• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * \file psa/crypto_values.h
3  *
4  * \brief PSA cryptography module: macros to build and analyze integer values.
5  *
6  * \note This file may not be included directly. Applications must
7  * include psa/crypto.h. Drivers must include the appropriate driver
8  * header file.
9  *
10  * This file contains portable definitions of macros to build and analyze
11  * values of integral types that encode properties of cryptographic keys,
12  * designations of cryptographic algorithms, and error codes returned by
13  * the library.
14  *
15  * This header file only defines preprocessor macros.
16  */
17 /*
18  *  Copyright The Mbed TLS Contributors
19  *  SPDX-License-Identifier: Apache-2.0
20  *
21  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
22  *  not use this file except in compliance with the License.
23  *  You may obtain a copy of the License at
24  *
25  *  http://www.apache.org/licenses/LICENSE-2.0
26  *
27  *  Unless required by applicable law or agreed to in writing, software
28  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30  *  See the License for the specific language governing permissions and
31  *  limitations under the License.
32  */
33 
34 #ifndef PSA_CRYPTO_VALUES_H
35 #define PSA_CRYPTO_VALUES_H
36 #include "mbedtls/private_access.h"
37 
38 /** \defgroup error Error codes
39  * @{
40  */
41 
42 /* PSA error codes */
43 
44 /** The action was completed successfully. */
45 #define PSA_SUCCESS ((psa_status_t)0)
46 
47 /** An error occurred that does not correspond to any defined
48  * failure cause.
49  *
50  * Implementations may use this error code if none of the other standard
51  * error codes are applicable. */
52 #define PSA_ERROR_GENERIC_ERROR         ((psa_status_t)-132)
53 
54 /** The requested operation or a parameter is not supported
55  * by this implementation.
56  *
57  * Implementations should return this error code when an enumeration
58  * parameter such as a key type, algorithm, etc. is not recognized.
59  * If a combination of parameters is recognized and identified as
60  * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
61 #define PSA_ERROR_NOT_SUPPORTED         ((psa_status_t)-134)
62 
63 /** The requested action is denied by a policy.
64  *
65  * Implementations should return this error code when the parameters
66  * are recognized as valid and supported, and a policy explicitly
67  * denies the requested operation.
68  *
69  * If a subset of the parameters of a function call identify a
70  * forbidden operation, and another subset of the parameters are
71  * not valid or not supported, it is unspecified whether the function
72  * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73  * #PSA_ERROR_INVALID_ARGUMENT. */
74 #define PSA_ERROR_NOT_PERMITTED         ((psa_status_t)-133)
75 
76 /** An output buffer is too small.
77  *
78  * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79  * description to determine a sufficient buffer size.
80  *
81  * Implementations should preferably return this error code only
82  * in cases when performing the operation with a larger output
83  * buffer would succeed. However implementations may return this
84  * error if a function has invalid or unsupported parameters in addition
85  * to the parameters that determine the necessary output buffer size. */
86 #define PSA_ERROR_BUFFER_TOO_SMALL      ((psa_status_t)-138)
87 
88 /** Asking for an item that already exists
89  *
90  * Implementations should return this error, when attempting
91  * to write an item (like a key) that already exists. */
92 #define PSA_ERROR_ALREADY_EXISTS        ((psa_status_t)-139)
93 
94 /** Asking for an item that doesn't exist
95  *
96  * Implementations should return this error, if a requested item (like
97  * a key) does not exist. */
98 #define PSA_ERROR_DOES_NOT_EXIST        ((psa_status_t)-140)
99 
100 /** The requested action cannot be performed in the current state.
101  *
102  * Multipart operations return this error when one of the
103  * functions is called out of sequence. Refer to the function
104  * descriptions for permitted sequencing of functions.
105  *
106  * Implementations shall not return this error code to indicate
107  * that a key either exists or not,
108  * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
109  * as applicable.
110  *
111  * Implementations shall not return this error code to indicate that a
112  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
113  * instead. */
114 #define PSA_ERROR_BAD_STATE             ((psa_status_t)-137)
115 
116 /** The parameters passed to the function are invalid.
117  *
118  * Implementations may return this error any time a parameter or
119  * combination of parameters are recognized as invalid.
120  *
121  * Implementations shall not return this error code to indicate that a
122  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
123  * instead.
124  */
125 #define PSA_ERROR_INVALID_ARGUMENT      ((psa_status_t)-135)
126 
127 /** There is not enough runtime memory.
128  *
129  * If the action is carried out across multiple security realms, this
130  * error can refer to available memory in any of the security realms. */
131 #define PSA_ERROR_INSUFFICIENT_MEMORY   ((psa_status_t)-141)
132 
133 /** There is not enough persistent storage.
134  *
135  * Functions that modify the key storage return this error code if
136  * there is insufficient storage space on the host media. In addition,
137  * many functions that do not otherwise access storage may return this
138  * error code if the implementation requires a mandatory log entry for
139  * the requested action and the log storage space is full. */
140 #define PSA_ERROR_INSUFFICIENT_STORAGE  ((psa_status_t)-142)
141 
142 /** There was a communication failure inside the implementation.
143  *
144  * This can indicate a communication failure between the application
145  * and an external cryptoprocessor or between the cryptoprocessor and
146  * an external volatile or persistent memory. A communication failure
147  * may be transient or permanent depending on the cause.
148  *
149  * \warning If a function returns this error, it is undetermined
150  * whether the requested action has completed or not. Implementations
151  * should return #PSA_SUCCESS on successful completion whenever
152  * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153  * if the requested action was completed successfully in an external
154  * cryptoprocessor but there was a breakdown of communication before
155  * the cryptoprocessor could report the status to the application.
156  */
157 #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
158 
159 /** There was a storage failure that may have led to data loss.
160  *
161  * This error indicates that some persistent storage is corrupted.
162  * It should not be used for a corruption of volatile memory
163  * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
164  * between the cryptoprocessor and its external storage (use
165  * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166  * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167  *
168  * Note that a storage failure does not indicate that any data that was
169  * previously read is invalid. However this previously read data may no
170  * longer be readable from storage.
171  *
172  * When a storage failure occurs, it is no longer possible to ensure
173  * the global integrity of the keystore. Depending on the global
174  * integrity guarantees offered by the implementation, access to other
175  * data may or may not fail even if the data is still readable but
176  * its integrity cannot be guaranteed.
177  *
178  * Implementations should only use this error code to report a
179  * permanent storage corruption. However application writers should
180  * keep in mind that transient errors while reading the storage may be
181  * reported using this error code. */
182 #define PSA_ERROR_STORAGE_FAILURE       ((psa_status_t)-146)
183 
184 /** A hardware failure was detected.
185  *
186  * A hardware failure may be transient or permanent depending on the
187  * cause. */
188 #define PSA_ERROR_HARDWARE_FAILURE      ((psa_status_t)-147)
189 
190 /** A tampering attempt was detected.
191  *
192  * If an application receives this error code, there is no guarantee
193  * that previously accessed or computed data was correct and remains
194  * confidential. Applications should not perform any security function
195  * and should enter a safe failure state.
196  *
197  * Implementations may return this error code if they detect an invalid
198  * state that cannot happen during normal operation and that indicates
199  * that the implementation's security guarantees no longer hold. Depending
200  * on the implementation architecture and on its security and safety goals,
201  * the implementation may forcibly terminate the application.
202  *
203  * This error code is intended as a last resort when a security breach
204  * is detected and it is unsure whether the keystore data is still
205  * protected. Implementations shall only return this error code
206  * to report an alarm from a tampering detector, to indicate that
207  * the confidentiality of stored data can no longer be guaranteed,
208  * or to indicate that the integrity of previously returned data is now
209  * considered compromised. Implementations shall not use this error code
210  * to indicate a hardware failure that merely makes it impossible to
211  * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212  * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213  * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214  * instead).
215  *
216  * This error indicates an attack against the application. Implementations
217  * shall not return this error code as a consequence of the behavior of
218  * the application itself. */
219 #define PSA_ERROR_CORRUPTION_DETECTED    ((psa_status_t)-151)
220 
221 /** There is not enough entropy to generate random data needed
222  * for the requested action.
223  *
224  * This error indicates a failure of a hardware random generator.
225  * Application writers should note that this error can be returned not
226  * only by functions whose purpose is to generate random data, such
227  * as key, IV or nonce generation, but also by functions that execute
228  * an algorithm with a randomized result, as well as functions that
229  * use randomization of intermediate computations as a countermeasure
230  * to certain attacks.
231  *
232  * Implementations should avoid returning this error after psa_crypto_init()
233  * has succeeded. Implementations should generate sufficient
234  * entropy during initialization and subsequently use a cryptographically
235  * secure pseudorandom generator (PRNG). However implementations may return
236  * this error at any time if a policy requires the PRNG to be reseeded
237  * during normal operation. */
238 #define PSA_ERROR_INSUFFICIENT_ENTROPY  ((psa_status_t)-148)
239 
240 /** The signature, MAC or hash is incorrect.
241  *
242  * Verification functions return this error if the verification
243  * calculations completed successfully, and the value to be verified
244  * was determined to be incorrect.
245  *
246  * If the value to verify has an invalid size, implementations may return
247  * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
248 #define PSA_ERROR_INVALID_SIGNATURE     ((psa_status_t)-149)
249 
250 /** The decrypted padding is incorrect.
251  *
252  * \warning In some protocols, when decrypting data, it is essential that
253  * the behavior of the application does not depend on whether the padding
254  * is correct, down to precise timing. Applications should prefer
255  * protocols that use authenticated encryption rather than plain
256  * encryption. If the application must perform a decryption of
257  * unauthenticated data, the application writer should take care not
258  * to reveal whether the padding is invalid.
259  *
260  * Implementations should strive to make valid and invalid padding
261  * as close as possible to indistinguishable to an external observer.
262  * In particular, the timing of a decryption operation should not
263  * depend on the validity of the padding. */
264 #define PSA_ERROR_INVALID_PADDING       ((psa_status_t)-150)
265 
266 /** Return this error when there's insufficient data when attempting
267  * to read from a resource. */
268 #define PSA_ERROR_INSUFFICIENT_DATA     ((psa_status_t)-143)
269 
270 /** The key identifier is not valid. See also :ref:\`key-handles\`.
271  */
272 #define PSA_ERROR_INVALID_HANDLE        ((psa_status_t)-136)
273 
274 /** Stored data has been corrupted.
275  *
276  * This error indicates that some persistent storage has suffered corruption.
277  * It does not indicate the following situations, which have specific error
278  * codes:
279  *
280  * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281  * - A communication error between the cryptoprocessor and its external
282  *   storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283  * - When the storage is in a valid state but is full - use
284  *   #PSA_ERROR_INSUFFICIENT_STORAGE.
285  * - When the storage fails for other reasons - use
286  *   #PSA_ERROR_STORAGE_FAILURE.
287  * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288  *
289  * \note A storage corruption does not indicate that any data that was
290  * previously read is invalid. However this previously read data might no
291  * longer be readable from storage.
292  *
293  * When a storage failure occurs, it is no longer possible to ensure the
294  * global integrity of the keystore.
295  */
296 #define PSA_ERROR_DATA_CORRUPT          ((psa_status_t)-152)
297 
298 /** Data read from storage is not valid for the implementation.
299  *
300  * This error indicates that some data read from storage does not have a valid
301  * format. It does not indicate the following situations, which have specific
302  * error codes:
303  *
304  * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305  * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306  * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307  *
308  * This error is typically a result of either storage corruption on a
309  * cleartext storage backend, or an attempt to read data that was
310  * written by an incompatible version of the library.
311  */
312 #define PSA_ERROR_DATA_INVALID          ((psa_status_t)-153)
313 
314 /**@}*/
315 
316 /** \defgroup crypto_types Key and algorithm types
317  * @{
318  */
319 
320 /** An invalid key type value.
