1
2 /* Complex object implementation */
3
4 /* Borrows heavily from floatobject.c */
5
6 /* Submitted by Jim Hugunin */
7
8 #include "Python.h"
9 #include "pycore_long.h" // _PyLong_GetZero()
10 #include "pycore_object.h" // _PyObject_Init()
11 #include "structmember.h" // PyMemberDef
12
13
14 /*[clinic input]
15 class complex "PyComplexObject *" "&PyComplex_Type"
16 [clinic start generated code]*/
17 /*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/
18
19 #include "clinic/complexobject.c.h"
20
21 /* elementary operations on complex numbers */
22
23 static Py_complex c_1 = {1., 0.};
24
25 Py_complex
_Py_c_sum(Py_complex a,Py_complex b)26 _Py_c_sum(Py_complex a, Py_complex b)
27 {
28 Py_complex r;
29 r.real = a.real + b.real;
30 r.imag = a.imag + b.imag;
31 return r;
32 }
33
34 Py_complex
_Py_c_diff(Py_complex a,Py_complex b)35 _Py_c_diff(Py_complex a, Py_complex b)
36 {
37 Py_complex r;
38 r.real = a.real - b.real;
39 r.imag = a.imag - b.imag;
40 return r;
41 }
42
43 Py_complex
_Py_c_neg(Py_complex a)44 _Py_c_neg(Py_complex a)
45 {
46 Py_complex r;
47 r.real = -a.real;
48 r.imag = -a.imag;
49 return r;
50 }
51
52 Py_complex
_Py_c_prod(Py_complex a,Py_complex b)53 _Py_c_prod(Py_complex a, Py_complex b)
54 {
55 Py_complex r;
56 r.real = a.real*b.real - a.imag*b.imag;
57 r.imag = a.real*b.imag + a.imag*b.real;
58 return r;
59 }
60
61 /* Avoid bad optimization on Windows ARM64 until the compiler is fixed */
62 #ifdef _M_ARM64
63 #pragma optimize("", off)
64 #endif
65 Py_complex
_Py_c_quot(Py_complex a,Py_complex b)66 _Py_c_quot(Py_complex a, Py_complex b)
67 {
68 /******************************************************************
69 This was the original algorithm. It's grossly prone to spurious
70 overflow and underflow errors. It also merrily divides by 0 despite
71 checking for that(!). The code still serves a doc purpose here, as
72 the algorithm following is a simple by-cases transformation of this
73 one:
74
75 Py_complex r;
76 double d = b.real*b.real + b.imag*b.imag;
77 if (d == 0.)
78 errno = EDOM;
79 r.real = (a.real*b.real + a.imag*b.imag)/d;
80 r.imag = (a.imag*b.real - a.real*b.imag)/d;
81 return r;
82 ******************************************************************/
83
84 /* This algorithm is better, and is pretty obvious: first divide the
85 * numerators and denominator by whichever of {b.real, b.imag} has
86 * larger magnitude. The earliest reference I found was to CACM
87 * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
88 * University). As usual, though, we're still ignoring all IEEE
89 * endcases.
90 */
91 Py_complex r; /* the result */
92 const double abs_breal = b.real < 0 ? -b.real : b.real;
93 const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
94
95 if (abs_breal >= abs_bimag) {
96 /* divide tops and bottom by b.real */
97 if (abs_breal == 0.0) {
98 errno = EDOM;
99 r.real = r.imag = 0.0;
100 }
101 else {
102 const double ratio = b.imag / b.real;
103 const double denom = b.real + b.imag * ratio;
104 r.real = (a.real + a.imag * ratio) / denom;
105 r.imag = (a.imag - a.real * ratio) / denom;
106 }
107 }
108 else if (abs_bimag >= abs_breal) {
109 /* divide tops and bottom by b.imag */
110 const double ratio = b.real / b.imag;
111 const double denom = b.real * ratio + b.imag;
112 assert(b.imag != 0.0);
113 r.real = (a.real * ratio + a.imag) / denom;
114 r.imag = (a.imag * ratio - a.real) / denom;
115 }
116 else {
117 /* At least one of b.real or b.imag is a NaN */
118 r.real = r.imag = Py_NAN;
119 }
120 return r;
121 }
122 #ifdef _M_ARM64
123 #pragma optimize("", on)
124 #endif
125
126 Py_complex
_Py_c_pow(Py_complex a,Py_complex b)127 _Py_c_pow(Py_complex a, Py_complex b)
128 {
129 Py_complex r;
130 double vabs,len,at,phase;
131 if (b.real == 0. && b.imag == 0.) {
132 r.real = 1.;
133 r.imag = 0.;
134 }
135 else if (a.real == 0. && a.imag == 0.) {
136 if (b.imag != 0. || b.real < 0.)
