• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/nospec.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/unaligned.h>
39 
40 /* Registers */
41 #define BPF_R0	regs[BPF_REG_0]
42 #define BPF_R1	regs[BPF_REG_1]
43 #define BPF_R2	regs[BPF_REG_2]
44 #define BPF_R3	regs[BPF_REG_3]
45 #define BPF_R4	regs[BPF_REG_4]
46 #define BPF_R5	regs[BPF_REG_5]
47 #define BPF_R6	regs[BPF_REG_6]
48 #define BPF_R7	regs[BPF_REG_7]
49 #define BPF_R8	regs[BPF_REG_8]
50 #define BPF_R9	regs[BPF_REG_9]
51 #define BPF_R10	regs[BPF_REG_10]
52 
53 /* Named registers */
54 #define DST	regs[insn->dst_reg]
55 #define SRC	regs[insn->src_reg]
56 #define FP	regs[BPF_REG_FP]
57 #define AX	regs[BPF_REG_AX]
58 #define ARG1	regs[BPF_REG_ARG1]
59 #define CTX	regs[BPF_REG_CTX]
60 #define IMM	insn->imm
61 
62 /* No hurry in this branch
63  *
64  * Exported for the bpf jit load helper.
65  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67 {
68 	u8 *ptr = NULL;
69 
70 	if (k >= SKF_NET_OFF) {
71 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 	} else if (k >= SKF_LL_OFF) {
73 		if (unlikely(!skb_mac_header_was_set(skb)))
74 			return NULL;
75 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
76 	}
77 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
78 		return ptr;
79 
80 	return NULL;
81 }
82 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)83 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
84 {
85 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
86 	struct bpf_prog_aux *aux;
87 	struct bpf_prog *fp;
88 
89 	size = round_up(size, PAGE_SIZE);
90 	fp = __vmalloc(size, gfp_flags);
91 	if (fp == NULL)
92 		return NULL;
93 
94 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
95 	if (aux == NULL) {
96 		vfree(fp);
97 		return NULL;
98 	}
99 
100 	fp->pages = size / PAGE_SIZE;
101 	fp->aux = aux;
102 	fp->aux->prog = fp;
103 	fp->jit_requested = ebpf_jit_enabled();
104 
105 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
106 	mutex_init(&fp->aux->used_maps_mutex);
107 	mutex_init(&fp->aux->dst_mutex);
108 
109 	return fp;
110 }
111 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)112 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
113 {
114 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
115 	struct bpf_prog *prog;
116 	int cpu;
117 
118 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
119 	if (!prog)
120 		return NULL;
121 
122 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
123 	if (!prog->aux->stats) {
124 		kfree(prog->aux);
125 		vfree(prog);
126 		return NULL;
127 	}
128 
129 	for_each_possible_cpu(cpu) {
130 		struct bpf_prog_stats *pstats;
131 
132 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
133 		u64_stats_init(&pstats->syncp);
134 	}
135 	return prog;
136 }
137 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
138 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)139 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
140 {
141 	if (!prog->aux->nr_linfo || !prog->jit_requested)
142 		return 0;
143 
144 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
145 					 sizeof(*prog->aux->jited_linfo),
146 					 GFP_KERNEL | __GFP_NOWARN);
147 	if (!prog->aux->jited_linfo)
148 		return -ENOMEM;
149 
150 	return 0;
151 }
152 
bpf_prog_free_jited_linfo(struct bpf_prog * prog)153 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
154 {
155 	kfree(prog->aux->jited_linfo);
156 	prog->aux->jited_linfo = NULL;
157 }
158 
bpf_prog_free_unused_jited_linfo(struct bpf_prog * prog)159 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
160 {
161 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
162 		bpf_prog_free_jited_linfo(prog);
163 }
164 
165 /* The jit engine is responsible to provide an array
166  * for insn_off to the jited_off mapping (insn_to_jit_off).
167  *
168  * The idx to this array is the insn_off.  Hence, the insn_off
169  * here is relative to the prog itself instead of the main prog.
170  * This array has one entry for each xlated bpf insn.
171  *
172  * jited_off is the byte off to the last byte of the jited insn.
173  *
174  * Hence, with
175  * insn_start:
176  *      The first bpf insn off of the prog.  The insn off
177  *      here is relative to the main prog.
178  *      e.g. if prog is a subprog, insn_start > 0
179  * linfo_idx:
180  *      The prog's idx to prog->aux->linfo and jited_linfo
181  *
182  * jited_linfo[linfo_idx] = prog->bpf_func
183  *
184  * For i > linfo_idx,
185  *
186  * jited_linfo[i] = prog->bpf_func +
187  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
188  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)189 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
190 			       const u32 *insn_to_jit_off)
191 {
192 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
193 	const struct bpf_line_info *linfo;
194 	void **jited_linfo;
195 
196 	if (!prog->aux->jited_linfo)
197 		/* Userspace did not provide linfo */
198 		return;
199 
200 	linfo_idx = prog->aux->linfo_idx;
201 	linfo = &prog->aux->linfo[linfo_idx];
202 	insn_start = linfo[0].insn_off;
203 	insn_end = insn_start + prog->len;
204 
205 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
206 	jited_linfo[0] = prog->bpf_func;
207 
208 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
209 
210 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
211 		/* The verifier ensures that linfo[i].insn_off is
212 		 * strictly increasing
213 		 */
214 		jited_linfo[i] = prog->bpf_func +
215 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
216 }
217 
bpf_prog_free_linfo(struct bpf_prog * prog)218 void bpf_prog_free_linfo(struct bpf_prog *prog)
219 {
220 	bpf_prog_free_jited_linfo(prog);
221 	kvfree(prog->aux->linfo);
222 }
223 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)224 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
225 				  gfp_t gfp_extra_flags)
226 {
227 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
228 	struct bpf_prog *fp;
229 	u32 pages, delta;
230 	int ret;
231 
232 	size = round_up(size, PAGE_SIZE);
233 	pages = size / PAGE_SIZE;
234 	if (pages <= fp_old->pages)
235 		return fp_old;
236 
237 	delta = pages - fp_old->pages;
238 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
239 	if (ret)
240 		return NULL;
241 
242 	fp = __vmalloc(size, gfp_flags);
243 	if (fp == NULL) {
244 		__bpf_prog_uncharge(fp_old->aux->user, delta);
245 	} else {
246 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
247 		fp->pages = pages;
248 		fp->aux->prog = fp;
249 
250 		/* We keep fp->aux from fp_old around in the new
251 		 * reallocated structure.
252 		 */
253 		fp_old->aux = NULL;
254 		__bpf_prog_free(fp_old);
255 	}
256 
257 	return fp;
258 }
259 
__bpf_prog_free(struct bpf_prog * fp)260 void __bpf_prog_free(struct bpf_prog *fp)
261 {
262 	if (fp->aux) {
263 		mutex_destroy(&fp->aux->used_maps_mutex);
264 		mutex_destroy(&fp->aux->dst_mutex);
265 		free_percpu(fp->aux->stats);
266 		kfree(fp->aux->poke_tab);
267 		kfree(fp->aux);
268 	}
269 	vfree(fp);
270 }
271 
bpf_prog_calc_tag(struct bpf_prog * fp)272 int bpf_prog_calc_tag(struct bpf_prog *fp)
273 {
274 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
275 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
276 	u32 digest[SHA1_DIGEST_WORDS];
277 	u32 ws[SHA1_WORKSPACE_WORDS];
278 	u32 i, bsize, psize, blocks;
279 	struct bpf_insn *dst;
280 	bool was_ld_map;
281 	u8 *raw, *todo;
282 	__be32 *result;
283 	__be64 *bits;
284 
285 	raw = vmalloc(raw_size);
286 	if (!raw)
287 		return -ENOMEM;
288 
289 	sha1_init(digest);
290 	memset(ws, 0, sizeof(ws));
291 
292 	/* We need to take out the map fd for the digest calculation
293 	 * since they are unstable from user space side.