321  *
322  * Zero is not the encoding of any key type.
323  */
324 #define PSA_KEY_TYPE_NONE                           ((psa_key_type_t)0x0000)
325 
326 /** Vendor-defined key type flag.
327  *
328  * Key types defined by this standard will never have the
329  * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330  * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331  * respect the bitwise structure used by standard encodings whenever practical.
332  */
333 #define PSA_KEY_TYPE_VENDOR_FLAG                    ((psa_key_type_t)0x8000)
334 
335 #define PSA_KEY_TYPE_CATEGORY_MASK                  ((psa_key_type_t)0x7000)
336 #define PSA_KEY_TYPE_CATEGORY_RAW                   ((psa_key_type_t)0x1000)
337 #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC             ((psa_key_type_t)0x2000)
338 #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY            ((psa_key_type_t)0x4000)
339 #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR              ((psa_key_type_t)0x7000)
340 
341 #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR             ((psa_key_type_t)0x3000)
342 
343 /** Whether a key type is vendor-defined.
344  *
345  * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346  */
347 #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
348     (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
349 
350 /** Whether a key type is an unstructured array of bytes.
351  *
352  * This encompasses both symmetric keys and non-key data.
353  */
354 #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
355     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356      ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
357 
358 /** Whether a key type is asymmetric: either a key pair or a public key. */
359 #define PSA_KEY_TYPE_IS_ASYMMETRIC(type)                                \
360     (((type) & PSA_KEY_TYPE_CATEGORY_MASK                               \
361       & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) ==                            \
362      PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
363 /** Whether a key type is the public part of a key pair. */
364 #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type)                                \
365     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
366 /** Whether a key type is a key pair containing a private part and a public
367  * part. */
368 #define PSA_KEY_TYPE_IS_KEY_PAIR(type)                                   \
369     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
370 /** The key pair type corresponding to a public key type.
371  *
372  * You may also pass a key pair type as \p type, it will be left unchanged.
373  *
374  * \param type      A public key type or key pair type.
375  *
376  * \return          The corresponding key pair type.
377  *                  If \p type is not a public key or a key pair,
378  *                  the return value is undefined.
379  */
380 #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type)        \
381     ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
382 /** The public key type corresponding to a key pair type.
383  *
384  * You may also pass a key pair type as \p type, it will be left unchanged.
385  *
386  * \param type      A public key type or key pair type.
387  *
388  * \return          The corresponding public key type.
389  *                  If \p type is not a public key or a key pair,
390  *                  the return value is undefined.
391  */
392 #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type)        \
393     ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
394 
395 /** Raw data.
396  *
397  * A "key" of this type cannot be used for any cryptographic operation.
398  * Applications may use this type to store arbitrary data in the keystore. */
399 #define PSA_KEY_TYPE_RAW_DATA                       ((psa_key_type_t)0x1001)
400 
401 /** HMAC key.
402  *
403  * The key policy determines which underlying hash algorithm the key can be
404  * used for.
405  *
406  * HMAC keys should generally have the same size as the underlying hash.
407  * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
408  * \c alg is the HMAC algorithm or the underlying hash algorithm. */
409 #define PSA_KEY_TYPE_HMAC                           ((psa_key_type_t)0x1100)
410 
411 /** A secret for key derivation.
412  *
413  * This key type is for high-entropy secrets only. For low-entropy secrets,
414  * #PSA_KEY_TYPE_PASSWORD should be used instead.
415  *
416  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
417  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
418  *
419  * The key policy determines which key derivation algorithm the key
420  * can be used for.
421  */
422 #define PSA_KEY_TYPE_DERIVE                         ((psa_key_type_t)0x1200)
423 
424 /** A low-entropy secret for password hashing or key derivation.
425  *
426  * This key type is suitable for passwords and passphrases which are typically
427  * intended to be memorizable by humans, and have a low entropy relative to
428  * their size. It can be used for randomly generated or derived keys with
429  * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
430  * for such keys. It is not suitable for passwords with extremely low entropy,
431  * such as numerical PINs.
432  *
433  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
434  * key derivation algorithms. Algorithms that accept such an input were
435  * designed to accept low-entropy secret and are known as password hashing or
436  * key stretching algorithms.
437  *
438  * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
439  * key derivation algorithms, as the algorithms that take such an input expect
440  * it to be high-entropy.
441  *
442  * The key policy determines which key derivation algorithm the key can be
443  * used for, among the permissible subset defined above.
444  */
445 #define PSA_KEY_TYPE_PASSWORD                       ((psa_key_type_t)0x1203)
446 
447 /** A secret value that can be used to verify a password hash.
448  *
449  * The key policy determines which key derivation algorithm the key
450  * can be used for, among the same permissible subset as for
451  * #PSA_KEY_TYPE_PASSWORD.
452  */
453 #define PSA_KEY_TYPE_PASSWORD_HASH                  ((psa_key_type_t)0x1205)
454 
455 /** A secret value that can be used in when computing a password hash.
456  *
457  * The key policy determines which key derivation algorithm the key
458  * can be used for, among the subset of algorithms that can use pepper.
459  */
460 #define PSA_KEY_TYPE_PEPPER                         ((psa_key_type_t)0x1206)
461 
462 /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
463  *
464  * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
465  * 32 bytes (AES-256).
466  */
467 #define PSA_KEY_TYPE_AES                            ((psa_key_type_t)0x2400)
468 
469 /** Key for a cipher, AEAD or MAC algorithm based on the
470  * ARIA block cipher. */
471 #define PSA_KEY_TYPE_ARIA                           ((psa_key_type_t)0x2406)
472 
473 /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
474  *
475  * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
476  * 192 bits (3-key 3DES).
477  *
478  * Note that single DES and 2-key 3DES are weak and strongly
479  * deprecated and should only be used to decrypt legacy data. 3-key 3DES
480  * is weak and deprecated and should only be used in legacy protocols.
481  */
482 #define PSA_KEY_TYPE_DES                            ((psa_key_type_t)0x2301)
483 
484 /** Key for a cipher, AEAD or MAC algorithm based on the
485  * Camellia block cipher. */
486 #define PSA_KEY_TYPE_CAMELLIA                       ((psa_key_type_t)0x2403)
487 
488 /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
489  *
490  * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
491  *
492  * Implementations must support 12-byte nonces, may support 8-byte nonces,
493  * and should reject other sizes.
494  */
495 #define PSA_KEY_TYPE_CHACHA20                       ((psa_key_type_t)0x2004)
496 
497 /** RSA public key.
498  *
499  * The size of an RSA key is the bit size of the modulus.
500  */
501 #define PSA_KEY_TYPE_RSA_PUBLIC_KEY                 ((psa_key_type_t)0x4001)
502 /** RSA key pair (private and public key).
503  *
504  * The size of an RSA key is the bit size of the modulus.
505  */
506 #define PSA_KEY_TYPE_RSA_KEY_PAIR                   ((psa_key_type_t)0x7001)
507 /** Whether a key type is an RSA key (pair or public-only). */
508 #define PSA_KEY_TYPE_IS_RSA(type)                                       \
509     (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
510 
511 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE            ((psa_key_type_t)0x4100)
512 #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE              ((psa_key_type_t)0x7100)
513 #define PSA_KEY_TYPE_ECC_CURVE_MASK                 ((psa_key_type_t)0x00ff)
514 /** Elliptic curve key pair.
515  *
516  * The size of an elliptic curve key is the bit size associated with the curve,
517  * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
518  * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
519  *
520  * \param curve     A value of type ::psa_ecc_family_t that
521  *                  identifies the ECC curve to be used.
522  */
523 #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve)         \
524     (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
525 /** Elliptic curve public key.
526  *
527  * The size of an elliptic curve public key is the same as the corresponding
528  * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
529  * `PSA_ECC_FAMILY_xxx` curve families).
530  *
531  * \param curve     A value of type ::psa_ecc_family_t that
532  *                  identifies the ECC curve to be used.
533  */
534 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve)              \
535     (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
536 
537 /** Whether a key type is an elliptic curve key (pair or public-only). */
538 #define PSA_KEY_TYPE_IS_ECC(type)                                       \
539     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
540       ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
541 /** Whether a key type is an elliptic curve key pair. */
542 #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)                               \
543     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
544      PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
545 /** Whether a key type is an elliptic curve public key. */
546 #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type)                            \
547     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
548      PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
549 
550 /** Extract the curve from an elliptic curve key type. */
551 #define PSA_KEY_TYPE_ECC_GET_FAMILY(type)                        \
552     ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ?             \
553                         ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
554                         0))
555 
556 /** SEC Koblitz curves over prime fields.
557  *
558  * This family comprises the following curves:
559  * secp192k1, secp224k1, secp256k1.
560  * They are defined in _Standards for Efficient Cryptography_,
561  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
562  * https://www.secg.org/sec2-v2.pdf
563  */
564 #define PSA_ECC_FAMILY_SECP_K1           ((psa_ecc_family_t) 0x17)
565 
566 /** SEC random curves over prime fields.
567  *
568  * This family comprises the following curves:
569  * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
570  * They are defined in _Standards for Efficient Cryptography_,
571  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
572  * https://www.secg.org/sec2-v2.pdf
573  */
574 #define PSA_ECC_FAMILY_SECP_R1           ((psa_ecc_family_t) 0x12)
575 /* SECP160R2 (SEC2 v1, obsolete) */
576 #define PSA_ECC_FAMILY_SECP_R2           ((psa_ecc_family_t) 0x1b)
577 
578 /** SEC Koblitz curves over binary fields.
579  *
580  * This family comprises the following curves:
581  * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
582  * They are defined in _Standards for Efficient Cryptography_,
583  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
584  * https://www.secg.org/sec2-v2.pdf
585  */
586 #define PSA_ECC_FAMILY_SECT_K1           ((psa_ecc_family_t) 0x27)
587 
588 /** SEC random curves over binary fields.
589  *
590  * This family comprises the following curves:
591  * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
592  * They are defined in _Standards for Efficient Cryptography_,
593  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
594  * https://www.secg.org/sec2-v2.pdf
595  */
596 #define PSA_ECC_FAMILY_SECT_R1           ((psa_ecc_family_t) 0x22)
597 
598 /** SEC additional random curves over binary fields.
599  *
600  * This family comprises the following curve:
601  * sect163r2.
602  * It is defined in _Standards for Efficient Cryptography_,
603  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
604  * https://www.secg.org/sec2-v2.pdf
605  */
606 #define PSA_ECC_FAMILY_SECT_R2           ((psa_ecc_family_t) 0x2b)
607 
608 /** Brainpool P random curves.
609  *
610  * This family comprises the following curves:
611  * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
612  * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
613  * It is defined in RFC 5639.
614  */
615 #define PSA_ECC_FAMILY_BRAINPOOL_P_R1    ((psa_ecc_family_t) 0x30)
616 
617 /** Curve25519 and Curve448.
618  *
619  * This family comprises the following Montgomery curves:
620  * - 255-bit: Bernstein et al.,
621  *   _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
622  *   The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
623  * - 448-bit: Hamburg,
624  *   _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
625  *   The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
626  */
627 #define PSA_ECC_FAMILY_MONTGOMERY        ((psa_ecc_family_t) 0x41)
628 
629 /** The twisted Edwards curves Ed25519 and Ed448.
630  *
631  * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
632  * #PSA_ALG_ED25519PH for the 255-bit curve,
633  * #PSA_ALG_ED448PH for the 448-bit curve).
634  *
635  * This family comprises the following twisted Edwards curves:
636  * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
637  *   to Curve25519.
638  *   Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
639  * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
640  *   to Curve448.
