• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "src/gpu/GrFragmentProcessor.h"
9 
10 #include "src/core/SkRuntimeEffectPriv.h"
11 #include "src/gpu/GrPipeline.h"
12 #include "src/gpu/GrProcessorAnalysis.h"
13 #include "src/gpu/GrShaderCaps.h"
14 #include "src/gpu/effects/GrBlendFragmentProcessor.h"
15 #include "src/gpu/effects/GrSkSLFP.h"
16 #include "src/gpu/effects/GrTextureEffect.h"
17 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
18 #include "src/gpu/glsl/GrGLSLProgramBuilder.h"
19 #include "src/gpu/glsl/GrGLSLProgramDataManager.h"
20 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
21 
isEqual(const GrFragmentProcessor & that) const22 bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
23     if (this->classID() != that.classID()) {
24         return false;
25     }
26     if (this->sampleUsage() != that.sampleUsage()) {
27         return false;
28     }
29     if (!this->onIsEqual(that)) {
30         return false;
31     }
32     if (this->numChildProcessors() != that.numChildProcessors()) {
33         return false;
34     }
35     for (int i = 0; i < this->numChildProcessors(); ++i) {
36         auto thisChild = this->childProcessor(i),
37              thatChild = that .childProcessor(i);
38         if (SkToBool(thisChild) != SkToBool(thatChild)) {
39             return false;
40         }
41         if (thisChild && !thisChild->isEqual(*thatChild)) {
42             return false;
43         }
44     }
45     return true;
46 }
47 
visitProxies(const GrVisitProxyFunc & func) const48 void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const {
49     this->visitTextureEffects([&func](const GrTextureEffect& te) {
50         func(te.view().proxy(), te.samplerState().mipmapped());
51     });
52 }
53 
visitTextureEffects(const std::function<void (const GrTextureEffect &)> & func) const54 void GrFragmentProcessor::visitTextureEffects(
55         const std::function<void(const GrTextureEffect&)>& func) const {
56     if (auto* te = this->asTextureEffect()) {
57         func(*te);
58     }
59     for (auto& child : fChildProcessors) {
60         if (child) {
61             child->visitTextureEffects(func);
62         }
63     }
64 }
65 
visitWithImpls(const std::function<void (const GrFragmentProcessor &,ProgramImpl &)> & f,ProgramImpl & impl) const66 void GrFragmentProcessor::visitWithImpls(
67         const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>& f,
68         ProgramImpl& impl) const {
69     f(*this, impl);
70     SkASSERT(impl.numChildProcessors() == this->numChildProcessors());
71     for (int i = 0; i < this->numChildProcessors(); ++i) {
72         if (const auto* child = this->childProcessor(i)) {
73             child->visitWithImpls(f, *impl.childProcessor(i));
74         }
75     }
76 }
77 
asTextureEffect()78 GrTextureEffect* GrFragmentProcessor::asTextureEffect() {
79     if (this->classID() == kGrTextureEffect_ClassID) {
80         return static_cast<GrTextureEffect*>(this);
81     }
82     return nullptr;
83 }
84 
asTextureEffect() const85 const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const {
86     if (this->classID() == kGrTextureEffect_ClassID) {
87         return static_cast<const GrTextureEffect*>(this);
88     }
89     return nullptr;
90 }
91 
92 #if GR_TEST_UTILS
recursive_dump_tree_info(const GrFragmentProcessor & fp,SkString indent,SkString * text)93 static void recursive_dump_tree_info(const GrFragmentProcessor& fp,
94                                      SkString indent,
95                                      SkString* text) {
96     for (int index = 0; index < fp.numChildProcessors(); ++index) {
97         text->appendf("\n%s(#%d) -> ", indent.c_str(), index);
98         if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) {
99             text->append(childFP->dumpInfo());
100             indent.append("\t");
101             recursive_dump_tree_info(*childFP, indent, text);
102         } else {
103             text->append("null");
104         }
105     }
106 }
107 
dumpTreeInfo() const108 SkString GrFragmentProcessor::dumpTreeInfo() const {
109     SkString text = this->dumpInfo();
110     recursive_dump_tree_info(*this, SkString("\t"), &text);
111     text.append("\n");
112     return text;
113 }
114 #endif
115 
makeProgramImpl() const116 std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrFragmentProcessor::makeProgramImpl() const {
117     std::unique_ptr<ProgramImpl> impl = this->onMakeProgramImpl();
118     impl->fChildProcessors.push_back_n(fChildProcessors.count());
119     for (int i = 0; i < fChildProcessors.count(); ++i) {
120         impl->fChildProcessors[i] = fChildProcessors[i] ? fChildProcessors[i]->makeProgramImpl()
121                                                         : nullptr;
122     }
123     return impl;
124 }
125 
