of the given message class. Keyword arguments may be
475 * provided with keywords corresponding to field names.
476 *
477 * Note that no literal Message class exists. Only concrete classes per message
478 * type exist, as provided by the #msgclass method on Descriptors after they
479 * have been added to a pool. The method definitions described here on the
480 * Message class are provided on each concrete message class.
481 */
Message_initialize(int argc,VALUE * argv,VALUE _self)482 VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) {
483 MessageHeader* self;
484 VALUE hash_args;
485 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
486
487 layout_init(self->descriptor->layout, Message_data(self));
488
489 if (argc == 0) {
490 return Qnil;
491 }
492 if (argc != 1) {
493 rb_raise(rb_eArgError, "Expected 0 or 1 arguments.");
494 }
495 hash_args = argv[0];
496 if (TYPE(hash_args) != T_HASH) {
497 rb_raise(rb_eArgError, "Expected hash arguments.");
498 }
499
500 rb_hash_foreach(hash_args, Message_initialize_kwarg, _self);
501 return Qnil;
502 }
503
504 /*
505 * call-seq:
506 * Message.dup => new_message
507 *
508 * Performs a shallow copy of this message and returns the new copy.
509 */
Message_dup(VALUE _self)510 VALUE Message_dup(VALUE _self) {
511 MessageHeader* self;
512 VALUE new_msg;
513 MessageHeader* new_msg_self;
514 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
515
516 new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self));
517 TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self);
518
519 layout_dup(self->descriptor->layout,
520 Message_data(new_msg_self),
521 Message_data(self));
522
523 return new_msg;
524 }
525
526 // Internal only; used by Google::Protobuf.deep_copy.
Message_deep_copy(VALUE _self)527 VALUE Message_deep_copy(VALUE _self) {
528 MessageHeader* self;
529 MessageHeader* new_msg_self;
530 VALUE new_msg;
531 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
532
533 new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self));
534 TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self);
535
536 layout_deep_copy(self->descriptor->layout,
537 Message_data(new_msg_self),
538 Message_data(self));
539
540 return new_msg;
541 }
542
543 /*
544 * call-seq:
545 * Message.==(other) => boolean
546 *
547 * Performs a deep comparison of this message with another. Messages are equal
548 * if they have the same type and if each field is equal according to the :==
549 * method's semantics (a more efficient comparison may actually be done if the
550 * field is of a primitive type).
551 */
Message_eq(VALUE _self,VALUE _other)552 VALUE Message_eq(VALUE _self, VALUE _other) {
553 MessageHeader* self;
554 MessageHeader* other;
555 if (TYPE(_self) != TYPE(_other)) {
556 return Qfalse;
557 }
558 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
559 TypedData_Get_Struct(_other, MessageHeader, &Message_type, other);
560
561 if (self->descriptor != other->descriptor) {
562 return Qfalse;
563 }
564
565 return layout_eq(self->descriptor->layout,
566 Message_data(self),
567 Message_data(other));
568 }
569
570 /*
571 * call-seq:
572 * Message.hash => hash_value
573 *
574 * Returns a hash value that represents this message's field values.
575 */
Message_hash(VALUE _self)576 VALUE Message_hash(VALUE _self) {
577 MessageHeader* self;
578 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
579
580 return layout_hash(self->descriptor->layout, Message_data(self));
581 }
582
583 /*
584 * call-seq:
585 * Message.inspect => string
586 *
587 * Returns a human-readable string representing this message. It will be
588 * formatted as "<MessageType: field1: value1, field2: value2, ...>". Each
589 * field's value is represented according to its own #inspect method.
590 */
Message_inspect(VALUE _self)591 VALUE Message_inspect(VALUE _self) {
592 MessageHeader* self;
593 VALUE str;
594 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
595
596 str = rb_str_new2("<");
597 str = rb_str_append(str, rb_str_new2(rb_class2name(CLASS_OF(_self))));
598 str = rb_str_cat2(str, ": ");
599 str = rb_str_append(str, layout_inspect(
600 self->descriptor->layout, Message_data(self)));
601 str = rb_str_cat2(str, ">");
602 return str;
603 }
604
605 /*
606 * call-seq:
607 * Message.to_h => {}
608 *
609 * Returns the message as a Ruby Hash object, with keys as symbols.
610 */
Message_to_h(VALUE _self)611 VALUE Message_to_h(VALUE _self) {
612 MessageHeader* self;
613 VALUE hash = rb_hash_new();
614 upb_msg_field_iter it;
615 bool is_proto2;
616 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
617
618 // We currently have a few behaviors that are specific to proto2.
