1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible. It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe. This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // This pass uses alias analysis for two purposes:
16 //
17 // 1. Moving loop invariant loads and calls out of loops. If we can determine
18 // that a load or call inside of a loop never aliases anything stored to,
19 // we can hoist it or sink it like any other instruction.
20 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
21 // the loop, we try to move the store to happen AFTER the loop instead of
22 // inside of the loop. This can only happen if a few conditions are true:
23 // A. The pointer stored through is loop invariant
24 // B. There are no stores or loads in the loop which _may_ alias the
25 // pointer. There are no calls in the loop which mod/ref the pointer.
26 // If these conditions are true, we can promote the loads and stores in the
27 // loop of the pointer to use a temporary alloca'd variable. We then use
28 // the SSAUpdater to construct the appropriate SSA form for the value.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/Transforms/Scalar/LICM.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/CaptureTracking.h"
39 #include "llvm/Analysis/ConstantFolding.h"
40 #include "llvm/Analysis/GlobalsModRef.h"
41 #include "llvm/Analysis/GuardUtils.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopIterator.h"
45 #include "llvm/Analysis/LoopPass.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
50 #include "llvm/Analysis/ScalarEvolution.h"
51 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/PredIteratorCache.h"
66 #include "llvm/InitializePasses.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar.h"
71 #include "llvm/Transforms/Scalar/LoopPassManager.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/LoopUtils.h"
75 #include "llvm/Transforms/Utils/SSAUpdater.h"
76 #include <algorithm>
77 #include <utility>
78 using namespace llvm;
79
80 #define DEBUG_TYPE "licm"
81
82 STATISTIC(NumCreatedBlocks, "Number of blocks created");
83 STATISTIC(NumClonedBranches, "Number of branches cloned");
84 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
85 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
86 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
87 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
88 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
89
90 /// Memory promotion is enabled by default.
91 static cl::opt<bool>
92 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
93 cl::desc("Disable memory promotion in LICM pass"));
94
95 static cl::opt<bool> ControlFlowHoisting(
96 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
97 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
98
99 static cl::opt<uint32_t> MaxNumUsesTraversed(
100 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
101 cl::desc("Max num uses visited for identifying load "
102 "invariance in loop using invariant start (default = 8)"));
103
104 // Default value of zero implies we use the regular alias set tracker mechanism
105 // instead of the cross product using AA to identify aliasing of the memory
106 // location we are interested in.
107 static cl::opt<int>
108 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
109 cl::desc("How many instruction to cross product using AA"));
110
111 // Experimental option to allow imprecision in LICM in pathological cases, in
112 // exchange for faster compile. This is to be removed if MemorySSA starts to
113 // address the same issue. This flag applies only when LICM uses MemorySSA
114 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
115 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
116 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
117 // which may not be precise, since optimizeUses is capped. The result is
118 // correct, but we may not get as "far up" as possible to get which access is
119 // clobbering the one queried.
120 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
121 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
122 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
123 "for faster compile. Caps the MemorySSA clobbering calls."));
124
125 // Experimentally, memory promotion carries less importance than sinking and
126 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
127 // compile time.
128 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
129 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
130 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
131 "effect. When MSSA in LICM is enabled, then this is the maximum "
132 "number of accesses allowed to be present in a loop in order to "
133 "enable memory promotion."));
134
135 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
136 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
137 const LoopSafetyInfo *SafetyInfo,
138 TargetTransformInfo *TTI, bool &FreeInLoop);
139 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
140 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
141 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
142 OptimizationRemarkEmitter *ORE);
143 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
144 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
145 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
146 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
147 const DominatorTree *DT,
148 const Loop *CurLoop,
149 const LoopSafetyInfo *SafetyInfo,
150 OptimizationRemarkEmitter *ORE,
151 const Instruction *CtxI = nullptr);
152 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
153 AliasSetTracker *CurAST, Loop *CurLoop,
154 AliasAnalysis *AA);
155 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
156 Loop *CurLoop,
157 SinkAndHoistLICMFlags &Flags);
158 static Instruction *CloneInstructionInExitBlock(
159 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
160 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
161
162 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
163 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
164
165 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
166 ICFLoopSafetyInfo &SafetyInfo,
167 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
168
169 namespace {
170 struct LoopInvariantCodeMotion {
171 using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
172 bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
173 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
174 ScalarEvolution *SE, MemorySSA *MSSA,
175 OptimizationRemarkEmitter *ORE, bool DeleteAST);
176
getLoopToAliasSetMap__anon1fedfd420111::LoopInvariantCodeMotion177 ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
LoopInvariantCodeMotion__anon1fedfd420111::LoopInvariantCodeMotion178 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
179 unsigned LicmMssaNoAccForPromotionCap)
180 : LicmMssaOptCap(LicmMssaOptCap),
181 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
182
183 private:
184 ASTrackerMapTy LoopToAliasSetMap;
185 unsigned LicmMssaOptCap;
186 unsigned LicmMssaNoAccForPromotionCap;
187
188 std::unique_ptr<AliasSetTracker>
189 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
190 std::unique_ptr<AliasSetTracker>
191 collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA,
192 MemorySSAUpdater *MSSAU);
193 };
194
195 struct LegacyLICMPass : public LoopPass {
196 static char ID; // Pass identification, replacement for typeid
LegacyLICMPass__anon1fedfd420111::LegacyLICMPass197 LegacyLICMPass(
198 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
199 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
200 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
201 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
202 }
203
runOnLoop__anon1fedfd420111::LegacyLICMPass204 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
205 if (skipLoop(L)) {
206 // If we have run LICM on a previous loop but now we are skipping
207 // (because we've hit the opt-bisect limit), we need to clear the
208 // loop alias information.
209 LICM.getLoopToAliasSetMap().clear();
210 return false;
211 }
212
213 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
214 MemorySSA *MSSA = EnableMSSALoopDependency
215 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
216 : nullptr;
217 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
218 // pass. Function analyses need to be preserved across loop transformations
219 // but ORE cannot be preserved (see comment before the pass definition).
220 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
221 return LICM.runOnLoop(L,
222 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
223 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
224 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
225 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
226 *L->getHeader()->getParent()),
227 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
228 *L->getHeader()->getParent()),
229 SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
230 }
231
232 /// This transformation requires natural loop information & requires that
233 /// loop preheaders be inserted into the CFG...
234 ///
getAnalysisUsage__anon1fedfd420111::LegacyLICMPass235 void getAnalysisUsage(AnalysisUsage &AU) const override {
236 AU.addPreserved<DominatorTreeWrapperPass>();
237 AU.addPreserved<LoopInfoWrapperPass>();
238 AU.addRequired<TargetLibraryInfoWrapperPass>();
239 if (EnableMSSALoopDependency) {
240 AU.addRequired<MemorySSAWrapperPass>();
241 AU.addPreserved<MemorySSAWrapperPass>();
242 }
243 AU.addRequired<TargetTransformInfoWrapperPass>();
244 getLoopAnalysisUsage(AU);
245 }
246
247 using llvm::Pass::doFinalization;
248
doFinalization__anon1fedfd420111::LegacyLICMPass249 bool doFinalization() override {
250 auto &AliasSetMap = LICM.getLoopToAliasSetMap();
251 // All loops in the AliasSetMap should be cleaned up already. The only case
252 // where we fail to do so is if an outer loop gets deleted before LICM
253 // visits it.
254 assert(all_of(AliasSetMap,
255 [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) {
256 return !KV.first->getParentLoop();
257 }) &&
258 "Didn't free loop alias sets");
259 AliasSetMap.clear();
260 return false;
261 }
262
263 private:
264 LoopInvariantCodeMotion LICM;
265
266 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
267 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
268 Loop *L) override;
269
270 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
271 /// set.
272 void deleteAnalysisValue(Value *V, Loop *L) override;
273
274 /// Simple Analysis hook. Delete loop L from alias set map.
275 void deleteAnalysisLoop(Loop *L) override;
276 };
277 } // namespace
278
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)279 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
280 LoopStandardAnalysisResults &AR, LPMUpdater &) {
281 const auto &FAM =
282 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
283 Function *F = L.getHeader()->getParent();
284
285 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
286 // FIXME: This should probably be optional rather than required.
287 if (!ORE)
288 report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
289 "cached at a higher level");
290
291 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
292 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
293 AR.MSSA, ORE, true))
294 return PreservedAnalyses::all();
295
296 auto PA = getLoopPassPreservedAnalyses();
297
298 PA.preserve<DominatorTreeAnalysis>();
299 PA.preserve<LoopAnalysis>();
300 if (AR.MSSA)
301 PA.preserve<MemorySSAAnalysis>();
302
303 return PA;
304 }
305
306 char LegacyLICMPass::ID = 0;
307 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
308 false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)309 INITIALIZE_PASS_DEPENDENCY(LoopPass)
310 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
311 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
312 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
313 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
314 false)
315
316 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
createLICMPass(unsigned LicmMssaOptCap,unsigned LicmMssaNoAccForPromotionCap)317 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
318 unsigned LicmMssaNoAccForPromotionCap) {
319 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
320 }
321
322 /// Hoist expressions out of the specified loop. Note, alias info for inner
323 /// loop is not preserved so it is not a good idea to run LICM multiple
324 /// times on one loop.
325 /// We should delete AST for inner loops in the new pass manager to avoid
326 /// memory leak.
327 ///
runOnLoop(Loop * L,AliasAnalysis * AA,LoopInfo * LI,DominatorTree * DT,TargetLibraryInfo * TLI,TargetTransformInfo * TTI,ScalarEvolution * SE,MemorySSA * MSSA,OptimizationRemarkEmitter * ORE,bool DeleteAST)328 bool LoopInvariantCodeMotion::runOnLoop(
329 Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
330 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
331 MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
332 bool Changed = false;
333
334 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
335
336 // If this loop has metadata indicating that LICM is not to be performed then
337 // just exit.
338 if (hasDisableLICMTransformsHint(L)) {
339 return false;
340 }
341
342 std::unique_ptr<AliasSetTracker> CurAST;
343 std::unique_ptr<MemorySSAUpdater> MSSAU;
344 bool NoOfMemAccTooLarge = false;
345 unsigned LicmMssaOptCounter = 0;
346
347 if (!MSSA) {
348 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
349 CurAST = collectAliasInfoForLoop(L, LI, AA);
350 } else {
351 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
352 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
353
354 unsigned AccessCapCount = 0;
355 for (auto *BB : L->getBlocks()) {
356 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
357 for (const auto &MA : *Accesses) {
358 (void)MA;
359 AccessCapCount++;
360 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
361 NoOfMemAccTooLarge = true;
362 break;
363 }
364 }
365 }
366 if (NoOfMemAccTooLarge)
367 break;
368 }
369 }
370
371 // Get the preheader block to move instructions into...