numNonNullChildProcessors() const126 int GrFragmentProcessor::numNonNullChildProcessors() const {
127     return std::count_if(fChildProcessors.begin(), fChildProcessors.end(),
128                          [](const auto& c) { return c != nullptr; });
129 }
130 
131 #ifdef SK_DEBUG
isInstantiated() const132 bool GrFragmentProcessor::isInstantiated() const {
133     bool result = true;
134     this->visitTextureEffects([&result](const GrTextureEffect& te) {
135         if (!te.texture()) {
136             result = false;
137         }
138     });
139     return result;
140 }
141 #endif
142 
registerChild(std::unique_ptr<GrFragmentProcessor> child,SkSL::SampleUsage sampleUsage)143 void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child,
144                                         SkSL::SampleUsage sampleUsage) {
145     SkASSERT(sampleUsage.isSampled());
146 
147     if (!child) {
148         fChildProcessors.push_back(nullptr);
149         return;
150     }
151 
152     // The child should not have been attached to another FP already and not had any sampling
153     // strategy set on it.
154     SkASSERT(!child->fParent && !child->sampleUsage().isSampled());
155 
156     // Configure child's sampling state first
157     child->fUsage = sampleUsage;
158 
159     // Propagate the "will read dest-color" flag up to parent FPs.
160     if (child->willReadDstColor()) {
161         this->setWillReadDstColor();
162     }
163 
164     // If this child receives passthrough or matrix transformed coords from its parent then note
165     // that the parent's coords are used indirectly to ensure that they aren't omitted.
166     if ((sampleUsage.isPassThrough() || sampleUsage.isUniformMatrix()) &&
167         child->usesSampleCoords()) {
168         fFlags |= kUsesSampleCoordsIndirectly_Flag;
169     }
170 
171     // Record that the child is attached to us; this FP is the source of any uniform data needed
172     // to evaluate the child sample matrix.
173     child->fParent = this;
174     fChildProcessors.push_back(std::move(child));
175 
176     // Validate: our sample strategy comes from a parent we shouldn't have yet.
177     SkASSERT(!fUsage.isSampled() && !fParent);
178 }
179 
cloneAndRegisterAllChildProcessors(const GrFragmentProcessor & src)180 void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) {
181     for (int i = 0; i < src.numChildProcessors(); ++i) {
182         if (auto fp = src.childProcessor(i)) {
183             this->registerChild(fp->clone(), fp->sampleUsage());
184         } else {
185             this->registerChild(nullptr);
186         }
187     }
188 }
189 
MakeColor(SkPMColor4f color)190 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) {
191     // Use ColorFilter signature/factory to get the constant output for constant input optimization
192     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
193         uniform half4 color;
194         half4 main(half4 inColor) { return color; }
195     )");
196     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
197     return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr,
198                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
199                                            : GrSkSLFP::OptFlags::kNone,
200                           "color", color);
201 }
202 
MulInputByChildAlpha(std::unique_ptr<GrFragmentProcessor> fp)203 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha(
204         std::unique_ptr<GrFragmentProcessor> fp) {
205     if (!fp) {
206         return nullptr;
207     }
208     return GrBlendFragmentProcessor::Make(/*src=*/nullptr, std::move(fp), SkBlendMode::kSrcIn);
209 }
210 
ApplyPaintAlpha(std::unique_ptr<GrFragmentProcessor> child)211 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ApplyPaintAlpha(
212         std::unique_ptr<GrFragmentProcessor> child) {
213     SkASSERT(child);
214     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
215         uniform colorFilter fp;
216         half4 main(half4 inColor) {
217             return fp.eval(inColor.rgb1) * inColor.a;
218         }
219     )");
220     return GrSkSLFP::Make(effect, "ApplyPaintAlpha", /*inputFP=*/nullptr,
221                           GrSkSLFP::OptFlags::kPreservesOpaqueInput |
222                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
223                           "fp", std::move(child));
224 }
225 
ModulateRGBA(std::unique_ptr<GrFragmentProcessor> inputFP,const SkPMColor4f & color)226 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA(
227         std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
228     auto colorFP = MakeColor(color);
229     return GrBlendFragmentProcessor::Make(std::move(colorFP),
230                                           std::move(inputFP),
231                                           SkBlendMode::kModulate);
232 }
233 