294 	 */
295 	dst = (void *)raw;
296 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
297 		dst[i] = fp->insnsi[i];
298 		if (!was_ld_map &&
299 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
300 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
301 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
302 			was_ld_map = true;
303 			dst[i].imm = 0;
304 		} else if (was_ld_map &&
305 			   dst[i].code == 0 &&
306 			   dst[i].dst_reg == 0 &&
307 			   dst[i].src_reg == 0 &&
308 			   dst[i].off == 0) {
309 			was_ld_map = false;
310 			dst[i].imm = 0;
311 		} else {
312 			was_ld_map = false;
313 		}
314 	}
315 
316 	psize = bpf_prog_insn_size(fp);
317 	memset(&raw[psize], 0, raw_size - psize);
318 	raw[psize++] = 0x80;
319 
320 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
321 	blocks = bsize / SHA1_BLOCK_SIZE;
322 	todo   = raw;
323 	if (bsize - psize >= sizeof(__be64)) {
324 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
325 	} else {
326 		bits = (__be64 *)(todo + bsize + bits_offset);
327 		blocks++;
328 	}
329 	*bits = cpu_to_be64((psize - 1) << 3);
330 
331 	while (blocks--) {
332 		sha1_transform(digest, todo, ws);
333 		todo += SHA1_BLOCK_SIZE;
334 	}
335 
336 	result = (__force __be32 *)digest;
337 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
338 		result[i] = cpu_to_be32(digest[i]);
339 	memcpy(fp->tag, result, sizeof(fp->tag));
340 
341 	vfree(raw);
342 	return 0;
343 }
344 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)345 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
346 				s32 end_new, s32 curr, const bool probe_pass)
347 {
348 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
349 	s32 delta = end_new - end_old;
350 	s64 imm = insn->imm;
351 
352 	if (curr < pos && curr + imm + 1 >= end_old)
353 		imm += delta;
354 	else if (curr >= end_new && curr + imm + 1 < end_new)
355 		imm -= delta;
356 	if (imm < imm_min || imm > imm_max)
357 		return -ERANGE;
358 	if (!probe_pass)
359 		insn->imm = imm;
360 	return 0;
361 }
362 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)363 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
364 				s32 end_new, s32 curr, const bool probe_pass)
365 {
366 	const s32 off_min = S16_MIN, off_max = S16_MAX;
367 	s32 delta = end_new - end_old;
368 	s32 off = insn->off;
369 
370 	if (curr < pos && curr + off + 1 >= end_old)
371 		off += delta;
372 	else if (curr >= end_new && curr + off + 1 < end_new)
373 		off -= delta;
374 	if (off < off_min || off > off_max)
375 		return -ERANGE;
376 	if (!probe_pass)
377 		insn->off = off;
378 	return 0;
379 }
380 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)381 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
382 			    s32 end_new, const bool probe_pass)
383 {
384 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
385 	struct bpf_insn *insn = prog->insnsi;
386 	int ret = 0;
387 
388 	for (i = 0; i < insn_cnt; i++, insn++) {
389 		u8 code;
390 
391 		/* In the probing pass we still operate on the original,
392 		 * unpatched image in order to check overflows before we
393 		 * do any other adjustments. Therefore skip the patchlet.
394 		 */
395 		if (probe_pass && i == pos) {
396 			i = end_new;
397 			insn = prog->insnsi + end_old;
398 		}
399 		code = insn->code;
400 		if ((BPF_CLASS(code) != BPF_JMP &&
401 		     BPF_CLASS(code) != BPF_JMP32) ||
402 		    BPF_OP(code) == BPF_EXIT)
403 			continue;
404 		/* Adjust offset of jmps if we cross patch boundaries. */
405 		if (BPF_OP(code) == BPF_CALL) {
406 			if (insn->src_reg != BPF_PSEUDO_CALL)
407 				continue;
408 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
409 						   end_new, i, probe_pass);
410 		} else {
411 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
412 						   end_new, i, probe_pass);
413 		}
414 		if (ret)
415 			break;
416 	}
417 
418 	return ret;
419 }
420 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)421 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
422 {
423 	struct bpf_line_info *linfo;
424 	u32 i, nr_linfo;
425 
426 	nr_linfo = prog->aux->nr_linfo;
427 	if (!nr_linfo || !delta)
428 		return;
429 
430 	linfo = prog->aux->linfo;
431 
432 	for (i = 0; i < nr_linfo; i++)
433 		if (off < linfo[i].insn_off)
434 			break;
435 
436 	/* Push all off < linfo[i].insn_off by delta */
437 	for (; i < nr_linfo; i++)
438 		linfo[i].insn_off += delta;
439 }
440 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)441 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
442 				       const struct bpf_insn *patch, u32 len)
443 {
444 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
445 	const u32 cnt_max = S16_MAX;
446 	struct bpf_prog *prog_adj;
447 	int err;
448 
449 	/* Since our patchlet doesn't expand the image, we're done. */
450 	if (insn_delta == 0) {
451 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
452 		return prog;
453 	}
454 
455 	insn_adj_cnt = prog->len + insn_delta;
456 
457 	/* Reject anything that would potentially let the insn->off
458 	 * target overflow when we have excessive program expansions.
459 	 * We need to probe here before we do any reallocation where
460 	 * we afterwards may not fail anymore.
461 	 */
462 	if (insn_adj_cnt > cnt_max &&
463 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
464 		return ERR_PTR(err);
465 
466 	/* Several new instructions need to be inserted. Make room
467 	 * for them. Likely, there's no need for a new allocation as
468 	 * last page could have large enough tailroom.
469 	 */
470 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
471 				    GFP_USER);
472 	if (!prog_adj)
473 		return ERR_PTR(-ENOMEM);
474 
475 	prog_adj->len = insn_adj_cnt;
476 
477 	/* Patching happens in 3 steps:
478 	 *
479 	 * 1) Move over tail of insnsi from next instruction onwards,
480 	 *    so we can patch the single target insn with one or more
481 	 *    new ones (patching is always from 1 to n insns, n > 0).
482 	 * 2) Inject new instructions at the target location.
483 	 * 3) Adjust branch offsets if necessary.
484 	 */
485 	insn_rest = insn_adj_cnt - off - len;
486 
487 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
488 		sizeof(*patch) * insn_rest);
489 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
490 
491 	/* We are guaranteed to not fail at this point, otherwise
492 	 * the ship has sailed to reverse to the original state. An
493 	 * overflow cannot happen at this point.
494 	 */
495 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
496 
497 	bpf_adj_linfo(prog_adj, off, insn_delta);
498 
499 	return prog_adj;
500 }
501 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)502 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
503 {
504 	/* Branch offsets can't overflow when program is shrinking, no need
505 	 * to call bpf_adj_branches(..., true) here
506 	 */
507 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
508 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
509 	prog->len -= cnt;
510 
511 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
512 }
513 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)514 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
515 {
516 	int i;
517 
518 	for (i = 0; i < fp->aux->func_cnt; i++)
519 		bpf_prog_kallsyms_del(fp->aux->func[i]);
520 }
521 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)522 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
523 {
524 	bpf_prog_kallsyms_del_subprogs(fp);
525 	bpf_prog_kallsyms_del(fp);
526 }
527 
528 #ifdef CONFIG_BPF_JIT
529 /* All BPF JIT sysctl knobs here. */
530 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
531 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
532 int bpf_jit_harden   __read_mostly;
533 long bpf_jit_limit   __read_mostly;
534 long bpf_jit_limit_max __read_mostly;
535 
536 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)537 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
538 {
539 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
540 	unsigned long addr = (unsigned long)hdr;
541 
542 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
543 
544 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
545 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
546 }
547 
548 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)549 bpf_prog_ksym_set_name(struct bpf_prog *prog)
550 {
551 	char *sym = prog->aux->ksym.name;
552 	const char *end = sym + KSYM_NAME_LEN;
553 	const struct btf_type *type;
554 	const char *func_name;
555 
556 	BUILD_BUG_ON(sizeof("bpf_prog_") +
557 		     sizeof(prog->tag) * 2 +
558 		     /* name has been null terminated.
559 		      * We should need +1 for the '_' preceding
560 		      * the name.  However, the null character
561 		      * is double counted between the name and the
562 		      * sizeof("bpf_prog_") above, so we omit
563 		      * the +1 here.