641  *   Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
642  */
643 #define PSA_ECC_FAMILY_TWISTED_EDWARDS   ((psa_ecc_family_t) 0x42)
644 
645 #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE             ((psa_key_type_t)0x4200)
646 #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE               ((psa_key_type_t)0x7200)
647 #define PSA_KEY_TYPE_DH_GROUP_MASK                  ((psa_key_type_t)0x00ff)
648 /** Diffie-Hellman key pair.
649  *
650  * \param group     A value of type ::psa_dh_family_t that identifies the
651  *                  Diffie-Hellman group to be used.
652  */
653 #define PSA_KEY_TYPE_DH_KEY_PAIR(group)          \
654     (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
655 /** Diffie-Hellman public key.
656  *
657  * \param group     A value of type ::psa_dh_family_t that identifies the
658  *                  Diffie-Hellman group to be used.
659  */
660 #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group)               \
661     (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
662 
663 /** Whether a key type is a Diffie-Hellman key (pair or public-only). */
664 #define PSA_KEY_TYPE_IS_DH(type)                                        \
665     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
666       ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
667 /** Whether a key type is a Diffie-Hellman key pair. */
668 #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type)                               \
669     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
670      PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
671 /** Whether a key type is a Diffie-Hellman public key. */
672 #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type)                            \
673     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
674      PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
675 
676 /** Extract the group from a Diffie-Hellman key type. */
677 #define PSA_KEY_TYPE_DH_GET_FAMILY(type)                        \
678     ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ?              \
679                        ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) :  \
680                        0))
681 
682 /** Diffie-Hellman groups defined in RFC 7919 Appendix A.
683  *
684  * This family includes groups with the following key sizes (in bits):
685  * 2048, 3072, 4096, 6144, 8192. A given implementation may support
686  * all of these sizes or only a subset.
687  */
688 #define PSA_DH_FAMILY_RFC7919            ((psa_dh_family_t) 0x03)
689 
690 #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type)      \
691     (((type) >> 8) & 7)
692 /** The block size of a block cipher.
693  *
694  * \param type  A cipher key type (value of type #psa_key_type_t).
695  *
696  * \return      The block size for a block cipher, or 1 for a stream cipher.
697  *              The return value is undefined if \p type is not a supported
698  *              cipher key type.
699  *
700  * \note It is possible to build stream cipher algorithms on top of a block
701  *       cipher, for example CTR mode (#PSA_ALG_CTR).
702  *       This macro only takes the key type into account, so it cannot be
703  *       used to determine the size of the data that #psa_cipher_update()
704  *       might buffer for future processing in general.
705  *
706  * \note This macro returns a compile-time constant if its argument is one.
707  *
708  * \warning This macro may evaluate its argument multiple times.
709  */
710 #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type)                                     \
711     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
712      1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) :                         \
713      0u)
714 
715 /** Vendor-defined algorithm flag.
716  *
717  * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
718  * bit set. Vendors who define additional algorithms must use an encoding with
719  * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
720  * used by standard encodings whenever practical.
721  */
722 #define PSA_ALG_VENDOR_FLAG                     ((psa_algorithm_t)0x80000000)
723 
724 #define PSA_ALG_CATEGORY_MASK                   ((psa_algorithm_t)0x7f000000)
725 #define PSA_ALG_CATEGORY_HASH                   ((psa_algorithm_t)0x02000000)
726 #define PSA_ALG_CATEGORY_MAC                    ((psa_algorithm_t)0x03000000)
727 #define PSA_ALG_CATEGORY_CIPHER                 ((psa_algorithm_t)0x04000000)
728 #define PSA_ALG_CATEGORY_AEAD                   ((psa_algorithm_t)0x05000000)
729 #define PSA_ALG_CATEGORY_SIGN                   ((psa_algorithm_t)0x06000000)
730 #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION  ((psa_algorithm_t)0x07000000)
731 #define PSA_ALG_CATEGORY_KEY_DERIVATION         ((psa_algorithm_t)0x08000000)
732 #define PSA_ALG_CATEGORY_KEY_AGREEMENT          ((psa_algorithm_t)0x09000000)
733 
734 /** Whether an algorithm is vendor-defined.
735  *
736  * See also #PSA_ALG_VENDOR_FLAG.
737  */
738 #define PSA_ALG_IS_VENDOR_DEFINED(alg)                                  \
739     (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
740 
741 /** Whether the specified algorithm is a hash algorithm.
742  *
743  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
744  *
745  * \return 1 if \p alg is a hash algorithm, 0 otherwise.
746  *         This macro may return either 0 or 1 if \p alg is not a supported
747  *         algorithm identifier.
748  */
749 #define PSA_ALG_IS_HASH(alg)                                            \
750     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
751 
752 /** Whether the specified algorithm is a MAC algorithm.
753  *
754  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
755  *
756  * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
757  *         This macro may return either 0 or 1 if \p alg is not a supported
758  *         algorithm identifier.
759  */
760 #define PSA_ALG_IS_MAC(alg)                                             \
761     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
762 
763 /** Whether the specified algorithm is a symmetric cipher algorithm.
764  *
765  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
766  *
767  * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
768  *         This macro may return either 0 or 1 if \p alg is not a supported
769  *         algorithm identifier.
770  */
771 #define PSA_ALG_IS_CIPHER(alg)                                          \
772     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
773 
774 /** Whether the specified algorithm is an authenticated encryption
775  * with associated data (AEAD) algorithm.
776  *
777  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
778  *
779  * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
780  *         This macro may return either 0 or 1 if \p alg is not a supported
781  *         algorithm identifier.
782  */
783 #define PSA_ALG_IS_AEAD(alg)                                            \
784     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
785 
786 /** Whether the specified algorithm is an asymmetric signature algorithm,
787  * also known as public-key signature algorithm.
788  *
789  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
790  *
791  * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
792  *         This macro may return either 0 or 1 if \p alg is not a supported
793  *         algorithm identifier.
794  */
795 #define PSA_ALG_IS_SIGN(alg)                                            \
796     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
797 
798 /** Whether the specified algorithm is an asymmetric encryption algorithm,
799  * also known as public-key encryption algorithm.
800  *
801  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
802  *
803  * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
804  *         This macro may return either 0 or 1 if \p alg is not a supported
805  *         algorithm identifier.
806  */
807 #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg)                           \
808     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
809 
810 /** Whether the specified algorithm is a key agreement algorithm.
811  *
812  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
813  *
814  * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
815  *         This macro may return either 0 or 1 if \p alg is not a supported
816  *         algorithm identifier.
817  */
818 #define PSA_ALG_IS_KEY_AGREEMENT(alg)                                   \
819     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
820 
821 /** Whether the specified algorithm is a key derivation algorithm.
822  *
823  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
824  *
825  * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
826  *         This macro may return either 0 or 1 if \p alg is not a supported
827  *         algorithm identifier.
828  */
829 #define PSA_ALG_IS_KEY_DERIVATION(alg)                                  \
830     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
831 
832 /** Whether the specified algorithm is a key stretching / password hashing
833  * algorithm.
834  *
835  * A key stretching / password hashing algorithm is a key derivation algorithm
836  * that is suitable for use with a low-entropy secret such as a password.
837  * Equivalently, it's a key derivation algorithm that uses a
838  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
839  *
840  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
841  *
842  * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
843  *         otherwise. This macro may return either 0 or 1 if \p alg is not a
844  *         supported algorithm identifier.
845  */
846 #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg)                                  \
847     (PSA_ALG_IS_KEY_DERIVATION(alg) &&              \
848      (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
849 
850 /** An invalid algorithm identifier value. */
851 #define PSA_ALG_NONE                            ((psa_algorithm_t)0)
852 
853 #define PSA_ALG_HASH_MASK                       ((psa_algorithm_t)0x000000ff)
854 /** MD5 */
855 #define PSA_ALG_MD5                             ((psa_algorithm_t)0x02000003)
856 /** PSA_ALG_RIPEMD160 */
857 #define PSA_ALG_RIPEMD160                       ((psa_algorithm_t)0x02000004)
858 /** SHA1 */
859 #define PSA_ALG_SHA_1                           ((psa_algorithm_t)0x02000005)
860 /** SHA2-224 */
861 #define PSA_ALG_SHA_224                         ((psa_algorithm_t)0x02000008)
862 /** SHA2-256 */
863 #define PSA_ALG_SHA_256                         ((psa_algorithm_t)0x02000009)
864 /** SHA2-384 */
865 #define PSA_ALG_SHA_384                         ((psa_algorithm_t)0x0200000a)
866 /** SHA2-512 */
867 #define PSA_ALG_SHA_512                         ((psa_algorithm_t)0x0200000b)
868 /** SHA2-512/224 */
869 #define PSA_ALG_SHA_512_224                     ((psa_algorithm_t)0x0200000c)
870 /** SHA2-512/256 */
871 #define PSA_ALG_SHA_512_256                     ((psa_algorithm_t)0x0200000d)
872 /** SHA3-224 */
873 #define PSA_ALG_SHA3_224                        ((psa_algorithm_t)0x02000010)
874 /** SHA3-256 */
875 #define PSA_ALG_SHA3_256                        ((psa_algorithm_t)0x02000011)
876 /** SHA3-384 */
877 #define PSA_ALG_SHA3_384                        ((psa_algorithm_t)0x02000012)
878 /** SHA3-512 */
879 #define PSA_ALG_SHA3_512                        ((psa_algorithm_t)0x02000013)
880 /** The first 512 bits (64 bytes) of the SHAKE256 output.
881  *
882  * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
883  * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
884  * has the same output size and a (theoretically) higher security strength.
885  */
886 #define PSA_ALG_SHAKE256_512                    ((psa_algorithm_t)0x02000015)
887 
888 /** In a hash-and-sign algorithm policy, allow any hash algorithm.
889  *
890  * This value may be used to form the algorithm usage field of a policy
891  * for a signature algorithm that is parametrized by a hash. The key
892  * may then be used to perform operations using the same signature
893  * algorithm parametrized with any supported hash.
894  *
895  * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
896  * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
897  * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
898  * Then you may create and use a key as follows:
899  * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
900  *   ```
901  *   psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
902  *   psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
903  *   ```
904  * - Import or generate key material.
905  * - Call psa_sign_hash() or psa_verify_hash(), passing
906  *   an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
907  *   call to sign or verify a message may use a different hash.
908  *   ```
909  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
910  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
911  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
912  *   ```
913  *
914  * This value may not be used to build other algorithms that are
915  * parametrized over a hash. For any valid use of this macro to build
916  * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
917  *
918  * This value may not be used to build an algorithm specification to
919  * perform an operation. It is only valid to build policies.
920  */
921 #define PSA_ALG_ANY_HASH                        ((psa_algorithm_t)0x020000ff)
922 
923 #define PSA_ALG_MAC_SUBCATEGORY_MASK            ((psa_algorithm_t)0x00c00000)
924 #define PSA_ALG_HMAC_BASE                       ((psa_algorithm_t)0x03800000)
925 /** Macro to build an HMAC algorithm.
926  *
927  * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
928  *
929  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
930  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
931  *
932  * \return              The corresponding HMAC algorithm.
933  * \return              Unspecified if \p hash_alg is not a supported
934  *                      hash algorithm.
935  */
936 #define PSA_ALG_HMAC(hash_alg)                                  \
937     (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
938 
939 #define PSA_ALG_HMAC_GET_HASH(hmac_alg)                             \
940     (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
941 
942 /** Whether the specified algorithm is an HMAC algorithm.
943  *
944  * HMAC is a family of MAC algorithms that are based on a hash function.
945  *
946  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
947  *
948  * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
949  *         This macro may return either 0 or 1 if \p alg is not a supported
950  *         algorithm identifier.