ClampOutput(std::unique_ptr<GrFragmentProcessor> fp)234 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput(
235         std::unique_ptr<GrFragmentProcessor> fp) {
236     SkASSERT(fp);
237     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
238         half4 main(half4 inColor) {
239             return saturate(inColor);
240         }
241     )");
242     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
243     return GrSkSLFP::Make(
244             effect, "Clamp", std::move(fp), GrSkSLFP::OptFlags::kPreservesOpaqueInput);
245 }
246 
SwizzleOutput(std::unique_ptr<GrFragmentProcessor> fp,const GrSwizzle & swizzle)247 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(
248         std::unique_ptr<GrFragmentProcessor> fp, const GrSwizzle& swizzle) {
249     class SwizzleFragmentProcessor : public GrFragmentProcessor {
250     public:
251         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
252                                                          const GrSwizzle& swizzle) {
253             return std::unique_ptr<GrFragmentProcessor>(
254                     new SwizzleFragmentProcessor(std::move(fp), swizzle));
255         }
256 
257         const char* name() const override { return "Swizzle"; }
258 
259         std::unique_ptr<GrFragmentProcessor> clone() const override {
260             return Make(this->childProcessor(0)->clone(), fSwizzle);
261         }
262 
263     private:
264         SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp, const GrSwizzle& swizzle)
265                 : INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get()))
266                 , fSwizzle(swizzle) {
267             this->registerChild(std::move(fp));
268         }
269 
270         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
271             class Impl : public ProgramImpl {
272             public:
273                 void emitCode(EmitArgs& args) override {
274                     SkString childColor = this->invokeChild(0, args);
275 
276                     const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
277                     const GrSwizzle& swizzle = sfp.fSwizzle;
278                     GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
279 
280                     fragBuilder->codeAppendf("return %s.%s;",
281                                              childColor.c_str(), swizzle.asString().c_str());
282                 }
283             };
284             return std::make_unique<Impl>();
285         }
286 
287         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
288             b->add32(fSwizzle.asKey());
289         }
290 
291         bool onIsEqual(const GrFragmentProcessor& other) const override {
292             const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
293             return fSwizzle == sfp.fSwizzle;
294         }
295 
296         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
297             return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input));
298         }
299 
300         GrSwizzle fSwizzle;
301 
302         using INHERITED = GrFragmentProcessor;
303     };
304 
305     if (!fp) {
306         return nullptr;
307     }
308     if (GrSwizzle::RGBA() == swizzle) {
309         return fp;
310     }
311     return SwizzleFragmentProcessor::Make(std::move(fp), swizzle);
312 }
313 
314 //////////////////////////////////////////////////////////////////////////////
315 
OverrideInput(std::unique_ptr<GrFragmentProcessor> fp,const SkPMColor4f & color)316 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(
317         std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color) {
318     if (!fp) {
319         return nullptr;
320     }
321     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
322         uniform colorFilter fp;  // Declared as colorFilter so we can pass a color
323         uniform half4 color;
324         half4 main(half4 inColor) {
325             return fp.eval(color);
326         }
327     )");
328     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
329     return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr,
330                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
331                                            : GrSkSLFP::OptFlags::kNone,
332                           "fp", std::move(fp),
333                           "color", color);
334 }
335 
336 //////////////////////////////////////////////////////////////////////////////
337 
DisableCoverageAsAlpha(std::unique_ptr<GrFragmentProcessor> fp)338 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DisableCoverageAsAlpha(
339         std::unique_ptr<GrFragmentProcessor> fp) {
340     if (!fp || !fp->compatibleWithCoverageAsAlpha()) {
341         return fp;
342     }
343     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
344         half4 main(half4 inColor) { return inColor; }
345     )");