564 		      */
565 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
566 
567 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
568 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
569 
570 	/* prog->aux->name will be ignored if full btf name is available */
571 	if (prog->aux->func_info_cnt) {
572 		type = btf_type_by_id(prog->aux->btf,
573 				      prog->aux->func_info[prog->aux->func_idx].type_id);
574 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
575 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
576 		return;
577 	}
578 
579 	if (prog->aux->name[0])
580 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
581 	else
582 		*sym = 0;
583 }
584 
bpf_get_ksym_start(struct latch_tree_node * n)585 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
586 {
587 	return container_of(n, struct bpf_ksym, tnode)->start;
588 }
589 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)590 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
591 					  struct latch_tree_node *b)
592 {
593 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
594 }
595 
bpf_tree_comp(void * key,struct latch_tree_node * n)596 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
597 {
598 	unsigned long val = (unsigned long)key;
599 	const struct bpf_ksym *ksym;
600 
601 	ksym = container_of(n, struct bpf_ksym, tnode);
602 
603 	if (val < ksym->start)
604 		return -1;
605 	if (val >= ksym->end)
606 		return  1;
607 
608 	return 0;
609 }
610 
611 static const struct latch_tree_ops bpf_tree_ops = {
612 	.less	= bpf_tree_less,
613 	.comp	= bpf_tree_comp,
614 };
615 
616 static DEFINE_SPINLOCK(bpf_lock);
617 static LIST_HEAD(bpf_kallsyms);
618 static struct latch_tree_root bpf_tree __cacheline_aligned;
619 
bpf_ksym_add(struct bpf_ksym * ksym)620 void bpf_ksym_add(struct bpf_ksym *ksym)
621 {
622 	spin_lock_bh(&bpf_lock);
623 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
624 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
625 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
626 	spin_unlock_bh(&bpf_lock);
627 }
628 
__bpf_ksym_del(struct bpf_ksym * ksym)629 static void __bpf_ksym_del(struct bpf_ksym *ksym)
630 {
631 	if (list_empty(&ksym->lnode))
632 		return;
633 
634 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
635 	list_del_rcu(&ksym->lnode);
636 }
637 
bpf_ksym_del(struct bpf_ksym * ksym)638 void bpf_ksym_del(struct bpf_ksym *ksym)
639 {
640 	spin_lock_bh(&bpf_lock);
641 	__bpf_ksym_del(ksym);
642 	spin_unlock_bh(&bpf_lock);
643 }
644 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)645 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
646 {
647 	return fp->jited && !bpf_prog_was_classic(fp);
648 }
649 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)650 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
651 {
652 	return list_empty(&fp->aux->ksym.lnode) ||
653 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
654 }
655 
bpf_prog_kallsyms_add(struct bpf_prog * fp)656 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
657 {
658 	if (!bpf_prog_kallsyms_candidate(fp) ||
659 	    !bpf_capable())
660 		return;
661 
662 	bpf_prog_ksym_set_addr(fp);
663 	bpf_prog_ksym_set_name(fp);
664 	fp->aux->ksym.prog = true;
665 
666 	bpf_ksym_add(&fp->aux->ksym);
667 }
668 
bpf_prog_kallsyms_del(struct bpf_prog * fp)669 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
670 {
671 	if (!bpf_prog_kallsyms_candidate(fp))
672 		return;
673 
674 	bpf_ksym_del(&fp->aux->ksym);
675 }
676 
bpf_ksym_find(unsigned long addr)677 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
678 {
679 	struct latch_tree_node *n;
680 
681 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
682 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
683 }
684 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)685 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
686 				 unsigned long *off, char *sym)
687 {
688 	struct bpf_ksym *ksym;
689 	char *ret = NULL;
690 
691 	rcu_read_lock();
692 	ksym = bpf_ksym_find(addr);
693 	if (ksym) {
694 		unsigned long symbol_start = ksym->start;
695 		unsigned long symbol_end = ksym->end;
696 
697 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
698 
699 		ret = sym;
700 		if (size)
701 			*size = symbol_end - symbol_start;
702 		if (off)
703 			*off  = addr - symbol_start;
704 	}
705 	rcu_read_unlock();
706 
707 	return ret;
708 }
709 
is_bpf_text_address(unsigned long addr)710 bool is_bpf_text_address(unsigned long addr)
711 {
712 	bool ret;
713 
714 	rcu_read_lock();
715 	ret = bpf_ksym_find(addr) != NULL;
716 	rcu_read_unlock();
717 
718 	return ret;
719 }
720 
bpf_prog_ksym_find(unsigned long addr)721 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
722 {
723 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
724 
725 	return ksym && ksym->prog ?
726 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
727 	       NULL;
728 }
729 
search_bpf_extables(unsigned long addr)730 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
731 {
732 	const struct exception_table_entry *e = NULL;
733 	struct bpf_prog *prog;
734 
735 	rcu_read_lock();
736 	prog = bpf_prog_ksym_find(addr);
737 	if (!prog)
738 		goto out;
739 	if (!prog->aux->num_exentries)
740 		goto out;
741 
742 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
743 out:
744 	rcu_read_unlock();
745 	return e;
746 }
747 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)748 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
749 		    char *sym)
750 {
751 	struct bpf_ksym *ksym;
752 	unsigned int it = 0;
753 	int ret = -ERANGE;
754 
755 	if (!bpf_jit_kallsyms_enabled())
756 		return ret;
757 
758 	rcu_read_lock();
759 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
760 		if (it++ != symnum)
761 			continue;
762 
763 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
764 
765 		*value = ksym->start;
766 		*type  = BPF_SYM_ELF_TYPE;
767 
768 		ret = 0;
769 		break;
770 	}
771 	rcu_read_unlock();
772 
773 	return ret;
774 }
775 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)776 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
777 				struct bpf_jit_poke_descriptor *poke)
778 {
779 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
780 	static const u32 poke_tab_max = 1024;
781 	u32 slot = prog->aux->size_poke_tab;
782 	u32 size = slot + 1;
783 
784 	if (size > poke_tab_max)
785 		return -ENOSPC;
786 	if (poke->tailcall_target || poke->tailcall_target_stable ||
787 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
788 		return -EINVAL;
789 
790 	switch (poke->reason) {
791 	case BPF_POKE_REASON_TAIL_CALL:
792 		if (!poke->tail_call.map)
793 			return -EINVAL;
794 		break;
795 	default:
796 		return -EINVAL;
797 	}
798 
799 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
800 	if (!tab)
801 		return -ENOMEM;
802 
803 	memcpy(&tab[slot], poke, sizeof(*poke));
804 	prog->aux->size_poke_tab = size;
805 	prog->aux->poke_tab = tab;
806 
807 	return slot;
808 }
809 
810 static atomic_long_t bpf_jit_current;
811 
812 /* Can be overridden by an arch's JIT compiler if it has a custom,
813  * dedicated BPF backend memory area, or if neither of the two
814  * below apply.
815  */
bpf_jit_alloc_exec_limit(void)816 u64 __weak bpf_jit_alloc_exec_limit(void)
817 {
818 #if defined(MODULES_VADDR)
819 	return MODULES_END - MODULES_VADDR;
820 #else
821 	return VMALLOC_END - VMALLOC_START;
822 #endif
823 }
824 
bpf_jit_charge_init(void)825 static int __init bpf_jit_charge_init(void)
826 {
827 	/* Only used as heuristic here to derive limit. */
828 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
829 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
830 					    PAGE_SIZE), LONG_MAX);
831 	return 0;
832 }
833 pure_initcall(bpf_jit_charge_init);
834 
bpf_jit_charge_modmem(u32 pages)835 int bpf_jit_charge_modmem(u32 pages)
836 {
837 	if (atomic_long_add_return(pages, &bpf_jit_current) >
838 	    (bpf_jit_limit >> PAGE_SHIFT)) {
839 		if (!bpf_capable()) {
840 			atomic_long_sub(pages, &bpf_jit_current);
841 			return -EPERM;
842 		}
843 	}
844 
845 	return 0;
846 }
847 
bpf_jit_uncharge_modmem(u32 pages)848 void bpf_jit_uncharge_modmem(u32 pages)
849 {
850 	atomic_long_sub(pages, &bpf_jit_current);
851 }
852 
bpf_jit_alloc_exec(unsigned long size)853 void *__weak bpf_jit_alloc_exec(unsigned long size)
854 {
855 	return module_alloc(size);
856 }
857 
bpf_jit_free_exec(void * addr)858 void __weak bpf_jit_free_exec(void *addr)
859 {
860 	module_memfree(addr);
861 }
862 
863 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)864 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
865 		     unsigned int alignment,
866 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
867 {
868 	struct bpf_binary_header *hdr;
869 	u32 size, hole, start, pages;
870 
871 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
872 		     alignment > BPF_IMAGE_ALIGNMENT);
873 
874 	/* Most of BPF filters are really small, but if some of them
875 	 * fill a page, allow at least 128 extra bytes to insert a
876 	 * random section of illegal instructions.
877 	 */
878 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
879 	pages = size / PAGE_SIZE;
880 
881 	if (bpf_jit_charge_modmem(pages))
882 		return NULL;
883 	hdr = bpf_jit_alloc_exec(size);
884 	if (!hdr) {
885 		bpf_jit_uncharge_modmem(pages);
886 		return NULL;
887 	}
888 
889 	/* Fill space with illegal/arch-dep instructions. */
890 	bpf_fill_ill_insns(hdr, size);
891 
892 	hdr->pages = pages;
893 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
894 		     PAGE_SIZE - sizeof(*hdr));
895 	start = (get_random_int() % hole) & ~(alignment - 1);
896 
897 	/* Leave a random number of instructions before BPF code. */
898 	*image_ptr = &hdr->image[start];
899 
900 	return hdr;
901 }
902 
bpf_jit_binary_free(struct bpf_binary_header * hdr)903 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
904 {
905 	u32 pages = hdr->pages;
906 
907 	bpf_jit_free_exec(hdr);
908 	bpf_jit_uncharge_modmem(pages);
909 }
910 
911 /* This symbol is only overridden by archs that have different
912  * requirements than the usual eBPF JITs, f.e. when they only
913  * implement cBPF JIT, do not set images read-only, etc.