951  */
952 #define PSA_ALG_IS_HMAC(alg)                                            \
953     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
954      PSA_ALG_HMAC_BASE)
955 
956 /* In the encoding of a MAC algorithm, the bits corresponding to
957  * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
958  * truncated. As an exception, the value 0 means the untruncated algorithm,
959  * whatever its length is. The length is encoded in 6 bits, so it can
960  * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
961  * to full length is correctly encoded as 0 and any non-trivial truncation
962  * is correctly encoded as a value between 1 and 63. */
963 #define PSA_ALG_MAC_TRUNCATION_MASK             ((psa_algorithm_t)0x003f0000)
964 #define PSA_MAC_TRUNCATION_OFFSET 16
965 
966 /* In the encoding of a MAC algorithm, the bit corresponding to
967  * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
968  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
969  * algorithm policy can be used with any algorithm corresponding to the
970  * same base class and having a (potentially truncated) MAC length greater or
971  * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
972 #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG   ((psa_algorithm_t)0x00008000)
973 
974 /** Macro to build a truncated MAC algorithm.
975  *
976  * A truncated MAC algorithm is identical to the corresponding MAC
977  * algorithm except that the MAC value for the truncated algorithm
978  * consists of only the first \p mac_length bytes of the MAC value
979  * for the untruncated algorithm.
980  *
981  * \note    This macro may allow constructing algorithm identifiers that
982  *          are not valid, either because the specified length is larger
983  *          than the untruncated MAC or because the specified length is
984  *          smaller than permitted by the implementation.
985  *
986  * \note    It is implementation-defined whether a truncated MAC that
987  *          is truncated to the same length as the MAC of the untruncated
988  *          algorithm is considered identical to the untruncated algorithm
989  *          for policy comparison purposes.
990  *
991  * \param mac_alg       A MAC algorithm identifier (value of type
992  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
993  *                      is true). This may be a truncated or untruncated
994  *                      MAC algorithm.
995  * \param mac_length    Desired length of the truncated MAC in bytes.
996  *                      This must be at most the full length of the MAC
997  *                      and must be at least an implementation-specified
998  *                      minimum. The implementation-specified minimum
999  *                      shall not be zero.
1000  *
1001  * \return              The corresponding MAC algorithm with the specified
1002  *                      length.
1003  * \return              Unspecified if \p mac_alg is not a supported
1004  *                      MAC algorithm or if \p mac_length is too small or
1005  *                      too large for the specified MAC algorithm.
1006  */
1007 #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length)              \
1008     (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |               \
1009                     PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) |   \
1010      ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1011 
1012 /** Macro to build the base MAC algorithm corresponding to a truncated
1013  * MAC algorithm.
1014  *
1015  * \param mac_alg       A MAC algorithm identifier (value of type
1016  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1017  *                      is true). This may be a truncated or untruncated
1018  *                      MAC algorithm.
1019  *
1020  * \return              The corresponding base MAC algorithm.
1021  * \return              Unspecified if \p mac_alg is not a supported
1022  *                      MAC algorithm.
1023  */
1024 #define PSA_ALG_FULL_LENGTH_MAC(mac_alg)                        \
1025     ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |                \
1026                    PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
1027 
1028 /** Length to which a MAC algorithm is truncated.
1029  *
1030  * \param mac_alg       A MAC algorithm identifier (value of type
1031  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1032  *                      is true).
1033  *
1034  * \return              Length of the truncated MAC in bytes.
1035  * \return              0 if \p mac_alg is a non-truncated MAC algorithm.
1036  * \return              Unspecified if \p mac_alg is not a supported
1037  *                      MAC algorithm.
1038  */
1039 #define PSA_MAC_TRUNCATED_LENGTH(mac_alg)                               \
1040     (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
1041 
1042 /** Macro to build a MAC minimum-MAC-length wildcard algorithm.
1043  *
1044  * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
1045  * sharing the same base algorithm, and where the (potentially truncated) MAC
1046  * length of the specific algorithm is equal to or larger then the wildcard
1047  * algorithm's minimum MAC length.
1048  *
1049  * \note    When setting the minimum required MAC length to less than the
1050  *          smallest MAC length allowed by the base algorithm, this effectively
1051  *          becomes an 'any-MAC-length-allowed' policy for that base algorithm.
1052  *
1053  * \param mac_alg         A MAC algorithm identifier (value of type
1054  *                        #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1055  *                        is true).
1056  * \param min_mac_length  Desired minimum length of the message authentication
1057  *                        code in bytes. This must be at most the untruncated
1058  *                        length of the MAC and must be at least 1.
1059  *
1060  * \return                The corresponding MAC wildcard algorithm with the
1061  *                        specified minimum length.
1062  * \return                Unspecified if \p mac_alg is not a supported MAC
1063  *                        algorithm or if \p min_mac_length is less than 1 or
1064  *                        too large for the specified MAC algorithm.
1065  */
1066 #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length)   \
1067     ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) |              \
1068       PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
1069 
1070 #define PSA_ALG_CIPHER_MAC_BASE                 ((psa_algorithm_t)0x03c00000)
1071 /** The CBC-MAC construction over a block cipher
1072  *
1073  * \warning CBC-MAC is insecure in many cases.
1074  * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1075  */
1076 #define PSA_ALG_CBC_MAC                         ((psa_algorithm_t)0x03c00100)
1077 /** The CMAC construction over a block cipher */
1078 #define PSA_ALG_CMAC                            ((psa_algorithm_t)0x03c00200)
1079 
1080 /** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1081  *
1082  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1083  *
1084  * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1085  *         This macro may return either 0 or 1 if \p alg is not a supported
1086  *         algorithm identifier.
1087  */
1088 #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg)                                \
1089     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1090      PSA_ALG_CIPHER_MAC_BASE)
1091 
1092 #define PSA_ALG_CIPHER_STREAM_FLAG              ((psa_algorithm_t)0x00800000)
1093 #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG          ((psa_algorithm_t)0x00400000)
1094 
1095 /** Whether the specified algorithm is a stream cipher.
1096  *
1097  * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1098  * by applying a bitwise-xor with a stream of bytes that is generated
1099  * from a key.
1100  *
1101  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1102  *
1103  * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1104  *         This macro may return either 0 or 1 if \p alg is not a supported
1105  *         algorithm identifier or if it is not a symmetric cipher algorithm.
1106  */
1107 #define PSA_ALG_IS_STREAM_CIPHER(alg)            \
1108     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1109         (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1110 
1111 /** The stream cipher mode of a stream cipher algorithm.
1112  *
1113  * The underlying stream cipher is determined by the key type.
1114  * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1115  */
1116 #define PSA_ALG_STREAM_CIPHER                   ((psa_algorithm_t)0x04800100)
1117 
1118 /** The CTR stream cipher mode.
1119  *
1120  * CTR is a stream cipher which is built from a block cipher.
1121  * The underlying block cipher is determined by the key type.
1122  * For example, to use AES-128-CTR, use this algorithm with
1123  * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1124  */
1125 #define PSA_ALG_CTR                             ((psa_algorithm_t)0x04c01000)
1126 
1127 /** The CFB stream cipher mode.
1128  *
1129  * The underlying block cipher is determined by the key type.
1130  */
1131 #define PSA_ALG_CFB                             ((psa_algorithm_t)0x04c01100)
1132 
1133 /** The OFB stream cipher mode.
1134  *
1135  * The underlying block cipher is determined by the key type.
1136  */
1137 #define PSA_ALG_OFB                             ((psa_algorithm_t)0x04c01200)
1138 
1139 /** The XTS cipher mode.
1140  *
1141  * XTS is a cipher mode which is built from a block cipher. It requires at
1142  * least one full block of input, but beyond this minimum the input
1143  * does not need to be a whole number of blocks.
1144  */
1145 #define PSA_ALG_XTS                             ((psa_algorithm_t)0x0440ff00)
1146 
1147 /** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1148  *
1149  * \warning ECB mode does not protect the confidentiality of the encrypted data
1150  * except in extremely narrow circumstances. It is recommended that applications
1151  * only use ECB if they need to construct an operating mode that the
1152  * implementation does not provide. Implementations are encouraged to provide
1153  * the modes that applications need in preference to supporting direct access
1154  * to ECB.
1155  *
1156  * The underlying block cipher is determined by the key type.
1157  *
1158  * This symmetric cipher mode can only be used with messages whose lengths are a
1159  * multiple of the block size of the chosen block cipher.
1160  *
1161  * ECB mode does not accept an initialization vector (IV). When using a
1162  * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1163  * and psa_cipher_set_iv() must not be called.
1164  */
1165 #define PSA_ALG_ECB_NO_PADDING                  ((psa_algorithm_t)0x04404400)
1166 
1167 /** The CBC block cipher chaining mode, with no padding.
1168  *
1169  * The underlying block cipher is determined by the key type.
1170  *
1171  * This symmetric cipher mode can only be used with messages whose lengths
1172  * are whole number of blocks for the chosen block cipher.
1173  */
1174 #define PSA_ALG_CBC_NO_PADDING                  ((psa_algorithm_t)0x04404000)
1175 
1176 /** The CBC block cipher chaining mode with PKCS#7 padding.
1177  *
1178  * The underlying block cipher is determined by the key type.
1179  *
1180  * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1181  */
1182 #define PSA_ALG_CBC_PKCS7                       ((psa_algorithm_t)0x04404100)
1183 
1184 #define PSA_ALG_AEAD_FROM_BLOCK_FLAG            ((psa_algorithm_t)0x00400000)
1185 
1186 /** Whether the specified algorithm is an AEAD mode on a block cipher.
1187  *
1188  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1189  *
1190  * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1191  *         a block cipher, 0 otherwise.
1192  *         This macro may return either 0 or 1 if \p alg is not a supported
1193  *         algorithm identifier.
1194  */
1195 #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg)    \
1196     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1197      (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1198 
1199 /** The CCM authenticated encryption algorithm.
1200  *
1201  * The underlying block cipher is determined by the key type.
1202  */
1203 #define PSA_ALG_CCM                             ((psa_algorithm_t)0x05500100)
1204 
1205 /** The CCM* cipher mode without authentication.
1206  *
1207  * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1208  * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1209  *
1210  * The underlying block cipher is determined by the key type.
1211  *
1212  * Currently only 13-byte long IV's are supported.
1213  */
1214 #define PSA_ALG_CCM_STAR_NO_TAG                 ((psa_algorithm_t)0x04c01300)
1215 
1216 /** The GCM authenticated encryption algorithm.
1217  *
1218  * The underlying block cipher is determined by the key type.
1219  */
1220 #define PSA_ALG_GCM                             ((psa_algorithm_t)0x05500200)
1221 
1222 /** The Chacha20-Poly1305 AEAD algorithm.
1223  *
1224  * The ChaCha20_Poly1305 construction is defined in RFC 7539.
1225  *
1226  * Implementations must support 12-byte nonces, may support 8-byte nonces,
1227  * and should reject other sizes.
1228  *
1229  * Implementations must support 16-byte tags and should reject other sizes.
1230  */
1231 #define PSA_ALG_CHACHA20_POLY1305               ((psa_algorithm_t)0x05100500)
1232 
1233 /* In the encoding of a AEAD algorithm, the bits corresponding to
1234  * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1235  * The constants for default lengths follow this encoding.
1236  */
1237 #define PSA_ALG_AEAD_TAG_LENGTH_MASK            ((psa_algorithm_t)0x003f0000)
1238 #define PSA_AEAD_TAG_LENGTH_OFFSET 16
1239 
1240 /* In the encoding of an AEAD algorithm, the bit corresponding to
1241  * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1242  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1243  * algorithm policy can be used with any algorithm corresponding to the
1244  * same base class and having a tag length greater than or equal to the one
1245  * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1246 #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG  ((psa_algorithm_t)0x00008000)
1247 
1248 /** Macro to build a shortened AEAD algorithm.