619 // This is unfortunate, we should key behaviors off field attributes (like
620 // whether a field has presence), not proto2 vs. proto3. We should see if we
621 // can change this without breaking users.
622 is_proto2 =
623 upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2;
624
625 for (upb_msg_field_begin(&it, self->descriptor->msgdef);
626 !upb_msg_field_done(&it);
627 upb_msg_field_next(&it)) {
628 const upb_fielddef* field = upb_msg_iter_field(&it);
629 VALUE msg_value;
630 VALUE msg_key;
631
632 // Do not include fields that are not present (oneof or optional fields).
633 if (is_proto2 && upb_fielddef_haspresence(field) &&
634 !layout_has(self->descriptor->layout, Message_data(self), field)) {
635 continue;
636 }
637
638 msg_value = layout_get(self->descriptor->layout, Message_data(self), field);
639 msg_key = ID2SYM(rb_intern(upb_fielddef_name(field)));
640 if (is_map_field(field)) {
641 msg_value = Map_to_h(msg_value);
642 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
643 msg_value = RepeatedField_to_ary(msg_value);
644 if (is_proto2 && RARRAY_LEN(msg_value) == 0) {
645 continue;
646 }
647
648 if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
649 int i;
650 for (i = 0; i < RARRAY_LEN(msg_value); i++) {
651 VALUE elem = rb_ary_entry(msg_value, i);
652 rb_ary_store(msg_value, i, Message_to_h(elem));
653 }
654 }
655
656 } else if (msg_value != Qnil &&
657 upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
658 msg_value = Message_to_h(msg_value);
659 }
660 rb_hash_aset(hash, msg_key, msg_value);
661 }
662 return hash;
663 }
664
665
666
667 /*
668 * call-seq:
669 * Message.[](index) => value
670 *
671 * Accesses a field's value by field name. The provided field name should be a
672 * string.
673 */
Message_index(VALUE _self,VALUE field_name)674 VALUE Message_index(VALUE _self, VALUE field_name) {
675 MessageHeader* self;
676 const upb_fielddef* field;
677 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
678 Check_Type(field_name, T_STRING);
679 field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name));
680 if (field == NULL) {
681 return Qnil;
682 }
683 return layout_get(self->descriptor->layout, Message_data(self), field);
684 }
685
686 /*
687 * call-seq:
688 * Message.[]=(index, value)
689 *
690 * Sets a field's value by field name. The provided field name should be a
691 * string.
692 */
Message_index_set(VALUE _self,VALUE field_name,VALUE value)693 VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) {
694 MessageHeader* self;
695 const upb_fielddef* field;
696 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
697 Check_Type(field_name, T_STRING);
698 field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name));
699 if (field == NULL) {
700 rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name));
701 }
702 layout_set(self->descriptor->layout, Message_data(self), field, value);
703 return Qnil;
704 }
705
706 /*
707 * call-seq:
708 * Message.descriptor => descriptor
709 *
710 * Class method that returns the Descriptor instance corresponding to this
711 * message class's type.
712 */
Message_descriptor(VALUE klass)713 VALUE Message_descriptor(VALUE klass) {
714 return rb_ivar_get(klass, descriptor_instancevar_interned);
715 }
716
build_class_from_descriptor(VALUE descriptor)717 VALUE build_class_from_descriptor(VALUE descriptor) {
718 Descriptor* desc = ruby_to_Descriptor(descriptor);
719 const char *name;
720 VALUE klass;
721
722 name = upb_msgdef_fullname(desc->msgdef);
723 if (name == NULL) {
724 rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name.");
725 }
726
727 klass = rb_define_class_id(
728 // Docs say this parameter is ignored. User will assign return value to
729 // their own toplevel constant class name.
730 rb_intern("Message"),
731 rb_cObject);
732 rb_ivar_set(klass, descriptor_instancevar_interned, descriptor);
733 rb_define_alloc_func(klass, Message_alloc);
734 rb_require("google/protobuf/message_exts");
735 rb_include_module(klass, rb_eval_string("::Google::Protobuf::MessageExts"));
736 rb_extend_object(
737 klass, rb_eval_string("::Google::Protobuf::MessageExts::ClassMethods"));
738
739 rb_define_method(klass, "method_missing",
740 Message_method_missing, -1);
741 rb_define_method(klass, "respond_to_missing?",
742 Message_respond_to_missing, -1);
743 rb_define_method(klass, "initialize", Message_initialize, -1);
744 rb_define_method(klass, "dup", Message_dup, 0);
745 // Also define #clone so that we don't inherit Object#clone.
