• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for I2C adapter in Rockchip RK3xxx SoC
4  *
5  * Max Schwarz <max.schwarz@online.de>
6  * based on the patches by Rockchip Inc.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/platform_device.h>
17 #include <linux/io.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/spinlock.h>
21 #include <linux/clk.h>
22 #include <linux/wait.h>
23 #include <linux/mfd/syscon.h>
24 #include <linux/regmap.h>
25 #include <linux/math64.h>
26 #include <linux/reboot.h>
27 #include <linux/delay.h>
28 
29 /* Register Map */
30 #define REG_CON 0x00      /* control register */
31 #define REG_CLKDIV 0x04   /* clock divisor register */
32 #define REG_MRXADDR 0x08  /* slave address for REGISTER_TX */
33 #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */
34 #define REG_MTXCNT 0x10   /* number of bytes to be transmitted */
35 #define REG_MRXCNT 0x14   /* number of bytes to be received */
36 #define REG_IEN 0x18      /* interrupt enable */
37 #define REG_IPD 0x1c      /* interrupt pending */
38 #define REG_FCNT 0x20     /* finished count */
39 
40 /* Data buffer offsets */
41 #define TXBUFFER_BASE 0x100
42 #define RXBUFFER_BASE 0x200
43 
44 /* REG_CON bits */
45 #define REG_CON_EN BIT(0)
46 enum {
47     REG_CON_MOD_TX = 0,      /* transmit data */
48     REG_CON_MOD_REGISTER_TX, /* select register and restart */
49     REG_CON_MOD_RX,          /* receive data */
50     REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
51                               * register addr */
52 };
53 #define REG_CON_MOD(mod) ((mod) << 1)
54 #define REG_CON_MOD_MASK (BIT(1) | BIT(2))
55 #define REG_CON_START BIT(3)
56 #define REG_CON_STOP BIT(4)
57 #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */
58 #define REG_CON_ACTACK BIT(6)  /* 1: stop if NACK is received */
59 
60 #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
61 
62 #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
63 #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
64 #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
65 
66 /* REG_MRXADDR bits */
67 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
68 
69 /* REG_IEN/REG_IPD bits */
70 #define REG_INT_BTF BIT(0)    /* a byte was transmitted */
71 #define REG_INT_BRF BIT(1)    /* a byte was received */
72 #define REG_INT_MBTF BIT(2)   /* master data transmit finished */
73 #define REG_INT_MBRF BIT(3)   /* master data receive finished */
74 #define REG_INT_START BIT(4)  /* START condition generated */
75 #define REG_INT_STOP BIT(5)   /* STOP condition generated */
76 #define REG_INT_NAKRCV BIT(6) /* NACK received */
77 #define REG_INT_ALL 0xff
78 
79 /* Disable i2c all irqs */
80 #define IEN_ALL_DISABLE 0
81 
82 /* Constants */
83 #define WAIT_TIMEOUT 1000             /* ms */
84 #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */
85 
86 #define RK_I2C_MSG_LEN_MAX 32
87 #define RK_I2C_TX_TIMES_COUNT 8
88 #define RK_I2C_DWORD_TO_BYTE_COUNT 4
89 #define RK_I2C_BYTE_TO_BIT_COUNT 8
90 #define RK_I2C_ADDR_MASK 0x7f
91 #define RK_I2C_BYTE_VALUE_MASK 0xff
92 #define RK_I2C_BUS_FREQ_MIN 1000
93 #define RK_I2C_MIN_HIGH_NS_DIV_ROUND_PARA_ONE 875
94 #define RK_I2C_MIN_HIGH_NS_DIV_ROUND_PARA_TWO 2
95 #define RK_I2C_SCL_RATE_HZ_MUL 8
96 #define RK_I2C_SCL_RATE_HZ_VALUE 1000000
97 #define RK_I2C_MAX_DIV_VALUE 0xffff
98 #define RK_I2C_SCL_MIN_VALUE 2
99 #define RK_I2C_SDA_UPDATA_CFG_TIMES 3
100 #define RK_I2C_S_TO_NS 1000000000
101 #define RK_I2C_SCL_DIV_HIGH_SHIFT_MASK 16
102 #define RK_I2C_MSG_LEN_MIN 4
103 #define RK_I2C_MSG_NUM 2
104 #define RK_I2C_WAIT_POLL_UDELAY_VALUE_FIVE 5
105 #define RK_I2C_WAIT_POLL_UDELAY_VALUE_TEN 10
106 #define RK_I2C_PROBE_RETRY_TIMES 3
107 #define RK_I2C_RESTART_PRIORITY_VALUE 128
108 #define RK_I2C_BIT_MASK_FOUR 4
109 #define RK_I2C_BIT_MASK_TEN 10
110 #define RK_I2C_BIT_MASK_ELEVEN 11
111 #define RK_I2C_BIT_MASK_TWENTY 20
112 #define RK_I2C_BIT_MASK_TWENTY_SIX 26
113 #define RK_I2C_BIT_MASK_TWENTY_SEVEN 27
114 #define RK_I2C_ADAPTER_NUM 2
115 
116 /**
117  * struct i2c_spec_values:
118  * @min_hold_start_ns: min hold time (repeated) START condition
119  * @min_low_ns: min LOW period of the SCL clock
120  * @min_high_ns: min HIGH period of the SCL cloc
121  * @min_setup_start_ns: min set-up time for a repeated START conditio
122  * @max_data_hold_ns: max data hold time
123  * @min_data_setup_ns: min data set-up time
124  * @min_setup_stop_ns: min set-up time for STOP condition
125  * @min_hold_buffer_ns: min bus free time between a STOP and
126  * START condition
127  */
128 struct i2c_spec_values {
129     unsigned long min_hold_start_ns;
130     unsigned long min_low_ns;
131     unsigned long min_high_ns;
132     unsigned long min_setup_start_ns;
133     unsigned long max_data_hold_ns;
134     unsigned long min_data_setup_ns;
135     unsigned long min_setup_stop_ns;
136     unsigned long min_hold_buffer_ns;
137 };
138 
139 static const struct i2c_spec_values standard_mode_spec = {
140     .min_hold_start_ns = 4000,
141     .min_low_ns = 4700,
142     .min_high_ns = 4000,
143     .min_setup_start_ns = 4700,
144     .max_data_hold_ns = 3450,
145     .min_data_setup_ns = 250,
146     .min_setup_stop_ns = 4000,
147     .min_hold_buffer_ns = 4700,
148 };
149 
150 static const struct i2c_spec_values fast_mode_spec = {
151     .min_hold_start_ns = 600,
152     .min_low_ns = 1300,
153     .min_high_ns = 600,
154     .min_setup_start_ns = 600,
155     .max_data_hold_ns = 900,
156     .min_data_setup_ns = 100,
157     .min_setup_stop_ns = 600,
158     .min_hold_buffer_ns = 1300,
159 };
160 
161 static const struct i2c_spec_values fast_mode_plus_spec = {
162     .min_hold_start_ns = 260,
163     .min_low_ns = 500,
164     .min_high_ns = 260,
165     .min_setup_start_ns = 260,
166     .max_data_hold_ns = 400,
167     .min_data_setup_ns = 50,
168     .min_setup_stop_ns = 260,
169     .min_hold_buffer_ns = 500,
170 };
171 
172 /**
173  * struct rk3x_i2c_calced_timings:
174  * @div_low: Divider output for low
175  * @div_high: Divider output for high
176  * @tuning: Used to adjust setup/hold data time,
177  * setup/hold start time and setup stop time for
178  * v1's calc_timings, the tuning should all be 0
179  * for old hardware anyone using v0's calc_timings.