1249  *
1250  * A shortened AEAD algorithm is similar to the corresponding AEAD
1251  * algorithm, but has an authentication tag that consists of fewer bytes.
1252  * Depending on the algorithm, the tag length may affect the calculation
1253  * of the ciphertext.
1254  *
1255  * \param aead_alg      An AEAD algorithm identifier (value of type
1256  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1257  *                      is true).
1258  * \param tag_length    Desired length of the authentication tag in bytes.
1259  *
1260  * \return              The corresponding AEAD algorithm with the specified
1261  *                      length.
1262  * \return              Unspecified if \p aead_alg is not a supported
1263  *                      AEAD algorithm or if \p tag_length is not valid
1264  *                      for the specified AEAD algorithm.
1265  */
1266 #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length)           \
1267     (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK |                     \
1268                      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) |         \
1269      ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET &                      \
1270       PSA_ALG_AEAD_TAG_LENGTH_MASK))
1271 
1272 /** Retrieve the tag length of a specified AEAD algorithm
1273  *
1274  * \param aead_alg      An AEAD algorithm identifier (value of type
1275  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1276  *                      is true).
1277  *
1278  * \return              The tag length specified by the input algorithm.
1279  * \return              Unspecified if \p aead_alg is not a supported
1280  *                      AEAD algorithm.
1281  */
1282 #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg)                           \
1283     (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >>                     \
1284       PSA_AEAD_TAG_LENGTH_OFFSET )
1285 
1286 /** Calculate the corresponding AEAD algorithm with the default tag length.
1287  *
1288  * \param aead_alg      An AEAD algorithm (\c PSA_ALG_XXX value such that
1289  *                      #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1290  *
1291  * \return              The corresponding AEAD algorithm with the default
1292  *                      tag length for that algorithm.
1293  */
1294 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg)                   \
1295     (                                                                    \
1296         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1297         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1298         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
1299         0)
1300 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref)         \
1301     PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) ==                      \
1302     PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ?                            \
1303     ref :
1304 
1305 /** Macro to build an AEAD minimum-tag-length wildcard algorithm.
1306  *
1307  * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
1308  * sharing the same base algorithm, and where the tag length of the specific
1309  * algorithm is equal to or larger then the minimum tag length specified by the
1310  * wildcard algorithm.
1311  *
1312  * \note    When setting the minimum required tag length to less than the
1313  *          smallest tag length allowed by the base algorithm, this effectively
1314  *          becomes an 'any-tag-length-allowed' policy for that base algorithm.
1315  *
1316  * \param aead_alg        An AEAD algorithm identifier (value of type
1317  *                        #psa_algorithm_t such that
1318  *                        #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1319  * \param min_tag_length  Desired minimum length of the authentication tag in
1320  *                        bytes. This must be at least 1 and at most the largest
1321  *                        allowed tag length of the algorithm.
1322  *
1323  * \return                The corresponding AEAD wildcard algorithm with the
1324  *                        specified minimum length.
1325  * \return                Unspecified if \p aead_alg is not a supported
1326  *                        AEAD algorithm or if \p min_tag_length is less than 1
1327  *                        or too large for the specified AEAD algorithm.
1328  */
1329 #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
1330     ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) |            \
1331       PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
1332 
1333 #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE          ((psa_algorithm_t)0x06000200)
1334 /** RSA PKCS#1 v1.5 signature with hashing.
1335  *
1336  * This is the signature scheme defined by RFC 8017
1337  * (PKCS#1: RSA Cryptography Specifications) under the name
1338  * RSASSA-PKCS1-v1_5.
1339  *
1340  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1341  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1342  *                      This includes #PSA_ALG_ANY_HASH
1343  *                      when specifying the algorithm in a usage policy.
1344  *
1345  * \return              The corresponding RSA PKCS#1 v1.5 signature algorithm.
1346  * \return              Unspecified if \p hash_alg is not a supported
1347  *                      hash algorithm.
1348  */
1349 #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)                             \
1350     (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1351 /** Raw PKCS#1 v1.5 signature.
1352  *
1353  * The input to this algorithm is the DigestInfo structure used by
1354  * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1355  * steps 3&ndash;6.
1356  */
1357 #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1358 #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg)                               \
1359     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1360 
1361 #define PSA_ALG_RSA_PSS_BASE               ((psa_algorithm_t)0x06000300)
1362 #define PSA_ALG_RSA_PSS_ANY_SALT_BASE      ((psa_algorithm_t)0x06001300)
1363 /** RSA PSS signature with hashing.
1364  *
1365  * This is the signature scheme defined by RFC 8017
1366  * (PKCS#1: RSA Cryptography Specifications) under the name
1367  * RSASSA-PSS, with the message generation function MGF1, and with
1368  * a salt length equal to the length of the hash. The specified
1369  * hash algorithm is used to hash the input message, to create the
1370  * salted hash, and for the mask generation.
1371  *
1372  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1373  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1374  *                      This includes #PSA_ALG_ANY_HASH
1375  *                      when specifying the algorithm in a usage policy.
1376  *
1377  * \return              The corresponding RSA PSS signature algorithm.
1378  * \return              Unspecified if \p hash_alg is not a supported
1379  *                      hash algorithm.
1380  */
1381 #define PSA_ALG_RSA_PSS(hash_alg)                               \
1382     (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1383 
1384 /** RSA PSS signature with hashing with relaxed verification.
1385  *
1386  * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1387  * but allows an arbitrary salt length (including \c 0) when verifying a
1388  * signature.
1389  *
1390  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1391  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1392  *                      This includes #PSA_ALG_ANY_HASH
1393  *                      when specifying the algorithm in a usage policy.
1394  *
1395  * \return              The corresponding RSA PSS signature algorithm.
1396  * \return              Unspecified if \p hash_alg is not a supported
1397  *                      hash algorithm.
1398  */
1399 #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg)                      \
1400     (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1401 
1402 /** Whether the specified algorithm is RSA PSS with standard salt.
1403  *
1404  * \param alg           An algorithm value or an algorithm policy wildcard.
1405  *
1406  * \return              1 if \p alg is of the form
1407  *                      #PSA_ALG_RSA_PSS(\c hash_alg),
1408  *                      where \c hash_alg is a hash algorithm or
1409  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1410  *                      This macro may return either 0 or 1 if \p alg is not
1411  *                      a supported algorithm identifier or policy.
1412  */
1413 #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg)                   \
1414     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1415 
1416 /** Whether the specified algorithm is RSA PSS with any salt.
1417  *
1418  * \param alg           An algorithm value or an algorithm policy wildcard.
1419  *
1420  * \return              1 if \p alg is of the form
1421  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1422  *                      where \c hash_alg is a hash algorithm or
1423  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1424  *                      This macro may return either 0 or 1 if \p alg is not
1425  *                      a supported algorithm identifier or policy.
1426  */
1427 #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg)                                \
1428     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1429 
1430 /** Whether the specified algorithm is RSA PSS.
1431  *
1432  * This includes any of the RSA PSS algorithm variants, regardless of the
1433  * constraints on salt length.
1434  *
1435  * \param alg           An algorithm value or an algorithm policy wildcard.
1436  *
1437  * \return              1 if \p alg is of the form
1438  *                      #PSA_ALG_RSA_PSS(\c hash_alg) or
1439  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1440  *                      where \c hash_alg is a hash algorithm or
1441  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1442  *                      This macro may return either 0 or 1 if \p alg is not
1443  *                      a supported algorithm identifier or policy.
1444  */
1445 #define PSA_ALG_IS_RSA_PSS(alg)                                 \
1446     (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) ||                   \
1447      PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
1448 
1449 #define PSA_ALG_ECDSA_BASE                      ((psa_algorithm_t)0x06000600)
1450 /** ECDSA signature with hashing.
1451  *
1452  * This is the ECDSA signature scheme defined by ANSI X9.62,
1453  * with a random per-message secret number (*k*).
1454  *
1455  * The representation of the signature as a byte string consists of
1456  * the concatentation of the signature values *r* and *s*. Each of
1457  * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1458  * of the base point of the curve in octets. Each value is represented
1459  * in big-endian order (most significant octet first).
1460  *
1461  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1462  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1463  *                      This includes #PSA_ALG_ANY_HASH
1464  *                      when specifying the algorithm in a usage policy.
1465  *
1466  * \return              The corresponding ECDSA signature algorithm.
1467  * \return              Unspecified if \p hash_alg is not a supported
1468  *                      hash algorithm.
1469  */
1470 #define PSA_ALG_ECDSA(hash_alg)                                 \
1471     (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1472 /** ECDSA signature without hashing.
1473  *
1474  * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1475  * without specifying a hash algorithm. This algorithm may only be
1476  * used to sign or verify a sequence of bytes that should be an
1477  * already-calculated hash. Note that the input is padded with
1478  * zeros on the left or truncated on the left as required to fit
1479  * the curve size.
1480  */
1481 #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1482 #define PSA_ALG_DETERMINISTIC_ECDSA_BASE        ((psa_algorithm_t)0x06000700)
1483 /** Deterministic ECDSA signature with hashing.
1484  *
1485  * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1486  *
1487  * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1488  *
1489  * Note that when this algorithm is used for verification, signatures
1490  * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1491  * same private key are accepted. In other words,
1492  * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1493  * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1494  *
1495  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1496  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1497  *                      This includes #PSA_ALG_ANY_HASH
1498  *                      when specifying the algorithm in a usage policy.
1499  *
1500  * \return              The corresponding deterministic ECDSA signature
1501  *                      algorithm.
1502  * \return              Unspecified if \p hash_alg is not a supported
1503  *                      hash algorithm.
1504  */
1505 #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg)                           \
1506     (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1507 #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG        ((psa_algorithm_t)0x00000100)
1508 #define PSA_ALG_IS_ECDSA(alg)                                           \
1509     (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) ==  \
1510      PSA_ALG_ECDSA_BASE)
1511 #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)             \
1512     (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
1513 #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg)                             \
1514     (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1515 #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg)                                \
1516     (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1517 
1518 /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1519  * using standard parameters.
1520  *
1521  * Contexts are not supported in the current version of this specification
1522  * because there is no suitable signature interface that can take the
1523  * context as a parameter. A future version of this specification may add
1524  * suitable functions and extend this algorithm to support contexts.
1525  *
1526  * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1527  * In this specification, the following curves are supported:
1528  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1529  *   in RFC 8032.
1530  *   The curve is Edwards25519.
1531  *   The hash function used internally is SHA-512.
1532  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1533  *   in RFC 8032.
1534  *   The curve is Edwards448.
1535  *   The hash function used internally is the first 114 bytes of the
1536  *   SHAKE256 output.
1537  *
1538  * This algorithm can be used with psa_sign_message() and
1539  * psa_verify_message(). Since there is no prehashing, it cannot be used
1540  * with psa_sign_hash() or psa_verify_hash().
1541  *
1542  * The signature format is the concatenation of R and S as defined by
1543  * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1544  * string for Ed448).
1545  */
1546 #define PSA_ALG_PURE_EDDSA                      ((psa_algorithm_t)0x06000800)
1547 
1548 #define PSA_ALG_HASH_EDDSA_BASE                 ((psa_algorithm_t)0x06000900)
1549 #define PSA_ALG_IS_HASH_EDDSA(alg)              \
1550     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1551 
1552 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1553  * using SHA-512 and the Edwards25519 curve.
1554  *
1555  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1556  *
1557  * This algorithm is Ed25519 as specified in RFC 8032.
1558  * The curve is Edwards25519.
1559  * The prehash is SHA-512.
1560  * The hash function used internally is SHA-512.