914  */
bpf_jit_free(struct bpf_prog * fp)915 void __weak bpf_jit_free(struct bpf_prog *fp)
916 {
917 	if (fp->jited) {
918 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
919 
920 		bpf_jit_binary_free(hdr);
921 
922 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
923 	}
924 
925 	bpf_prog_unlock_free(fp);
926 }
927 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)928 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
929 			  const struct bpf_insn *insn, bool extra_pass,
930 			  u64 *func_addr, bool *func_addr_fixed)
931 {
932 	s16 off = insn->off;
933 	s32 imm = insn->imm;
934 	u8 *addr;
935 
936 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
937 	if (!*func_addr_fixed) {
938 		/* Place-holder address till the last pass has collected
939 		 * all addresses for JITed subprograms in which case we
940 		 * can pick them up from prog->aux.
941 		 */
942 		if (!extra_pass)
943 			addr = NULL;
944 		else if (prog->aux->func &&
945 			 off >= 0 && off < prog->aux->func_cnt)
946 			addr = (u8 *)prog->aux->func[off]->bpf_func;
947 		else
948 			return -EINVAL;
949 	} else {
950 		/* Address of a BPF helper call. Since part of the core
951 		 * kernel, it's always at a fixed location. __bpf_call_base
952 		 * and the helper with imm relative to it are both in core
953 		 * kernel.
954 		 */
955 		addr = (u8 *)__bpf_call_base + imm;
956 	}
957 
958 	*func_addr = (unsigned long)addr;
959 	return 0;
960 }
961 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)962 static int bpf_jit_blind_insn(const struct bpf_insn *from,
963 			      const struct bpf_insn *aux,
964 			      struct bpf_insn *to_buff,
965 			      bool emit_zext)
966 {
967 	struct bpf_insn *to = to_buff;
968 	u32 imm_rnd = get_random_int();
969 	s16 off;
970 
971 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
972 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
973 
974 	/* Constraints on AX register:
975 	 *
976 	 * AX register is inaccessible from user space. It is mapped in
977 	 * all JITs, and used here for constant blinding rewrites. It is
978 	 * typically "stateless" meaning its contents are only valid within
979 	 * the executed instruction, but not across several instructions.
980 	 * There are a few exceptions however which are further detailed
981 	 * below.
982 	 *
983 	 * Constant blinding is only used by JITs, not in the interpreter.
984 	 * The interpreter uses AX in some occasions as a local temporary
985 	 * register e.g. in DIV or MOD instructions.
986 	 *
987 	 * In restricted circumstances, the verifier can also use the AX
988 	 * register for rewrites as long as they do not interfere with
989 	 * the above cases!
990 	 */
991 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
992 		goto out;
993 
994 	if (from->imm == 0 &&
995 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
996 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
997 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
998 		goto out;
999 	}
1000 
1001 	switch (from->code) {
1002 	case BPF_ALU | BPF_ADD | BPF_K:
1003 	case BPF_ALU | BPF_SUB | BPF_K:
1004 	case BPF_ALU | BPF_AND | BPF_K:
1005 	case BPF_ALU | BPF_OR  | BPF_K:
1006 	case BPF_ALU | BPF_XOR | BPF_K:
1007 	case BPF_ALU | BPF_MUL | BPF_K:
1008 	case BPF_ALU | BPF_MOV | BPF_K:
1009 	case BPF_ALU | BPF_DIV | BPF_K:
1010 	case BPF_ALU | BPF_MOD | BPF_K:
1011 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1012 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1013 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1014 		break;
1015 
1016 	case BPF_ALU64 | BPF_ADD | BPF_K:
1017 	case BPF_ALU64 | BPF_SUB | BPF_K:
1018 	case BPF_ALU64 | BPF_AND | BPF_K:
1019 	case BPF_ALU64 | BPF_OR  | BPF_K:
1020 	case BPF_ALU64 | BPF_XOR | BPF_K:
1021 	case BPF_ALU64 | BPF_MUL | BPF_K:
1022 	case BPF_ALU64 | BPF_MOV | BPF_K:
1023 	case BPF_ALU64 | BPF_DIV | BPF_K:
1024 	case BPF_ALU64 | BPF_MOD | BPF_K:
1025 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1026 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1027 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1028 		break;
1029 
1030 	case BPF_JMP | BPF_JEQ  | BPF_K:
1031 	case BPF_JMP | BPF_JNE  | BPF_K:
1032 	case BPF_JMP | BPF_JGT  | BPF_K:
1033 	case BPF_JMP | BPF_JLT  | BPF_K:
1034 	case BPF_JMP | BPF_JGE  | BPF_K:
1035 	case BPF_JMP | BPF_JLE  | BPF_K:
1036 	case BPF_JMP | BPF_JSGT | BPF_K:
1037 	case BPF_JMP | BPF_JSLT | BPF_K:
1038 	case BPF_JMP | BPF_JSGE | BPF_K:
1039 	case BPF_JMP | BPF_JSLE | BPF_K:
1040 	case BPF_JMP | BPF_JSET | BPF_K:
1041 		/* Accommodate for extra offset in case of a backjump. */
1042 		off = from->off;
1043 		if (off < 0)
1044 			off -= 2;
1045 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1046 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1047 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1048 		break;
1049 
1050 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1051 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1052 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1053 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1054 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1055 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1056 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1057 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1058 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1059 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1060 	case BPF_JMP32 | BPF_JSET | BPF_K:
1061 		/* Accommodate for extra offset in case of a backjump. */
1062 		off = from->off;
1063 		if (off < 0)
1064 			off -= 2;
1065 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1066 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1067 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1068 				      off);
1069 		break;
1070 
1071 	case BPF_LD | BPF_IMM | BPF_DW:
1072 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1073 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1074 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1075 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1076 		break;
1077 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1078 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1079 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1080 		if (emit_zext)
1081 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1082 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1083 		break;
1084 
1085 	case BPF_ST | BPF_MEM | BPF_DW:
1086 	case BPF_ST | BPF_MEM | BPF_W:
1087 	case BPF_ST | BPF_MEM | BPF_H:
1088 	case BPF_ST | BPF_MEM | BPF_B:
1089 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1090 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1091 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1092 		break;
1093 	}
1094 out:
1095 	return to - to_buff;
1096 }
1097 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1098 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1099 					      gfp_t gfp_extra_flags)
1100 {
1101 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1102 	struct bpf_prog *fp;
1103 
1104 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1105 	if (fp != NULL) {
1106 		/* aux->prog still points to the fp_other one, so
1107 		 * when promoting the clone to the real program,
1108 		 * this still needs to be adapted.
1109 		 */
1110 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1111 	}
1112 
1113 	return fp;
1114 }
1115 
bpf_prog_clone_free(struct bpf_prog * fp)1116 static void bpf_prog_clone_free(struct bpf_prog *fp)
1117 {
1118 	/* aux was stolen by the other clone, so we cannot free
1119 	 * it from this path! It will be freed eventually by the
1120 	 * other program on release.
1121 	 *
1122 	 * At this point, we don't need a deferred release since
1123 	 * clone is guaranteed to not be locked.
1124 	 */
1125 	fp->aux = NULL;
1126 	__bpf_prog_free(fp);
1127 }
1128 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1129 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1130 {
1131 	/* We have to repoint aux->prog to self, as we don't
1132 	 * know whether fp here is the clone or the original.
1133 	 */
1134 	fp->aux->prog = fp;
1135 	bpf_prog_clone_free(fp_other);
1136 }
1137 
bpf_jit_blind_constants(struct bpf_prog * prog)1138 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1139 {
1140 	struct bpf_insn insn_buff[16], aux[2];
1141 	struct bpf_prog *clone, *tmp;
1142 	int insn_delta, insn_cnt;
1143 	struct bpf_insn *insn;
1144 	int i, rewritten;
1145 
1146 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1147 		return prog;
1148 
1149 	clone = bpf_prog_clone_create(prog, GFP_USER);
1150 	if (!clone)
1151 		return ERR_PTR(-ENOMEM);
1152 
1153 	insn_cnt = clone->len;
1154 	insn = clone->insnsi;
1155 
1156 	for (i = 0; i < insn_cnt; i++, insn++) {
1157 		/* We temporarily need to hold the original ld64 insn
1158 		 * so that we can still access the first part in the
1159 		 * second blinding run.