346     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
347     return GrSkSLFP::Make(effect, "DisableCoverageAsAlpha", std::move(fp),
348                           GrSkSLFP::OptFlags::kPreservesOpaqueInput);
349 }
350 
351 //////////////////////////////////////////////////////////////////////////////
352 
UseDestColorAsInput(std::unique_ptr<GrFragmentProcessor> fp)353 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::UseDestColorAsInput(
354         std::unique_ptr<GrFragmentProcessor> fp) {
355     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForBlender, R"(
356         uniform colorFilter fp;  // Declared as colorFilter so we can pass a color
357         half4 main(half4 src, half4 dst) {
358             return fp.eval(dst);
359         }
360     )");
361     return GrSkSLFP::Make(effect, "UseDestColorAsInput", /*inputFP=*/nullptr,
362                           GrSkSLFP::OptFlags::kNone, "fp", std::move(fp));
363 }
364 
365 //////////////////////////////////////////////////////////////////////////////
366 
Compose(std::unique_ptr<GrFragmentProcessor> f,std::unique_ptr<GrFragmentProcessor> g)367 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose(
368         std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) {
369     class ComposeProcessor : public GrFragmentProcessor {
370     public:
371         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f,
372                                                          std::unique_ptr<GrFragmentProcessor> g) {
373             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f),
374                                                                              std::move(g)));
375         }
376 
377         const char* name() const override { return "Compose"; }
378 
379         std::unique_ptr<GrFragmentProcessor> clone() const override {
380             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this));
381         }
382 
383     private:
384         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
385             class Impl : public ProgramImpl {
386             public:
387                 void emitCode(EmitArgs& args) override {
388                     SkString result = this->invokeChild(1, args);         // g(x)
389                     result = this->invokeChild(0, result.c_str(), args);  // f(g(x))
390                     args.fFragBuilder->codeAppendf("return %s;", result.c_str());
391                 }
392             };
393             return std::make_unique<Impl>();
394         }
395 
396         ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f,
397                          std::unique_ptr<GrFragmentProcessor> g)
398                 : INHERITED(kSeriesFragmentProcessor_ClassID,
399                             f->optimizationFlags() & g->optimizationFlags()) {
400             this->registerChild(std::move(f));
401             this->registerChild(std::move(g));
402         }
403 
404         ComposeProcessor(const ComposeProcessor& that) : INHERITED(that) {}
405 
406         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
407 
408         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
409 
410         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override {
411             SkPMColor4f color = inColor;
412             color = ConstantOutputForConstantInput(this->childProcessor(1), color);
413             color = ConstantOutputForConstantInput(this->childProcessor(0), color);
414             return color;
415         }
416 
417         using INHERITED = GrFragmentProcessor;
418     };
419 
420     // Allow either of the composed functions to be null.
421     if (f == nullptr) {
422         return g;
423     }
424     if (g == nullptr) {
425         return f;
426     }
427 
428     // Run an optimization pass on this composition.
429     GrProcessorAnalysisColor inputColor;
430     inputColor.setToUnknown();
431 
432     std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)};
433     GrColorFragmentProcessorAnalysis info(inputColor, series, SK_ARRAY_COUNT(series));
434 
435     SkPMColor4f knownColor;
436     int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
437     switch (leadingFPsToEliminate) {
438         default:
439             // We shouldn't eliminate more than we started with.
440             SkASSERT(leadingFPsToEliminate <= 2);
441             [[fallthrough]];
442         case 0:
443             // Compose the two processors as requested.
444             return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0]));
445         case 1:
446             // Replace the first processor with a constant color.
447             return ComposeProcessor::Make(/*f=*/std::move(series[1]),
448                                           /*g=*/MakeColor(knownColor));
449         case 2:
450             // Replace the entire composition with a constant color.