180  */
181 struct rk3x_i2c_calced_timings {
182     unsigned long div_low;
183     unsigned long div_high;
184     unsigned int tuning;
185 };
186 
187 enum rk3x_i2c_state { STATE_IDLE, STATE_READ, STATE_WRITE, STATE_STOP };
188 
189 /**
190  * struct rk3x_i2c_soc_data:
191  * @grf_offset: offset inside the grf regmap for setting the i2c type
192  * @calc_timings: Callback function for i2c timing information calculated
193  */
194 struct rk3x_i2c_soc_data {
195     int grf_offset;
196     int (*calc_timings)(unsigned long, struct i2c_timings *, struct rk3x_i2c_calced_timings *);
197 };
198 
199 /**
200  * struct rk3x_i2c - private data of the controller
201  * @adap: corresponding I2C adapter
202  * @dev: device for this controller
203  * @soc_data: related soc data struct
204  * @regs: virtual memory area
205  * @clk: function clk for rk3399 or function & Bus clks for others
206  * @pclk: Bus clk for rk3399
207  * @clk_rate_nb: i2c clk rate change notify
208  * @t: I2C known timing information
209  * @lock: spinlock for the i2c bus
210  * @wait: the waitqueue to wait for i2c transfer
211  * @busy: the condition for the event to wait for
212  * @msg: current i2c message
213  * @addr: addr of i2c slave device
214  * @mode: mode of i2c transfer
215  * @is_last_msg: flag determines whether it is the last msg in this transfer
216  * @state: state of i2c transfer
217  * @processed: byte length which has been send or received
218  * @error: error code for i2c transfer
219  * @i2c_restart_nb: make sure the i2c transfer to be finished
220  * @system_restarting: true if system is restarting
221  */
222 struct rk3x_i2c {
223     struct i2c_adapter adap;
224     struct device *dev;
225     const struct rk3x_i2c_soc_data *soc_data;
226 
227     /* Hardware resources */
228     void __iomem *regs;
229     struct clk *clk;
230     struct clk *pclk;
231     struct notifier_block clk_rate_nb;
232 
233     /* Settings */
234     struct i2c_timings t;
235 
236     /* Synchronization & notification */
237     spinlock_t lock;
238     wait_queue_head_t wait;
239     bool busy;
240 
241     /* Current message */
242     struct i2c_msg *msg;
243     u8 addr;
244     unsigned int mode;
245     bool is_last_msg;
246 
247     /* I2C state machine */
248     enum rk3x_i2c_state state;
249     unsigned int processed;
250     int error;
251     unsigned int suspended : 1;
252 
253     struct notifier_block i2c_restart_nb;
254     bool system_restarting;
255 };
256 
257 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c);
258 static int rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c, bool sended);
259 
rk3x_i2c_wake_up(struct rk3x_i2c * i2c)260 static inline void rk3x_i2c_wake_up(struct rk3x_i2c *i2c)
261 {
262     if (!i2c->system_restarting) {
263         wake_up(&i2c->wait);
264     }
265 }
266 
i2c_writel(struct rk3x_i2c * i2c,u32 value,unsigned int offset)267 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value, unsigned int offset)
268 {
269     writel(value, i2c->regs + offset);
270 }
271 
i2c_readl(struct rk3x_i2c * i2c,unsigned int offset)272 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
273 {
274     return readl(i2c->regs + offset);
275 }
276 
277 /* Reset all interrupt pending bits */
rk3x_i2c_clean_ipd(struct rk3x_i2c * i2c)278 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
279 {
280     i2c_writel(i2c, REG_INT_ALL, REG_IPD);
281 }
282 
rk3x_i2c_disable_irq(struct rk3x_i2c * i2c)283 static inline void rk3x_i2c_disable_irq(struct rk3x_i2c *i2c)
284 {
285     i2c_writel(i2c, IEN_ALL_DISABLE, REG_IEN);
286 }
287 
rk3x_i2c_disable(struct rk3x_i2c * i2c)288 static inline void rk3x_i2c_disable(struct rk3x_i2c *i2c)
289 {
290     u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
291 
292     i2c_writel(i2c, val, REG_CON);
293 }
294 
295 /**
296  * Generate a START condition, which triggers a REG_INT_START interrupt.
297  */
rk3x_i2c_start(struct rk3x_i2c * i2c)298 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
299 {
300     u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
301     int length = 0;
302 
303     /* enable appropriate interrupts */
304     if (i2c->mode == REG_CON_MOD_TX) {
305         i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
306         i2c->state = STATE_WRITE;
307         length = rk3x_i2c_fill_transmit_buf(i2c, false);
308     } else {
309         /* in any other case, we are going to be reading. */
310         i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
311         i2c->state = STATE_READ;
312     }
313 
314     /* enable adapter with correct mode, send START condition */
315     val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
316 
317     /* if we want to react to NACK, set ACTACK bit */
318     if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {
319         val |= REG_CON_ACTACK;
320     }
321 
322     i2c_writel(i2c, val, REG_CON);
323 
324     /* enable transition */
325     if (i2c->mode == REG_CON_MOD_TX) {
326         i2c_writel(i2c, length, REG_MTXCNT);
327     } else {
328         rk3x_i2c_prepare_read(i2c);
329     }
330 }
331 
332 /**
333  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
334  *
335  * @error: Error code to return in rk3x_i2c_xfer
336  */
rk3x_i2c_stop(struct rk3x_i2c * i2c,int error)337 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
338 {
339     unsigned int ctrl;
340 
341     i2c->processed = 0;
342     i2c->msg = NULL;
343     i2c->error = error;
344 
345     if (i2c->is_last_msg) {
346         /* Enable stop interrupt */
347         i2c_writel(i2c, REG_INT_STOP, REG_IEN);
348 
349         i2c->state = STATE_STOP;
350 
351         ctrl = i2c_readl(i2c, REG_CON);
352         ctrl |= REG_CON_STOP;
353         ctrl &= ~REG_CON_START;
354         i2c_writel(i2c, ctrl, REG_CON);
355     } else {
356         /* Signal rk3x_i2c_xfer to start the next message. */
357         i2c->busy = false;
358         i2c->state = STATE_IDLE;
359 
360         /*
361          * The HW is actually not capable of REPEATED START. But we can
362          * get the intended effect by resetting its internal state
363          * and issuing an ordinary START.
364          */
365         ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
366         i2c_writel(i2c, ctrl, REG_CON);
367 
368         /* signal that we are finished with the current msg */
369         rk3x_i2c_wake_up(i2c);
370     }
371 }
372 
373 /**
374  * Setup a read according to i2c->msg
375  */
rk3x_i2c_prepare_read(struct rk3x_i2c * i2c)376 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
377 {
378     unsigned int len = i2c->msg->len - i2c->processed;
379     u32 con;
380 
381     con = i2c_readl(i2c, REG_CON);
382 
383     /*
384      * The hw can read up to 32 bytes at a time. If we need more than one
385      * chunk, send an ACK after the last byte of the current chunk.