1561  *
1562  * This is a hash-and-sign algorithm: to calculate a signature,
1563  * you can either:
1564  * - call psa_sign_message() on the message;
1565  * - or calculate the SHA-512 hash of the message
1566  *   with psa_hash_compute()
1567  *   or with a multi-part hash operation started with psa_hash_setup(),
1568  *   using the hash algorithm #PSA_ALG_SHA_512,
1569  *   then sign the calculated hash with psa_sign_hash().
1570  * Verifying a signature is similar, using psa_verify_message() or
1571  * psa_verify_hash() instead of the signature function.
1572  */
1573 #define PSA_ALG_ED25519PH                               \
1574     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1575 
1576 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1577  * using SHAKE256 and the Edwards448 curve.
1578  *
1579  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1580  *
1581  * This algorithm is Ed448 as specified in RFC 8032.
1582  * The curve is Edwards448.
1583  * The prehash is the first 64 bytes of the SHAKE256 output.
1584  * The hash function used internally is the first 114 bytes of the
1585  * SHAKE256 output.
1586  *
1587  * This is a hash-and-sign algorithm: to calculate a signature,
1588  * you can either:
1589  * - call psa_sign_message() on the message;
1590  * - or calculate the first 64 bytes of the SHAKE256 output of the message
1591  *   with psa_hash_compute()
1592  *   or with a multi-part hash operation started with psa_hash_setup(),
1593  *   using the hash algorithm #PSA_ALG_SHAKE256_512,
1594  *   then sign the calculated hash with psa_sign_hash().
1595  * Verifying a signature is similar, using psa_verify_message() or
1596  * psa_verify_hash() instead of the signature function.
1597  */
1598 #define PSA_ALG_ED448PH                                 \
1599     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
1600 
1601 /* Default definition, to be overridden if the library is extended with
1602  * more hash-and-sign algorithms that we want to keep out of this header
1603  * file. */
1604 #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1605 
1606 /** Whether the specified algorithm is a signature algorithm that can be used
1607  * with psa_sign_hash() and psa_verify_hash().
1608  *
1609  * This encompasses all strict hash-and-sign algorithms categorized by
1610  * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1611  * paradigm more loosely:
1612  * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1613  * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1614  *
1615  * \param alg An algorithm identifier (value of type psa_algorithm_t).
1616  *
1617  * \return 1 if alg is a signature algorithm that can be used to sign a
1618  *         hash. 0 if alg is a signature algorithm that can only be used
1619  *         to sign a message. 0 if alg is not a signature algorithm.
1620  *         This macro can return either 0 or 1 if alg is not a
1621  *         supported algorithm identifier.
1622  */
1623 #define PSA_ALG_IS_SIGN_HASH(alg)                                       \
1624     (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||    \
1625      PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) ||             \
1626      PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1627 
1628 /** Whether the specified algorithm is a signature algorithm that can be used
1629  * with psa_sign_message() and psa_verify_message().
1630  *
1631  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1632  *
1633  * \return 1 if alg is a signature algorithm that can be used to sign a
1634  *         message. 0 if \p alg is a signature algorithm that can only be used
1635  *         to sign an already-calculated hash. 0 if \p alg is not a signature
1636  *         algorithm. This macro can return either 0 or 1 if \p alg is not a
1637  *         supported algorithm identifier.
1638  */
1639 #define PSA_ALG_IS_SIGN_MESSAGE(alg)                                    \
1640     (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1641 
1642 /** Whether the specified algorithm is a hash-and-sign algorithm.
1643  *
1644  * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1645  * structured in two parts: first the calculation of a hash in a way that
1646  * does not depend on the key, then the calculation of a signature from the
1647  * hash value and the key. Hash-and-sign algorithms encode the hash
1648  * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1649  * to extract this algorithm.
1650  *
1651  * Thus, for a hash-and-sign algorithm,
1652  * `psa_sign_message(key, alg, input, ...)` is equivalent to
1653  * ```
1654  * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1655  * psa_sign_hash(key, alg, hash, ..., signature, ...);
1656  * ```
1657  * Most usefully, separating the hash from the signature allows the hash
1658  * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1659  * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1660  * calculating the hash and then calling psa_verify_hash().
1661  *
1662  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1663  *
1664  * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1665  *         This macro may return either 0 or 1 if \p alg is not a supported
1666  *         algorithm identifier.
1667  */
1668 #define PSA_ALG_IS_HASH_AND_SIGN(alg)                                   \
1669     (PSA_ALG_IS_SIGN_HASH(alg) &&                                       \
1670      ((alg) & PSA_ALG_HASH_MASK) != 0)
1671 
1672 /** Get the hash used by a hash-and-sign signature algorithm.
1673  *
1674  * A hash-and-sign algorithm is a signature algorithm which is
1675  * composed of two phases: first a hashing phase which does not use
1676  * the key and produces a hash of the input message, then a signing
1677  * phase which only uses the hash and the key and not the message
1678  * itself.
1679  *
1680  * \param alg   A signature algorithm (\c PSA_ALG_XXX value such that
1681  *              #PSA_ALG_IS_SIGN(\p alg) is true).
1682  *
1683  * \return      The underlying hash algorithm if \p alg is a hash-and-sign
1684  *              algorithm.
1685  * \return      0 if \p alg is a signature algorithm that does not
1686  *              follow the hash-and-sign structure.
1687  * \return      Unspecified if \p alg is not a signature algorithm or
1688  *              if it is not supported by the implementation.
1689  */
1690 #define PSA_ALG_SIGN_GET_HASH(alg)                                     \
1691     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                                   \
1692      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :             \
1693      0)
1694 
1695 /** RSA PKCS#1 v1.5 encryption.
1696  */
1697 #define PSA_ALG_RSA_PKCS1V15_CRYPT              ((psa_algorithm_t)0x07000200)
1698 
1699 #define PSA_ALG_RSA_OAEP_BASE                   ((psa_algorithm_t)0x07000300)
1700 /** RSA OAEP encryption.
1701  *
1702  * This is the encryption scheme defined by RFC 8017
1703  * (PKCS#1: RSA Cryptography Specifications) under the name
1704  * RSAES-OAEP, with the message generation function MGF1.
1705  *
1706  * \param hash_alg      The hash algorithm (\c PSA_ALG_XXX value such that
1707  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1708  *                      for MGF1.
1709  *
1710  * \return              The corresponding RSA OAEP encryption algorithm.
1711  * \return              Unspecified if \p hash_alg is not a supported
1712  *                      hash algorithm.
1713  */
1714 #define PSA_ALG_RSA_OAEP(hash_alg)                              \
1715     (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1716 #define PSA_ALG_IS_RSA_OAEP(alg)                                \
1717     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1718 #define PSA_ALG_RSA_OAEP_GET_HASH(alg)                          \
1719     (PSA_ALG_IS_RSA_OAEP(alg) ?                                 \
1720      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :      \
1721      0)
1722 
1723 #define PSA_ALG_HKDF_BASE                       ((psa_algorithm_t)0x08000100)
1724 /** Macro to build an HKDF algorithm.
1725  *
1726  * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1727  *
1728  * This key derivation algorithm uses the following inputs:
1729  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
1730  *   It is optional; if omitted, the derivation uses an empty salt.
1731  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1732  * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1733  * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1734  * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
1735  * starting to generate output.
1736  *
1737  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1738  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1739  *
1740  * \return              The corresponding HKDF algorithm.
1741  * \return              Unspecified if \p hash_alg is not a supported
1742  *                      hash algorithm.
1743  */
1744 #define PSA_ALG_HKDF(hash_alg)                                  \
1745     (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1746 /** Whether the specified algorithm is an HKDF algorithm.
1747  *
1748  * HKDF is a family of key derivation algorithms that are based on a hash
1749  * function and the HMAC construction.
1750  *
1751  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1752  *
1753  * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1754  *         This macro may return either 0 or 1 if \c alg is not a supported
1755  *         key derivation algorithm identifier.
1756  */
1757 #define PSA_ALG_IS_HKDF(alg)                            \
1758     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1759 #define PSA_ALG_HKDF_GET_HASH(hkdf_alg)                         \
1760     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1761 
1762 #define PSA_ALG_TLS12_PRF_BASE                  ((psa_algorithm_t)0x08000200)
1763 /** Macro to build a TLS-1.2 PRF algorithm.
1764  *
1765  * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1766  * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1767  * used with either SHA-256 or SHA-384.
1768  *
1769  * This key derivation algorithm uses the following inputs, which must be
1770  * passed in the order given here:
1771  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1772  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1773  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1774  *
1775  * For the application to TLS-1.2 key expansion, the seed is the
1776  * concatenation of ServerHello.Random + ClientHello.Random,
1777  * and the label is "key expansion".
1778  *
1779  * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1780  * TLS 1.2 PRF using HMAC-SHA-256.
1781  *
1782  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1783  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1784  *
1785  * \return              The corresponding TLS-1.2 PRF algorithm.
1786  * \return              Unspecified if \p hash_alg is not a supported
1787  *                      hash algorithm.
1788  */
1789 #define PSA_ALG_TLS12_PRF(hash_alg)                                  \
1790     (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1791 
1792 /** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1793  *
1794  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1795  *
1796  * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1797  *         This macro may return either 0 or 1 if \c alg is not a supported
1798  *         key derivation algorithm identifier.
1799  */
1800 #define PSA_ALG_IS_TLS12_PRF(alg)                                    \
1801     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1802 #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg)                         \
1803     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1804 
1805 #define PSA_ALG_TLS12_PSK_TO_MS_BASE            ((psa_algorithm_t)0x08000300)
1806 /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1807  *
1808  * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1809  * from the PreSharedKey (PSK) through the application of padding
1810  * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1811  * The latter is based on HMAC and can be used with either SHA-256
1812  * or SHA-384.
1813  *
1814  * This key derivation algorithm uses the following inputs, which must be
1815  * passed in the order given here:
1816  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1817  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1818  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1819  *
1820  * For the application to TLS-1.2, the seed (which is
1821  * forwarded to the TLS-1.2 PRF) is the concatenation of the
1822  * ClientHello.Random + ServerHello.Random,
1823  * and the label is "master secret" or "extended master secret".
1824  *
1825  * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1826  * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1827  *
1828  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1829  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1830  *
1831  * \return              The corresponding TLS-1.2 PSK to MS algorithm.
1832  * \return              Unspecified if \p hash_alg is not a supported
1833  *                      hash algorithm.
1834  */
1835 #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg)                                  \
1836     (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1837 
1838 /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1839  *
1840  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1841  *
1842  * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1843  *         This macro may return either 0 or 1 if \c alg is not a supported
1844  *         key derivation algorithm identifier.
1845  */
1846 #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg)                                    \
1847     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1848 #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg)                         \
1849     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1850 
1851 /* This flag indicates whether the key derivation algorithm is suitable for
1852  * use on low-entropy secrets such as password - these algorithms are also
1853  * known as key stretching or password hashing schemes. These are also the
1854  * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
1855  *
1856  * Those algorithms cannot be combined with a key agreement algorithm.
1857  */
1858 #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG  ((psa_algorithm_t)0x00800000)
1859 
1860 #define PSA_ALG_PBKDF2_HMAC_BASE                ((psa_algorithm_t)0x08800100)
1861 /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
1862  *
1863  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1864  * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1865  * HMAC with the specified hash.
1866  * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1867  * using the PRF HMAC-SHA-256.
1868  *
1869  * This key derivation algorithm uses the following inputs, which must be
1870  * provided in the following order:
1871  * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
1872  *   This input step must be used exactly once.
1873  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1874  *   This input step must be used one or more times; if used several times, the
1875  *   inputs will be concatenated. This can be used to build the final salt
1876  *   from multiple sources, both public and secret (also known as pepper).
1877  * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
1878  *   This input step must be used exactly once.