372 BasicBlock *Preheader = L->getLoopPreheader();
373
374 // Compute loop safety information.
375 ICFLoopSafetyInfo SafetyInfo(DT);
376 SafetyInfo.computeLoopSafetyInfo(L);
377
378 // We want to visit all of the instructions in this loop... that are not parts
379 // of our subloops (they have already had their invariants hoisted out of
380 // their loop, into this loop, so there is no need to process the BODIES of
381 // the subloops).
382 //
383 // Traverse the body of the loop in depth first order on the dominator tree so
384 // that we are guaranteed to see definitions before we see uses. This allows
385 // us to sink instructions in one pass, without iteration. After sinking
386 // instructions, we perform another pass to hoist them out of the loop.
387 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
388 LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
389 /*IsSink=*/true};
390 if (L->hasDedicatedExits())
391 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
392 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
393 Flags.IsSink = false;
394 if (Preheader)
395 Changed |=
396 hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
397 CurAST.get(), MSSAU.get(), SE, &SafetyInfo, Flags, ORE);
398
399 // Now that all loop invariants have been removed from the loop, promote any
400 // memory references to scalars that we can.
401 // Don't sink stores from loops without dedicated block exits. Exits
402 // containing indirect branches are not transformed by loop simplify,
403 // make sure we catch that. An additional load may be generated in the
404 // preheader for SSA updater, so also avoid sinking when no preheader
405 // is available.
406 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
407 !NoOfMemAccTooLarge) {
408 // Figure out the loop exits and their insertion points
409 SmallVector<BasicBlock *, 8> ExitBlocks;
410 L->getUniqueExitBlocks(ExitBlocks);
411
412 // We can't insert into a catchswitch.
413 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
414 return isa<CatchSwitchInst>(Exit->getTerminator());
415 });
416
417 if (!HasCatchSwitch) {
418 SmallVector<Instruction *, 8> InsertPts;
419 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
420 InsertPts.reserve(ExitBlocks.size());
421 if (MSSAU)
422 MSSAInsertPts.reserve(ExitBlocks.size());
423 for (BasicBlock *ExitBlock : ExitBlocks) {
424 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
425 if (MSSAU)
426 MSSAInsertPts.push_back(nullptr);
427 }
428
429 PredIteratorCache PIC;
430
431 bool Promoted = false;
432
433 // Build an AST using MSSA.
434 if (!CurAST.get())
435 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
436
437 // Loop over all of the alias sets in the tracker object.
438 for (AliasSet &AS : *CurAST) {
439 // We can promote this alias set if it has a store, if it is a "Must"
440 // alias set, if the pointer is loop invariant, and if we are not
441 // eliminating any volatile loads or stores.
442 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
443 !L->isLoopInvariant(AS.begin()->getValue()))
444 continue;
445
446 assert(
447 !AS.empty() &&
448 "Must alias set should have at least one pointer element in it!");
449
450 SmallSetVector<Value *, 8> PointerMustAliases;
451 for (const auto &ASI : AS)
452 PointerMustAliases.insert(ASI.getValue());
453
454 Promoted |= promoteLoopAccessesToScalars(
455 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
456 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
457 }
458
459 // Once we have promoted values across the loop body we have to
460 // recursively reform LCSSA as any nested loop may now have values defined
461 // within the loop used in the outer loop.
462 // FIXME: This is really heavy handed. It would be a bit better to use an
463 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
464 // it as it went.
465 if (Promoted)
466 formLCSSARecursively(*L, *DT, LI, SE);
467
468 Changed |= Promoted;
469 }
470 }
471
472 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
473 // specifically moving instructions across the loop boundary and so it is
474 // especially in need of sanity checking here.
475 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
476 assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
477 "Parent loop not left in LCSSA form after LICM!");
478
479 // If this loop is nested inside of another one, save the alias information
480 // for when we process the outer loop.
481 if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST)
482 LoopToAliasSetMap[L] = std::move(CurAST);
483
484 if (MSSAU.get() && VerifyMemorySSA)
485 MSSAU->getMemorySSA()->verifyMemorySSA();
486
487 if (Changed && SE)
488 SE->forgetLoopDispositions(L);
489 return Changed;
490 }
491
492 /// Walk the specified region of the CFG (defined by all blocks dominated by
493 /// the specified block, and that are in the current loop) in reverse depth
494 /// first order w.r.t the DominatorTree. This allows us to visit uses before
495 /// definitions, allowing us to sink a loop body in one pass without iteration.
496 ///
sinkRegion(DomTreeNode * N,AliasAnalysis * AA,LoopInfo * LI,DominatorTree * DT,TargetLibraryInfo * TLI,TargetTransformInfo * TTI,Loop * CurLoop,AliasSetTracker * CurAST,MemorySSAUpdater * MSSAU,ICFLoopSafetyInfo * SafetyInfo,SinkAndHoistLICMFlags & Flags,OptimizationRemarkEmitter * ORE)497 bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
498 DominatorTree *DT, TargetLibraryInfo *TLI,
499 TargetTransformInfo *TTI, Loop *CurLoop,
500 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
501 ICFLoopSafetyInfo *SafetyInfo,
502 SinkAndHoistLICMFlags &Flags,
503 OptimizationRemarkEmitter *ORE) {
504
505 // Verify inputs.
506 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
507 CurLoop != nullptr && SafetyInfo != nullptr &&
508 "Unexpected input to sinkRegion.");
509 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
510 "Either AliasSetTracker or MemorySSA should be initialized.");
511
512 // We want to visit children before parents. We will enque all the parents
513 // before their children in the worklist and process the worklist in reverse
514 // order.
515 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
516
517 bool Changed = false;
518 for (DomTreeNode *DTN : reverse(Worklist)) {
519 BasicBlock *BB = DTN->getBlock();
520 // Only need to process the contents of this block if it is not part of a
521 // subloop (which would already have been processed).
522 if (inSubLoop(BB, CurLoop, LI))
523 continue;
524
525 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
526 Instruction &I = *--II;
527
528 // If the instruction is dead, we would try to sink it because it isn't
529 // used in the loop, instead, just delete it.
530 if (isInstructionTriviallyDead(&I, TLI)) {
531 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
532 salvageDebugInfo(I);
533 ++II;
534 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
535 Changed = true;
536 continue;
537 }
538
539 // Check to see if we can sink this instruction to the exit blocks
540 // of the loop. We can do this if the all users of the instruction are
541 // outside of the loop. In this case, it doesn't even matter if the
542 // operands of the instruction are loop invariant.
543 //
544 bool FreeInLoop = false;
545 if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
546 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
547 ORE) &&
548 !I.mayHaveSideEffects()) {
549 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
550 if (!FreeInLoop) {
551 ++II;
552 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
553 }
554 Changed = true;
555 }
556 }
557 }
558 }
559 if (MSSAU && VerifyMemorySSA)
560 MSSAU->getMemorySSA()->verifyMemorySSA();
561 return Changed;
562 }
563
564 namespace {
565 // This is a helper class for hoistRegion to make it able to hoist control flow
566 // in order to be able to hoist phis. The way this works is that we initially
567 // start hoisting to the loop preheader, and when we see a loop invariant branch
568 // we make note of this. When we then come to hoist an instruction that's
569 // conditional on such a branch we duplicate the branch and the relevant control
570 // flow, then hoist the instruction into the block corresponding to its original
571 // block in the duplicated control flow.
572 class ControlFlowHoister {
573 private:
574 // Information about the loop we are hoisting from
575 LoopInfo *LI;
576 DominatorTree *DT;
577 Loop *CurLoop;
578 MemorySSAUpdater *MSSAU;
579
580 // A map of blocks in the loop to the block their instructions will be hoisted
581 // to.
582 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
583
584 // The branches that we can hoist, mapped to the block that marks a
585 // convergence point of their control flow.
586 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
587
588 public:
ControlFlowHoister(LoopInfo * LI,DominatorTree * DT,Loop * CurLoop,MemorySSAUpdater * MSSAU)589 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
590 MemorySSAUpdater *MSSAU)
591 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
592
registerPossiblyHoistableBranch(BranchInst * BI)593 void registerPossiblyHoistableBranch(BranchInst *BI) {
594 // We can only hoist conditional branches with loop invariant operands.
595 if (!ControlFlowHoisting || !BI->isConditional() ||
596 !CurLoop->hasLoopInvariantOperands(BI))
597 return;
598
599 // The branch destinations need to be in the loop, and we don't gain
600 // anything by duplicating conditional branches with duplicate successors,
601 // as it's essentially the same as an unconditional branch.
602 BasicBlock *TrueDest = BI->getSuccessor(0);
603 BasicBlock *FalseDest = BI->getSuccessor(1);
604 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
605 TrueDest == FalseDest)
606 return;
607
608 // We can hoist BI if one branch destination is the successor of the other,
609 // or both have common successor which we check by seeing if the
610 // intersection of their successors is non-empty.
611 // TODO: This could be expanded to allowing branches where both ends
612 // eventually converge to a single block.
613 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
614 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
615 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
616 BasicBlock *CommonSucc = nullptr;
617 if (TrueDestSucc.count(FalseDest)) {
618 CommonSucc = FalseDest;
619 } else if (FalseDestSucc.count(TrueDest)) {
620 CommonSucc = TrueDest;
621 } else {
622 set_intersect(TrueDestSucc, FalseDestSucc);
623 // If there's one common successor use that.
624 if (TrueDestSucc.size() == 1)
625 CommonSucc = *TrueDestSucc.begin();
626 // If there's more than one pick whichever appears first in the block list
627 // (we can't use the value returned by TrueDestSucc.begin() as it's
628 // unpredicatable which element gets returned).
629 else if (!TrueDestSucc.empty()) {
630 Function *F = TrueDest->getParent();
631 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
632 auto It = std::find_if(F->begin(), F->end(), IsSucc);
633 assert(It != F->end() && "Could not find successor in function");
634 CommonSucc = &*It;
635 }
636 }
637 // The common successor has to be dominated by the branch, as otherwise
638 // there will be some other path to the successor that will not be
639 // controlled by this branch so any phi we hoist would be controlled by the
640 // wrong condition. This also takes care of avoiding hoisting of loop back
641 // edges.
642 // TODO: In some cases this could be relaxed if the successor is dominated
643 // by another block that's been hoisted and we can guarantee that the
644 // control flow has been replicated exactly.