137 errno = EDOM;
138 r.real = 0.;
139 r.imag = 0.;
140 }
141 else {
142 vabs = hypot(a.real,a.imag);
143 len = pow(vabs,b.real);
144 at = atan2(a.imag, a.real);
145 phase = at*b.real;
146 if (b.imag != 0.0) {
147 len /= exp(at*b.imag);
148 phase += b.imag*log(vabs);
149 }
150 r.real = len*cos(phase);
151 r.imag = len*sin(phase);
152 }
153 return r;
154 }
155
156 static Py_complex
c_powu(Py_complex x,long n)157 c_powu(Py_complex x, long n)
158 {
159 Py_complex r, p;
160 long mask = 1;
161 r = c_1;
162 p = x;
163 while (mask > 0 && n >= mask) {
164 if (n & mask)
165 r = _Py_c_prod(r,p);
166 mask <<= 1;
167 p = _Py_c_prod(p,p);
168 }
169 return r;
170 }
171
172 static Py_complex
c_powi(Py_complex x,long n)173 c_powi(Py_complex x, long n)
174 {
175 if (n > 0)
176 return c_powu(x,n);
177 else
178 return _Py_c_quot(c_1, c_powu(x,-n));
179
180 }
181
182 double
_Py_c_abs(Py_complex z)183 _Py_c_abs(Py_complex z)
184 {
185 /* sets errno = ERANGE on overflow; otherwise errno = 0 */
186 double result;
187
188 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
189 /* C99 rules: if either the real or the imaginary part is an
190 infinity, return infinity, even if the other part is a
191 NaN. */
192 if (Py_IS_INFINITY(z.real)) {
193 result = fabs(z.real);
194 errno = 0;
195 return result;
196 }
197 if (Py_IS_INFINITY(z.imag)) {
198 result = fabs(z.imag);
199 errno = 0;
200 return result;
201 }
202 /* either the real or imaginary part is a NaN,
203 and neither is infinite. Result should be NaN. */
204 return Py_NAN;
205 }
206 result = hypot(z.real, z.imag);
207 if (!Py_IS_FINITE(result))
208 errno = ERANGE;
209 else
210 errno = 0;
211 return result;
212 }
213
214 static PyObject *
complex_subtype_from_c_complex(PyTypeObject * type,Py_complex cval)215 complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
216 {
217 PyObject *op;
218
219 op = type->tp_alloc(type, 0);
220 if (op != NULL)
221 ((PyComplexObject *)op)->cval = cval;
222 return op;
223 }
224
225 PyObject *
PyComplex_FromCComplex(Py_complex cval)226 PyComplex_FromCComplex(Py_complex cval)
227 {
228 /* Inline PyObject_New */
229 PyComplexObject *op = PyObject_Malloc(sizeof(PyComplexObject));
230 if (op == NULL) {
231 return PyErr_NoMemory();
232 }
233 _PyObject_Init((PyObject*)op, &PyComplex_Type);
234 op->cval = cval;
235 return (PyObject *) op;
236 }
237
238 static PyObject *
complex_subtype_from_doubles(PyTypeObject * type,double real,double imag)239 complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
240 {
241 Py_complex c;
242 c.real = real;
243 c.imag = imag;
244 return complex_subtype_from_c_complex(type, c);
245 }
246
247 PyObject *
PyComplex_FromDoubles(double real,double imag)248 PyComplex_FromDoubles(double real, double imag)
249 {
250 Py_complex c;
251 c.real = real;
252 c.imag = imag;
253 return PyComplex_FromCComplex(c);
254 }
255
256 double
PyComplex_RealAsDouble(PyObject * op)257 PyComplex_RealAsDouble(PyObject *op)
258 {
259 if (PyComplex_Check(op)) {
260 return ((PyComplexObject *)op)->cval.real;
261 }
262 else {
263 return PyFloat_AsDouble(op);
264 }
265 }
266
267 double
PyComplex_ImagAsDouble(PyObject * op)268 PyComplex_ImagAsDouble(PyObject *op)
269 {
270 if (PyComplex_Check(op)) {
271 return ((PyComplexObject *)op)->cval.imag;
272 }
273 else {
274 return 0.0;
275 }
276 }
277
278 static PyObject *
try_complex_special_method(PyObject * op)279 try_complex_special_method(PyObject *op)
280 {
281 PyObject *f;
282 _Py_IDENTIFIER(__complex__);
283
284 f = _PyObject_LookupSpecial(op, &PyId___complex__);
285 if (f) {
286 PyObject *res = _PyObject_CallNoArg(f);
287 Py_DECREF(f);
288 if (!res || PyComplex_CheckExact(res)) {
289 return res;