386      */
387     if (len > RK_I2C_MSG_LEN_MAX) {
388         len = RK_I2C_MSG_LEN_MAX;
389         con &= ~REG_CON_LASTACK;
390     } else {
391         con |= REG_CON_LASTACK;
392     }
393 
394     /* make sure we are in plain RX mode if we read a second chunk */
395     if (i2c->processed != 0) {
396         con &= ~REG_CON_MOD_MASK;
397         con |= REG_CON_MOD(REG_CON_MOD_RX);
398         if (con & REG_CON_START) {
399             con &= ~REG_CON_START;
400         }
401     }
402 
403     i2c_writel(i2c, con, REG_CON);
404     i2c_writel(i2c, len, REG_MRXCNT);
405 }
406 
407 /**
408  * Fill the transmit buffer with data from i2c->msg
409  */
rk3x_i2c_fill_transmit_buf(struct rk3x_i2c * i2c,bool sendend)410 static int rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c, bool sendend)
411 {
412     unsigned int i, j;
413     u32 cnt = 0;
414     u32 val;
415     u8 byte;
416 
417     for (i = 0; i < RK_I2C_TX_TIMES_COUNT; ++i) {
418         val = 0;
419         for (j = 0; j < RK_I2C_DWORD_TO_BYTE_COUNT; ++j) {
420             if ((i2c->processed == i2c->msg->len) && (cnt != 0)) {
421                 break;
422             }
423 
424             if (i2c->processed == 0 && cnt == 0) {
425                 byte = (i2c->addr & RK_I2C_ADDR_MASK) << 1;
426             } else {
427                 byte = i2c->msg->buf[i2c->processed++];
428             }
429 
430             val |= byte << (j * RK_I2C_BYTE_TO_BIT_COUNT);
431             cnt++;
432         }
433 
434         i2c_writel(i2c, val, TXBUFFER_BASE + RK_I2C_DWORD_TO_BYTE_COUNT * i);
435 
436         if (i2c->processed == i2c->msg->len) {
437             break;
438         }
439     }
440 
441     if (sendend) {
442         i2c_writel(i2c, cnt, REG_MTXCNT);
443     }
444 
445     return cnt;
446 }
447 
448 /* IRQ handlers for individual states */
449 
rk3x_i2c_handle_write(struct rk3x_i2c * i2c,unsigned int ipd)450 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
451 {
452     if (!(ipd & REG_INT_MBTF)) {
453         rk3x_i2c_stop(i2c, -EIO);
454         dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
455         rk3x_i2c_clean_ipd(i2c);
456         return;
457     }
458 
459     /* ack interrupt */
460     i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
461 
462     /* are we finished? */
463     if (i2c->processed == i2c->msg->len) {
464         rk3x_i2c_stop(i2c, i2c->error);
465     } else {
466         rk3x_i2c_fill_transmit_buf(i2c, true);
467     }
468 }
469 
rk3x_i2c_handle_read(struct rk3x_i2c * i2c,unsigned int ipd)470 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
471 {
472     unsigned int i;
473     unsigned int len = i2c->msg->len - i2c->processed;
474     u32 val;
475     u8 byte;
476 
477     /* we only care for MBRF here. */
478     if (!(ipd & REG_INT_MBRF)) {
479         return;
480     }
481 
482     /* ack interrupt */
483     i2c_writel(i2c, REG_INT_MBRF | REG_INT_START, REG_IPD);
484 
485     /* Can only handle a maximum of 32 bytes at a time */
486     if (len > RK_I2C_MSG_LEN_MAX) {
487         len = RK_I2C_MSG_LEN_MAX;
488     }
489 
490     /* read the data from receive buffer */
491     for (i = 0; i < len; ++i) {
492         if (i % RK_I2C_DWORD_TO_BYTE_COUNT == 0) {
493             val = i2c_readl(i2c, RXBUFFER_BASE + (i / RK_I2C_DWORD_TO_BYTE_COUNT) * RK_I2C_DWORD_TO_BYTE_COUNT);
494         }
495 
496         byte = (val >> ((i % RK_I2C_DWORD_TO_BYTE_COUNT) * RK_I2C_BYTE_TO_BIT_COUNT)) & RK_I2C_BYTE_VALUE_MASK;
497         i2c->msg->buf[i2c->processed++] = byte;
498     }
499 
500     /* are we finished? */
501     if (i2c->processed == i2c->msg->len) {
502         rk3x_i2c_stop(i2c, i2c->error);
503     } else {
504         rk3x_i2c_prepare_read(i2c);
505     }
506 }
507 
rk3x_i2c_handle_stop(struct rk3x_i2c * i2c,unsigned int ipd)508 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
509 {
510     unsigned int con;
511 
512     if (!(ipd & REG_INT_STOP)) {
513         rk3x_i2c_stop(i2c, -EIO);
514         dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
515         rk3x_i2c_clean_ipd(i2c);
516         return;
517     }
518 
519     /* ack interrupt */
520     i2c_writel(i2c, REG_INT_STOP, REG_IPD);
521 
522     /* disable STOP bit */
523     con = i2c_readl(i2c, REG_CON);
524     con &= ~REG_CON_STOP;
525     i2c_writel(i2c, con, REG_CON);
526 
527     i2c->busy = false;
528     i2c->state = STATE_IDLE;
529 
530     /* signal rk3x_i2c_xfer that we are finished */
531     rk3x_i2c_wake_up(i2c);
532 }
533 
rk3x_i2c_irq(int irqno,void * dev_id)534 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
535 {
536     struct rk3x_i2c *i2c = dev_id;
537     unsigned int ipd;
538     spin_lock(&i2c->lock);
539     ipd = i2c_readl(i2c, REG_IPD);
540     if (i2c->state == STATE_IDLE) {
541         dev_warn_ratelimited(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
542         rk3x_i2c_clean_ipd(i2c);
543         goto out;
544     }
545     dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
546     /* Clean interrupt bits we don't care about */
547     ipd &= ~(REG_INT_BRF | REG_INT_BTF);
548     if (ipd & REG_INT_NAKRCV) {
549         /*
550          * We got a NACK in the last operation. Depending on whether
551          * IGNORE_NAK is set, we have to stop the operation and report
552          * an error.
553          */
554         i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
555 
556         ipd &= ~REG_INT_NAKRCV;
557 
558         if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {
559             rk3x_i2c_stop(i2c, -ENXIO);
560             goto out;
561         }
562     }
563     /* is there anything left to handle? */
564     if ((ipd & REG_INT_ALL) == 0) {
565         goto out;
566     }
567     switch (i2c->state) {
568         case STATE_WRITE:
569             rk3x_i2c_handle_write(i2c, ipd);
570             break;
571         case STATE_READ:
572             rk3x_i2c_handle_read(i2c, ipd);
573             break;
574         case STATE_STOP:
575             rk3x_i2c_handle_stop(i2c, ipd);
576             break;
577         case STATE_IDLE:
578             break;
579     }
580 
581 out:
582     spin_unlock(&i2c->lock);
583     return IRQ_HANDLED;
584 }
585 
586 /**
587  * Get timing values of I2C specification
588  *
589  * @speed: Desired SCL frequency
590  *
591  * Returns: Matched i2c spec values.