645 if (CommonSucc && DT->dominates(BI, CommonSucc))
646 HoistableBranches[BI] = CommonSucc;
647 }
648
canHoistPHI(PHINode * PN)649 bool canHoistPHI(PHINode *PN) {
650 // The phi must have loop invariant operands.
651 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
652 return false;
653 // We can hoist phis if the block they are in is the target of hoistable
654 // branches which cover all of the predecessors of the block.
655 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
656 BasicBlock *BB = PN->getParent();
657 for (BasicBlock *PredBB : predecessors(BB))
658 PredecessorBlocks.insert(PredBB);
659 // If we have less predecessor blocks than predecessors then the phi will
660 // have more than one incoming value for the same block which we can't
661 // handle.
662 // TODO: This could be handled be erasing some of the duplicate incoming
663 // values.
664 if (PredecessorBlocks.size() != pred_size(BB))
665 return false;
666 for (auto &Pair : HoistableBranches) {
667 if (Pair.second == BB) {
668 // Which blocks are predecessors via this branch depends on if the
669 // branch is triangle-like or diamond-like.
670 if (Pair.first->getSuccessor(0) == BB) {
671 PredecessorBlocks.erase(Pair.first->getParent());
672 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
673 } else if (Pair.first->getSuccessor(1) == BB) {
674 PredecessorBlocks.erase(Pair.first->getParent());
675 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
676 } else {
677 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
678 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
679 }
680 }
681 }
682 // PredecessorBlocks will now be empty if for every predecessor of BB we
683 // found a hoistable branch source.
684 return PredecessorBlocks.empty();
685 }
686
getOrCreateHoistedBlock(BasicBlock * BB)687 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
688 if (!ControlFlowHoisting)
689 return CurLoop->getLoopPreheader();
690 // If BB has already been hoisted, return that
691 if (HoistDestinationMap.count(BB))
692 return HoistDestinationMap[BB];
693
694 // Check if this block is conditional based on a pending branch
695 auto HasBBAsSuccessor =
696 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
697 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
698 Pair.first->getSuccessor(1) == BB);
699 };
700 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
701 HasBBAsSuccessor);
702
703 // If not involved in a pending branch, hoist to preheader
704 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
705 if (It == HoistableBranches.end()) {
706 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
707 << " as hoist destination for " << BB->getName()
708 << "\n");
709 HoistDestinationMap[BB] = InitialPreheader;
710 return InitialPreheader;
711 }
712 BranchInst *BI = It->first;
713 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
714 HoistableBranches.end() &&
715 "BB is expected to be the target of at most one branch");
716
717 LLVMContext &C = BB->getContext();
718 BasicBlock *TrueDest = BI->getSuccessor(0);
719 BasicBlock *FalseDest = BI->getSuccessor(1);
720 BasicBlock *CommonSucc = HoistableBranches[BI];
721 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
722
723 // Create hoisted versions of blocks that currently don't have them
724 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
725 if (HoistDestinationMap.count(Orig))
726 return HoistDestinationMap[Orig];
727 BasicBlock *New =
728 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
729 HoistDestinationMap[Orig] = New;
730 DT->addNewBlock(New, HoistTarget);
731 if (CurLoop->getParentLoop())
732 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
733 ++NumCreatedBlocks;
734 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
735 << " as hoist destination for " << Orig->getName()
736 << "\n");
737 return New;
738 };
739 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
740 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
741 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
742
743 // Link up these blocks with branches.
744 if (!HoistCommonSucc->getTerminator()) {
745 // The new common successor we've generated will branch to whatever that
746 // hoist target branched to.
747 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
748 assert(TargetSucc && "Expected hoist target to have a single successor");
749 HoistCommonSucc->moveBefore(TargetSucc);
750 BranchInst::Create(TargetSucc, HoistCommonSucc);
751 }
752 if (!HoistTrueDest->getTerminator()) {
753 HoistTrueDest->moveBefore(HoistCommonSucc);
754 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
755 }
756 if (!HoistFalseDest->getTerminator()) {
757 HoistFalseDest->moveBefore(HoistCommonSucc);
758 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
759 }
760
761 // If BI is being cloned to what was originally the preheader then
762 // HoistCommonSucc will now be the new preheader.
763 if (HoistTarget == InitialPreheader) {
764 // Phis in the loop header now need to use the new preheader.
765 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
766 if (MSSAU)
767 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
768 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
769 // The new preheader dominates the loop header.
770 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
771 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
772 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
773 // The preheader hoist destination is now the new preheader, with the
774 // exception of the hoist destination of this branch.
775 for (auto &Pair : HoistDestinationMap)
776 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
777 Pair.second = HoistCommonSucc;
778 }
779
780 // Now finally clone BI.
781 ReplaceInstWithInst(
782 HoistTarget->getTerminator(),
783 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
784 ++NumClonedBranches;
785
786 assert(CurLoop->getLoopPreheader() &&
787 "Hoisting blocks should not have destroyed preheader");
788 return HoistDestinationMap[BB];
789 }
790 };
791 } // namespace
792
793 /// Walk the specified region of the CFG (defined by all blocks dominated by
794 /// the specified block, and that are in the current loop) in depth first
795 /// order w.r.t the DominatorTree. This allows us to visit definitions before
796 /// uses, allowing us to hoist a loop body in one pass without iteration.
797 ///
hoistRegion(DomTreeNode * N,AliasAnalysis * AA,LoopInfo * LI,DominatorTree * DT,TargetLibraryInfo * TLI,Loop * CurLoop,AliasSetTracker * CurAST,MemorySSAUpdater * MSSAU,ScalarEvolution * SE,ICFLoopSafetyInfo * SafetyInfo,SinkAndHoistLICMFlags & Flags,OptimizationRemarkEmitter * ORE)798 bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
799 DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
800 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
801 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
802 SinkAndHoistLICMFlags &Flags,
803 OptimizationRemarkEmitter *ORE) {
804 // Verify inputs.
805 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
806 CurLoop != nullptr && SafetyInfo != nullptr &&
807 "Unexpected input to hoistRegion.");
808 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
809 "Either AliasSetTracker or MemorySSA should be initialized.");
810
811 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
812
813 // Keep track of instructions that have been hoisted, as they may need to be
814 // re-hoisted if they end up not dominating all of their uses.
815 SmallVector<Instruction *, 16> HoistedInstructions;
816
817 // For PHI hoisting to work we need to hoist blocks before their successors.
818 // We can do this by iterating through the blocks in the loop in reverse
819 // post-order.
820 LoopBlocksRPO Worklist(CurLoop);
821 Worklist.perform(LI);
822 bool Changed = false;
823 for (BasicBlock *BB : Worklist) {
824 // Only need to process the contents of this block if it is not part of a
825 // subloop (which would already have been processed).
826 if (inSubLoop(BB, CurLoop, LI))
827 continue;
828
829 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
830 Instruction &I = *II++;
831 // Try constant folding this instruction. If all the operands are
832 // constants, it is technically hoistable, but it would be better to
833 // just fold it.
834 if (Constant *C = ConstantFoldInstruction(
835 &I, I.getModule()->getDataLayout(), TLI)) {
836 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
837 << '\n');
838 if (CurAST)
839 CurAST->copyValue(&I, C);
840 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
841 I.replaceAllUsesWith(C);
842 if (isInstructionTriviallyDead(&I, TLI))
843 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
844 Changed = true;
845 continue;
846 }
847
848 // Try hoisting the instruction out to the preheader. We can only do
849 // this if all of the operands of the instruction are loop invariant and
850 // if it is safe to hoist the instruction.
851 // TODO: It may be safe to hoist if we are hoisting to a conditional block
852 // and we have accurately duplicated the control flow from the loop header
853 // to that block.
854 if (CurLoop->hasLoopInvariantOperands(&I) &&
855 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
856 ORE) &&
857 isSafeToExecuteUnconditionally(
858 I, DT, CurLoop, SafetyInfo, ORE,
859 CurLoop->getLoopPreheader()->getTerminator())) {
860 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
861 MSSAU, SE, ORE);
862 HoistedInstructions.push_back(&I);
863 Changed = true;
864 continue;
865 }
866
867 // Attempt to remove floating point division out of the loop by
868 // converting it to a reciprocal multiplication.
869 if (I.getOpcode() == Instruction::FDiv &&
870 CurLoop->isLoopInvariant(I.getOperand(1)) &&
871 I.hasAllowReciprocal()) {
872 auto Divisor = I.getOperand(1);
873 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
874 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
875 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
876 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
877 ReciprocalDivisor->insertBefore(&I);
878
879 auto Product =
880 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
881 Product->setFastMathFlags(I.getFastMathFlags());
882 SafetyInfo->insertInstructionTo(Product, I.getParent());
883 Product->insertAfter(&I);
884 I.replaceAllUsesWith(Product);
885 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
886
887 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
888 SafetyInfo, MSSAU, SE, ORE);
889 HoistedInstructions.push_back(ReciprocalDivisor);
890 Changed = true;
891 continue;
892 }
893
894 auto IsInvariantStart = [&](Instruction &I) {
895 using namespace PatternMatch;
896 return I.use_empty() &&
897 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
898 };
899 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
900 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
901 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
902 };
903 if ((IsInvariantStart(I) || isGuard(&I)) &&
904 CurLoop->hasLoopInvariantOperands(&I) &&
905 MustExecuteWithoutWritesBefore(I)) {
906 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
907 MSSAU, SE, ORE);
908 HoistedInstructions.push_back(&I);
909 Changed = true;
910 continue;
911 }
912
913 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
914 if (CFH.canHoistPHI(PN)) {
915 // Redirect incoming blocks first to ensure that we create hoisted
916 // versions of those blocks before we hoist the phi.
917 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
918 PN->setIncomingBlock(
919 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
920 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
921 MSSAU, SE, ORE);
922 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
923 Changed = true;
924 continue;
925 }
926 }
927
928 // Remember possibly hoistable branches so we can actually hoist them
929 // later if needed.
930 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
931 CFH.registerPossiblyHoistableBranch(BI);
932 }
933 }
934
935 // If we hoisted instructions to a conditional block they may not dominate
936 // their uses that weren't hoisted (such as phis where some operands are not
937 // loop invariant). If so make them unconditional by moving them to their
938 // immediate dominator. We iterate through the instructions in reverse order
939 // which ensures that when we rehoist an instruction we rehoist its operands,
940 // and also keep track of where in the block we are rehoisting to to make sure
941 // that we rehoist instructions before the instructions that use them.