290 }
291 if (!PyComplex_Check(res)) {
292 PyErr_Format(PyExc_TypeError,
293 "__complex__ returned non-complex (type %.200s)",
294 Py_TYPE(res)->tp_name);
295 Py_DECREF(res);
296 return NULL;
297 }
298 /* Issue #29894: warn if 'res' not of exact type complex. */
299 if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
300 "__complex__ returned non-complex (type %.200s). "
301 "The ability to return an instance of a strict subclass of complex "
302 "is deprecated, and may be removed in a future version of Python.",
303 Py_TYPE(res)->tp_name)) {
304 Py_DECREF(res);
305 return NULL;
306 }
307 return res;
308 }
309 return NULL;
310 }
311
312 Py_complex
PyComplex_AsCComplex(PyObject * op)313 PyComplex_AsCComplex(PyObject *op)
314 {
315 Py_complex cv;
316 PyObject *newop = NULL;
317
318 assert(op);
319 /* If op is already of type PyComplex_Type, return its value */
320 if (PyComplex_Check(op)) {
321 return ((PyComplexObject *)op)->cval;
322 }
323 /* If not, use op's __complex__ method, if it exists */
324
325 /* return -1 on failure */
326 cv.real = -1.;
327 cv.imag = 0.;
328
329 newop = try_complex_special_method(op);
330
331 if (newop) {
332 cv = ((PyComplexObject *)newop)->cval;
333 Py_DECREF(newop);
334 return cv;
335 }
336 else if (PyErr_Occurred()) {
337 return cv;
338 }
339 /* If neither of the above works, interpret op as a float giving the
340 real part of the result, and fill in the imaginary part as 0. */
341 else {
342 /* PyFloat_AsDouble will return -1 on failure */
343 cv.real = PyFloat_AsDouble(op);
344 return cv;
345 }
346 }
347
348 static PyObject *
complex_repr(PyComplexObject * v)349 complex_repr(PyComplexObject *v)
350 {
351 int precision = 0;
352 char format_code = 'r';
353 PyObject *result = NULL;
354
355 /* If these are non-NULL, they'll need to be freed. */
356 char *pre = NULL;
357 char *im = NULL;
358
359 /* These do not need to be freed. re is either an alias
360 for pre or a pointer to a constant. lead and tail
361 are pointers to constants. */
362 const char *re = NULL;
363 const char *lead = "";
364 const char *tail = "";
365
366 if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
367 /* Real part is +0: just output the imaginary part and do not
368 include parens. */
369 re = "";
370 im = PyOS_double_to_string(v->cval.imag, format_code,
371 precision, 0, NULL);
372 if (!im) {
373 PyErr_NoMemory();
374 goto done;
375 }
376 } else {
377 /* Format imaginary part with sign, real part without. Include
378 parens in the result. */
379 pre = PyOS_double_to_string(v->cval.real, format_code,
380 precision, 0, NULL);
381 if (!pre) {
382 PyErr_NoMemory();
383 goto done;
384 }
385 re = pre;
386
387 im = PyOS_double_to_string(v->cval.imag, format_code,
388 precision, Py_DTSF_SIGN, NULL);
389 if (!im) {
390 PyErr_NoMemory();
391 goto done;
392 }
393 lead = "(";
394 tail = ")";
395 }
396 result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail);
397 done:
398 PyMem_Free(im);
399 PyMem_Free(pre);
400
401 return result;
402 }
403
404 static Py_hash_t
complex_hash(PyComplexObject * v)405 complex_hash(PyComplexObject *v)
406 {
407 Py_uhash_t hashreal, hashimag, combined;
408 hashreal = (Py_uhash_t)_Py_HashDouble((PyObject *) v, v->cval.real);
409 if (hashreal == (Py_uhash_t)-1)
410 return -1;
411 hashimag = (Py_uhash_t)_Py_HashDouble((PyObject *)v, v->cval.imag);
412 if (hashimag == (Py_uhash_t)-1)
413 return -1;
414 /* Note: if the imaginary part is 0, hashimag is 0 now,
415 * so the following returns hashreal unchanged. This is
416 * important because numbers of different types that
417 * compare equal must have the same hash value, so that
418 * hash(x + 0*j) must equal hash(x).