451             return MakeColor(knownColor);
452     }
453 }
454 
455 //////////////////////////////////////////////////////////////////////////////
456 
ColorMatrix(std::unique_ptr<GrFragmentProcessor> child,const float matrix[20],bool unpremulInput,bool clampRGBOutput,bool premulOutput)457 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix(
458         std::unique_ptr<GrFragmentProcessor> child,
459         const float matrix[20],
460         bool unpremulInput,
461         bool clampRGBOutput,
462         bool premulOutput) {
463     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
464         uniform half4x4 m;
465         uniform half4   v;
466         uniform int unpremulInput;   // always specialized
467         uniform int clampRGBOutput;  // always specialized
468         uniform int premulOutput;    // always specialized
469         half4 main(half4 color) {
470             if (bool(unpremulInput)) {
471                 color = unpremul(color);
472             }
473             color = m * color + v;
474             if (bool(clampRGBOutput)) {
475                 color = saturate(color);
476             } else {
477                 color.a = saturate(color.a);
478             }
479             if (bool(premulOutput)) {
480                 color.rgb *= color.a;
481             }
482             return color;
483         }
484     )");
485     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
486 
487     SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3],
488               matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8],
489               matrix[10], matrix[11], matrix[12], matrix[13],
490               matrix[15], matrix[16], matrix[17], matrix[18]);
491     SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]};
492     return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone,
493                           "m", m44,
494                           "v", v4,
495                           "unpremulInput",  GrSkSLFP::Specialize(unpremulInput  ? 1 : 0),
496                           "clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0),
497                           "premulOutput",   GrSkSLFP::Specialize(premulOutput   ? 1 : 0));
498 }
499 
500 //////////////////////////////////////////////////////////////////////////////
501 
SurfaceColor()502 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SurfaceColor() {
503     class SurfaceColorProcessor : public GrFragmentProcessor {
504     public:
505         static std::unique_ptr<GrFragmentProcessor> Make() {
506             return std::unique_ptr<GrFragmentProcessor>(new SurfaceColorProcessor());
507         }
508 
509         std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
510 
511         const char* name() const override { return "SurfaceColor"; }
512 
513     private:
514         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
515             class Impl : public ProgramImpl {
516             public:
517                 void emitCode(EmitArgs& args) override {
518                     const char* dstColor = args.fFragBuilder->dstColor();
519                     args.fFragBuilder->codeAppendf("return %s;", dstColor);
520                 }
521             };
522             return std::make_unique<Impl>();
523         }
524 
525         SurfaceColorProcessor()
526                 : INHERITED(kSurfaceColorProcessor_ClassID, kNone_OptimizationFlags) {
527             this->setWillReadDstColor();
528         }
529 
530         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
531 
532         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
533 
534         using INHERITED = GrFragmentProcessor;
535     };
536 
537     return SurfaceColorProcessor::Make();
538 }
539 
540 //////////////////////////////////////////////////////////////////////////////
541 
DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)542 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace(
543         std::unique_ptr<GrFragmentProcessor> fp) {
544     if (!fp) {
545         return nullptr;
546     }
547 
548     class DeviceSpace : GrFragmentProcessor {
549     public:
550         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
551             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(fp)));
552         }
553 
554     private:
555         DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)
556                 : GrFragmentProcessor(kDeviceSpace_ClassID, fp->optimizationFlags()) {
557             // Passing FragCoord here is the reason this is a subclass and not a runtime-FP.
558             this->registerChild(std::move(fp), SkSL::SampleUsage::FragCoord());
559         }
560 
561         std::unique_ptr<GrFragmentProcessor> clone() const override {
562             auto child = this->childProcessor(0)->clone();
563             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(child)));
564         }
565 
566         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& f) const override {
567             return this->childProcessor(0)->constantOutputForConstantInput(f);
568         }
569 
570         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
571             class Impl : public ProgramImpl {
572             public:
573                 Impl() = default;
574                 void emitCode(ProgramImpl::EmitArgs& args) override {
575                     auto child = this->invokeChild(0, args.fInputColor, args, "sk_FragCoord.xy");
576                     args.fFragBuilder->codeAppendf("return %s;", child.c_str());
577                 }
578             };
579             return std::make_unique<Impl>();
580         }
581 
582         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
583 
584         bool onIsEqual(const GrFragmentProcessor& processor) const override { return true; }
585 
586         const char* name() const override { return "DeviceSpace"; }
587     };
588 
589     return DeviceSpace::Make(std::move(fp));
590 }
591 
592 //////////////////////////////////////////////////////////////////////////////
593 
594 #define CLIP_EDGE_SKSL              \
595     "const int kFillBW = 0;"        \
596     "const int kFillAA = 1;"        \
597     "const int kInverseFillBW = 2;" \
598     "const int kInverseFillAA = 3;"
599 
600 static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0);
601 static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1);
602 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2);
603 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3);
604 
Rect(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkRect rect)605 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect(
606         std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) {
607     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
608         uniform int edgeType;  // GrClipEdgeType, specialized
609         uniform float4 rectUniform;
610 
611         half4 main(float2 xy, half4 inColor) {
612             half coverage;
613             if (edgeType == kFillBW || edgeType == kInverseFillBW) {
614                 // non-AA
615                 coverage = all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw),
616                                            float4(rectUniform.xy, sk_FragCoord.xy))) ? 1 : 0;
617             } else {
618                 // compute coverage relative to left and right edges, add, then subtract 1 to
619                 // account for double counting. And similar for top/bottom.