592  */
rk3x_i2c_get_spec(unsigned int speed)593 static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
594 {
595     if (speed <= I2C_MAX_STANDARD_MODE_FREQ) {
596         return &standard_mode_spec;
597     } else if (speed <= I2C_MAX_FAST_MODE_FREQ) {
598         return &fast_mode_spec;
599     } else {
600         return &fast_mode_plus_spec;
601     }
602 }
603 
604 /**
605  * Calculate divider values for desired SCL frequency
606  *
607  * @clk_rate: I2C input clock rate
608  * @t: Known I2C timing information
609  * @t_calc: Caculated rk3x private timings that would be written into regs
610  *
611  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
612  * a best-effort divider value is returned in divs. If the target rate is
613  * too high, we silently use the highest possible rate.
614  */
rk3x_i2c_v0_calc_timings(unsigned long clk_rate,struct i2c_timings * t,struct rk3x_i2c_calced_timings * t_calc)615 static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate, struct i2c_timings *t,
616                                     struct rk3x_i2c_calced_timings *t_calc)
617 {
618     unsigned long min_low_ns, min_high_ns;
619     unsigned long max_low_ns, min_total_ns;
620 
621     unsigned long clk_rate_khz, scl_rate_khz;
622 
623     unsigned long min_low_div, min_high_div;
624     unsigned long max_low_div;
625 
626     unsigned long min_div_for_hold, min_total_div;
627     unsigned long extra_div, extra_low_div, ideal_low_div;
628 
629     unsigned long data_hold_buffer_ns = 50;
630     const struct i2c_spec_values *spec;
631     int ret = 0;
632 
633     /* Only support standard-mode and fast-mode */
634     if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)) {
635         t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
636     }
637 
638     /* prevent scl_rate_khz from becoming 0 */
639     if (WARN_ON(t->bus_freq_hz < RK_I2C_BUS_FREQ_MIN)) {
640         t->bus_freq_hz = RK_I2C_BUS_FREQ_MIN;
641     }
642 
643     /*
644      * min_low_ns:  The minimum number of ns we need to hold low to
645      *        meet I2C specification, should include fall time.
646      * min_high_ns: The minimum number of ns we need to hold high to
647      *        meet I2C specification, should include rise time.
648      * max_low_ns:  The maximum number of ns we can hold low to meet
649      *        I2C specification.
650      *
651      * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
652      *     This is because the i2c host on Rockchip holds the data line
653      *     for half the low time.
654      */
655     spec = rk3x_i2c_get_spec(t->bus_freq_hz);
656     min_high_ns = t->scl_rise_ns + spec->min_high_ns;
657 
658     /*
659      * Timings for repeated start:
660      * - controller appears to drop SDA at .875x (7/8) programmed clk high.
661      * - controller appears to keep SCL high for 2x programmed clk high.
662      *
663      * We need to account for those rules in picking our "high" time so
664      * we meet tSU;STA and tHD;STA times.
665      */
666     min_high_ns = max(min_high_ns, DIV_ROUND_UP((t->scl_rise_ns + spec->min_setup_start_ns) * RK_I2C_BUS_FREQ_MIN,
667                                                 RK_I2C_MIN_HIGH_NS_DIV_ROUND_PARA_ONE));
668     min_high_ns =
669         max(min_high_ns, DIV_ROUND_UP((t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns + spec->min_high_ns),
670                                       RK_I2C_MIN_HIGH_NS_DIV_ROUND_PARA_TWO));
671 
672     min_low_ns = t->scl_fall_ns + spec->min_low_ns;
673     max_low_ns = spec->max_data_hold_ns * RK_I2C_MIN_HIGH_NS_DIV_ROUND_PARA_TWO - data_hold_buffer_ns;
674     min_total_ns = min_low_ns + min_high_ns;
675 
676     /* Adjust to avoid overflow */
677     clk_rate_khz = DIV_ROUND_UP(clk_rate, RK_I2C_BUS_FREQ_MIN);
678     scl_rate_khz = t->bus_freq_hz / RK_I2C_BUS_FREQ_MIN;
679 
680     /*
681      * We need the total div to be >= this number
682      * so we don't clock too fast.
683      */
684     min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * RK_I2C_SCL_RATE_HZ_MUL);
685 
686     /* These are the min dividers needed for min hold times. */
687     min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_SCL_RATE_HZ_VALUE);
688     min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_SCL_RATE_HZ_VALUE);
689     min_div_for_hold = (min_low_div + min_high_div);
690 
691     /*
692      * This is the maximum divider so we don't go over the maximum.
693      * We don't round up here (we round down) since this is a maximum.
694      */
695     max_low_div = clk_rate_khz * max_low_ns / (RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_SCL_RATE_HZ_VALUE);
696 
697     if (min_low_div > max_low_div) {
698         WARN_ONCE(true, "Conflicting, min_low_div %lu, max_low_div %lu\n", min_low_div, max_low_div);
699         max_low_div = min_low_div;
700     }
701 
702     if (min_div_for_hold > min_total_div) {
703         /*
704          * Time needed to meet hold requirements is important.
705          * Just use that.
706          */
707         t_calc->div_low = min_low_div;
708         t_calc->div_high = min_high_div;
709     } else {
710         /*
711          * We've got to distribute some time among the low and high
712          * so we don't run too fast.
713          */
714         extra_div = min_total_div - min_div_for_hold;
715         /*
716          * We'll try to split things up perfectly evenly,
717          * biasing slightly towards having a higher div
718          * for low (spend more time low).
719          */
720         ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, scl_rate_khz * RK_I2C_SCL_RATE_HZ_MUL * min_total_ns);
721         /* Don't allow it to go over the maximum */
722         if (ideal_low_div > max_low_div) {
723             ideal_low_div = max_low_div;
724         }
725         /*
726          * Handle when the ideal low div is going to take up
727          * more than we have.
728          */
729         if (ideal_low_div > min_low_div + extra_div) {
730             ideal_low_div = min_low_div + extra_div;
731         }
732         /* Give low the "ideal" and give high whatever extra is left */
733         extra_low_div = ideal_low_div - min_low_div;
734         t_calc->div_low = ideal_low_div;
735         t_calc->div_high = min_high_div + (extra_div - extra_low_div);
736     }
737 
738     /*
739      * Adjust to the fact that the hardware has an implicit "+1".
740      * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
741      */
742     t_calc->div_low--;
743     t_calc->div_high--;
744 
745     /* Give the tuning value 0, that would not update con register */
746     t_calc->tuning = 0;
747     /* Maximum divider supported by hw is 0xffff */
748     if (t_calc->div_low > RK_I2C_MAX_DIV_VALUE) {
749         t_calc->div_low = RK_I2C_MAX_DIV_VALUE;
750         ret = -EINVAL;
751     }
752 
753     if (t_calc->div_high > RK_I2C_MAX_DIV_VALUE) {
754         t_calc->div_high = RK_I2C_MAX_DIV_VALUE;
755         ret = -EINVAL;
756     }
757 
758     return ret;
759 }
760 
761 /**
762  * Calculate timing values for desired SCL frequency
763  *
764  * @clk_rate: I2C input clock rate
765  * @t: Known I2C timing information
766  * @t_calc: Caculated rk3x private timings that would be written into regs
767  *
768  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
769  * a best-effort divider value is returned in divs. If the target rate is
770  * too high, we silently use the highest possible rate.