419 */
420 combined = hashreal + _PyHASH_IMAG * hashimag;
421 if (combined == (Py_uhash_t)-1)
422 combined = (Py_uhash_t)-2;
423 return (Py_hash_t)combined;
424 }
425
426 /* This macro may return! */
427 #define TO_COMPLEX(obj, c) \
428 if (PyComplex_Check(obj)) \
429 c = ((PyComplexObject *)(obj))->cval; \
430 else if (to_complex(&(obj), &(c)) < 0) \
431 return (obj)
432
433 static int
to_complex(PyObject ** pobj,Py_complex * pc)434 to_complex(PyObject **pobj, Py_complex *pc)
435 {
436 PyObject *obj = *pobj;
437
438 pc->real = pc->imag = 0.0;
439 if (PyLong_Check(obj)) {
440 pc->real = PyLong_AsDouble(obj);
441 if (pc->real == -1.0 && PyErr_Occurred()) {
442 *pobj = NULL;
443 return -1;
444 }
445 return 0;
446 }
447 if (PyFloat_Check(obj)) {
448 pc->real = PyFloat_AsDouble(obj);
449 return 0;
450 }
451 Py_INCREF(Py_NotImplemented);
452 *pobj = Py_NotImplemented;
453 return -1;
454 }
455
456
457 static PyObject *
complex_add(PyObject * v,PyObject * w)458 complex_add(PyObject *v, PyObject *w)
459 {
460 Py_complex result;
461 Py_complex a, b;
462 TO_COMPLEX(v, a);
463 TO_COMPLEX(w, b);
464 result = _Py_c_sum(a, b);
465 return PyComplex_FromCComplex(result);
466 }
467
468 static PyObject *
complex_sub(PyObject * v,PyObject * w)469 complex_sub(PyObject *v, PyObject *w)
470 {
471 Py_complex result;
472 Py_complex a, b;
473 TO_COMPLEX(v, a);
474 TO_COMPLEX(w, b);
475 result = _Py_c_diff(a, b);
476 return PyComplex_FromCComplex(result);
477 }
478
479 static PyObject *
complex_mul(PyObject * v,PyObject * w)480 complex_mul(PyObject *v, PyObject *w)
481 {
482 Py_complex result;
483 Py_complex a, b;
484 TO_COMPLEX(v, a);
485 TO_COMPLEX(w, b);
486 result = _Py_c_prod(a, b);
487 return PyComplex_FromCComplex(result);
488 }
489
490 static PyObject *
complex_div(PyObject * v,PyObject * w)491 complex_div(PyObject *v, PyObject *w)
492 {
493 Py_complex quot;
494 Py_complex a, b;
495 TO_COMPLEX(v, a);
496 TO_COMPLEX(w, b);
497 errno = 0;
498 quot = _Py_c_quot(a, b);
499 if (errno == EDOM) {
500 PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
501 return NULL;
502 }
503 return PyComplex_FromCComplex(quot);
504 }
505
506 static PyObject *
complex_pow(PyObject * v,PyObject * w,PyObject * z)507 complex_pow(PyObject *v, PyObject *w, PyObject *z)
508 {
509 Py_complex p;
510 Py_complex a, b;
511 TO_COMPLEX(v, a);
512 TO_COMPLEX(w, b);
513
514 if (z != Py_None) {
515 PyErr_SetString(PyExc_ValueError, "complex modulo");
516 return NULL;
517 }
518 errno = 0;
519 // Check whether the exponent has a small integer value, and if so use
520 // a faster and more accurate algorithm.