942 Instruction *HoistPoint = nullptr;
943 if (ControlFlowHoisting) {
944 for (Instruction *I : reverse(HoistedInstructions)) {
945 if (!llvm::all_of(I->uses(),
946 [&](Use &U) { return DT->dominates(I, U); })) {
947 BasicBlock *Dominator =
948 DT->getNode(I->getParent())->getIDom()->getBlock();
949 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
950 if (HoistPoint)
951 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
952 "New hoist point expected to dominate old hoist point");
953 HoistPoint = Dominator->getTerminator();
954 }
955 LLVM_DEBUG(dbgs() << "LICM rehoisting to "
956 << HoistPoint->getParent()->getName()
957 << ": " << *I << "\n");
958 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
959 HoistPoint = I;
960 Changed = true;
961 }
962 }
963 }
964 if (MSSAU && VerifyMemorySSA)
965 MSSAU->getMemorySSA()->verifyMemorySSA();
966
967 // Now that we've finished hoisting make sure that LI and DT are still
968 // valid.
969 #ifdef EXPENSIVE_CHECKS
970 if (Changed) {
971 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
972 "Dominator tree verification failed");
973 LI->verify(*DT);
974 }
975 #endif
976
977 return Changed;
978 }
979
980 // Return true if LI is invariant within scope of the loop. LI is invariant if
981 // CurLoop is dominated by an invariant.start representing the same memory
982 // location and size as the memory location LI loads from, and also the
983 // invariant.start has no uses.
isLoadInvariantInLoop(LoadInst * LI,DominatorTree * DT,Loop * CurLoop)984 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
985 Loop *CurLoop) {
986 Value *Addr = LI->getOperand(0);
987 const DataLayout &DL = LI->getModule()->getDataLayout();
988 const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
989
990 // if the type is i8 addrspace(x)*, we know this is the type of
991 // llvm.invariant.start operand
992 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
993 LI->getPointerAddressSpace());
994 unsigned BitcastsVisited = 0;
995 // Look through bitcasts until we reach the i8* type (this is invariant.start
996 // operand type).
997 while (Addr->getType() != PtrInt8Ty) {
998 auto *BC = dyn_cast<BitCastInst>(Addr);
999 // Avoid traversing high number of bitcast uses.
1000 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1001 return false;
1002 Addr = BC->getOperand(0);
1003 }
1004
1005 unsigned UsesVisited = 0;
1006 // Traverse all uses of the load operand value, to see if invariant.start is
1007 // one of the uses, and whether it dominates the load instruction.
1008 for (auto *U : Addr->users()) {
1009 // Avoid traversing for Load operand with high number of users.
1010 if (++UsesVisited > MaxNumUsesTraversed)
1011 return false;
1012 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1013 // If there are escaping uses of invariant.start instruction, the load maybe
1014 // non-invariant.
1015 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1016 !II->use_empty())
1017 continue;
1018 unsigned InvariantSizeInBits =
1019 cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
1020 // Confirm the invariant.start location size contains the load operand size
1021 // in bits. Also, the invariant.start should dominate the load, and we
1022 // should not hoist the load out of a loop that contains this dominating
1023 // invariant.start.
1024 if (LocSizeInBits <= InvariantSizeInBits &&
1025 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1026 return true;
1027 }
1028
1029 return false;
1030 }
1031
1032 namespace {
1033 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1034 /// sink a given instruction out of a loop. Does not address legality
1035 /// concerns such as aliasing or speculation safety.
isHoistableAndSinkableInst(Instruction & I)1036 bool isHoistableAndSinkableInst(Instruction &I) {
1037 // Only these instructions are hoistable/sinkable.
1038 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1039 isa<FenceInst>(I) || isa<CastInst>(I) ||
1040 isa<UnaryOperator>(I) || isa<BinaryOperator>(I) ||
1041 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1042 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1043 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1044 isa<InsertValueInst>(I));
1045 }
1046 /// Return true if all of the alias sets within this AST are known not to
1047 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
isReadOnly(AliasSetTracker * CurAST,const MemorySSAUpdater * MSSAU,const Loop * L)1048 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1049 const Loop *L) {
1050 if (CurAST) {
1051 for (AliasSet &AS : *CurAST) {
1052 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1053 return false;
1054 }
1055 }
1056 return true;
1057 } else { /*MSSAU*/
1058 for (auto *BB : L->getBlocks())
1059 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1060 return false;
1061 return true;
1062 }
1063 }
1064
1065 /// Return true if I is the only Instruction with a MemoryAccess in L.
isOnlyMemoryAccess(const Instruction * I,const Loop * L,const MemorySSAUpdater * MSSAU)1066 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1067 const MemorySSAUpdater *MSSAU) {
1068 for (auto *BB : L->getBlocks())
1069 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1070 int NotAPhi = 0;
1071 for (const auto &Acc : *Accs) {
1072 if (isa<MemoryPhi>(&Acc))
1073 continue;
1074 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1075 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1076 return false;
1077 }
1078 }
1079 return true;
1080 }
1081 }
1082
canSinkOrHoistInst(Instruction & I,AAResults * AA,DominatorTree * DT,Loop * CurLoop,AliasSetTracker * CurAST,MemorySSAUpdater * MSSAU,bool TargetExecutesOncePerLoop,SinkAndHoistLICMFlags * Flags,OptimizationRemarkEmitter * ORE)1083 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1084 Loop *CurLoop, AliasSetTracker *CurAST,
1085 MemorySSAUpdater *MSSAU,
1086 bool TargetExecutesOncePerLoop,
1087 SinkAndHoistLICMFlags *Flags,
1088 OptimizationRemarkEmitter *ORE) {
1089 // If we don't understand the instruction, bail early.
1090 if (!isHoistableAndSinkableInst(I))
1091 return false;
1092
1093 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1094 if (MSSA)
1095 assert(Flags != nullptr && "Flags cannot be null.");
1096
1097 // Loads have extra constraints we have to verify before we can hoist them.
1098 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1099 if (!LI->isUnordered())
1100 return false; // Don't sink/hoist volatile or ordered atomic loads!
1101
1102 // Loads from constant memory are always safe to move, even if they end up
1103 // in the same alias set as something that ends up being modified.
1104 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1105 return true;
1106 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1107 return true;
1108
1109 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1110 return false; // Don't risk duplicating unordered loads
1111
1112 // This checks for an invariant.start dominating the load.
1113 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1114 return true;
1115
1116 bool Invalidated;
1117 if (CurAST)
1118 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1119 CurLoop, AA);
1120 else
1121 Invalidated = pointerInvalidatedByLoopWithMSSA(
1122 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
1123 // Check loop-invariant address because this may also be a sinkable load
1124 // whose address is not necessarily loop-invariant.
1125 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1126 ORE->emit([&]() {
1127 return OptimizationRemarkMissed(
1128 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1129 << "failed to move load with loop-invariant address "
1130 "because the loop may invalidate its value";
1131 });
1132
1133 return !Invalidated;
1134 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1135 // Don't sink or hoist dbg info; it's legal, but not useful.
1136 if (isa<DbgInfoIntrinsic>(I))
1137 return false;
1138
1139 // Don't sink calls which can throw.
1140 if (CI->mayThrow())
1141 return false;
1142
1143 using namespace PatternMatch;
1144 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1145 // Assumes don't actually alias anything or throw
1146 return true;
1147
1148 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1149 // Widenable conditions don't actually alias anything or throw
1150 return true;
1151
1152 // Handle simple cases by querying alias analysis.
1153 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1154 if (Behavior == FMRB_DoesNotAccessMemory)
1155 return true;
1156 if (AliasAnalysis::onlyReadsMemory(Behavior)) {
1157 // A readonly argmemonly function only reads from memory pointed to by
1158 // it's arguments with arbitrary offsets. If we can prove there are no
1159 // writes to this memory in the loop, we can hoist or sink.
1160 if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
1161 // TODO: expand to writeable arguments
1162 for (Value *Op : CI->arg_operands())
1163 if (Op->getType()->isPointerTy()) {
1164 bool Invalidated;
1165 if (CurAST)
1166 Invalidated = pointerInvalidatedByLoop(
1167 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1168 CurAST, CurLoop, AA);
1169 else
1170 Invalidated = pointerInvalidatedByLoopWithMSSA(
1171 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
1172 *Flags);
1173 if (Invalidated)
1174 return false;
1175 }
1176 return true;
1177 }
1178
1179 // If this call only reads from memory and there are no writes to memory
1180 // in the loop, we can hoist or sink the call as appropriate.
1181 if (isReadOnly(CurAST, MSSAU, CurLoop))
1182 return true;
1183 }
1184
1185 // FIXME: This should use mod/ref information to see if we can hoist or
1186 // sink the call.
1187
1188 return false;
1189 } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1190 // Fences alias (most) everything to provide ordering. For the moment,
1191 // just give up if there are any other memory operations in the loop.
1192 if (CurAST) {
1193 auto Begin = CurAST->begin();
1194 assert(Begin != CurAST->end() && "must contain FI");
1195 if (std::next(Begin) != CurAST->end())
1196 // constant memory for instance, TODO: handle better
1197 return false;
1198 auto *UniqueI = Begin->getUniqueInstruction();
1199 if (!UniqueI)
1200 // other memory op, give up
1201 return false;
1202 (void)FI; // suppress unused variable warning
1203 assert(UniqueI == FI && "AS must contain FI");
1204 return true;
1205 } else // MSSAU
1206 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1207 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1208 if (!SI->isUnordered())
1209 return false; // Don't sink/hoist volatile or ordered atomic store!
1210
1211 // We can only hoist a store that we can prove writes a value which is not
1212 // read or overwritten within the loop. For those cases, we fallback to
1213 // load store promotion instead. TODO: We can extend this to cases where
1214 // there is exactly one write to the location and that write dominates an
1215 // arbitrary number of reads in the loop.
1216 if (CurAST) {
1217 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1218
1219 if (AS.isRef() || !AS.isMustAlias())
1220 // Quick exit test, handled by the full path below as well.
1221 return false;
1222 auto *UniqueI = AS.getUniqueInstruction();
1223 if (!UniqueI)
1224 // other memory op, give up
1225 return false;
1226 assert(UniqueI == SI && "AS must contain SI");
1227 return true;
1228 } else { // MSSAU
1229 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1230 return true;
1231 // If there are more accesses than the Promotion cap, give up, we're not
1232 // walking a list that long.
1233 if (Flags->NoOfMemAccTooLarge)
1234 return false;
1235 // Check store only if there's still "quota" to check clobber.
1236 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
1237 return false;
1238 // If there are interfering Uses (i.e. their defining access is in the
1239 // loop), or ordered loads (stored as Defs!), don't move this store.
1240 // Could do better here, but this is conservatively correct.
1241 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1242 // moving accesses. Can also extend to dominating uses.