620                 half4 dists4 = clamp(half4(1, 1, -1, -1) *
621                                      half4(sk_FragCoord.xyxy - rectUniform), 0, 1);
622                 half2 dists2 = dists4.xy + dists4.zw - 1;
623                 coverage = dists2.x * dists2.y;
624             }
625 
626             if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {
627                 coverage = 1.0 - coverage;
628             }
629 
630             return inColor * coverage;
631         }
632     )");
633 
634     SkASSERT(rect.isSorted());
635     // The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5
636     // to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect.
637     SkRect rectUniform = GrClipEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect;
638 
639     return GrSkSLFP::Make(effect, "Rect", std::move(inputFP),
640                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
641                           "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
642                           "rectUniform", rectUniform);
643 }
644 
Circle(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,float radius)645 GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP,
646                                        GrClipEdgeType edgeType,
647                                        SkPoint center,
648                                        float radius) {
649     // A radius below half causes the implicit insetting done by this processor to become
650     // inverted. We could handle this case by making the processor code more complicated.
651     if (radius < .5f && GrClipEdgeTypeIsInverseFill(edgeType)) {
652         return GrFPFailure(std::move(inputFP));
653     }
654 
655     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
656         uniform int edgeType;  // GrClipEdgeType, specialized
657         // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
658         // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
659         uniform float4 circle;
660 
661         half4 main(float2 xy, half4 inColor) {
662             // TODO: Right now the distance to circle calculation is performed in a space normalized
663             // to the radius and then denormalized. This is to mitigate overflow on devices that
664             // don't have full float.
665             half d;
666             if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {
667                 d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z);
668             } else {
669                 d = half((1.0 - length((circle.xy - sk_FragCoord.xy) *  circle.w)) * circle.z);
670             }
671             if (edgeType == kFillAA || edgeType == kInverseFillAA) {
672                 return inColor * saturate(d);
673             } else {
674                 return d > 0.5 ? inColor : half4(0);
675             }
676         }
677     )");
678 
679     SkScalar effectiveRadius = radius;
680     if (GrClipEdgeTypeIsInverseFill(edgeType)) {
681         effectiveRadius -= 0.5f;
682         // When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader.
683         effectiveRadius = std::max(0.001f, effectiveRadius);
684     } else {
685         effectiveRadius += 0.5f;
686     }
687     SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)};
688 
689     return GrFPSuccess(GrSkSLFP::Make(effect, "Circle", std::move(inputFP),
690                                       GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
691                                       "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
692                                       "circle", circle));
693 }
694 
Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,SkPoint radii,const GrShaderCaps & caps)695 GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,
696                                         GrClipEdgeType edgeType,
697                                         SkPoint center,
698                                         SkPoint radii,
699                                         const GrShaderCaps& caps) {
700     const bool medPrecision = !caps.floatIs32Bits();
701 
702     // Small radii produce bad results on devices without full float.
703     if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) {
704         return GrFPFailure(std::move(inputFP));
705     }
706     // Very narrow ellipses produce bad results on devices without full float
707     if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) {
708         return GrFPFailure(std::move(inputFP));
709     }
710     // Very large ellipses produce bad results on devices without full float
711     if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) {
712         return GrFPFailure(std::move(inputFP));
713     }
714 
715     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
716         uniform int edgeType;      // GrClipEdgeType, specialized
717         uniform int medPrecision;  // !sk_Caps.floatIs32Bits, specialized
718 
719         uniform float4 ellipse;
720         uniform float2 scale;    // only for medPrecision
721 
722         half4 main(float2 xy, half4 inColor) {
723             // d is the offset to the ellipse center
724             float2 d = sk_FragCoord.xy - ellipse.xy;
725             // If we're on a device with a "real" mediump then we'll do the distance computation in
726             // a space that is normalized by the larger radius or 128, whichever is smaller. The
727             // scale uniform will be scale, 1/scale. The inverse squared radii uniform values are
728             // already in this normalized space. The center is not.