521 if (b.imag == 0.0 && b.real == floor(b.real) && fabs(b.real) <= 100.0) {
522 p = c_powi(a, (long)b.real);
523 }
524 else {
525 p = _Py_c_pow(a, b);
526 }
527
528 Py_ADJUST_ERANGE2(p.real, p.imag);
529 if (errno == EDOM) {
530 PyErr_SetString(PyExc_ZeroDivisionError,
531 "0.0 to a negative or complex power");
532 return NULL;
533 }
534 else if (errno == ERANGE) {
535 PyErr_SetString(PyExc_OverflowError,
536 "complex exponentiation");
537 return NULL;
538 }
539 return PyComplex_FromCComplex(p);
540 }
541
542 static PyObject *
complex_neg(PyComplexObject * v)543 complex_neg(PyComplexObject *v)
544 {
545 Py_complex neg;
546 neg.real = -v->cval.real;
547 neg.imag = -v->cval.imag;
548 return PyComplex_FromCComplex(neg);
549 }
550
551 static PyObject *
complex_pos(PyComplexObject * v)552 complex_pos(PyComplexObject *v)
553 {
554 if (PyComplex_CheckExact(v)) {
555 Py_INCREF(v);
556 return (PyObject *)v;
557 }
558 else
559 return PyComplex_FromCComplex(v->cval);
560 }
561
562 static PyObject *
complex_abs(PyComplexObject * v)563 complex_abs(PyComplexObject *v)
564 {
565 double result;
566
567 result = _Py_c_abs(v->cval);
568
569 if (errno == ERANGE) {
570 PyErr_SetString(PyExc_OverflowError,
571 "absolute value too large");
572 return NULL;
573 }
574 return PyFloat_FromDouble(result);
575 }
576
577 static int
complex_bool(PyComplexObject * v)578 complex_bool(PyComplexObject *v)
579 {
580 return v->cval.real != 0.0 || v->cval.imag != 0.0;
581 }
582
583 static PyObject *
complex_richcompare(PyObject * v,PyObject * w,int op)584 complex_richcompare(PyObject *v, PyObject *w, int op)
585 {
586 PyObject *res;
587 Py_complex i;
588 int equal;
589
590 if (op != Py_EQ && op != Py_NE) {
591 goto Unimplemented;
592 }
593
594 assert(PyComplex_Check(v));
595 TO_COMPLEX(v, i);
596
597 if (PyLong_Check(w)) {
598 /* Check for 0.0 imaginary part first to avoid the rich
599 * comparison when possible.
600 */
601 if (i.imag == 0.0) {
602 PyObject *j, *sub_res;
603 j = PyFloat_FromDouble(i.real);
604 if (j == NULL)
605 return NULL;
606
607 sub_res = PyObject_RichCompare(j, w, op);
608 Py_DECREF(j);
609 return sub_res;
610 }
611 else {
612 equal = 0;
613 }
614 }
615 else if (PyFloat_Check(w)) {
616 equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
617 }
618 else if (PyComplex_Check(w)) {
619 Py_complex j;
620
621 TO_COMPLEX(w, j);
622 equal = (i.real == j.real && i.imag == j.imag);
623 }
624 else {
625 goto Unimplemented;
626 }
627
628 if (equal == (op == Py_EQ))
629 res = Py_True;
630 else
631 res = Py_False;
632
633 Py_INCREF(res);
634 return res;
635
636 Unimplemented:
637 Py_RETURN_NOTIMPLEMENTED;
638 }
639
640 /*[clinic input]
641 complex.conjugate
642
643 Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.
644 [clinic start generated code]*/
645
646 static PyObject *
complex_conjugate_impl(PyComplexObject * self)647 complex_conjugate_impl(PyComplexObject *self)
648 /*[clinic end generated code: output=5059ef162edfc68e input=5fea33e9747ec2c4]*/
649 {
650 Py_complex c = self->cval;
651 c.imag = -c.imag;
652 return PyComplex_FromCComplex(c);
653 }
654
655 /*[clinic input]
656 complex.__getnewargs__
657
658 [clinic start generated code]*/
659
660 static PyObject *
complex___getnewargs___impl(PyComplexObject * self)661 complex___getnewargs___impl(PyComplexObject *self)
662 /*[clinic end generated code: output=689b8206e8728934 input=539543e0a50533d7]*/
663 {
664 Py_complex c = self->cval;
665 return Py_BuildValue("(dd)", c.real, c.imag);
666 }
667
668
669 /*[clinic input]