1160 		 */
1161 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1162 		    insn[1].code == 0)
1163 			memcpy(aux, insn, sizeof(aux));
1164 
1165 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1166 						clone->aux->verifier_zext);
1167 		if (!rewritten)
1168 			continue;
1169 
1170 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1171 		if (IS_ERR(tmp)) {
1172 			/* Patching may have repointed aux->prog during
1173 			 * realloc from the original one, so we need to
1174 			 * fix it up here on error.
1175 			 */
1176 			bpf_jit_prog_release_other(prog, clone);
1177 			return tmp;
1178 		}
1179 
1180 		clone = tmp;
1181 		insn_delta = rewritten - 1;
1182 
1183 		/* Walk new program and skip insns we just inserted. */
1184 		insn = clone->insnsi + i + insn_delta;
1185 		insn_cnt += insn_delta;
1186 		i        += insn_delta;
1187 	}
1188 
1189 	clone->blinded = 1;
1190 	return clone;
1191 }
1192 #endif /* CONFIG_BPF_JIT */
1193 
1194 /* Base function for offset calculation. Needs to go into .text section,
1195  * therefore keeping it non-static as well; will also be used by JITs
1196  * anyway later on, so do not let the compiler omit it. This also needs
1197  * to go into kallsyms for correlation from e.g. bpftool, so naming
1198  * must not change.
1199  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1200 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1201 {
1202 	return 0;
1203 }
1204 EXPORT_SYMBOL_GPL(__bpf_call_base);
1205 
1206 /* All UAPI available opcodes. */
1207 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1208 	/* 32 bit ALU operations. */		\
1209 	/*   Register based. */			\
1210 	INSN_3(ALU, ADD,  X),			\
1211 	INSN_3(ALU, SUB,  X),			\
1212 	INSN_3(ALU, AND,  X),			\
1213 	INSN_3(ALU, OR,   X),			\
1214 	INSN_3(ALU, LSH,  X),			\
1215 	INSN_3(ALU, RSH,  X),			\
1216 	INSN_3(ALU, XOR,  X),			\
1217 	INSN_3(ALU, MUL,  X),			\
1218 	INSN_3(ALU, MOV,  X),			\
1219 	INSN_3(ALU, ARSH, X),			\
1220 	INSN_3(ALU, DIV,  X),			\
1221 	INSN_3(ALU, MOD,  X),			\
1222 	INSN_2(ALU, NEG),			\
1223 	INSN_3(ALU, END, TO_BE),		\
1224 	INSN_3(ALU, END, TO_LE),		\
1225 	/*   Immediate based. */		\
1226 	INSN_3(ALU, ADD,  K),			\
1227 	INSN_3(ALU, SUB,  K),			\
1228 	INSN_3(ALU, AND,  K),			\
1229 	INSN_3(ALU, OR,   K),			\
1230 	INSN_3(ALU, LSH,  K),			\
1231 	INSN_3(ALU, RSH,  K),			\
1232 	INSN_3(ALU, XOR,  K),			\
1233 	INSN_3(ALU, MUL,  K),			\
1234 	INSN_3(ALU, MOV,  K),			\
1235 	INSN_3(ALU, ARSH, K),			\
1236 	INSN_3(ALU, DIV,  K),			\
1237 	INSN_3(ALU, MOD,  K),			\
1238 	/* 64 bit ALU operations. */		\
1239 	/*   Register based. */			\
1240 	INSN_3(ALU64, ADD,  X),			\
1241 	INSN_3(ALU64, SUB,  X),			\
1242 	INSN_3(ALU64, AND,  X),			\
1243 	INSN_3(ALU64, OR,   X),			\
1244 	INSN_3(ALU64, LSH,  X),			\
1245 	INSN_3(ALU64, RSH,  X),			\
1246 	INSN_3(ALU64, XOR,  X),			\
1247 	INSN_3(ALU64, MUL,  X),			\
1248 	INSN_3(ALU64, MOV,  X),			\
1249 	INSN_3(ALU64, ARSH, X),			\
1250 	INSN_3(ALU64, DIV,  X),			\
1251 	INSN_3(ALU64, MOD,  X),			\
1252 	INSN_2(ALU64, NEG),			\
1253 	/*   Immediate based. */		\
1254 	INSN_3(ALU64, ADD,  K),			\
1255 	INSN_3(ALU64, SUB,  K),			\
1256 	INSN_3(ALU64, AND,  K),			\
1257 	INSN_3(ALU64, OR,   K),			\
1258 	INSN_3(ALU64, LSH,  K),			\
1259 	INSN_3(ALU64, RSH,  K),			\
1260 	INSN_3(ALU64, XOR,  K),			\
1261 	INSN_3(ALU64, MUL,  K),			\
1262 	INSN_3(ALU64, MOV,  K),			\
1263 	INSN_3(ALU64, ARSH, K),			\
1264 	INSN_3(ALU64, DIV,  K),			\
1265 	INSN_3(ALU64, MOD,  K),			\
1266 	/* Call instruction. */			\
1267 	INSN_2(JMP, CALL),			\
1268 	/* Exit instruction. */			\
1269 	INSN_2(JMP, EXIT),			\
1270 	/* 32-bit Jump instructions. */		\
1271 	/*   Register based. */			\
1272 	INSN_3(JMP32, JEQ,  X),			\
1273 	INSN_3(JMP32, JNE,  X),			\
1274 	INSN_3(JMP32, JGT,  X),			\
1275 	INSN_3(JMP32, JLT,  X),			\
1276 	INSN_3(JMP32, JGE,  X),			\
1277 	INSN_3(JMP32, JLE,  X),			\
1278 	INSN_3(JMP32, JSGT, X),			\
1279 	INSN_3(JMP32, JSLT, X),			\
1280 	INSN_3(JMP32, JSGE, X),			\
1281 	INSN_3(JMP32, JSLE, X),			\
1282 	INSN_3(JMP32, JSET, X),			\
1283 	/*   Immediate based. */		\
1284 	INSN_3(JMP32, JEQ,  K),			\
1285 	INSN_3(JMP32, JNE,  K),			\
1286 	INSN_3(JMP32, JGT,  K),			\
1287 	INSN_3(JMP32, JLT,  K),			\
1288 	INSN_3(JMP32, JGE,  K),			\
1289 	INSN_3(JMP32, JLE,  K),			\
1290 	INSN_3(JMP32, JSGT, K),			\
1291 	INSN_3(JMP32, JSLT, K),			\
1292 	INSN_3(JMP32, JSGE, K),			\
1293 	INSN_3(JMP32, JSLE, K),			\
1294 	INSN_3(JMP32, JSET, K),			\
1295 	/* Jump instructions. */		\
1296 	/*   Register based. */			\
1297 	INSN_3(JMP, JEQ,  X),			\
1298 	INSN_3(JMP, JNE,  X),			\
1299 	INSN_3(JMP, JGT,  X),			\
1300 	INSN_3(JMP, JLT,  X),			\
1301 	INSN_3(JMP, JGE,  X),			\
1302 	INSN_3(JMP, JLE,  X),			\
1303 	INSN_3(JMP, JSGT, X),			\
1304 	INSN_3(JMP, JSLT, X),			\
1305 	INSN_3(JMP, JSGE, X),			\
1306 	INSN_3(JMP, JSLE, X),			\
1307 	INSN_3(JMP, JSET, X),			\
1308 	/*   Immediate based. */		\
1309 	INSN_3(JMP, JEQ,  K),			\
1310 	INSN_3(JMP, JNE,  K),			\
1311 	INSN_3(JMP, JGT,  K),			\
1312 	INSN_3(JMP, JLT,  K),			\
1313 	INSN_3(JMP, JGE,  K),			\
1314 	INSN_3(JMP, JLE,  K),			\
1315 	INSN_3(JMP, JSGT, K),			\
1316 	INSN_3(JMP, JSLT, K),			\
1317 	INSN_3(JMP, JSGE, K),			\
1318 	INSN_3(JMP, JSLE, K),			\
1319 	INSN_3(JMP, JSET, K),			\
1320 	INSN_2(JMP, JA),			\
1321 	/* Store instructions. */		\
1322 	/*   Register based. */			\
1323 	INSN_3(STX, MEM,  B),			\
1324 	INSN_3(STX, MEM,  H),			\
1325 	INSN_3(STX, MEM,  W),			\
1326 	INSN_3(STX, MEM,  DW),			\
1327 	INSN_3(STX, XADD, W),			\
1328 	INSN_3(STX, XADD, DW),			\
1329 	/*   Immediate based. */		\
1330 	INSN_3(ST, MEM, B),			\
1331 	INSN_3(ST, MEM, H),			\
1332 	INSN_3(ST, MEM, W),			\
1333 	INSN_3(ST, MEM, DW),			\
1334 	/* Load instructions. */		\
1335 	/*   Register based. */			\
1336 	INSN_3(LDX, MEM, B),			\
1337 	INSN_3(LDX, MEM, H),			\
1338 	INSN_3(LDX, MEM, W),			\
1339 	INSN_3(LDX, MEM, DW),			\
1340 	/*   Immediate based. */		\
1341 	INSN_3(LD, IMM, DW)
1342 
bpf_opcode_in_insntable(u8 code)1343 bool bpf_opcode_in_insntable(u8 code)
1344 {
1345 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1346 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1347 	static const bool public_insntable[256] = {
1348 		[0 ... 255] = false,
1349 		/* Now overwrite non-defaults ... */
1350 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1351 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1352 		[BPF_LD | BPF_ABS | BPF_B] = true,
1353 		[BPF_LD | BPF_ABS | BPF_H] = true,
1354 		[BPF_LD | BPF_ABS | BPF_W] = true,
1355 		[BPF_LD | BPF_IND | BPF_B] = true,
1356 		[BPF_LD | BPF_IND | BPF_H] = true,
1357 		[BPF_LD | BPF_IND | BPF_W] = true,
1358 	};
1359 #undef BPF_INSN_3_TBL
1360 #undef BPF_INSN_2_TBL
1361 	return public_insntable[code];
1362 }
1363 
1364 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1365 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1366 {
1367 	memset(dst, 0, size);
1368 	return -EFAULT;
1369 }
1370 
1371 /**
1372  *	__bpf_prog_run - run eBPF program on a given context
1373  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1374  *	@insn: is the array of eBPF instructions
1375  *	@stack: is the eBPF storage stack
1376  *
1377  * Decode and execute eBPF instructions.