1879  *
1880  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1881  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1882  *
1883  * \return              The corresponding PBKDF2-HMAC-XXX algorithm.
1884  * \return              Unspecified if \p hash_alg is not a supported
1885  *                      hash algorithm.
1886  */
1887 #define PSA_ALG_PBKDF2_HMAC(hash_alg)                                  \
1888     (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1889 
1890 /** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1891  *
1892  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1893  *
1894  * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1895  *         This macro may return either 0 or 1 if \c alg is not a supported
1896  *         key derivation algorithm identifier.
1897  */
1898 #define PSA_ALG_IS_PBKDF2_HMAC(alg)                                    \
1899     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
1900 
1901 /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1902  *
1903  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1904  * This macro specifies the PBKDF2 algorithm constructed using the
1905  * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1906  *
1907  * This key derivation algorithm uses the same inputs as
1908  * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
1909  */
1910 #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128         ((psa_algorithm_t)0x08800200)
1911 
1912 #define PSA_ALG_KEY_DERIVATION_MASK             ((psa_algorithm_t)0xfe00ffff)
1913 #define PSA_ALG_KEY_AGREEMENT_MASK              ((psa_algorithm_t)0xffff0000)
1914 
1915 /** Macro to build a combined algorithm that chains a key agreement with
1916  * a key derivation.
1917  *
1918  * \param ka_alg        A key agreement algorithm (\c PSA_ALG_XXX value such
1919  *                      that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1920  * \param kdf_alg       A key derivation algorithm (\c PSA_ALG_XXX value such
1921  *                      that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
1922  *
1923  * \return              The corresponding key agreement and derivation
1924  *                      algorithm.
1925  * \return              Unspecified if \p ka_alg is not a supported
1926  *                      key agreement algorithm or \p kdf_alg is not a
1927  *                      supported key derivation algorithm.
1928  */
1929 #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg)  \
1930     ((ka_alg) | (kdf_alg))
1931 
1932 #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg)                              \
1933     (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1934 
1935 #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg)                             \
1936     (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
1937 
1938 /** Whether the specified algorithm is a raw key agreement algorithm.
1939  *
1940  * A raw key agreement algorithm is one that does not specify
1941  * a key derivation function.
1942  * Usually, raw key agreement algorithms are constructed directly with
1943  * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1944  * constructed with #PSA_ALG_KEY_AGREEMENT().
1945  *
1946  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1947  *
1948  * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1949  *         This macro may return either 0 or 1 if \p alg is not a supported
1950  *         algorithm identifier.
1951  */
1952 #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg)                               \
1953     (PSA_ALG_IS_KEY_AGREEMENT(alg) &&                                   \
1954      PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
1955 
1956 #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg)     \
1957     ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1958 
1959 /** The finite-field Diffie-Hellman (DH) key agreement algorithm.
1960  *
1961  * The shared secret produced by key agreement is
1962  * `g^{ab}` in big-endian format.
1963  * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1964  * in bits.
1965  */
1966 #define PSA_ALG_FFDH                            ((psa_algorithm_t)0x09010000)
1967 
1968 /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1969  *
1970  * This includes the raw finite field Diffie-Hellman algorithm as well as
1971  * finite-field Diffie-Hellman followed by any supporter key derivation
1972  * algorithm.
1973  *
1974  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1975  *
1976  * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1977  *         This macro may return either 0 or 1 if \c alg is not a supported
1978  *         key agreement algorithm identifier.
1979  */
1980 #define PSA_ALG_IS_FFDH(alg) \
1981     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
1982 
1983 /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1984  *
1985  * The shared secret produced by key agreement is the x-coordinate of
1986  * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1987  * `m` is the bit size associated with the curve, i.e. the bit size of the
1988  * order of the curve's coordinate field. When `m` is not a multiple of 8,
1989  * the byte containing the most significant bit of the shared secret
1990  * is padded with zero bits. The byte order is either little-endian
1991  * or big-endian depending on the curve type.
1992  *
1993  * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
1994  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1995  *   in little-endian byte order.
1996  *   The bit size is 448 for Curve448 and 255 for Curve25519.
1997  * - For Weierstrass curves over prime fields (curve types
1998  *   `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
1999  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2000  *   in big-endian byte order.
2001  *   The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2002  * - For Weierstrass curves over binary fields (curve types
2003  *   `PSA_ECC_FAMILY_SECTXXX`),
2004  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2005  *   in big-endian byte order.
2006  *   The bit size is `m` for the field `F_{2^m}`.
2007  */
2008 #define PSA_ALG_ECDH                            ((psa_algorithm_t)0x09020000)
2009 
2010 /** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2011  * algorithm.
2012  *
2013  * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2014  * elliptic curve Diffie-Hellman followed by any supporter key derivation
2015  * algorithm.
2016  *
2017  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2018  *
2019  * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2020  *         0 otherwise.
2021  *         This macro may return either 0 or 1 if \c alg is not a supported
2022  *         key agreement algorithm identifier.
2023  */
2024 #define PSA_ALG_IS_ECDH(alg) \
2025     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
2026 
2027 /** Whether the specified algorithm encoding is a wildcard.
2028  *
2029  * Wildcard values may only be used to set the usage algorithm field in
2030  * a policy, not to perform an operation.
2031  *
2032  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2033  *
2034  * \return 1 if \c alg is a wildcard algorithm encoding.
2035  * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2036  *         an operation).
2037  * \return This macro may return either 0 or 1 if \c alg is not a supported
2038  *         algorithm identifier.
2039  */
2040 #define PSA_ALG_IS_WILDCARD(alg)                            \
2041     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                        \
2042      PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH :       \
2043      PSA_ALG_IS_MAC(alg) ?                                  \
2044      (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 :   \
2045      PSA_ALG_IS_AEAD(alg) ?                                 \
2046      (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 :  \
2047      (alg) == PSA_ALG_ANY_HASH)
2048 
2049 /** Get the hash used by a composite algorithm.
2050  *
2051  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2052  *
2053  * \return The underlying hash algorithm if alg is a composite algorithm that
2054  * uses a hash algorithm.
2055  *
2056  * \return \c 0 if alg is not a composite algorithm that uses a hash.
2057  */
2058 #define PSA_ALG_GET_HASH(alg) \
2059         (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
2060 
2061 /**@}*/
2062 
2063 /** \defgroup key_lifetimes Key lifetimes
2064  * @{
2065  */
2066 
2067 /** The default lifetime for volatile keys.
2068  *
2069  * A volatile key only exists as long as the identifier to it is not destroyed.
2070  * The key material is guaranteed to be erased on a power reset.
2071  *
2072  * A key with this lifetime is typically stored in the RAM area of the
2073  * PSA Crypto subsystem. However this is an implementation choice.
2074  * If an implementation stores data about the key in a non-volatile memory,
2075  * it must release all the resources associated with the key and erase the
2076  * key material if the calling application terminates.
2077  */
2078 #define PSA_KEY_LIFETIME_VOLATILE               ((psa_key_lifetime_t)0x00000000)
2079 
2080 /** The default lifetime for persistent keys.
2081  *
2082  * A persistent key remains in storage until it is explicitly destroyed or
2083  * until the corresponding storage area is wiped. This specification does
2084  * not define any mechanism to wipe a storage area, but integrations may
2085  * provide their own mechanism (for example to perform a factory reset,
2086  * to prepare for device refurbishment, or to uninstall an application).
2087  *
2088  * This lifetime value is the default storage area for the calling
2089  * application. Integrations of Mbed TLS may support other persistent lifetimes.
2090  * See ::psa_key_lifetime_t for more information.
2091  */
2092 #define PSA_KEY_LIFETIME_PERSISTENT             ((psa_key_lifetime_t)0x00000001)
2093 
2094 /** The persistence level of volatile keys.
2095  *
2096  * See ::psa_key_persistence_t for more information.
2097  */
2098 #define PSA_KEY_PERSISTENCE_VOLATILE            ((psa_key_persistence_t)0x00)
2099 
2100 /** The default persistence level for persistent keys.
2101  *
2102  * See ::psa_key_persistence_t for more information.
2103  */
2104 #define PSA_KEY_PERSISTENCE_DEFAULT             ((psa_key_persistence_t)0x01)
2105 
2106 /** A persistence level indicating that a key is never destroyed.
2107  *
2108  * See ::psa_key_persistence_t for more information.
2109  */
2110 #define PSA_KEY_PERSISTENCE_READ_ONLY           ((psa_key_persistence_t)0xff)
2111 
2112 #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime)      \
2113     ((psa_key_persistence_t)((lifetime) & 0x000000ff))
2114 
2115 #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime)      \
2116     ((psa_key_location_t)((lifetime) >> 8))
2117 
2118 /** Whether a key lifetime indicates that the key is volatile.
2119  *
2120  * A volatile key is automatically destroyed by the implementation when
2121  * the application instance terminates. In particular, a volatile key
2122  * is automatically destroyed on a power reset of the device.
2123  *
2124  * A key that is not volatile is persistent. Persistent keys are
2125  * preserved until the application explicitly destroys them or until an
2126  * implementation-specific device management event occurs (for example,
2127  * a factory reset).
2128  *
2129  * \param lifetime      The lifetime value to query (value of type
2130  *                      ::psa_key_lifetime_t).
2131  *
2132  * \return \c 1 if the key is volatile, otherwise \c 0.
2133  */
2134 #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)  \
2135     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2136      PSA_KEY_PERSISTENCE_VOLATILE)
2137 
2138 /** Whether a key lifetime indicates that the key is read-only.
2139  *
2140  * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2141  * They must be created through platform-specific means that bypass the API.
2142  *
2143  * Some platforms may offer ways to destroy read-only keys. For example,
2144  * consider a platform with multiple levels of privilege, where a
2145  * low-privilege application can use a key but is not allowed to destroy
2146  * it, and the platform exposes the key to the application with a read-only
2147  * lifetime. High-privilege code can destroy the key even though the
2148  * application sees the key as read-only.
2149  *
2150  * \param lifetime      The lifetime value to query (value of type
2151  *                      ::psa_key_lifetime_t).
2152  *
2153  * \return \c 1 if the key is read-only, otherwise \c 0.
2154  */
2155 #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)  \
2156     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2157      PSA_KEY_PERSISTENCE_READ_ONLY)
2158 
2159 /** Construct a lifetime from a persistence level and a location.
2160  *
2161  * \param persistence   The persistence level
2162  *                      (value of type ::psa_key_persistence_t).
2163  * \param location      The location indicator
2164  *                      (value of type ::psa_key_location_t).
2165  *
2166  * \return The constructed lifetime value.
2167  */
2168 #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2169     ((location) << 8 | (persistence))
2170 
2171 /** The local storage area for persistent keys.
2172  *
2173  * This storage area is available on all systems that can store persistent
2174  * keys without delegating the storage to a third-party cryptoprocessor.
2175  *
2176  * See ::psa_key_location_t for more information.
2177  */
2178 #define PSA_KEY_LOCATION_LOCAL_STORAGE          ((psa_key_location_t)0x000000)
2179 
2180 #define PSA_KEY_LOCATION_VENDOR_FLAG            ((psa_key_location_t)0x800000)
2181 
2182 /** The null key identifier.
2183  */
2184 #define PSA_KEY_ID_NULL                         ((psa_key_id_t)0)
2185 /** The minimum value for a key identifier chosen by the application.
2186  */
2187 #define PSA_KEY_ID_USER_MIN                     ((psa_key_id_t)0x00000001)
2188 /** The maximum value for a key identifier chosen by the application.
2189  */
2190 #define PSA_KEY_ID_USER_MAX                     ((psa_key_id_t)0x3fffffff)
2191 /** The minimum value for a key identifier chosen by the implementation.