771  * The following formulas are v1's method to calculate timings.
772  *
773  * l = divl + 1;
774  * h = divh + 1;
775  * s = sda_update_config + 1;
776  * u = start_setup_config + 1;
777  * p = stop_setup_config + 1;
778  * T = Tclk_i2c;
779  *
780  * tHigh = 8 * h * T;
781  * tLow = 8 * l * T;
782  *
783  * tHD;sda = (l * s + 1) * T;
784  * tSU;sda = [(8 - s) * l + 1] * T;
785  * tI2C = 8 * (l + h) * T;
786  *
787  * tSU;sta = (8h * u + 1) * T;
788  * tHD;sta = [8h * (u + 1) - 1] * T;
789  * tSU;sto = (8h * p + 1) * T;
790  */
rk3x_i2c_v1_calc_timings(unsigned long clk_rate,struct i2c_timings * t,struct rk3x_i2c_calced_timings * t_calc)791 static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate, struct i2c_timings *t,
792                                     struct rk3x_i2c_calced_timings *t_calc)
793 {
794     unsigned long min_low_ns, min_high_ns;
795     unsigned long min_setup_start_ns, min_setup_data_ns;
796     unsigned long min_setup_stop_ns, max_hold_data_ns;
797 
798     unsigned long clk_rate_khz, scl_rate_khz;
799 
800     unsigned long min_low_div, min_high_div;
801 
802     unsigned long min_div_for_hold, min_total_div;
803     unsigned long extra_div, extra_low_div;
804     unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
805 
806     const struct i2c_spec_values *spec;
807     int ret = 0;
808 
809     /* Support standard-mode, fast-mode and fast-mode plus */
810     if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ)) {
811         t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ;
812     }
813 
814     /* prevent scl_rate_khz from becoming 0 */
815     if (WARN_ON(t->bus_freq_hz < RK_I2C_BUS_FREQ_MIN)) {
816         t->bus_freq_hz = RK_I2C_BUS_FREQ_MIN;
817     }
818 
819     /*
820      * min_low_ns: The minimum number of ns we need to hold low to
821      *           meet I2C specification, should include fall time.
822      * min_high_ns: The minimum number of ns we need to hold high to
823      *            meet I2C specification, should include rise time.
824      */
825     spec = rk3x_i2c_get_spec(t->bus_freq_hz);
826 
827     /* calculate min-divh and min-divl */
828     clk_rate_khz = DIV_ROUND_UP(clk_rate, RK_I2C_BUS_FREQ_MIN);
829     scl_rate_khz = t->bus_freq_hz / RK_I2C_BUS_FREQ_MIN;
830     min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * RK_I2C_SCL_RATE_HZ_MUL);
831 
832     min_high_ns = t->scl_rise_ns + spec->min_high_ns;
833     min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_SCL_RATE_HZ_VALUE);
834 
835     min_low_ns = t->scl_fall_ns + spec->min_low_ns;
836     min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_SCL_RATE_HZ_VALUE);
837 
838     /*
839      * Final divh and divl must be greater than 0, otherwise the
840      * hardware would not output the i2c clk.
841      */
842     min_high_div = (min_high_div < 1) ? RK_I2C_SCL_MIN_VALUE : min_high_div;
843     min_low_div = (min_low_div < 1) ? RK_I2C_SCL_MIN_VALUE : min_low_div;
844 
845     /* These are the min dividers needed for min hold times. */
846     min_div_for_hold = (min_low_div + min_high_div);
847 
848     /*
849      * This is the maximum divider so we don't go over the maximum.
850      * We don't round up here (we round down) since this is a maximum.
851      */
852     if (min_div_for_hold >= min_total_div) {
853         /*
854          * Time needed to meet hold requirements is important.
855          * Just use that.
856          */
857         t_calc->div_low = min_low_div;
858         t_calc->div_high = min_high_div;
859     } else {
860         /*
861          * We've got to distribute some time among the low and high
862          * so we don't run too fast.
863          * We'll try to split things up by the scale of min_low_div and
864          * min_high_div, biasing slightly towards having a higher div
865          * for low (spend more time low).
866          */
867         extra_div = min_total_div - min_div_for_hold;
868         extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, min_div_for_hold);
869 
870         t_calc->div_low = min_low_div + extra_low_div;
871         t_calc->div_high = min_high_div + (extra_div - extra_low_div);
872     }
873 
874     /*
875      * calculate sda data hold count by the rules, data_upd_st:3
876      * is a appropriate value to reduce calculated times.
877      */
878     for (sda_update_cfg = RK_I2C_SDA_UPDATA_CFG_TIMES; sda_update_cfg > 0; sda_update_cfg--) {
879         max_hold_data_ns =
880             DIV_ROUND_UP((sda_update_cfg * (t_calc->div_low) + 1) * RK_I2C_SCL_RATE_HZ_VALUE, clk_rate_khz);
881         min_setup_data_ns =
882             DIV_ROUND_UP(((RK_I2C_SCL_RATE_HZ_MUL - sda_update_cfg) * (t_calc->div_low) + 1) * RK_I2C_SCL_RATE_HZ_VALUE,
883                          clk_rate_khz);
884         if ((max_hold_data_ns < spec->max_data_hold_ns) && (min_setup_data_ns > spec->min_data_setup_ns)) {
885             break;
886         }
887     }
888 
889     /* calculate setup start config */
890     min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
891     stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns - RK_I2C_SCL_RATE_HZ_VALUE,
892                                RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_SCL_RATE_HZ_VALUE * (t_calc->div_high));
893 
894     /* calculate setup stop config */
895     min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
896     stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns - RK_I2C_SCL_RATE_HZ_VALUE,
897                                RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_SCL_RATE_HZ_VALUE * (t_calc->div_high));
898 
899     t_calc->tuning =
900         REG_CON_SDA_CFG(--sda_update_cfg) | REG_CON_STA_CFG(--stp_sta_cfg) | REG_CON_STO_CFG(--stp_sto_cfg);
901 
902     t_calc->div_low--;
903     t_calc->div_high--;
904 
905     /* Maximum divider supported by hw is 0xffff */
906     if (t_calc->div_low > RK_I2C_MAX_DIV_VALUE) {
907         t_calc->div_low = RK_I2C_MAX_DIV_VALUE;
908         ret = -EINVAL;
909     }
910 
911     if (t_calc->div_high > RK_I2C_MAX_DIV_VALUE) {
912         t_calc->div_high = RK_I2C_MAX_DIV_VALUE;
913         ret = -EINVAL;
914     }
915 
916     return ret;
917 }
918 
rk3x_i2c_adapt_div(struct rk3x_i2c * i2c,unsigned long clk_rate)919 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
920 {
921     struct i2c_timings *t = &i2c->t;
922     struct rk3x_i2c_calced_timings calc;
923     u64 t_low_ns, t_high_ns;
924     unsigned long flags;
925     u32 val;
926     int ret;
927 
928     ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
929     WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
930 
931     clk_enable(i2c->pclk);
932 
933     spin_lock_irqsave(&i2c->lock, flags);
934     val = i2c_readl(i2c, REG_CON);
935     val &= ~REG_CON_TUNING_MASK;
936     val |= calc.tuning;
937     i2c_writel(i2c, val, REG_CON);
938     i2c_writel(i2c, (calc.div_high << RK_I2C_SCL_DIV_HIGH_SHIFT_MASK) | (calc.div_low & RK_I2C_MAX_DIV_VALUE),
939                REG_CLKDIV);
940     spin_unlock_irqrestore(&i2c->lock, flags);
941 
942     clk_disable(i2c->pclk);
943 
944     t_low_ns = div_u64(((u64)calc.div_low + 1) * RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_S_TO_NS, clk_rate);
945     t_high_ns = div_u64(((u64)calc.div_high + 1) * RK_I2C_SCL_RATE_HZ_MUL * RK_I2C_S_TO_NS, clk_rate);
946 }
947 
948 /**
949  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
950  * @nb:        Pointer to notifier block
951  * @event:    Notification reason
952  * @data:    Pointer to notification data object
953  *
954  * The callback checks whether a valid bus frequency can be generated after the
955  * change. If so, the change is acknowledged, otherwise the change is aborted.