1378  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)1379 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1380 {
1381 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1382 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1383 	static const void * const jumptable[256] __annotate_jump_table = {
1384 		[0 ... 255] = &&default_label,
1385 		/* Now overwrite non-defaults ... */
1386 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1387 		/* Non-UAPI available opcodes. */
1388 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1389 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1390 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1391 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1392 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1393 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1394 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1395 	};
1396 #undef BPF_INSN_3_LBL
1397 #undef BPF_INSN_2_LBL
1398 	u32 tail_call_cnt = 0;
1399 
1400 #define CONT	 ({ insn++; goto select_insn; })
1401 #define CONT_JMP ({ insn++; goto select_insn; })
1402 
1403 select_insn:
1404 	goto *jumptable[insn->code];
1405 
1406 	/* Explicitly mask the register-based shift amounts with 63 or 31
1407 	 * to avoid undefined behavior. Normally this won't affect the
1408 	 * generated code, for example, in case of native 64 bit archs such
1409 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1410 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1411 	 * the BPF shift operations to machine instructions which produce
1412 	 * implementation-defined results in such a case; the resulting
1413 	 * contents of the register may be arbitrary, but program behaviour
1414 	 * as a whole remains defined. In other words, in case of JIT backends,
1415 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1416 	 */
1417 	/* ALU (shifts) */
1418 #define SHT(OPCODE, OP)					\
1419 	ALU64_##OPCODE##_X:				\
1420 		DST = DST OP (SRC & 63);		\
1421 		CONT;					\
1422 	ALU_##OPCODE##_X:				\
1423 		DST = (u32) DST OP ((u32) SRC & 31);	\
1424 		CONT;					\
1425 	ALU64_##OPCODE##_K:				\
1426 		DST = DST OP IMM;			\
1427 		CONT;					\
1428 	ALU_##OPCODE##_K:				\
1429 		DST = (u32) DST OP (u32) IMM;		\
1430 		CONT;
1431 	/* ALU (rest) */
1432 #define ALU(OPCODE, OP)					\
1433 	ALU64_##OPCODE##_X:				\
1434 		DST = DST OP SRC;			\
1435 		CONT;					\
1436 	ALU_##OPCODE##_X:				\
1437 		DST = (u32) DST OP (u32) SRC;		\
1438 		CONT;					\
1439 	ALU64_##OPCODE##_K:				\
1440 		DST = DST OP IMM;			\
1441 		CONT;					\
1442 	ALU_##OPCODE##_K:				\
1443 		DST = (u32) DST OP (u32) IMM;		\
1444 		CONT;
1445 	ALU(ADD,  +)
1446 	ALU(SUB,  -)
1447 	ALU(AND,  &)
1448 	ALU(OR,   |)
1449 	ALU(XOR,  ^)
1450 	ALU(MUL,  *)
1451 	SHT(LSH, <<)
1452 	SHT(RSH, >>)
1453 #undef SHT
1454 #undef ALU
1455 	ALU_NEG:
1456 		DST = (u32) -DST;
1457 		CONT;
1458 	ALU64_NEG:
1459 		DST = -DST;
1460 		CONT;
1461 	ALU_MOV_X:
1462 		DST = (u32) SRC;
1463 		CONT;
1464 	ALU_MOV_K:
1465 		DST = (u32) IMM;
1466 		CONT;
1467 	ALU64_MOV_X:
1468 		DST = SRC;
1469 		CONT;
1470 	ALU64_MOV_K:
1471 		DST = IMM;
1472 		CONT;
1473 	LD_IMM_DW:
1474 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1475 		insn++;
1476 		CONT;
1477 	ALU_ARSH_X:
1478 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1479 		CONT;
1480 	ALU_ARSH_K:
1481 		DST = (u64) (u32) (((s32) DST) >> IMM);
1482 		CONT;
1483 	ALU64_ARSH_X:
1484 		(*(s64 *) &DST) >>= (SRC & 63);
1485 		CONT;
1486 	ALU64_ARSH_K:
1487 		(*(s64 *) &DST) >>= IMM;
1488 		CONT;
1489 	ALU64_MOD_X:
1490 		div64_u64_rem(DST, SRC, &AX);
1491 		DST = AX;
1492 		CONT;
1493 	ALU_MOD_X:
1494 		AX = (u32) DST;
1495 		DST = do_div(AX, (u32) SRC);
1496 		CONT;
1497 	ALU64_MOD_K:
1498 		div64_u64_rem(DST, IMM, &AX);
1499 		DST = AX;
1500 		CONT;
1501 	ALU_MOD_K:
1502 		AX = (u32) DST;
1503 		DST = do_div(AX, (u32) IMM);
1504 		CONT;
1505 	ALU64_DIV_X:
1506 		DST = div64_u64(DST, SRC);
1507 		CONT;
1508 	ALU_DIV_X:
1509 		AX = (u32) DST;
1510 		do_div(AX, (u32) SRC);
1511 		DST = (u32) AX;
1512 		CONT;
1513 	ALU64_DIV_K:
1514 		DST = div64_u64(DST, IMM);
1515 		CONT;
1516 	ALU_DIV_K:
1517 		AX = (u32) DST;
1518 		do_div(AX, (u32) IMM);
1519 		DST = (u32) AX;
1520 		CONT;
1521 	ALU_END_TO_BE:
1522 		switch (IMM) {
1523 		case 16:
1524 			DST = (__force u16) cpu_to_be16(DST);
1525 			break;
1526 		case 32:
1527 			DST = (__force u32) cpu_to_be32(DST);
1528 			break;
1529 		case 64:
1530 			DST = (__force u64) cpu_to_be64(DST);
1531 			break;
1532 		}
1533 		CONT;
1534 	ALU_END_TO_LE:
1535 		switch (IMM) {
1536 		case 16:
1537 			DST = (__force u16) cpu_to_le16(DST);
1538 			break;
1539 		case 32:
1540 			DST = (__force u32) cpu_to_le32(DST);
1541 			break;
1542 		case 64:
1543 			DST = (__force u64) cpu_to_le64(DST);
1544 			break;
1545 		}
1546 		CONT;
1547 
1548 	/* CALL */
1549 	JMP_CALL:
1550 		/* Function call scratches BPF_R1-BPF_R5 registers,
1551 		 * preserves BPF_R6-BPF_R9, and stores return value
1552 		 * into BPF_R0.
1553 		 */
1554 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1555 						       BPF_R4, BPF_R5);
1556 		CONT;
1557 
1558 	JMP_CALL_ARGS:
1559 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1560 							    BPF_R3, BPF_R4,
1561 							    BPF_R5,
1562 							    insn + insn->off + 1);
1563 		CONT;
1564 
1565 	JMP_TAIL_CALL: {
1566 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1567 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1568 		struct bpf_prog *prog;
1569 		u32 index = BPF_R3;
1570 
1571 		if (unlikely(index >= array->map.max_entries))
1572 			goto out;
1573 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1574 			goto out;
1575 
1576 		tail_call_cnt++;
1577 
1578 		prog = READ_ONCE(array->ptrs[index]);
1579 		if (!prog)
1580 			goto out;
1581 
1582 		/* ARG1 at this point is guaranteed to point to CTX from
1583 		 * the verifier side due to the fact that the tail call is
1584 		 * handled like a helper, that is, bpf_tail_call_proto,
1585 		 * where arg1_type is ARG_PTR_TO_CTX.