1243 auto *SIMD = MSSA->getMemoryAccess(SI);
1244 for (auto *BB : CurLoop->getBlocks())
1245 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1246 for (const auto &MA : *Accesses)
1247 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1248 auto *MD = MU->getDefiningAccess();
1249 if (!MSSA->isLiveOnEntryDef(MD) &&
1250 CurLoop->contains(MD->getBlock()))
1251 return false;
1252 // Disable hoisting past potentially interfering loads. Optimized
1253 // Uses may point to an access outside the loop, as getClobbering
1254 // checks the previous iteration when walking the backedge.
1255 // FIXME: More precise: no Uses that alias SI.
1256 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
1257 return false;
1258 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1259 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1260 (void)LI; // Silence warning.
1261 assert(!LI->isUnordered() && "Expected unordered load");
1262 return false;
1263 }
1264 // Any call, while it may not be clobbering SI, it may be a use.
1265 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1266 // Check if the call may read from the memory locattion written
1267 // to by SI. Check CI's attributes and arguments; the number of
1268 // such checks performed is limited above by NoOfMemAccTooLarge.
1269 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1270 if (isModOrRefSet(MRI))
1271 return false;
1272 }
1273 }
1274 }
1275
1276 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1277 Flags->LicmMssaOptCounter++;
1278 // If there are no clobbering Defs in the loop, store is safe to hoist.
1279 return MSSA->isLiveOnEntryDef(Source) ||
1280 !CurLoop->contains(Source->getBlock());
1281 }
1282 }
1283
1284 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1285
1286 // We've established mechanical ability and aliasing, it's up to the caller
1287 // to check fault safety
1288 return true;
1289 }
1290
1291 /// Returns true if a PHINode is a trivially replaceable with an
1292 /// Instruction.
1293 /// This is true when all incoming values are that instruction.
1294 /// This pattern occurs most often with LCSSA PHI nodes.
1295 ///
isTriviallyReplaceablePHI(const PHINode & PN,const Instruction & I)1296 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1297 for (const Value *IncValue : PN.incoming_values())
1298 if (IncValue != &I)
1299 return false;
1300
1301 return true;
1302 }
1303
1304 /// Return true if the instruction is free in the loop.
isFreeInLoop(const Instruction & I,const Loop * CurLoop,const TargetTransformInfo * TTI)1305 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1306 const TargetTransformInfo *TTI) {
1307
1308 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1309 if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
1310 return false;
1311 // For a GEP, we cannot simply use getUserCost because currently it
1312 // optimistically assume that a GEP will fold into addressing mode
1313 // regardless of its users.
1314 const BasicBlock *BB = GEP->getParent();
1315 for (const User *U : GEP->users()) {
1316 const Instruction *UI = cast<Instruction>(U);
1317 if (CurLoop->contains(UI) &&
1318 (BB != UI->getParent() ||
1319 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1320 return false;
1321 }
1322 return true;
1323 } else
1324 return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
1325 }
1326
1327 /// Return true if the only users of this instruction are outside of
1328 /// the loop. If this is true, we can sink the instruction to the exit
1329 /// blocks of the loop.
1330 ///
1331 /// We also return true if the instruction could be folded away in lowering.
1332 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
isNotUsedOrFreeInLoop(const Instruction & I,const Loop * CurLoop,const LoopSafetyInfo * SafetyInfo,TargetTransformInfo * TTI,bool & FreeInLoop)1333 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1334 const LoopSafetyInfo *SafetyInfo,
1335 TargetTransformInfo *TTI, bool &FreeInLoop) {
1336 const auto &BlockColors = SafetyInfo->getBlockColors();
1337 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1338 for (const User *U : I.users()) {
1339 const Instruction *UI = cast<Instruction>(U);
1340 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1341 const BasicBlock *BB = PN->getParent();
1342 // We cannot sink uses in catchswitches.
1343 if (isa<CatchSwitchInst>(BB->getTerminator()))
1344 return false;
1345
1346 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1347 // phi use is too muddled.
1348 if (isa<CallInst>(I))
1349 if (!BlockColors.empty() &&
1350 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1351 return false;
1352 }
1353
1354 if (CurLoop->contains(UI)) {
1355 if (IsFree) {
1356 FreeInLoop = true;
1357 continue;
1358 }
1359 return false;
1360 }
1361 }
1362 return true;
1363 }
1364
CloneInstructionInExitBlock(Instruction & I,BasicBlock & ExitBlock,PHINode & PN,const LoopInfo * LI,const LoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU)1365 static Instruction *CloneInstructionInExitBlock(
1366 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1367 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1368 Instruction *New;
1369 if (auto *CI = dyn_cast<CallInst>(&I)) {
1370 const auto &BlockColors = SafetyInfo->getBlockColors();
1371
1372 // Sinking call-sites need to be handled differently from other
1373 // instructions. The cloned call-site needs a funclet bundle operand
1374 // appropriate for its location in the CFG.
1375 SmallVector<OperandBundleDef, 1> OpBundles;
1376 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1377 BundleIdx != BundleEnd; ++BundleIdx) {
1378 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1379 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1380 continue;
1381
1382 OpBundles.emplace_back(Bundle);
1383 }
1384
1385 if (!BlockColors.empty()) {
1386 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1387 assert(CV.size() == 1 && "non-unique color for exit block!");
1388 BasicBlock *BBColor = CV.front();
1389 Instruction *EHPad = BBColor->getFirstNonPHI();
1390 if (EHPad->isEHPad())
1391 OpBundles.emplace_back("funclet", EHPad);
1392 }
1393
1394 New = CallInst::Create(CI, OpBundles);
1395 } else {
1396 New = I.clone();
1397 }
1398
1399 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1400 if (!I.getName().empty())
1401 New->setName(I.getName() + ".le");
1402
1403 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1404 // Create a new MemoryAccess and let MemorySSA set its defining access.
1405 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1406 New, nullptr, New->getParent(), MemorySSA::Beginning);
1407 if (NewMemAcc) {
1408 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1409 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1410 else {
1411 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1412 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1413 }
1414 }
1415 }
1416
1417 // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1418 // particularly cheap because we can rip off the PHI node that we're
1419 // replacing for the number and blocks of the predecessors.
1420 // OPT: If this shows up in a profile, we can instead finish sinking all
1421 // invariant instructions, and then walk their operands to re-establish
1422 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1423 // sinking bottom-up.
1424 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1425 ++OI)
1426 if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1427 if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1428 if (!OLoop->contains(&PN)) {
1429 PHINode *OpPN =
1430 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1431 OInst->getName() + ".lcssa", &ExitBlock.front());
1432 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1433 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1434 *OI = OpPN;
1435 }
1436 return New;
1437 }
1438
eraseInstruction(Instruction & I,ICFLoopSafetyInfo & SafetyInfo,AliasSetTracker * AST,MemorySSAUpdater * MSSAU)1439 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1440 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1441 if (AST)
1442 AST->deleteValue(&I);
1443 if (MSSAU)
1444 MSSAU->removeMemoryAccess(&I);
1445 SafetyInfo.removeInstruction(&I);
1446 I.eraseFromParent();
1447 }
1448
moveInstructionBefore(Instruction & I,Instruction & Dest,ICFLoopSafetyInfo & SafetyInfo,MemorySSAUpdater * MSSAU,ScalarEvolution * SE)1449 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1450 ICFLoopSafetyInfo &SafetyInfo,
1451 MemorySSAUpdater *MSSAU,
1452 ScalarEvolution *SE) {
1453 SafetyInfo.removeInstruction(&I);
1454 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1455 I.moveBefore(&Dest);
1456 if (MSSAU)
1457 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1458 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1459 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1460 MemorySSA::BeforeTerminator);
1461 if (SE)
1462 SE->forgetValue(&I);
1463 }
1464
sinkThroughTriviallyReplaceablePHI(PHINode * TPN,Instruction * I,LoopInfo * LI,SmallDenseMap<BasicBlock *,Instruction *,32> & SunkCopies,const LoopSafetyInfo * SafetyInfo,const Loop * CurLoop,MemorySSAUpdater * MSSAU)1465 static Instruction *sinkThroughTriviallyReplaceablePHI(
1466 PHINode *TPN, Instruction *I, LoopInfo *LI,
1467 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1468 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1469 MemorySSAUpdater *MSSAU) {
1470 assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1471 "Expect only trivially replaceable PHI");
1472 BasicBlock *ExitBlock = TPN->getParent();
1473 Instruction *New;
1474 auto It = SunkCopies.find(ExitBlock);
1475 if (It != SunkCopies.end())
1476 New = It->second;
1477 else
1478 New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(
1479 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1480 return New;
1481 }
1482
canSplitPredecessors(PHINode * PN,LoopSafetyInfo * SafetyInfo)1483 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1484 BasicBlock *BB = PN->getParent();
1485 if (!BB->canSplitPredecessors())
1486 return false;
1487 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1488 // it require updating BlockColors for all offspring blocks accordingly. By
1489 // skipping such corner case, we can make updating BlockColors after splitting
1490 // predecessor fairly simple.
1491 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1492 return false;
1493 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1494 BasicBlock *BBPred = *PI;
1495 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1496 isa<CallBrInst>(BBPred->getTerminator()))
1497 return false;
1498 }
1499 return true;
1500 }
1501
splitPredecessorsOfLoopExit(PHINode * PN,DominatorTree * DT,LoopInfo * LI,const Loop * CurLoop,LoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU)1502 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1503 LoopInfo *LI, const Loop *CurLoop,
1504 LoopSafetyInfo *SafetyInfo,
1505 MemorySSAUpdater *MSSAU) {
1506 #ifndef NDEBUG
1507 SmallVector<BasicBlock *, 32> ExitBlocks;
1508 CurLoop->getUniqueExitBlocks(ExitBlocks);
1509 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1510 ExitBlocks.end());
1511 #endif
1512 BasicBlock *ExitBB = PN->getParent();
1513 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1514
1515 // Split predecessors of the loop exit to make instructions in the loop are
1516 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1517 // loop in the canonical form where each predecessor of each exit block should
1518 // be contained within the loop. For example, this will convert the loop below
1519 // from
1520 //
1521 // LB1:
1522 // %v1 =
1523 // br %LE, %LB2
1524 // LB2:
1525 // %v2 =
1526 // br %LE, %LB1
1527 // LE:
1528 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1529 //
1530 // to
1531 //
1532 // LB1:
1533 // %v1 =
1534 // br %LE.split, %LB2
1535 // LB2:
1536 // %v2 =
1537 // br %LE.split2, %LB1
1538 // LE.split:
1539 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1540 // br %LE
1541 // LE.split2:
1542 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1543 // br %LE
1544 // LE:
1545 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1546 //
1547 const auto &BlockColors = SafetyInfo->getBlockColors();
1548 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1549 while (!PredBBs.empty()) {
1550 BasicBlock *PredBB = *PredBBs.begin();
1551 assert(CurLoop->contains(PredBB) &&
1552 "Expect all predecessors are in the loop");
1553 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1554 BasicBlock *NewPred = SplitBlockPredecessors(
1555 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1556 // Since we do not allow splitting EH-block with BlockColors in
1557 // canSplitPredecessors(), we can simply assign predecessor's color to
1558 // the new block.