956  * New dividers are written to the HW in the pre- or post change notification
957  * depending on the scaling direction.
958  *
959  * Code adapted from i2c-cadence.c.
960  *
961  * Return:    NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
962  *        to acknowledge the change, NOTIFY_DONE if the notification is
963  *        considered irrelevant.
964  */
rk3x_i2c_clk_notifier_cb(struct notifier_block * nb,unsigned long event,void * data)965 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long event, void *data)
966 {
967     struct clk_notifier_data *ndata = data;
968     struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
969     struct rk3x_i2c_calced_timings calc;
970 
971     switch (event) {
972         case PRE_RATE_CHANGE:
973             /*
974              * Try the calculation (but don't store the result) ahead of
975              * time to see if we need to block the clock change.  Timings
976              * shouldn't actually take effect until rk3x_i2c_adapt_div().
977              */
978             if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t, &calc) != 0) {
979                 return NOTIFY_STOP;
980             }
981 
982             /* scale up */
983             if (ndata->new_rate > ndata->old_rate) {
984                 rk3x_i2c_adapt_div(i2c, ndata->new_rate);
985             }
986 
987             return NOTIFY_OK;
988         case POST_RATE_CHANGE:
989             /* scale down */
990             if (ndata->new_rate < ndata->old_rate) {
991                 rk3x_i2c_adapt_div(i2c, ndata->new_rate);
992             }
993             return NOTIFY_OK;
994         case ABORT_RATE_CHANGE:
995             /* scale up */
996             if (ndata->new_rate > ndata->old_rate) {
997                 rk3x_i2c_adapt_div(i2c, ndata->old_rate);
998             }
999             return NOTIFY_OK;
1000         default:
1001             return NOTIFY_DONE;
1002     }
1003 }
1004 
1005 /**
1006  * Setup I2C registers for an I2C operation specified by msgs, num.
1007  *
1008  * Must be called with i2c->lock held.
1009  *
1010  * @msgs: I2C msgs to process
1011  * @num: Number of msgs
1012  *
1013  * returns: Number of I2C msgs processed or negative in case of error
1014  */
rk3x_i2c_setup(struct rk3x_i2c * i2c,struct i2c_msg * msgs,int num)1015 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
1016 {
1017     u32 addr = (msgs[0].addr & RK_I2C_ADDR_MASK) << 1;
1018     int ret = 0;
1019 
1020     /*
1021      * The I2C adapter can issue a small (len < 4) write packet before
1022      * reading. This speeds up SMBus-style register reads.
1023      * The MRXADDR/MRXRADDR hold the slave address and the slave register
1024      * address in this case.
1025      */
1026 
1027     if (num >= RK_I2C_MSG_NUM && msgs[0].len < RK_I2C_MSG_LEN_MIN && !(msgs[0].flags & I2C_M_RD) &&
1028         (msgs[1].flags & I2C_M_RD)) {
1029         u32 reg_addr = 0;
1030         int i;
1031 
1032         dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n", addr >> 1);
1033 
1034         /* Fill MRXRADDR with the register address(es) */
1035         for (i = 0; i < msgs[0].len; ++i) {
1036             reg_addr |= msgs[0].buf[i] << (i * RK_I2C_BYTE_TO_BIT_COUNT);
1037             reg_addr |= REG_MRXADDR_VALID(i);
1038         }
1039 
1040         /* msgs[0] is handled by hw. */
1041         i2c->msg = &msgs[1];
1042 
1043         i2c->mode = REG_CON_MOD_REGISTER_TX;
1044 
1045         i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1046         i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1047 
1048         ret = 0x2;
1049     } else {
1050         /*
1051          * We'll have to do it the boring way and process the msgs
1052          * one-by-one.
1053          */
1054 
1055         if (msgs[0].flags & I2C_M_RD) {
1056             addr |= 1; /* set read bit */
1057 
1058             /*
1059              * We have to transmit the slave addr first. Use
1060              * MOD_REGISTER_TX for that purpose.
1061              */
1062             i2c->mode = REG_CON_MOD_REGISTER_TX;
1063             i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1064             i2c_writel(i2c, 0, REG_MRXRADDR);
1065         } else {
1066             i2c->mode = REG_CON_MOD_TX;
1067         }
1068 
1069         i2c->msg = &msgs[0];
1070 
1071         ret = 1;
1072     }
1073 
1074     i2c->addr = msgs[0].addr;
1075     i2c->busy = true;
1076     i2c->processed = 0;
1077     i2c->error = 0;
1078 
1079     rk3x_i2c_clean_ipd(i2c);
1080 
1081     return ret;
1082 }
1083 
rk3x_i2c_wait_xfer_poll(struct rk3x_i2c * i2c)1084 static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c)
1085 {
1086     ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT);
1087 
1088     while (READ_ONCE(i2c->busy) && ktime_compare(ktime_get(), timeout) < 0) {
1089         udelay(RK_I2C_WAIT_POLL_UDELAY_VALUE_FIVE);
1090         rk3x_i2c_irq(0, i2c);
1091     }
1092 
1093     return !i2c->busy;
1094 }
1095 
rk3x_i2c_xfer_common(struct i2c_adapter * adap,struct i2c_msg * msgs,int num,bool polling)1096 static int rk3x_i2c_xfer_common(struct i2c_adapter *adap, struct i2c_msg *msgs, int num, bool polling)
1097 {
1098     struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1099     unsigned long timeout, flags;
1100     u32 val;
1101     int ret = 0;
1102     int i;
1103     if (i2c->suspended) {
1104         return -EACCES;
1105     }
1106     spin_lock_irqsave(&i2c->lock, flags);
1107     clk_enable(i2c->clk);
1108     clk_enable(i2c->pclk);
1109     i2c->is_last_msg = false;
1110     /*
1111      * Process msgs. We can handle more than one message at once (see
1112      * rk3x_i2c_setup()).