729             if (bool(medPrecision)) {
730                 d *= scale.y;
731             }
732             float2 Z = d * ellipse.zw;
733             // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
734             float implicit = dot(Z, d) - 1;
735             // grad_dot is the squared length of the gradient of the implicit.
736             float grad_dot = 4 * dot(Z, Z);
737             // Avoid calling inversesqrt on zero.
738             if (bool(medPrecision)) {
739                 grad_dot = max(grad_dot, 6.1036e-5);
740             } else {
741                 grad_dot = max(grad_dot, 1.1755e-38);
742             }
743             float approx_dist = implicit * inversesqrt(grad_dot);
744             if (bool(medPrecision)) {
745                 approx_dist *= scale.x;
746             }
747 
748             half alpha;
749             if (edgeType == kFillBW) {
750                 alpha = approx_dist > 0.0 ? 0.0 : 1.0;
751             } else if (edgeType == kFillAA) {
752                 alpha = saturate(0.5 - half(approx_dist));
753             } else if (edgeType == kInverseFillBW) {
754                 alpha = approx_dist > 0.0 ? 1.0 : 0.0;
755             } else {  // edgeType == kInverseFillAA
756                 alpha = saturate(0.5 + half(approx_dist));
757             }
758             return inColor * alpha;
759         }
760     )");
761 
762     float invRXSqd;
763     float invRYSqd;
764     SkV2 scale = {1, 1};
765     // If we're using a scale factor to work around precision issues, choose the larger radius as
766     // the scale factor. The inv radii need to be pre-adjusted by the scale factor.
767     if (medPrecision) {
768         if (radii.fX > radii.fY) {
769             invRXSqd = 1.f;
770             invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY);
771             scale = {radii.fX, 1.f / radii.fX};
772         } else {
773             invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX);
774             invRYSqd = 1.f;
775             scale = {radii.fY, 1.f / radii.fY};
776         }
777     } else {
778         invRXSqd = 1.f / (radii.fX * radii.fX);
779         invRYSqd = 1.f / (radii.fY * radii.fY);
780     }
781     SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd};
782 
783     return GrFPSuccess(GrSkSLFP::Make(effect, "Ellipse", std::move(inputFP),
784                                       GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
785                                       "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
786                                       "medPrecision",  GrSkSLFP::Specialize<int>(medPrecision),
787                                       "ellipse", ellipse,
788                                       "scale", scale));
789 }
790 
791 //////////////////////////////////////////////////////////////////////////////
792 
HighPrecision(std::unique_ptr<GrFragmentProcessor> fp)793 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::HighPrecision(
794         std::unique_ptr<GrFragmentProcessor> fp) {
795     class HighPrecisionFragmentProcessor : public GrFragmentProcessor {
796     public:
797         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
798             return std::unique_ptr<GrFragmentProcessor>(
799                     new HighPrecisionFragmentProcessor(std::move(fp)));
800         }
801 
802         const char* name() const override { return "HighPrecision"; }
803 
804         std::unique_ptr<GrFragmentProcessor> clone() const override {
805             return Make(this->childProcessor(0)->clone());
806         }
807 
808     private:
809         HighPrecisionFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp)
810                 : INHERITED(kHighPrecisionFragmentProcessor_ClassID,
811                             ProcessorOptimizationFlags(fp.get())) {
812             this->registerChild(std::move(fp));
813         }
814 
815         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
816             class Impl : public ProgramImpl {
817             public:
818                 void emitCode(EmitArgs& args) override {
819                     SkString childColor = this->invokeChild(0, args);
820 
821                     args.fFragBuilder->forceHighPrecision();
822                     args.fFragBuilder->codeAppendf("return %s;", childColor.c_str());
823                 }
824             };
825             return std::make_unique<Impl>();
826         }
827 
828         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
829         bool onIsEqual(const GrFragmentProcessor& other) const override { return true; }
830 
831         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
832             return ConstantOutputForConstantInput(this->childProcessor(0), input);
833         }
834 
835         using INHERITED = GrFragmentProcessor;
836     };
837 
838     return HighPrecisionFragmentProcessor::Make(std::move(fp));
839 }
840 
841 //////////////////////////////////////////////////////////////////////////////
842 
843 using ProgramImpl = GrFragmentProcessor::ProgramImpl;
844 
setData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & processor)845 void ProgramImpl::setData(const GrGLSLProgramDataManager& pdman,
846                           const GrFragmentProcessor& processor) {
847     this->onSetData(pdman, processor);
848 }
849 
invokeChild(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args,SkSL::String skslCoords)850 SkString ProgramImpl::invokeChild(int childIndex,
851                                   const char* inputColor,
852                                   const char* destColor,
853                                   EmitArgs& args,
854                                   SkSL::String skslCoords) {
855     SkASSERT(childIndex >= 0);
856 
857     if (!inputColor) {
858         inputColor = args.fInputColor;
859     }
860 
861     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
862     if (!childProc) {
863         // If no child processor is provided, return the input color as-is.