1586 		 */
1587 		insn = prog->insnsi;
1588 		goto select_insn;
1589 out:
1590 		CONT;
1591 	}
1592 	JMP_JA:
1593 		insn += insn->off;
1594 		CONT;
1595 	JMP_EXIT:
1596 		return BPF_R0;
1597 	/* JMP */
1598 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1599 	JMP_##OPCODE##_X:					\
1600 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1601 			insn += insn->off;			\
1602 			CONT_JMP;				\
1603 		}						\
1604 		CONT;						\
1605 	JMP32_##OPCODE##_X:					\
1606 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1607 			insn += insn->off;			\
1608 			CONT_JMP;				\
1609 		}						\
1610 		CONT;						\
1611 	JMP_##OPCODE##_K:					\
1612 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1613 			insn += insn->off;			\
1614 			CONT_JMP;				\
1615 		}						\
1616 		CONT;						\
1617 	JMP32_##OPCODE##_K:					\
1618 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1619 			insn += insn->off;			\
1620 			CONT_JMP;				\
1621 		}						\
1622 		CONT;
1623 	COND_JMP(u, JEQ, ==)
1624 	COND_JMP(u, JNE, !=)
1625 	COND_JMP(u, JGT, >)
1626 	COND_JMP(u, JLT, <)
1627 	COND_JMP(u, JGE, >=)
1628 	COND_JMP(u, JLE, <=)
1629 	COND_JMP(u, JSET, &)
1630 	COND_JMP(s, JSGT, >)
1631 	COND_JMP(s, JSLT, <)
1632 	COND_JMP(s, JSGE, >=)
1633 	COND_JMP(s, JSLE, <=)
1634 #undef COND_JMP
1635 	/* ST, STX and LDX*/
1636 	ST_NOSPEC:
1637 		/* Speculation barrier for mitigating Speculative Store Bypass.
1638 		 * In case of arm64, we rely on the firmware mitigation as
1639 		 * controlled via the ssbd kernel parameter. Whenever the
1640 		 * mitigation is enabled, it works for all of the kernel code
1641 		 * with no need to provide any additional instructions here.
1642 		 * In case of x86, we use 'lfence' insn for mitigation. We
1643 		 * reuse preexisting logic from Spectre v1 mitigation that
1644 		 * happens to produce the required code on x86 for v4 as well.
1645 		 */
1646 		barrier_nospec();
1647 		CONT;
1648 #define LDST(SIZEOP, SIZE)						\
1649 	STX_MEM_##SIZEOP:						\
1650 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1651 		CONT;							\
1652 	ST_MEM_##SIZEOP:						\
1653 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1654 		CONT;							\
1655 	LDX_MEM_##SIZEOP:						\
1656 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1657 		CONT;							\
1658 	LDX_PROBE_MEM_##SIZEOP:						\
1659 		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
1660 				      (const void *)(long) (SRC + insn->off));	\
1661 		DST = *((SIZE *)&DST);					\
1662 		CONT;
1663 
1664 	LDST(B,   u8)
1665 	LDST(H,  u16)
1666 	LDST(W,  u32)
1667 	LDST(DW, u64)
1668 #undef LDST
1669 
1670 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1671 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1672 			   (DST + insn->off));
1673 		CONT;
1674 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1675 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1676 			     (DST + insn->off));
1677 		CONT;
1678 
1679 	default_label:
1680 		/* If we ever reach this, we have a bug somewhere. Die hard here
1681 		 * instead of just returning 0; we could be somewhere in a subprog,
1682 		 * so execution could continue otherwise which we do /not/ want.
1683 		 *
1684 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1685 		 */
1686 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1687 		BUG_ON(1);
1688 		return 0;
1689 }
1690 
1691 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1692 #define DEFINE_BPF_PROG_RUN(stack_size) \
1693 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1694 { \
1695 	u64 stack[stack_size / sizeof(u64)]; \
1696 	u64 regs[MAX_BPF_EXT_REG]; \
1697 \
1698 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1699 	ARG1 = (u64) (unsigned long) ctx; \
1700 	return ___bpf_prog_run(regs, insn, stack); \
1701 }
1702 
1703 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1704 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1705 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1706 				      const struct bpf_insn *insn) \
1707 { \
1708 	u64 stack[stack_size / sizeof(u64)]; \
1709 	u64 regs[MAX_BPF_EXT_REG]; \
1710 \
1711 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1712 	BPF_R1 = r1; \
1713 	BPF_R2 = r2; \
1714 	BPF_R3 = r3; \
1715 	BPF_R4 = r4; \
1716 	BPF_R5 = r5; \
1717 	return ___bpf_prog_run(regs, insn, stack); \
1718 }
1719 
1720 #define EVAL1(FN, X) FN(X)
1721 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1722 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1723 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1724 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1725 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1726 
1727 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1728 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1729 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1730 
1731 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1732 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1733 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1734 
1735 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1736 
1737 static unsigned int (*interpreters[])(const void *ctx,
1738 				      const struct bpf_insn *insn) = {
1739 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1740 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1741 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1742 };
1743 #undef PROG_NAME_LIST
1744 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1745 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1746 				  const struct bpf_insn *insn) = {
1747 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1748 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1749 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1750 };
1751 #undef PROG_NAME_LIST
1752 
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1753 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1754 {
1755 	stack_depth = max_t(u32, stack_depth, 1);
1756 	insn->off = (s16) insn->imm;
1757 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1758 		__bpf_call_base_args;
1759 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1760 }
1761 
1762 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1763 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1764 					 const struct bpf_insn *insn)
1765 {
1766 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1767 	 * is not working properly, so warn about it!
1768 	 */
1769 	WARN_ON_ONCE(1);
1770 	return 0;
1771 }
1772 #endif
1773 
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1774 bool bpf_prog_array_compatible(struct bpf_array *array,
1775 			       const struct bpf_prog *fp)
1776 {
1777 	bool ret;
1778 
1779 	if (fp->kprobe_override)
1780 		return false;
1781 
1782 	spin_lock(&array->aux->owner.lock);
1783 
1784 	if (!array->aux->owner.type) {
1785 		/* There's no owner yet where we could check for
1786 		 * compatibility.
1787 		 */
1788 		array->aux->owner.type  = fp->type;
1789 		array->aux->owner.jited = fp->jited;
1790 		ret = true;
1791 	} else {
1792 		ret = array->aux->owner.type  == fp->type &&
1793 		      array->aux->owner.jited == fp->jited;
1794 	}
1795 	spin_unlock(&array->aux->owner.lock);
1796 	return ret;
1797 }
1798 
bpf_check_tail_call(const struct bpf_prog * fp)1799 static int bpf_check_tail_call(const struct bpf_prog *fp)
1800 {
1801 	struct bpf_prog_aux *aux = fp->aux;
1802 	int i, ret = 0;
1803 
1804 	mutex_lock(&aux->used_maps_mutex);
1805 	for (i = 0; i < aux->used_map_cnt; i++) {
1806 		struct bpf_map *map = aux->used_maps[i];
1807 		struct bpf_array *array;
1808 
1809 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1810 			continue;
1811 
1812 		array = container_of(map, struct bpf_array, map);
1813 		if (!bpf_prog_array_compatible(array, fp)) {
1814 			ret = -EINVAL;
1815 			goto out;
1816 		}
1817 	}
1818 
1819 out:
1820 	mutex_unlock(&aux->used_maps_mutex);
1821 	return ret;
1822 }
1823 
bpf_prog_select_func(struct bpf_prog * fp)1824 static void bpf_prog_select_func(struct bpf_prog *fp)
1825 {
1826 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1827 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1828 
1829 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1830 #else
1831 	fp->bpf_func = __bpf_prog_ret0_warn;
1832 #endif
1833 }
1834 
1835 /**
1836  *	bpf_prog_select_runtime - select exec runtime for BPF program
1837  *	@fp: bpf_prog populated with internal BPF program
1838  *	@err: pointer to error variable
1839  *
1840  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1841  * The BPF program will be executed via BPF_PROG_RUN() macro.
1842  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1843 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1844 {
1845 	/* In case of BPF to BPF calls, verifier did all the prep
1846 	 * work with regards to JITing, etc.
1847 	 */
1848 	if (fp->bpf_func)
1849 		goto finalize;
1850 
1851 	bpf_prog_select_func(fp);
1852 
1853 	/* eBPF JITs can rewrite the program in case constant
1854 	 * blinding is active. However, in case of error during
1855 	 * blinding, bpf_int_jit_compile() must always return a
1856 	 * valid program, which in this case would simply not
1857 	 * be JITed, but falls back to the interpreter.