746 rb_define_method(klass, "clone", Message_dup, 0);
747 rb_define_method(klass, "==", Message_eq, 1);
748 rb_define_method(klass, "eql?", Message_eq, 1);
749 rb_define_method(klass, "hash", Message_hash, 0);
750 rb_define_method(klass, "to_h", Message_to_h, 0);
751 rb_define_method(klass, "inspect", Message_inspect, 0);
752 rb_define_method(klass, "to_s", Message_inspect, 0);
753 rb_define_method(klass, "[]", Message_index, 1);
754 rb_define_method(klass, "[]=", Message_index_set, 2);
755 rb_define_singleton_method(klass, "decode", Message_decode, 1);
756 rb_define_singleton_method(klass, "encode", Message_encode, 1);
757 rb_define_singleton_method(klass, "decode_json", Message_decode_json, -1);
758 rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1);
759 rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0);
760
761 return klass;
762 }
763
764 /*
765 * call-seq:
766 * Enum.lookup(number) => name
767 *
768 * This module method, provided on each generated enum module, looks up an enum
769 * value by number and returns its name as a Ruby symbol, or nil if not found.
770 */
enum_lookup(VALUE self,VALUE number)771 VALUE enum_lookup(VALUE self, VALUE number) {
772 int32_t num = NUM2INT(number);
773 VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
774 EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc);
775
776 const char* name = upb_enumdef_iton(enumdesc->enumdef, num);
777 if (name == NULL) {
778 return Qnil;
779 } else {
780 return ID2SYM(rb_intern(name));
781 }
782 }
783
784 /*
785 * call-seq:
786 * Enum.resolve(name) => number
787 *
788 * This module method, provided on each generated enum module, looks up an enum
789 * value by name (as a Ruby symbol) and returns its name, or nil if not found.
790 */
enum_resolve(VALUE self,VALUE sym)791 VALUE enum_resolve(VALUE self, VALUE sym) {
792 const char* name = rb_id2name(SYM2ID(sym));
793 VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
794 EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc);
795
796 int32_t num = 0;
797 bool found = upb_enumdef_ntoiz(enumdesc->enumdef, name, &num);
798 if (!found) {
799 return Qnil;
800 } else {
801 return INT2NUM(num);
802 }
803 }
804
805 /*
806 * call-seq:
807 * Enum.descriptor
808 *
809 * This module method, provided on each generated enum module, returns the
810 * EnumDescriptor corresponding to this enum type.
811 */
enum_descriptor(VALUE self)812 VALUE enum_descriptor(VALUE self) {
813 return rb_ivar_get(self, descriptor_instancevar_interned);
814 }
815
build_module_from_enumdesc(VALUE _enumdesc)816 VALUE build_module_from_enumdesc(VALUE _enumdesc) {
817 EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(_enumdesc);
818 VALUE mod = rb_define_module_id(
819 rb_intern(upb_enumdef_fullname(enumdesc->enumdef)));
820
821 upb_enum_iter it;
822 for (upb_enum_begin(&it, enumdesc->enumdef);
823 !upb_enum_done(&it);
824 upb_enum_next(&it)) {
825 const char* name = upb_enum_iter_name(&it);
826 int32_t value = upb_enum_iter_number(&it);
827 if (name[0] < 'A' || name[0] > 'Z') {
828 rb_warn("Enum value '%s' does not start with an uppercase letter "
829 "as is required for Ruby constants.",
830 name);
831 }
832 rb_define_const(mod, name, INT2NUM(value));
833 }
834
835 rb_define_singleton_method(mod, "lookup", enum_lookup, 1);
836 rb_define_singleton_method(mod, "resolve", enum_resolve, 1);
837 rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0);
838 rb_ivar_set(mod, descriptor_instancevar_interned, _enumdesc);
839
840 return mod;
841 }
842
843 /*
844 * call-seq:
845 * Google::Protobuf.deep_copy(obj) => copy_of_obj
846 *
847 * Performs a deep copy of a RepeatedField instance, a Map instance, or a
848 * message object, recursively copying its members.
849 */
Google_Protobuf_deep_copy(VALUE self,VALUE obj)850 VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj) {
851 VALUE klass = CLASS_OF(obj);
852 if (klass == cRepeatedField) {
853 return RepeatedField_deep_copy(obj);
854 } else if (klass == cMap) {
855 return Map_deep_copy(obj);
856 } else {
857 return Message_deep_copy(obj);
858 }
859 }
860