1559 if (!BlockColors.empty())
1560 // Grab a reference to the ColorVector to be inserted before getting the
1561 // reference to the vector we are copying because inserting the new
1562 // element in BlockColors might cause the map to be reallocated.
1563 SafetyInfo->copyColors(NewPred, PredBB);
1564 }
1565 PredBBs.remove(PredBB);
1566 }
1567 }
1568
1569 /// When an instruction is found to only be used outside of the loop, this
1570 /// function moves it to the exit blocks and patches up SSA form as needed.
1571 /// This method is guaranteed to remove the original instruction from its
1572 /// position, and may either delete it or move it to outside of the loop.
1573 ///
sink(Instruction & I,LoopInfo * LI,DominatorTree * DT,const Loop * CurLoop,ICFLoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU,OptimizationRemarkEmitter * ORE)1574 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1575 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1576 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1577 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1578 ORE->emit([&]() {
1579 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1580 << "sinking " << ore::NV("Inst", &I);
1581 });
1582 bool Changed = false;
1583 if (isa<LoadInst>(I))
1584 ++NumMovedLoads;
1585 else if (isa<CallInst>(I))
1586 ++NumMovedCalls;
1587 ++NumSunk;
1588
1589 // Iterate over users to be ready for actual sinking. Replace users via
1590 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1591 SmallPtrSet<Instruction *, 8> VisitedUsers;
1592 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1593 auto *User = cast<Instruction>(*UI);
1594 Use &U = UI.getUse();
1595 ++UI;
1596
1597 if (VisitedUsers.count(User) || CurLoop->contains(User))
1598 continue;
1599
1600 if (!DT->isReachableFromEntry(User->getParent())) {
1601 U = UndefValue::get(I.getType());
1602 Changed = true;
1603 continue;
1604 }
1605
1606 // The user must be a PHI node.
1607 PHINode *PN = cast<PHINode>(User);
1608
1609 // Surprisingly, instructions can be used outside of loops without any
1610 // exits. This can only happen in PHI nodes if the incoming block is
1611 // unreachable.
1612 BasicBlock *BB = PN->getIncomingBlock(U);
1613 if (!DT->isReachableFromEntry(BB)) {
1614 U = UndefValue::get(I.getType());
1615 Changed = true;
1616 continue;
1617 }
1618
1619 VisitedUsers.insert(PN);
1620 if (isTriviallyReplaceablePHI(*PN, I))
1621 continue;
1622
1623 if (!canSplitPredecessors(PN, SafetyInfo))
1624 return Changed;
1625
1626 // Split predecessors of the PHI so that we can make users trivially
1627 // replaceable.
1628 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1629
1630 // Should rebuild the iterators, as they may be invalidated by
1631 // splitPredecessorsOfLoopExit().
1632 UI = I.user_begin();
1633 UE = I.user_end();
1634 }
1635
1636 if (VisitedUsers.empty())
1637 return Changed;
1638
1639 #ifndef NDEBUG
1640 SmallVector<BasicBlock *, 32> ExitBlocks;
1641 CurLoop->getUniqueExitBlocks(ExitBlocks);
1642 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1643 ExitBlocks.end());
1644 #endif
1645
1646 // Clones of this instruction. Don't create more than one per exit block!
1647 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1648
1649 // If this instruction is only used outside of the loop, then all users are
1650 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1651 // the instruction.
1652 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1653 for (auto *UI : Users) {
1654 auto *User = cast<Instruction>(UI);
1655
1656 if (CurLoop->contains(User))
1657 continue;
1658
1659 PHINode *PN = cast<PHINode>(User);
1660 assert(ExitBlockSet.count(PN->getParent()) &&
1661 "The LCSSA PHI is not in an exit block!");
1662 // The PHI must be trivially replaceable.
1663 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1664 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1665 PN->replaceAllUsesWith(New);
1666 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1667 Changed = true;
1668 }
1669 return Changed;
1670 }
1671
1672 /// When an instruction is found to only use loop invariant operands that
1673 /// is safe to hoist, this instruction is called to do the dirty work.
1674 ///
hoist(Instruction & I,const DominatorTree * DT,const Loop * CurLoop,BasicBlock * Dest,ICFLoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)1675 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1676 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1677 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1678 OptimizationRemarkEmitter *ORE) {
1679 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
1680 << "\n");
1681 ORE->emit([&]() {
1682 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1683 << ore::NV("Inst", &I);
1684 });
1685
1686 // Metadata can be dependent on conditions we are hoisting above.
1687 // Conservatively strip all metadata on the instruction unless we were
1688 // guaranteed to execute I if we entered the loop, in which case the metadata
1689 // is valid in the loop preheader.
1690 if (I.hasMetadataOtherThanDebugLoc() &&
1691 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1692 // time in isGuaranteedToExecute if we don't actually have anything to
1693 // drop. It is a compile time optimization, not required for correctness.
1694 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1695 I.dropUnknownNonDebugMetadata();
1696
1697 if (isa<PHINode>(I))
1698 // Move the new node to the end of the phi list in the destination block.
1699 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1700 else
1701 // Move the new node to the destination block, before its terminator.
1702 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1703
1704 // Apply line 0 debug locations when we are moving instructions to different
1705 // basic blocks because we want to avoid jumpy line tables.
1706 if (const DebugLoc &DL = I.getDebugLoc())
1707 I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1708
1709 if (isa<LoadInst>(I))
1710 ++NumMovedLoads;
1711 else if (isa<CallInst>(I))
1712 ++NumMovedCalls;
1713 ++NumHoisted;
1714 }
1715
1716 /// Only sink or hoist an instruction if it is not a trapping instruction,
1717 /// or if the instruction is known not to trap when moved to the preheader.
1718 /// or if it is a trapping instruction and is guaranteed to execute.
isSafeToExecuteUnconditionally(Instruction & Inst,const DominatorTree * DT,const Loop * CurLoop,const LoopSafetyInfo * SafetyInfo,OptimizationRemarkEmitter * ORE,const Instruction * CtxI)1719 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1720 const DominatorTree *DT,
1721 const Loop *CurLoop,
1722 const LoopSafetyInfo *SafetyInfo,
1723 OptimizationRemarkEmitter *ORE,
1724 const Instruction *CtxI) {
1725 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1726 return true;
1727
1728 bool GuaranteedToExecute =
1729 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1730
1731 if (!GuaranteedToExecute) {
1732 auto *LI = dyn_cast<LoadInst>(&Inst);
1733 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1734 ORE->emit([&]() {
1735 return OptimizationRemarkMissed(
1736 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1737 << "failed to hoist load with loop-invariant address "
1738 "because load is conditionally executed";
1739 });
1740 }
1741
1742 return GuaranteedToExecute;
1743 }
1744
1745 namespace {
1746 class LoopPromoter : public LoadAndStorePromoter {
1747 Value *SomePtr; // Designated pointer to store to.
1748 const SmallSetVector<Value *, 8> &PointerMustAliases;
1749 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1750 SmallVectorImpl<Instruction *> &LoopInsertPts;
1751 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1752 PredIteratorCache &PredCache;
1753 AliasSetTracker &AST;
1754 MemorySSAUpdater *MSSAU;
1755 LoopInfo &LI;
1756 DebugLoc DL;
1757 int Alignment;
1758 bool UnorderedAtomic;
1759 AAMDNodes AATags;
1760 ICFLoopSafetyInfo &SafetyInfo;
1761
maybeInsertLCSSAPHI(Value * V,BasicBlock * BB) const1762 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1763 if (Instruction *I = dyn_cast<Instruction>(V))
1764 if (Loop *L = LI.getLoopFor(I->getParent()))
1765 if (!L->contains(BB)) {
1766 // We need to create an LCSSA PHI node for the incoming value and
1767 // store that.
1768 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1769 I->getName() + ".lcssa", &BB->front());
1770 for (BasicBlock *Pred : PredCache.get(BB))
1771 PN->addIncoming(I, Pred);
1772 return PN;
1773 }
1774 return V;
1775 }
1776
1777 public:
LoopPromoter(Value * SP,ArrayRef<const Instruction * > Insts,SSAUpdater & S,const SmallSetVector<Value *,8> & PMA,SmallVectorImpl<BasicBlock * > & LEB,SmallVectorImpl<Instruction * > & LIP,SmallVectorImpl<MemoryAccess * > & MSSAIP,PredIteratorCache & PIC,AliasSetTracker & ast,MemorySSAUpdater * MSSAU,LoopInfo & li,DebugLoc dl,int alignment,bool UnorderedAtomic,const AAMDNodes & AATags,ICFLoopSafetyInfo & SafetyInfo)1778 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1779 const SmallSetVector<Value *, 8> &PMA,
1780 SmallVectorImpl<BasicBlock *> &LEB,
1781 SmallVectorImpl<Instruction *> &LIP,
1782 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1783 AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1784 DebugLoc dl, int alignment, bool UnorderedAtomic,
1785 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1786 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1787 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1788 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1789 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1790 SafetyInfo(SafetyInfo) {}
1791
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > &) const1792 bool isInstInList(Instruction *I,
1793 const SmallVectorImpl<Instruction *> &) const override {
1794 Value *Ptr;
1795 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1796 Ptr = LI->getOperand(0);
1797 else
1798 Ptr = cast<StoreInst>(I)->getPointerOperand();
1799 return PointerMustAliases.count(Ptr);
1800 }
1801
doExtraRewritesBeforeFinalDeletion()1802 void doExtraRewritesBeforeFinalDeletion() override {
1803 // Insert stores after in the loop exit blocks. Each exit block gets a
1804 // store of the live-out values that feed them. Since we've already told
1805 // the SSA updater about the defs in the loop and the preheader
1806 // definition, it is all set and we can start using it.