670 complex.__format__
671
672 format_spec: unicode
673 /
674
675 Convert to a string according to format_spec.
676 [clinic start generated code]*/
677
678 static PyObject *
complex___format___impl(PyComplexObject * self,PyObject * format_spec)679 complex___format___impl(PyComplexObject *self, PyObject *format_spec)
680 /*[clinic end generated code: output=bfcb60df24cafea0 input=014ef5488acbe1d5]*/
681 {
682 _PyUnicodeWriter writer;
683 int ret;
684 _PyUnicodeWriter_Init(&writer);
685 ret = _PyComplex_FormatAdvancedWriter(
686 &writer,
687 (PyObject *)self,
688 format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
689 if (ret == -1) {
690 _PyUnicodeWriter_Dealloc(&writer);
691 return NULL;
692 }
693 return _PyUnicodeWriter_Finish(&writer);
694 }
695
696 static PyMethodDef complex_methods[] = {
697 COMPLEX_CONJUGATE_METHODDEF
698 COMPLEX___GETNEWARGS___METHODDEF
699 COMPLEX___FORMAT___METHODDEF
700 {NULL, NULL} /* sentinel */
701 };
702
703 static PyMemberDef complex_members[] = {
704 {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
705 "the real part of a complex number"},
706 {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
707 "the imaginary part of a complex number"},
708 {0},
709 };
710
711 static PyObject *
complex_from_string_inner(const char * s,Py_ssize_t len,void * type)712 complex_from_string_inner(const char *s, Py_ssize_t len, void *type)
713 {
714 double x=0.0, y=0.0, z;
715 int got_bracket=0;
716 const char *start;
717 char *end;
718
719 /* position on first nonblank */
720 start = s;
721 while (Py_ISSPACE(*s))
722 s++;
723 if (*s == '(') {
724 /* Skip over possible bracket from repr(). */
725 got_bracket = 1;
726 s++;
727 while (Py_ISSPACE(*s))
728 s++;
729 }
730
731 /* a valid complex string usually takes one of the three forms:
732
733 <float> - real part only
734 <float>j - imaginary part only
735 <float><signed-float>j - real and imaginary parts
736
737 where <float> represents any numeric string that's accepted by the
738 float constructor (including 'nan', 'inf', 'infinity', etc.), and
739 <signed-float> is any string of the form <float> whose first
740 character is '+' or '-'.
741
742 For backwards compatibility, the extra forms
743
744 <float><sign>j
745 <sign>j
746 j
747
748 are also accepted, though support for these forms may be removed from
749 a future version of Python.
750 */
751
752 /* first look for forms starting with <float> */
753 z = PyOS_string_to_double(s, &end, NULL);
754 if (z == -1.0 && PyErr_Occurred()) {
755 if (PyErr_ExceptionMatches(PyExc_ValueError))
756 PyErr_Clear();
757 else
758 return NULL;
759 }
760 if (end != s) {
761 /* all 4 forms starting with <float> land here */
762 s = end;
763 if (*s == '+' || *s == '-') {
764 /* <float><signed-float>j | <float><sign>j */
765 x = z;
766 y = PyOS_string_to_double(s, &end, NULL);
767 if (y == -1.0 && PyErr_Occurred()) {
768 if (PyErr_ExceptionMatches(PyExc_ValueError))
769 PyErr_Clear();
770 else
771 return NULL;
772 }
773 if (end != s)
774 /* <float><signed-float>j */
775 s = end;
776 else {
777 /* <float><sign>j */
778 y = *s == '+' ? 1.0 : -1.0;
779 s++;
780 }
781 if (!(*s == 'j' || *s == 'J'))
782 goto parse_error;
783 s++;
784 }
785 else if (*s == 'j' || *s == 'J') {
786 /* <float>j */
787 s++;
788 y = z;
789 }
790 else
791 /* <float> */
792 x = z;
793 }
794 else {
795 /* not starting with <float>; must be <sign>j or j */
796 if (*s == '+' || *s == '-') {
797 /* <sign>j */
798 y = *s == '+' ? 1.0 : -1.0;
799 s++;
800 }
801 else
802 /* j */
803 y = 1.0;
804 if (!(*s == 'j' || *s == 'J'))
805 goto parse_error;
806 s++;
807 }
808
809 /* trailing whitespace and closing bracket */
810 while (Py_ISSPACE(*s))
811 s++;
812 if (got_bracket) {
813 /* if there was an opening parenthesis, then the corresponding
814 closing parenthesis should be right here */
815 if (*s != ')')
816 goto parse_error;
817 s++;
818 while (Py_ISSPACE(*s))
819 s++;
820 }
821
822 /* we should now be at the end of the string */
823 if (s-start != len)
824 goto parse_error;
825
826 return complex_subtype_from_doubles((PyTypeObject *)type, x, y);
827
828 parse_error:
829 PyErr_SetString(PyExc_ValueError,
830 "complex() arg is a malformed string");
831 return NULL;
832 }
833
834 static PyObject *
complex_subtype_from_string(PyTypeObject * type,PyObject * v)835 complex_subtype_from_string(PyTypeObject *type, PyObject *v)
836 {
837 const char *s;
838 PyObject *s_buffer = NULL, *result = NULL;
839 Py_ssize_t len;
840
841 if (PyUnicode_Check(v)) {
842 s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
843 if (s_buffer == NULL) {
844 return NULL;
845 }
846 assert(PyUnicode_IS_ASCII(s_buffer));
847 /* Simply get a pointer to existing ASCII characters. */
848 s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
849 assert(s != NULL);
850 }
851 else {
852 PyErr_Format(PyExc_TypeError,
853 "complex() argument must be a string or a number, not '%.200s'",
854 Py_TYPE(v)->tp_name);
855 return NULL;
856 }
857
858 result = _Py_string_to_number_with_underscores(s, len, "complex", v, type,
859 complex_from_string_inner);
860 Py_DECREF(s_buffer);
861 return result;
862 }
863
864 /*[clinic input]