2192  */
2193 #define PSA_KEY_ID_VENDOR_MIN                   ((psa_key_id_t)0x40000000)
2194 /** The maximum value for a key identifier chosen by the implementation.
2195  */
2196 #define PSA_KEY_ID_VENDOR_MAX                   ((psa_key_id_t)0x7fffffff)
2197 
2198 
2199 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2200 
2201 #define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2202 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2203 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2204 
2205 /** Utility to initialize a key identifier at runtime.
2206  *
2207  * \param unused  Unused parameter.
2208  * \param key_id  Identifier of the key.
2209  */
mbedtls_svc_key_id_make(unsigned int unused,psa_key_id_t key_id)2210 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2211     unsigned int unused, psa_key_id_t key_id )
2212 {
2213     (void)unused;
2214 
2215     return( key_id );
2216 }
2217 
2218 /** Compare two key identifiers.
2219  *
2220  * \param id1 First key identifier.
2221  * \param id2 Second key identifier.
2222  *
2223  * \return Non-zero if the two key identifier are equal, zero otherwise.
2224  */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2225 static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2226                                             mbedtls_svc_key_id_t id2 )
2227 {
2228     return( id1 == id2 );
2229 }
2230 
2231 /** Check whether a key identifier is null.
2232  *
2233  * \param key Key identifier.
2234  *
2235  * \return Non-zero if the key identifier is null, zero otherwise.
2236  */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2237 static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2238 {
2239     return( key == 0 );
2240 }
2241 
2242 #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2243 
2244 #define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2245 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2246 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2247 
2248 /** Utility to initialize a key identifier at runtime.
2249  *
2250  * \param owner_id Identifier of the key owner.
2251  * \param key_id   Identifier of the key.
2252  */
mbedtls_svc_key_id_make(mbedtls_key_owner_id_t owner_id,psa_key_id_t key_id)2253 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2254     mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2255 {
2256     return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2257                                     .MBEDTLS_PRIVATE(owner) = owner_id } );
2258 }
2259 
2260 /** Compare two key identifiers.
2261  *
2262  * \param id1 First key identifier.
2263  * \param id2 Second key identifier.
2264  *
2265  * \return Non-zero if the two key identifier are equal, zero otherwise.
2266  */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2267 static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2268                                             mbedtls_svc_key_id_t id2 )
2269 {
2270     return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2271             mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
2272 }
2273 
2274 /** Check whether a key identifier is null.
2275  *
2276  * \param key Key identifier.
2277  *
2278  * \return Non-zero if the key identifier is null, zero otherwise.
2279  */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2280 static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2281 {
2282     return( key.MBEDTLS_PRIVATE(key_id) == 0 );
2283 }
2284 
2285 #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2286 
2287 /**@}*/
2288 
2289 /** \defgroup policy Key policies
2290  * @{
2291  */
2292 
2293 /** Whether the key may be exported.
2294  *
2295  * A public key or the public part of a key pair may always be exported
2296  * regardless of the value of this permission flag.
2297  *
2298  * If a key does not have export permission, implementations shall not
2299  * allow the key to be exported in plain form from the cryptoprocessor,
2300  * whether through psa_export_key() or through a proprietary interface.
2301  * The key may however be exportable in a wrapped form, i.e. in a form
2302  * where it is encrypted by another key.
2303  */
2304 #define PSA_KEY_USAGE_EXPORT                    ((psa_key_usage_t)0x00000001)
2305 
2306 /** Whether the key may be copied.
2307  *
2308  * This flag allows the use of psa_copy_key() to make a copy of the key
2309  * with the same policy or a more restrictive policy.
2310  *
2311  * For lifetimes for which the key is located in a secure element which
2312  * enforce the non-exportability of keys, copying a key outside the secure
2313  * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2314  * Copying the key inside the secure element is permitted with just
2315  * #PSA_KEY_USAGE_COPY if the secure element supports it.
2316  * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2317  * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2318  * is sufficient to permit the copy.
2319  */
2320 #define PSA_KEY_USAGE_COPY                      ((psa_key_usage_t)0x00000002)
2321 
2322 /** Whether the key may be used to encrypt a message.
2323  *
2324  * This flag allows the key to be used for a symmetric encryption operation,
2325  * for an AEAD encryption-and-authentication operation,
2326  * or for an asymmetric encryption operation,
2327  * if otherwise permitted by the key's type and policy.
2328  *
2329  * For a key pair, this concerns the public key.
2330  */
2331 #define PSA_KEY_USAGE_ENCRYPT                   ((psa_key_usage_t)0x00000100)
2332 
2333 /** Whether the key may be used to decrypt a message.
2334  *
2335  * This flag allows the key to be used for a symmetric decryption operation,
2336  * for an AEAD decryption-and-verification operation,
2337  * or for an asymmetric decryption operation,
2338  * if otherwise permitted by the key's type and policy.
2339  *
2340  * For a key pair, this concerns the private key.
2341  */
2342 #define PSA_KEY_USAGE_DECRYPT                   ((psa_key_usage_t)0x00000200)
2343 
2344 /** Whether the key may be used to sign a message.
2345  *
2346  * This flag allows the key to be used for a MAC calculation operation or for
2347  * an asymmetric message signature operation, if otherwise permitted by the
2348  * key’s type and policy.
2349  *
2350  * For a key pair, this concerns the private key.
2351  */
2352 #define PSA_KEY_USAGE_SIGN_MESSAGE              ((psa_key_usage_t)0x00000400)
2353 
2354 /** Whether the key may be used to verify a message.
2355  *
2356  * This flag allows the key to be used for a MAC verification operation or for
2357  * an asymmetric message signature verification operation, if otherwise
2358  * permitted by the key’s type and policy.
2359  *
2360  * For a key pair, this concerns the public key.
2361  */
2362 #define PSA_KEY_USAGE_VERIFY_MESSAGE            ((psa_key_usage_t)0x00000800)
2363 
2364 /** Whether the key may be used to sign a message.
2365  *
2366  * This flag allows the key to be used for a MAC calculation operation
2367  * or for an asymmetric signature operation,
2368  * if otherwise permitted by the key's type and policy.
2369  *
2370  * For a key pair, this concerns the private key.
2371  */
2372 #define PSA_KEY_USAGE_SIGN_HASH                 ((psa_key_usage_t)0x00001000)
2373 
2374 /** Whether the key may be used to verify a message signature.
2375  *
2376  * This flag allows the key to be used for a MAC verification operation
2377  * or for an asymmetric signature verification operation,
2378  * if otherwise permitted by by the key's type and policy.
2379  *
2380  * For a key pair, this concerns the public key.
2381  */
2382 #define PSA_KEY_USAGE_VERIFY_HASH               ((psa_key_usage_t)0x00002000)
2383 
2384 /** Whether the key may be used to derive other keys or produce a password
2385  * hash.
2386  *
2387  * This flag allows the key to be used for a key derivation operation or for
2388  * a key agreement operation, if otherwise permitted by by the key's type and
2389  * policy.
2390  *
2391  * If this flag is present on all keys used in calls to
2392  * psa_key_derivation_input_key() for a key derivation operation, then it
2393  * permits calling psa_key_derivation_output_bytes() or
2394  * psa_key_derivation_output_key() at the end of the operation.
2395  */
2396 #define PSA_KEY_USAGE_DERIVE                    ((psa_key_usage_t)0x00004000)
2397 
2398 /** Whether the key may be used to verify the result of a key derivation,
2399  * including password hashing.
2400  *
2401  * This flag allows the key to be used:
2402  *
2403  * This flag allows the key to be used in a key derivation operation, if
2404  * otherwise permitted by by the key's type and policy.
2405  *
2406  * If this flag is present on all keys used in calls to
2407  * psa_key_derivation_input_key() for a key derivation operation, then it
2408  * permits calling psa_key_derivation_verify_bytes() or
2409  * psa_key_derivation_verify_key() at the end of the operation.
2410  */
2411 #define PSA_KEY_USAGE_VERIFY_DERIVATION         ((psa_key_usage_t)0x00008000)
2412 
2413 /**@}*/
2414 
2415 /** \defgroup derivation Key derivation
2416  * @{
2417  */
2418 
2419 /** A secret input for key derivation.
2420  *
2421  * This should be a key of type #PSA_KEY_TYPE_DERIVE
2422  * (passed to psa_key_derivation_input_key())
2423  * or the shared secret resulting from a key agreement
2424  * (obtained via psa_key_derivation_key_agreement()).
2425  *
2426  * The secret can also be a direct input (passed to
2427  * key_derivation_input_bytes()). In this case, the derivation operation
2428  * may not be used to derive keys: the operation will only allow
2429  * psa_key_derivation_output_bytes(),
2430  * psa_key_derivation_verify_bytes(), or
2431  * psa_key_derivation_verify_key(), but not
2432  * psa_key_derivation_output_key().
2433  */
2434 #define PSA_KEY_DERIVATION_INPUT_SECRET     ((psa_key_derivation_step_t)0x0101)
2435 
2436 /** A low-entropy secret input for password hashing / key stretching.
2437  *
2438  * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2439  * psa_key_derivation_input_key()) or a direct input (passed to
2440  * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2441  * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2442  * the shared secret resulting from a key agreement.
2443  *
2444  * The secret can also be a direct input (passed to
2445  * key_derivation_input_bytes()). In this case, the derivation operation
2446  * may not be used to derive keys: the operation will only allow
2447  * psa_key_derivation_output_bytes(),
2448  * psa_key_derivation_verify_bytes(), or
2449  * psa_key_derivation_verify_key(), but not
2450  * psa_key_derivation_output_key().
2451  */
2452 #define PSA_KEY_DERIVATION_INPUT_PASSWORD   ((psa_key_derivation_step_t)0x0102)
2453 
2454 /** A label for key derivation.
2455  *
2456  * This should be a direct input.
2457  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2458  */
2459 #define PSA_KEY_DERIVATION_INPUT_LABEL      ((psa_key_derivation_step_t)0x0201)
2460 
2461 /** A salt for key derivation.
2462  *
2463  * This should be a direct input.
2464  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2465  * #PSA_KEY_TYPE_PEPPER.
2466  */
2467 #define PSA_KEY_DERIVATION_INPUT_SALT       ((psa_key_derivation_step_t)0x0202)
2468 
2469 /** An information string for key derivation.
2470  *
2471  * This should be a direct input.
2472  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2473  */
2474 #define PSA_KEY_DERIVATION_INPUT_INFO       ((psa_key_derivation_step_t)0x0203)
2475 
2476 /** A seed for key derivation.
2477  *
2478  * This should be a direct input.
2479  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2480  */
2481 #define PSA_KEY_DERIVATION_INPUT_SEED       ((psa_key_derivation_step_t)0x0204)
2482 
2483 /** A cost parameter for password hashing / key stretching.
2484  *
2485  * This must be a direct input, passed to psa_key_derivation_input_integer().
2486  */
2487 #define PSA_KEY_DERIVATION_INPUT_COST       ((psa_key_derivation_step_t)0x0205)
2488 
2489 /**@}*/
2490 
2491 /** \defgroup helper_macros Helper macros
2492  * @{
2493  */
2494 
2495 /* Helper macros */
2496 
2497 /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2498  *  regardless of the tag length they encode.
2499  *
2500  * \param aead_alg_1 An AEAD algorithm identifier.
2501  * \param aead_alg_2 An AEAD algorithm identifier.
2502  *
2503  * \return           1 if both identifiers refer to the same AEAD algorithm,
2504  *                   0 otherwise.
2505  *                   Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2506  *                   a supported AEAD algorithm.
2507  */
2508 #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2509     (!(((aead_alg_1) ^ (aead_alg_2)) & \
2510        ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2511 
2512 /**@}*/
2513 
2514 #endif /* PSA_CRYPTO_VALUES_H */
2515