1807 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1808 BasicBlock *ExitBlock = LoopExitBlocks[i];
1809 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1810 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1811 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1812 Instruction *InsertPos = LoopInsertPts[i];
1813 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1814 if (UnorderedAtomic)
1815 NewSI->setOrdering(AtomicOrdering::Unordered);
1816 NewSI->setAlignment(MaybeAlign(Alignment));
1817 NewSI->setDebugLoc(DL);
1818 if (AATags)
1819 NewSI->setAAMetadata(AATags);
1820
1821 if (MSSAU) {
1822 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1823 MemoryAccess *NewMemAcc;
1824 if (!MSSAInsertPoint) {
1825 NewMemAcc = MSSAU->createMemoryAccessInBB(
1826 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1827 } else {
1828 NewMemAcc =
1829 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1830 }
1831 MSSAInsertPts[i] = NewMemAcc;
1832 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1833 // FIXME: true for safety, false may still be correct.
1834 }
1835 }
1836 }
1837
replaceLoadWithValue(LoadInst * LI,Value * V) const1838 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1839 // Update alias analysis.
1840 AST.copyValue(LI, V);
1841 }
instructionDeleted(Instruction * I) const1842 void instructionDeleted(Instruction *I) const override {
1843 SafetyInfo.removeInstruction(I);
1844 AST.deleteValue(I);
1845 if (MSSAU)
1846 MSSAU->removeMemoryAccess(I);
1847 }
1848 };
1849
1850
1851 /// Return true iff we can prove that a caller of this function can not inspect
1852 /// the contents of the provided object in a well defined program.
isKnownNonEscaping(Value * Object,const TargetLibraryInfo * TLI)1853 bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1854 if (isa<AllocaInst>(Object))
1855 // Since the alloca goes out of scope, we know the caller can't retain a
1856 // reference to it and be well defined. Thus, we don't need to check for
1857 // capture.
1858 return true;
1859
1860 // For all other objects we need to know that the caller can't possibly
1861 // have gotten a reference to the object. There are two components of
1862 // that:
1863 // 1) Object can't be escaped by this function. This is what
1864 // PointerMayBeCaptured checks.
1865 // 2) Object can't have been captured at definition site. For this, we
1866 // need to know the return value is noalias. At the moment, we use a
1867 // weaker condition and handle only AllocLikeFunctions (which are
1868 // known to be noalias). TODO
1869 return isAllocLikeFn(Object, TLI) &&
1870 !PointerMayBeCaptured(Object, true, true);
1871 }
1872
1873 } // namespace
1874
1875 /// Try to promote memory values to scalars by sinking stores out of the
1876 /// loop and moving loads to before the loop. We do this by looping over
1877 /// the stores in the loop, looking for stores to Must pointers which are
1878 /// loop invariant.
1879 ///
promoteLoopAccessesToScalars(const SmallSetVector<Value *,8> & PointerMustAliases,SmallVectorImpl<BasicBlock * > & ExitBlocks,SmallVectorImpl<Instruction * > & InsertPts,SmallVectorImpl<MemoryAccess * > & MSSAInsertPts,PredIteratorCache & PIC,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,Loop * CurLoop,AliasSetTracker * CurAST,MemorySSAUpdater * MSSAU,ICFLoopSafetyInfo * SafetyInfo,OptimizationRemarkEmitter * ORE)1880 bool llvm::promoteLoopAccessesToScalars(
1881 const SmallSetVector<Value *, 8> &PointerMustAliases,
1882 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1883 SmallVectorImpl<Instruction *> &InsertPts,
1884 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1885 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1886 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1887 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1888 // Verify inputs.
1889 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1890 CurAST != nullptr && SafetyInfo != nullptr &&
1891 "Unexpected Input to promoteLoopAccessesToScalars");
1892
1893 Value *SomePtr = *PointerMustAliases.begin();
1894 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1895
1896 // It is not safe to promote a load/store from the loop if the load/store is
1897 // conditional. For example, turning:
1898 //
1899 // for () { if (c) *P += 1; }
1900 //
1901 // into:
1902 //
1903 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1904 //
1905 // is not safe, because *P may only be valid to access if 'c' is true.
1906 //
1907 // The safety property divides into two parts:
1908 // p1) The memory may not be dereferenceable on entry to the loop. In this
1909 // case, we can't insert the required load in the preheader.
1910 // p2) The memory model does not allow us to insert a store along any dynamic
1911 // path which did not originally have one.
1912 //
1913 // If at least one store is guaranteed to execute, both properties are
1914 // satisfied, and promotion is legal.
1915 //
1916 // This, however, is not a necessary condition. Even if no store/load is
1917 // guaranteed to execute, we can still establish these properties.
1918 // We can establish (p1) by proving that hoisting the load into the preheader
1919 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1920 // can use any access within the alias set to prove dereferenceability,
1921 // since they're all must alias.
1922 //
1923 // There are two ways establish (p2):
1924 // a) Prove the location is thread-local. In this case the memory model
1925 // requirement does not apply, and stores are safe to insert.
1926 // b) Prove a store dominates every exit block. In this case, if an exit
1927 // blocks is reached, the original dynamic path would have taken us through
1928 // the store, so inserting a store into the exit block is safe. Note that this
1929 // is different from the store being guaranteed to execute. For instance,
1930 // if an exception is thrown on the first iteration of the loop, the original
1931 // store is never executed, but the exit blocks are not executed either.
1932
1933 bool DereferenceableInPH = false;
1934 bool SafeToInsertStore = false;
1935
1936 SmallVector<Instruction *, 64> LoopUses;
1937
1938 // We start with an alignment of one and try to find instructions that allow
1939 // us to prove better alignment.
1940 unsigned Alignment = 1;
1941 // Keep track of which types of access we see
1942 bool SawUnorderedAtomic = false;
1943 bool SawNotAtomic = false;
1944 AAMDNodes AATags;
1945
1946 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1947
1948 bool IsKnownThreadLocalObject = false;
1949 if (SafetyInfo->anyBlockMayThrow()) {
1950 // If a loop can throw, we have to insert a store along each unwind edge.
1951 // That said, we can't actually make the unwind edge explicit. Therefore,
1952 // we have to prove that the store is dead along the unwind edge. We do
1953 // this by proving that the caller can't have a reference to the object
1954 // after return and thus can't possibly load from the object.
1955 Value *Object = GetUnderlyingObject(SomePtr, MDL);
1956 if (!isKnownNonEscaping(Object, TLI))
1957 return false;
1958 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1959 // visible to other threads if captured and used during their lifetimes.
1960 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1961 }
1962
1963 // Check that all of the pointers in the alias set have the same type. We
1964 // cannot (yet) promote a memory location that is loaded and stored in
1965 // different sizes. While we are at it, collect alignment and AA info.
1966 for (Value *ASIV : PointerMustAliases) {
1967 // Check that all of the pointers in the alias set have the same type. We
1968 // cannot (yet) promote a memory location that is loaded and stored in
1969 // different sizes.
1970 if (SomePtr->getType() != ASIV->getType())
1971 return false;
1972
1973 for (User *U : ASIV->users()) {
1974 // Ignore instructions that are outside the loop.
1975 Instruction *UI = dyn_cast<Instruction>(U);
1976 if (!UI || !CurLoop->contains(UI))
1977 continue;
1978
1979 // If there is an non-load/store instruction in the loop, we can't promote
1980 // it.
1981 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
1982 if (!Load->isUnordered())
1983 return false;
1984
1985 SawUnorderedAtomic |= Load->isAtomic();
1986 SawNotAtomic |= !Load->isAtomic();
1987
1988 unsigned InstAlignment = Load->getAlignment();
1989 if (!InstAlignment)
1990 InstAlignment =
1991 MDL.getABITypeAlignment(Load->getType());
1992
1993 // Note that proving a load safe to speculate requires proving
1994 // sufficient alignment at the target location. Proving it guaranteed
1995 // to execute does as well. Thus we can increase our guaranteed
1996 // alignment as well.
1997 if (!DereferenceableInPH || (InstAlignment > Alignment))
1998 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
1999 ORE, Preheader->getTerminator())) {
2000 DereferenceableInPH = true;
2001 Alignment = std::max(Alignment, InstAlignment);
2002 }
2003 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2004 // Stores *of* the pointer are not interesting, only stores *to* the
2005 // pointer.
2006 if (UI->getOperand(1) != ASIV)
2007 continue;
2008 if (!Store->isUnordered())
2009 return false;
2010
2011 SawUnorderedAtomic |= Store->isAtomic();
2012 SawNotAtomic |= !Store->isAtomic();
2013
2014 // If the store is guaranteed to execute, both properties are satisfied.
2015 // We may want to check if a store is guaranteed to execute even if we
2016 // already know that promotion is safe, since it may have higher
2017 // alignment than any other guaranteed stores, in which case we can
2018 // raise the alignment on the promoted store.
2019 unsigned InstAlignment = Store->getAlignment();
2020 if (!InstAlignment)
2021 InstAlignment =
2022 MDL.getABITypeAlignment(Store->getValueOperand()->getType());
2023
2024 if (!DereferenceableInPH || !SafeToInsertStore ||
2025 (InstAlignment > Alignment)) {
2026 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2027 DereferenceableInPH = true;
2028 SafeToInsertStore = true;
2029 Alignment = std::max(Alignment, InstAlignment);
2030 }
2031 }
2032
2033 // If a store dominates all exit blocks, it is safe to sink.
2034 // As explained above, if an exit block was executed, a dominating
2035 // store must have been executed at least once, so we are not
2036 // introducing stores on paths that did not have them.
2037 // Note that this only looks at explicit exit blocks. If we ever
2038 // start sinking stores into unwind edges (see above), this will break.
2039 if (!SafeToInsertStore)
2040 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2041 return DT->dominates(Store->getParent(), Exit);
2042 });
2043
2044 // If the store is not guaranteed to execute, we may still get
2045 // deref info through it.
2046 if (!DereferenceableInPH) {
2047 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2048 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2049 MaybeAlign(Store->getAlignment()), MDL,
2050 Preheader->getTerminator(), DT);
2051 }
2052 } else
2053 return false; // Not a load or store.
2054
2055 // Merge the AA tags.
2056 if (LoopUses.empty()) {
2057 // On the first load/store, just take its AA tags.
2058 UI->getAAMetadata(AATags);
2059 } else if (AATags) {
2060 UI->getAAMetadata(AATags, /* Merge = */ true);
2061 }
2062
2063 LoopUses.push_back(UI);
2064 }
2065 }
2066
2067 // If we found both an unordered atomic instruction and a non-atomic memory
2068 // access, bail. We can't blindly promote non-atomic to atomic since we
2069 // might not be able to lower the result. We can't downgrade since that
2070 // would violate memory model. Also, align 0 is an error for atomics.
2071 if (SawUnorderedAtomic && SawNotAtomic)
2072 return false;
2073
2074 // If we're inserting an atomic load in the preheader, we must be able to
2075 // lower it. We're only guaranteed to be able to lower naturally aligned
2076 // atomics.