864         return SkString(inputColor);
865     }
866 
867     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
868                                      inputColor);
869 
870     if (childProc->isBlendFunction()) {
871         if (!destColor) {
872             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
873         }
874         invocation.appendf(", %s", destColor);
875     }
876 
877     // Assert that the child has no sample matrix. A uniform matrix sample call would go through
878     // invokeChildWithMatrix, not here.
879     SkASSERT(!childProc->sampleUsage().isUniformMatrix());
880 
881     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
882         SkASSERT(!childProc->sampleUsage().isFragCoord() || skslCoords == "sk_FragCoord.xy");
883         // The child's function takes a half4 color and a float2 coordinate
884         invocation.appendf(", %s", skslCoords.empty() ? args.fSampleCoord : skslCoords.c_str());
885     }
886 
887     invocation.append(")");
888     return invocation;
889 }
890 
invokeChildWithMatrix(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args)891 SkString ProgramImpl::invokeChildWithMatrix(int childIndex,
892                                             const char* inputColor,
893                                             const char* destColor,
894                                             EmitArgs& args) {
895     SkASSERT(childIndex >= 0);
896 
897     if (!inputColor) {
898         inputColor = args.fInputColor;
899     }
900 
901     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
902     if (!childProc) {
903         // If no child processor is provided, return the input color as-is.
904         return SkString(inputColor);
905     }
906 
907     SkASSERT(childProc->sampleUsage().isUniformMatrix());
908 
909     // Every uniform matrix has the same (initial) name. Resolve that into the mangled name:
910     GrShaderVar uniform = args.fUniformHandler->getUniformMapping(
911             args.fFp, SkString(SkSL::SampleUsage::MatrixUniformName()));
912     SkASSERT(uniform.getType() == kFloat3x3_GrSLType);
913     const SkString& matrixName(uniform.getName());
914 
915     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
916                                      inputColor);
917 
918     if (childProc->isBlendFunction()) {
919         if (!destColor) {
920             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
921         }
922         invocation.appendf(", %s", destColor);
923     }
924 
925     // Produce a string containing the call to the helper function. We have a uniform variable
926     // containing our transform (matrixName). If the parent coords were produced by uniform
927     // transforms, then the entire expression (matrixName * coords) is lifted to a vertex shader
928     // and is stored in a varying. In that case, childProc will not be sampled explicitly, so its
929     // function signature will not take in coords.
930     //
931     // In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke
932     // the function.
933     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
934         // Only check perspective for this specific matrix transform, not the aggregate FP property.
935         // Any parent perspective will have already been applied when evaluated in the FS.
936         if (childProc->sampleUsage().hasPerspective()) {
937             invocation.appendf(", proj((%s) * %s.xy1)", matrixName.c_str(), args.fSampleCoord);
938         } else if (args.fShaderCaps->nonsquareMatrixSupport()) {
939             invocation.appendf(", float3x2(%s) * %s.xy1", matrixName.c_str(), args.fSampleCoord);
940         } else {
941             invocation.appendf(", ((%s) * %s.xy1).xy", matrixName.c_str(), args.fSampleCoord);
942         }
943     }
944 
945     invocation.append(")");
946     return invocation;
947 }
948