1113      */
1114     for (i = 0; i < num; i += ret) {
1115         ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1116         if (ret < 0) {
1117             dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1118             break;
1119         }
1120         if (i + ret >= num) {
1121             i2c->is_last_msg = true;
1122         }
1123         rk3x_i2c_start(i2c);
1124         spin_unlock_irqrestore(&i2c->lock, flags);
1125         if (!polling) {
1126             timeout = wait_event_timeout(i2c->wait, !i2c->busy, msecs_to_jiffies(WAIT_TIMEOUT));
1127         } else {
1128             timeout = rk3x_i2c_wait_xfer_poll(i2c);
1129         }
1130         spin_lock_irqsave(&i2c->lock, flags);
1131         if (timeout == 0) {
1132             dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n", i2c_readl(i2c, REG_IPD), i2c->state);
1133             /* Force a STOP condition without interrupt */
1134             rk3x_i2c_disable_irq(i2c);
1135             val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1136             val |= REG_CON_EN | REG_CON_STOP;
1137             i2c_writel(i2c, val, REG_CON);
1138             i2c->state = STATE_IDLE;
1139             ret = -ETIMEDOUT;
1140             break;
1141         }
1142         if (i2c->error) {
1143             ret = i2c->error;
1144             break;
1145         }
1146     }
1147 
1148     rk3x_i2c_disable_irq(i2c);
1149     rk3x_i2c_disable(i2c);
1150 
1151     clk_disable(i2c->pclk);
1152     clk_disable(i2c->clk);
1153 
1154     spin_unlock_irqrestore(&i2c->lock, flags);
1155 
1156     return ret < 0 ? ret : num;
1157 }
1158 
rk3x_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)1159 static int rk3x_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1160 {
1161     return rk3x_i2c_xfer_common(adap, msgs, num, false);
1162 }
1163 
rk3x_i2c_xfer_polling(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)1164 static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1165 {
1166     return rk3x_i2c_xfer_common(adap, msgs, num, true);
1167 }
1168 
rk3x_i2c_restart_notify(struct notifier_block * this,unsigned long mode,void * cmd)1169 static int rk3x_i2c_restart_notify(struct notifier_block *this, unsigned long mode, void *cmd)
1170 {
1171     struct rk3x_i2c *i2c = container_of(this, struct rk3x_i2c, i2c_restart_nb);
1172     int tmo = WAIT_TIMEOUT * USEC_PER_MSEC;
1173     u32 val;
1174 
1175     if (i2c->state != STATE_IDLE) {
1176         i2c->system_restarting = true;
1177         /* complete the unfinished job */
1178         while (tmo-- && i2c->busy) {
1179             udelay(1);
1180             rk3x_i2c_irq(0, i2c);
1181         }
1182     }
1183 
1184     if (tmo <= 0) {
1185         dev_err(i2c->dev, "restart timeout, ipd: 0x%02x, state: %d\n", i2c_readl(i2c, REG_IPD), i2c->state);
1186 
1187         /* Force a STOP condition without interrupt */
1188         i2c_writel(i2c, 0, REG_IEN);
1189         val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1190         val |= REG_CON_EN | REG_CON_STOP;
1191         i2c_writel(i2c, val, REG_CON);
1192 
1193         udelay(RK_I2C_WAIT_POLL_UDELAY_VALUE_TEN);
1194         i2c->state = STATE_IDLE;
1195     }
1196 
1197     return NOTIFY_DONE;
1198 }
1199 
rk3x_i2c_suspend_noirq(struct device * dev)1200 static __maybe_unused int rk3x_i2c_suspend_noirq(struct device *dev)
1201 {
1202     struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1203 
1204     /*
1205      * Below code is needed only to ensure that there are no
1206      * activities on I2C bus. if at this moment any driver
1207      * is trying to use I2C bus - this may cause i2c timeout.
1208      *
1209      * So forbid access to I2C device using i2c->suspended flag.
1210      */
1211     i2c_lock_bus(&i2c->adap, I2C_LOCK_ROOT_ADAPTER);
1212     i2c->suspended = 1;
1213     i2c_unlock_bus(&i2c->adap, I2C_LOCK_ROOT_ADAPTER);
1214 
1215     return 0;
1216 }
1217 
rk3x_i2c_resume_noirq(struct device * dev)1218 static __maybe_unused int rk3x_i2c_resume_noirq(struct device *dev)
1219 {
1220     struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1221 
1222     rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1223 
1224     /* Allow access to I2C bus */
1225     i2c_lock_bus(&i2c->adap, I2C_LOCK_ROOT_ADAPTER);
1226     i2c->suspended = 0;
1227     i2c_unlock_bus(&i2c->adap, I2C_LOCK_ROOT_ADAPTER);
1228 
1229     return 0;
1230 }
1231 
rk3x_i2c_func(struct i2c_adapter * adap)1232 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1233 {
1234     return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1235 }
1236 
1237 static const struct i2c_algorithm rk3x_i2c_algorithm = {
1238     .master_xfer = rk3x_i2c_xfer,
1239     .master_xfer_atomic = rk3x_i2c_xfer_polling,
1240     .functionality = rk3x_i2c_func,
1241 };
1242 
1243 static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1244     .grf_offset = 0x408,
1245     .calc_timings = rk3x_i2c_v1_calc_timings,
1246 };
1247 
1248 static const struct rk3x_i2c_soc_data rv1126_soc_data = {
1249     .grf_offset = 0x118,
1250     .calc_timings = rk3x_i2c_v1_calc_timings,
1251 };
1252 
1253 static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1254     .grf_offset = 0x154,
1255     .calc_timings = rk3x_i2c_v0_calc_timings,
1256 };
1257 
1258 static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1259     .grf_offset = 0x0a4,
1260     .calc_timings = rk3x_i2c_v0_calc_timings,
1261 };
1262 
1263 static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1264     .grf_offset = -1,
1265     .calc_timings = rk3x_i2c_v0_calc_timings,
1266 };
1267 
1268 static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1269     .grf_offset = -1,
1270     .calc_timings = rk3x_i2c_v0_calc_timings,
1271 };
1272 
1273 static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1274     .grf_offset = -1,
1275     .calc_timings = rk3x_i2c_v1_calc_timings,
1276 };
1277 
1278 static const struct of_device_id rk3x_i2c_match[] = {
1279     {.compatible = "rockchip,rv1108-i2c", .data = &rv1108_soc_data},
1280     {.compatible = "rockchip,rv1126-i2c", .data = &rv1126_soc_data},
1281     {.compatible = "rockchip,rk3066-i2c", .data = &rk3066_soc_data},
1282     {.compatible = "rockchip,rk3188-i2c", .data = &rk3188_soc_data},
1283     {.compatible = "rockchip,rk3228-i2c", .data = &rk3228_soc_data},
1284     {.compatible = "rockchip,rk3288-i2c", .data = &rk3288_soc_data},
1285     {.compatible = "rockchip,rk3399-i2c", .data = &rk3399_soc_data},
1286     {},
1287 };
1288 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1289 
rk3x_i2c_probe(struct platform_device * pdev)1290 static int rk3x_i2c_probe(struct platform_device *pdev)
1291 {
1292     struct device_node *np = pdev->dev.of_node;
1293     const struct of_device_id *match;
1294     struct rk3x_i2c *i2c;
1295     int ret = 0;
1296     u32 value;
1297     int irq;
1298     unsigned long clk_rate;
1299 
1300     i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1301     if (!i2c) {
1302         return -ENOMEM;
1303     }
1304 
1305     match = of_match_node(rk3x_i2c_match, np);
1306     i2c->soc_data = match->data;
1307 
1308     /* use common interface to get I2C timing properties */
1309     i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1310 
1311     strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1312     i2c->adap.owner = THIS_MODULE;
1313     i2c->adap.algo = &rk3x_i2c_algorithm;
1314     i2c->adap.retries = RK_I2C_PROBE_RETRY_TIMES;
1315     i2c->adap.dev.of_node = np;
1316     i2c->adap.algo_data = i2c;
1317     i2c->adap.dev.parent = &pdev->dev;
1318 
1319     i2c->dev = &pdev->dev;
1320 
1321     spin_lock_init(&i2c->lock);
1322     init_waitqueue_head(&i2c->wait);
1323 
1324     i2c->i2c_restart_nb.notifier_call = rk3x_i2c_restart_notify;
1325     i2c->i2c_restart_nb.priority = RK_I2C_RESTART_PRIORITY_VALUE;
1326     ret = register_pre_restart_handler(&i2c->i2c_restart_nb);
1327     if (ret) {
1328         dev_err(&pdev->dev, "failed to setup i2c restart handler.\n");
1329         return ret;
1330     }
1331 
1332     i2c->regs = devm_platform_ioremap_resource(pdev, 0);
1333     if (IS_ERR(i2c->regs)) {
1334         return PTR_ERR(i2c->regs);
1335     }
1336 
1337     /*
1338      * Switch to new interface if the SoC also offers the old one.