865 @classmethod
866 complex.__new__ as complex_new
867 real as r: object(c_default="NULL") = 0
868 imag as i: object(c_default="NULL") = 0
869
870 Create a complex number from a real part and an optional imaginary part.
871
872 This is equivalent to (real + imag*1j) where imag defaults to 0.
873 [clinic start generated code]*/
874
875 static PyObject *
complex_new_impl(PyTypeObject * type,PyObject * r,PyObject * i)876 complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i)
877 /*[clinic end generated code: output=b6c7dd577b537dc1 input=f4c667f2596d4fd1]*/
878 {
879 PyObject *tmp;
880 PyNumberMethods *nbr, *nbi = NULL;
881 Py_complex cr, ci;
882 int own_r = 0;
883 int cr_is_complex = 0;
884 int ci_is_complex = 0;
885
886 if (r == NULL) {
887 r = _PyLong_GetZero();
888 }
889
890 /* Special-case for a single argument when type(arg) is complex. */
891 if (PyComplex_CheckExact(r) && i == NULL &&
892 type == &PyComplex_Type) {
893 /* Note that we can't know whether it's safe to return
894 a complex *subclass* instance as-is, hence the restriction
895 to exact complexes here. If either the input or the
896 output is a complex subclass, it will be handled below
897 as a non-orthogonal vector. */
898 Py_INCREF(r);
899 return r;
900 }
901 if (PyUnicode_Check(r)) {
902 if (i != NULL) {
903 PyErr_SetString(PyExc_TypeError,
904 "complex() can't take second arg"
905 " if first is a string");
906 return NULL;
907 }
908 return complex_subtype_from_string(type, r);
909 }
910 if (i != NULL && PyUnicode_Check(i)) {
911 PyErr_SetString(PyExc_TypeError,
912 "complex() second arg can't be a string");
913 return NULL;
914 }
915
916 tmp = try_complex_special_method(r);
917 if (tmp) {
918 r = tmp;
919 own_r = 1;
920 }
921 else if (PyErr_Occurred()) {
922 return NULL;
923 }
924
925 nbr = Py_TYPE(r)->tp_as_number;
926 if (nbr == NULL ||
927 (nbr->nb_float == NULL && nbr->nb_index == NULL && !PyComplex_Check(r)))
928 {
929 PyErr_Format(PyExc_TypeError,
930 "complex() first argument must be a string or a number, "
931 "not '%.200s'",
932 Py_TYPE(r)->tp_name);
933 if (own_r) {
934 Py_DECREF(r);
935 }
936 return NULL;
937 }
938 if (i != NULL) {
939 nbi = Py_TYPE(i)->tp_as_number;
940 if (nbi == NULL ||
941 (nbi->nb_float == NULL && nbi->nb_index == NULL && !PyComplex_Check(i)))
942 {
943 PyErr_Format(PyExc_TypeError,
944 "complex() second argument must be a number, "
945 "not '%.200s'",
946 Py_TYPE(i)->tp_name);
947 if (own_r) {
948 Py_DECREF(r);
949 }
950 return NULL;
951 }
952 }
953
954 /* If we get this far, then the "real" and "imag" parts should
955 both be treated as numbers, and the constructor should return a
956 complex number equal to (real + imag*1j).
957
958 Note that we do NOT assume the input to already be in canonical
959 form; the "real" and "imag" parts might themselves be complex
960 numbers, which slightly complicates the code below. */
961 if (PyComplex_Check(r)) {
962 /* Note that if r is of a complex subtype, we're only
963 retaining its real & imag parts here, and the return
964 value is (properly) of the builtin complex type. */
965 cr = ((PyComplexObject*)r)->cval;
966 cr_is_complex = 1;
967 if (own_r) {
968 Py_DECREF(r);
969 }
970 }
971 else {
972 /* The "real" part really is entirely real, and contributes
973 nothing in the imaginary direction.