2077 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2078 if (SawUnorderedAtomic &&
2079 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2080 return false;
2081
2082 // If we couldn't prove we can hoist the load, bail.
2083 if (!DereferenceableInPH)
2084 return false;
2085
2086 // We know we can hoist the load, but don't have a guaranteed store.
2087 // Check whether the location is thread-local. If it is, then we can insert
2088 // stores along paths which originally didn't have them without violating the
2089 // memory model.
2090 if (!SafeToInsertStore) {
2091 if (IsKnownThreadLocalObject)
2092 SafeToInsertStore = true;
2093 else {
2094 Value *Object = GetUnderlyingObject(SomePtr, MDL);
2095 SafeToInsertStore =
2096 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2097 !PointerMayBeCaptured(Object, true, true);
2098 }
2099 }
2100
2101 // If we've still failed to prove we can sink the store, give up.
2102 if (!SafeToInsertStore)
2103 return false;
2104
2105 // Otherwise, this is safe to promote, lets do it!
2106 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
2107 << '\n');
2108 ORE->emit([&]() {
2109 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2110 LoopUses[0])
2111 << "Moving accesses to memory location out of the loop";
2112 });
2113 ++NumPromoted;
2114
2115 // Grab a debug location for the inserted loads/stores; given that the
2116 // inserted loads/stores have little relation to the original loads/stores,
2117 // this code just arbitrarily picks a location from one, since any debug
2118 // location is better than none.
2119 DebugLoc DL = LoopUses[0]->getDebugLoc();
2120
2121 // We use the SSAUpdater interface to insert phi nodes as required.
2122 SmallVector<PHINode *, 16> NewPHIs;
2123 SSAUpdater SSA(&NewPHIs);
2124 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2125 InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
2126 Alignment, SawUnorderedAtomic, AATags, *SafetyInfo);
2127
2128 // Set up the preheader to have a definition of the value. It is the live-out
2129 // value from the preheader that uses in the loop will use.
2130 LoadInst *PreheaderLoad = new LoadInst(
2131 SomePtr->getType()->getPointerElementType(), SomePtr,
2132 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2133 if (SawUnorderedAtomic)
2134 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2135 PreheaderLoad->setAlignment(MaybeAlign(Alignment));
2136 PreheaderLoad->setDebugLoc(DL);
2137 if (AATags)
2138 PreheaderLoad->setAAMetadata(AATags);
2139 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2140
2141 if (MSSAU) {
2142 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2143 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2144 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2145 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2146 }
2147
2148 if (MSSAU && VerifyMemorySSA)
2149 MSSAU->getMemorySSA()->verifyMemorySSA();
2150 // Rewrite all the loads in the loop and remember all the definitions from
2151 // stores in the loop.
2152 Promoter.run(LoopUses);
2153
2154 if (MSSAU && VerifyMemorySSA)
2155 MSSAU->getMemorySSA()->verifyMemorySSA();
2156 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2157 if (PreheaderLoad->use_empty())
2158 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2159
2160 return true;
2161 }
2162
2163 /// Returns an owning pointer to an alias set which incorporates aliasing info
2164 /// from L and all subloops of L.
2165 /// FIXME: In new pass manager, there is no helper function to handle loop
2166 /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
2167 /// from scratch for every loop. Hook up with the helper functions when
2168 /// available in the new pass manager to avoid redundant computation.
2169 std::unique_ptr<AliasSetTracker>
collectAliasInfoForLoop(Loop * L,LoopInfo * LI,AliasAnalysis * AA)2170 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2171 AliasAnalysis *AA) {
2172 std::unique_ptr<AliasSetTracker> CurAST;
2173 SmallVector<Loop *, 4> RecomputeLoops;
2174 for (Loop *InnerL : L->getSubLoops()) {
2175 auto MapI = LoopToAliasSetMap.find(InnerL);
2176 // If the AST for this inner loop is missing it may have been merged into
2177 // some other loop's AST and then that loop unrolled, and so we need to
2178 // recompute it.
2179 if (MapI == LoopToAliasSetMap.end()) {
2180 RecomputeLoops.push_back(InnerL);
2181 continue;
2182 }
2183 std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
2184
2185 if (CurAST) {
2186 // What if InnerLoop was modified by other passes ?
2187 // Once we've incorporated the inner loop's AST into ours, we don't need
2188 // the subloop's anymore.
2189 CurAST->add(*InnerAST);
2190 } else {
2191 CurAST = std::move(InnerAST);
2192 }
2193 LoopToAliasSetMap.erase(MapI);
2194 }
2195 if (!CurAST)
2196 CurAST = std::make_unique<AliasSetTracker>(*AA);
2197
2198 // Add everything from the sub loops that are no longer directly available.
2199 for (Loop *InnerL : RecomputeLoops)
2200 for (BasicBlock *BB : InnerL->blocks())
2201 CurAST->add(*BB);
2202
2203 // And merge in this loop (without anything from inner loops).
2204 for (BasicBlock *BB : L->blocks())
2205 if (LI->getLoopFor(BB) == L)
2206 CurAST->add(*BB);
2207
2208 return CurAST;
2209 }
2210
2211 std::unique_ptr<AliasSetTracker>
collectAliasInfoForLoopWithMSSA(Loop * L,AliasAnalysis * AA,MemorySSAUpdater * MSSAU)2212 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2213 Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) {
2214 auto *MSSA = MSSAU->getMemorySSA();
2215 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
2216 CurAST->addAllInstructionsInLoopUsingMSSA();
2217 return CurAST;
2218 }
2219
2220 /// Simple analysis hook. Clone alias set info.
2221 ///
cloneBasicBlockAnalysis(BasicBlock * From,BasicBlock * To,Loop * L)2222 void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
2223 Loop *L) {
2224 auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2225 if (ASTIt == LICM.getLoopToAliasSetMap().end())
2226 return;
2227
2228 ASTIt->second->copyValue(From, To);
2229 }
2230
2231 /// Simple Analysis hook. Delete value V from alias set
2232 ///
deleteAnalysisValue(Value * V,Loop * L)2233 void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
2234 auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2235 if (ASTIt == LICM.getLoopToAliasSetMap().end())
2236 return;
2237
2238 ASTIt->second->deleteValue(V);
2239 }
2240
2241 /// Simple Analysis hook. Delete value L from alias set map.
2242 ///
deleteAnalysisLoop(Loop * L)2243 void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
2244 if (!LICM.getLoopToAliasSetMap().count(L))
2245 return;
2246
2247 LICM.getLoopToAliasSetMap().erase(L);
2248 }
2249
pointerInvalidatedByLoop(MemoryLocation MemLoc,AliasSetTracker * CurAST,Loop * CurLoop,AliasAnalysis * AA)2250 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2251 AliasSetTracker *CurAST, Loop *CurLoop,
2252 AliasAnalysis *AA) {
2253 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2254 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2255
2256 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2257 return isInvalidatedAccordingToAST;
2258
2259 // Check with a diagnostic analysis if we can refine the information above.
2260 // This is to identify the limitations of using the AST.
2261 // The alias set mechanism used by LICM has a major weakness in that it
2262 // combines all things which may alias into a single set *before* asking
2263 // modref questions. As a result, a single readonly call within a loop will
2264 // collapse all loads and stores into a single alias set and report
2265 // invalidation if the loop contains any store. For example, readonly calls
2266 // with deopt states have this form and create a general alias set with all
2267 // loads and stores. In order to get any LICM in loops containing possible
2268 // deopt states we need a more precise invalidation of checking the mod ref
2269 // info of each instruction within the loop and LI. This has a complexity of
2270 // O(N^2), so currently, it is used only as a diagnostic tool since the
2271 // default value of LICMN2Threshold is zero.
2272
2273 // Don't look at nested loops.
2274 if (CurLoop->begin() != CurLoop->end())
2275 return true;
2276
2277 int N = 0;
2278 for (BasicBlock *BB : CurLoop->getBlocks())
2279 for (Instruction &I : *BB) {
2280 if (N >= LICMN2Theshold) {
2281 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
2282 << *(MemLoc.Ptr) << "\n");
2283 return true;
2284 }
2285 N++;
2286 auto Res = AA->getModRefInfo(&I, MemLoc);
2287 if (isModSet(Res)) {
2288 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
2289 << *(MemLoc.Ptr) << "\n");
2290 return true;
2291 }
2292 }
2293 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
2294 return false;
2295 }
2296
pointerInvalidatedByLoopWithMSSA(MemorySSA * MSSA,MemoryUse * MU,Loop * CurLoop,SinkAndHoistLICMFlags & Flags)2297 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2298 Loop *CurLoop,
2299 SinkAndHoistLICMFlags &Flags) {
2300 // For hoisting, use the walker to determine safety
2301 if (!Flags.IsSink) {
2302 MemoryAccess *Source;
2303 // See declaration of SetLicmMssaOptCap for usage details.
2304 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2305 Source = MU->getDefiningAccess();
2306 else {
2307 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2308 Flags.LicmMssaOptCounter++;
2309 }
2310 return !MSSA->isLiveOnEntryDef(Source) &&
2311 CurLoop->contains(Source->getBlock());
2312 }
2313
2314 // For sinking, we'd need to check all Defs below this use. The getClobbering
2315 // call will look on the backedge of the loop, but will check aliasing with
2316 // the instructions on the previous iteration.
2317 // For example:
2318 // for (i ... )
2319 // load a[i] ( Use (LoE)
2320 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2321 // i++;
2322 // The load sees no clobbering inside the loop, as the backedge alias check
2323 // does phi translation, and will check aliasing against store a[i-1].
2324 // However sinking the load outside the loop, below the store is incorrect.
2325
2326 // For now, only sink if there are no Defs in the loop, and the existing ones
2327 // precede the use and are in the same block.
2328 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2329 // needs PostDominatorTreeAnalysis.
2330 // FIXME: More precise: no Defs that alias this Use.
2331 if (Flags.NoOfMemAccTooLarge)
2332 return true;
2333 for (auto *BB : CurLoop->getBlocks())
2334 if (auto *Accesses = MSSA->getBlockDefs(BB))
2335 for (const auto &MA : *Accesses)
2336 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2337 if (MU->getBlock() != MD->getBlock() ||
2338 !MSSA->locallyDominates(MD, MU))
2339 return true;
2340 return false;
2341 }
2342
2343 /// Little predicate that returns true if the specified basic block is in
2344 /// a subloop of the current one, not the current one itself.
2345 ///
inSubLoop(BasicBlock * BB,Loop * CurLoop,LoopInfo * LI)2346 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2347 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2348 return LI->getLoopFor(BB) != CurLoop;
2349 }
2350