1339      * The control bit is located in the GRF register space.
1340      */
1341     if (i2c->soc_data->grf_offset >= 0) {
1342         struct regmap *grf;
1343 
1344         grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1345         if (!IS_ERR(grf)) {
1346             int bus_nr;
1347 
1348             /* Try to set the I2C adapter number from dt */
1349             bus_nr = of_alias_get_id(np, "i2c");
1350             if (bus_nr < 0) {
1351                 dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1352                 return -EINVAL;
1353             }
1354 
1355             if (i2c->soc_data == &rv1108_soc_data && bus_nr == RK_I2C_ADAPTER_NUM) {
1356                 /* rv1108 i2c2 set grf offset-0x408, bit-10 */
1357                 value = BIT(RK_I2C_BIT_MASK_TWENTY_SIX) | BIT(RK_I2C_BIT_MASK_TEN);
1358             } else if (i2c->soc_data == &rv1126_soc_data && bus_nr == RK_I2C_ADAPTER_NUM) {
1359                 /* rv1126 i2c2 set pmugrf offset-0x118, bit-4 */
1360                 value = BIT(RK_I2C_BIT_MASK_TWENTY) | BIT(RK_I2C_BIT_MASK_FOUR);
1361             } else {
1362                 /* rk3xxx 27+i: write mask, 11+i: value */
1363                 value = BIT(RK_I2C_BIT_MASK_TWENTY_SEVEN + bus_nr) | BIT(RK_I2C_BIT_MASK_ELEVEN + bus_nr);
1364             }
1365 
1366             ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1367             if (ret != 0) {
1368                 dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1369                 return ret;
1370             }
1371         }
1372     }
1373 
1374     /* IRQ setup */
1375     irq = platform_get_irq(pdev, 0);
1376     if (irq < 0) {
1377         return irq;
1378     }
1379 
1380     ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq, 0, dev_name(&pdev->dev), i2c);
1381     if (ret < 0) {
1382         dev_err(&pdev->dev, "cannot request IRQ\n");
1383         return ret;
1384     }
1385 
1386     platform_set_drvdata(pdev, i2c);
1387 
1388     if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1389         /* Only one clock to use for bus clock and peripheral clock */
1390         i2c->clk = devm_clk_get(&pdev->dev, NULL);
1391         i2c->pclk = i2c->clk;
1392     } else {
1393         i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1394         i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1395     }
1396 
1397     if (IS_ERR(i2c->clk)) {
1398         return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk), "Can't get bus clk\n");
1399     }
1400 
1401     if (IS_ERR(i2c->pclk)) {
1402         return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk), "Can't get periph clk\n");
1403     }
1404 
1405     ret = clk_prepare(i2c->clk);
1406     if (ret < 0) {
1407         dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1408         return ret;
1409     }
1410     ret = clk_prepare(i2c->pclk);
1411     if (ret < 0) {
1412         dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1413         goto err_clk;
1414     }
1415 
1416     i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1417     ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1418     if (ret != 0) {
1419         dev_err(&pdev->dev, "Unable to register clock notifier\n");
1420         goto err_pclk;
1421     }
1422 
1423     clk_rate = clk_get_rate(i2c->clk);
1424     rk3x_i2c_adapt_div(i2c, clk_rate);
1425 
1426     ret = i2c_add_adapter(&i2c->adap);
1427     if (ret < 0) {
1428         goto err_clk_notifier;
1429     }
1430 
1431     return 0;
1432 
1433 err_clk_notifier:
1434     clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1435 err_pclk:
1436     clk_unprepare(i2c->pclk);
1437 err_clk:
1438     clk_unprepare(i2c->clk);
1439     return ret;
1440 }
1441 
rk3x_i2c_remove(struct platform_device * pdev)1442 static int rk3x_i2c_remove(struct platform_device *pdev)
1443 {
1444     struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1445 
1446     i2c_del_adapter(&i2c->adap);
1447 
1448     clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1449     unregister_pre_restart_handler(&i2c->i2c_restart_nb);
1450     clk_unprepare(i2c->pclk);
1451     clk_unprepare(i2c->clk);
1452 
1453     return 0;
1454 }
1455 
1456 static const struct dev_pm_ops rk3x_i2c_pm_ops = {
1457     SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rk3x_i2c_suspend_noirq, rk3x_i2c_resume_noirq)};
1458 
1459 static struct platform_driver rk3x_i2c_driver = {
1460     .probe = rk3x_i2c_probe,
1461     .remove = rk3x_i2c_remove,
1462     .driver =
1463         {
1464             .name = "rk3x-i2c",
1465             .of_match_table = rk3x_i2c_match,
1466             .pm = &rk3x_i2c_pm_ops,
1467         },
1468 };
1469 
1470 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT
rk3x_i2c_driver_init(void)1471 static int __init rk3x_i2c_driver_init(void)
1472 {
1473     return platform_driver_register(&rk3x_i2c_driver);
1474 }
1475 subsys_initcall_sync(rk3x_i2c_driver_init);
1476 
rk3x_i2c_driver_exit(void)1477 static void __exit rk3x_i2c_driver_exit(void)
1478 {
1479     platform_driver_unregister(&rk3x_i2c_driver);
1480 }
1481 module_exit(rk3x_i2c_driver_exit);
1482 #else
1483 module_platform_driver(rk3x_i2c_driver);
1484 #endif
1485 
1486 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1487 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1488 MODULE_LICENSE("GPL v2");
1489