974 Just treat it as a double. */
975 tmp = PyNumber_Float(r);
976 if (own_r) {
977 /* r was a newly created complex number, rather
978 than the original "real" argument. */
979 Py_DECREF(r);
980 }
981 if (tmp == NULL)
982 return NULL;
983 assert(PyFloat_Check(tmp));
984 cr.real = PyFloat_AsDouble(tmp);
985 cr.imag = 0.0;
986 Py_DECREF(tmp);
987 }
988 if (i == NULL) {
989 ci.real = cr.imag;
990 }
991 else if (PyComplex_Check(i)) {
992 ci = ((PyComplexObject*)i)->cval;
993 ci_is_complex = 1;
994 } else {
995 /* The "imag" part really is entirely imaginary, and
996 contributes nothing in the real direction.
997 Just treat it as a double. */
998 tmp = PyNumber_Float(i);
999 if (tmp == NULL)
1000 return NULL;
1001 ci.real = PyFloat_AsDouble(tmp);
1002 Py_DECREF(tmp);
1003 }
1004 /* If the input was in canonical form, then the "real" and "imag"
1005 parts are real numbers, so that ci.imag and cr.imag are zero.
1006 We need this correction in case they were not real numbers. */
1007
1008 if (ci_is_complex) {
1009 cr.real -= ci.imag;
1010 }
1011 if (cr_is_complex && i != NULL) {
1012 ci.real += cr.imag;
1013 }
1014 return complex_subtype_from_doubles(type, cr.real, ci.real);
1015 }
1016
1017 static PyNumberMethods complex_as_number = {
1018 (binaryfunc)complex_add, /* nb_add */
1019 (binaryfunc)complex_sub, /* nb_subtract */
1020 (binaryfunc)complex_mul, /* nb_multiply */
1021 0, /* nb_remainder */
1022 0, /* nb_divmod */
1023 (ternaryfunc)complex_pow, /* nb_power */
1024 (unaryfunc)complex_neg, /* nb_negative */
1025 (unaryfunc)complex_pos, /* nb_positive */
1026 (unaryfunc)complex_abs, /* nb_absolute */
1027 (inquiry)complex_bool, /* nb_bool */
1028 0, /* nb_invert */
1029 0, /* nb_lshift */
1030 0, /* nb_rshift */
1031 0, /* nb_and */
1032 0, /* nb_xor */
1033 0, /* nb_or */
1034 0, /* nb_int */
1035 0, /* nb_reserved */
1036 0, /* nb_float */
1037 0, /* nb_inplace_add */
1038 0, /* nb_inplace_subtract */
1039 0, /* nb_inplace_multiply*/
1040 0, /* nb_inplace_remainder */
1041 0, /* nb_inplace_power */
1042 0, /* nb_inplace_lshift */
1043 0, /* nb_inplace_rshift */
1044 0, /* nb_inplace_and */
1045 0, /* nb_inplace_xor */
1046 0, /* nb_inplace_or */
1047 0, /* nb_floor_divide */
1048 (binaryfunc)complex_div, /* nb_true_divide */
1049 0, /* nb_inplace_floor_divide */
1050 0, /* nb_inplace_true_divide */
1051 };
1052
1053 PyTypeObject PyComplex_Type = {
1054 PyVarObject_HEAD_INIT(&PyType_Type, 0)
1055 "complex",
1056 sizeof(PyComplexObject),
1057 0,
1058 0, /* tp_dealloc */
1059 0, /* tp_vectorcall_offset */
1060 0, /* tp_getattr */
1061 0, /* tp_setattr */
1062 0, /* tp_as_async */
1063 (reprfunc)complex_repr, /* tp_repr */
1064 &complex_as_number, /* tp_as_number */
1065 0, /* tp_as_sequence */
1066 0, /* tp_as_mapping */
1067 (hashfunc)complex_hash, /* tp_hash */
1068 0, /* tp_call */
1069 0, /* tp_str */
1070 PyObject_GenericGetAttr, /* tp_getattro */
1071 0, /* tp_setattro */
1072 0, /* tp_as_buffer */
1073 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
1074 complex_new__doc__, /* tp_doc */
1075 0, /* tp_traverse */
1076 0, /* tp_clear */
1077 complex_richcompare, /* tp_richcompare */
1078 0, /* tp_weaklistoffset */
1079 0, /* tp_iter */
1080 0, /* tp_iternext */
1081 complex_methods, /* tp_methods */
1082 complex_members, /* tp_members */
1083 0, /* tp_getset */
1084 0, /* tp_base */
1085 0, /* tp_dict */
1086 0, /* tp_descr_get */
1087 0, /* tp_descr_set */
1088 0, /* tp_dictoffset */
1089 0, /* tp_init */
1090 PyType_GenericAlloc, /* tp_alloc */
1091 complex_new, /* tp_new */
1092 PyObject_Del, /* tp_free */
1093 };
1094