1858 	 */
1859 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1860 		*err = bpf_prog_alloc_jited_linfo(fp);
1861 		if (*err)
1862 			return fp;
1863 
1864 		fp = bpf_int_jit_compile(fp);
1865 		if (!fp->jited) {
1866 			bpf_prog_free_jited_linfo(fp);
1867 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1868 			*err = -ENOTSUPP;
1869 			return fp;
1870 #endif
1871 		} else {
1872 			bpf_prog_free_unused_jited_linfo(fp);
1873 		}
1874 	} else {
1875 		*err = bpf_prog_offload_compile(fp);
1876 		if (*err)
1877 			return fp;
1878 	}
1879 
1880 finalize:
1881 	bpf_prog_lock_ro(fp);
1882 
1883 	/* The tail call compatibility check can only be done at
1884 	 * this late stage as we need to determine, if we deal
1885 	 * with JITed or non JITed program concatenations and not
1886 	 * all eBPF JITs might immediately support all features.
1887 	 */
1888 	*err = bpf_check_tail_call(fp);
1889 
1890 	return fp;
1891 }
1892 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1893 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1894 static unsigned int __bpf_prog_ret1(const void *ctx,
1895 				    const struct bpf_insn *insn)
1896 {
1897 	return 1;
1898 }
1899 
1900 static struct bpf_prog_dummy {
1901 	struct bpf_prog prog;
1902 } dummy_bpf_prog = {
1903 	.prog = {
1904 		.bpf_func = __bpf_prog_ret1,
1905 	},
1906 };
1907 
1908 /* to avoid allocating empty bpf_prog_array for cgroups that
1909  * don't have bpf program attached use one global 'empty_prog_array'
1910  * It will not be modified the caller of bpf_prog_array_alloc()
1911  * (since caller requested prog_cnt == 0)
1912  * that pointer should be 'freed' by bpf_prog_array_free()
1913  */
1914 static struct {
1915 	struct bpf_prog_array hdr;
1916 	struct bpf_prog *null_prog;
1917 } empty_prog_array = {
1918 	.null_prog = NULL,
1919 };
1920 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1921 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1922 {
1923 	if (prog_cnt)
1924 		return kzalloc(sizeof(struct bpf_prog_array) +
1925 			       sizeof(struct bpf_prog_array_item) *
1926 			       (prog_cnt + 1),
1927 			       flags);
1928 
1929 	return &empty_prog_array.hdr;
1930 }
1931 
bpf_prog_array_free(struct bpf_prog_array * progs)1932 void bpf_prog_array_free(struct bpf_prog_array *progs)
1933 {
1934 	if (!progs || progs == &empty_prog_array.hdr)
1935 		return;
1936 	kfree_rcu(progs, rcu);
1937 }
1938 
bpf_prog_array_length(struct bpf_prog_array * array)1939 int bpf_prog_array_length(struct bpf_prog_array *array)
1940 {
1941 	struct bpf_prog_array_item *item;
1942 	u32 cnt = 0;
1943 
1944 	for (item = array->items; item->prog; item++)
1945 		if (item->prog != &dummy_bpf_prog.prog)
1946 			cnt++;
1947 	return cnt;
1948 }
1949 
bpf_prog_array_is_empty(struct bpf_prog_array * array)1950 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1951 {
1952 	struct bpf_prog_array_item *item;
1953 
1954 	for (item = array->items; item->prog; item++)
1955 		if (item->prog != &dummy_bpf_prog.prog)
1956 			return false;
1957 	return true;
1958 }
1959 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)1960 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1961 				     u32 *prog_ids,
1962 				     u32 request_cnt)
1963 {
1964 	struct bpf_prog_array_item *item;
1965 	int i = 0;
1966 
1967 	for (item = array->items; item->prog; item++) {
1968 		if (item->prog == &dummy_bpf_prog.prog)
1969 			continue;
1970 		prog_ids[i] = item->prog->aux->id;
1971 		if (++i == request_cnt) {
1972 			item++;
1973 			break;
1974 		}
1975 	}
1976 
1977 	return !!(item->prog);
1978 }
1979 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)1980 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1981 				__u32 __user *prog_ids, u32 cnt)
1982 {
1983 	unsigned long err = 0;
1984 	bool nospc;
1985 	u32 *ids;
1986 
1987 	/* users of this function are doing:
1988 	 * cnt = bpf_prog_array_length();
1989 	 * if (cnt > 0)
1990 	 *     bpf_prog_array_copy_to_user(..., cnt);
1991 	 * so below kcalloc doesn't need extra cnt > 0 check.
1992 	 */
1993 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1994 	if (!ids)
1995 		return -ENOMEM;
1996 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1997 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1998 	kfree(ids);
1999 	if (err)
2000 		return -EFAULT;
2001 	if (nospc)
2002 		return -ENOSPC;
2003 	return 0;
2004 }
2005 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2006 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2007 				struct bpf_prog *old_prog)
2008 {
2009 	struct bpf_prog_array_item *item;
2010 
2011 	for (item = array->items; item->prog; item++)
2012 		if (item->prog == old_prog) {
2013 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2014 			break;
2015 		}
2016 }
2017 
2018 /**
2019  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2020  *                                   index into the program array with
2021  *                                   a dummy no-op program.
2022  * @array: a bpf_prog_array
2023  * @index: the index of the program to replace
2024  *
2025  * Skips over dummy programs, by not counting them, when calculating
2026  * the position of the program to replace.
2027  *
2028  * Return:
2029  * * 0		- Success
2030  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2031  * * -ENOENT	- Index out of range
2032  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2033 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2034 {
2035 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2036 }
2037 
2038 /**
2039  * bpf_prog_array_update_at() - Updates the program at the given index
2040  *                              into the program array.
2041  * @array: a bpf_prog_array
2042  * @index: the index of the program to update
2043  * @prog: the program to insert into the array
2044  *
2045  * Skips over dummy programs, by not counting them, when calculating
2046  * the position of the program to update.
2047  *
2048  * Return:
2049  * * 0		- Success
2050  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2051  * * -ENOENT	- Index out of range
2052  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2053 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2054 			     struct bpf_prog *prog)
2055 {
2056 	struct bpf_prog_array_item *item;
2057 
2058 	if (unlikely(index < 0))
2059 		return -EINVAL;
2060 
2061 	for (item = array->items; item->prog; item++) {
2062 		if (item->prog == &dummy_bpf_prog.prog)
2063 			continue;
2064 		if (!index) {
2065 			WRITE_ONCE(item->prog, prog);
2066 			return 0;
2067 		}
2068 		index--;
2069 	}
2070 	return -ENOENT;
2071 }
2072 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)2073 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2074 			struct bpf_prog *exclude_prog,
2075 			struct bpf_prog *include_prog,
2076 			struct bpf_prog_array **new_array)
2077 {
2078 	int new_prog_cnt, carry_prog_cnt = 0;
2079 	struct bpf_prog_array_item *existing;
2080 	struct bpf_prog_array *array;
2081 	bool found_exclude = false;
2082 	int new_prog_idx = 0;
2083 
2084 	/* Figure out how many existing progs we need to carry over to
2085 	 * the new array.
2086 	 */
2087 	if (old_array) {
2088 		existing = old_array->items;
2089 		for (; existing->prog; existing++) {
2090 			if (existing->prog == exclude_prog) {
2091 				found_exclude = true;
2092 				continue;
2093 			}
2094 			if (existing->prog != &dummy_bpf_prog.prog)
2095 				carry_prog_cnt++;
2096 			if (existing->prog == include_prog)
2097 				return -EEXIST;
2098 		}
2099 	}
2100 
2101 	if (exclude_prog && !found_exclude)
2102 		return -ENOENT;
2103 
2104 	/* How many progs (not NULL) will be in the new array? */
2105 	new_prog_cnt = carry_prog_cnt;
2106 	if (include_prog)
2107 		new_prog_cnt += 1;
2108 
2109 	/* Do we have any prog (not NULL) in the new array? */
2110 	if (!new_prog_cnt) {
2111 		*new_array = NULL;
2112 		return 0;
2113 	}
2114 
2115 	/* +1 as the end of prog_array is marked with NULL */
2116 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2117 	if (!array)
2118 		return -ENOMEM;
2119 
2120 	/* Fill in the new prog array */
2121 	if (carry_prog_cnt) {
2122 		existing = old_array->items;
2123 		for (; existing->prog; existing++)
2124 			if (existing->prog != exclude_prog &&
2125 			    existing->prog != &dummy_bpf_prog.prog) {
2126 				array->items[new_prog_idx++].prog =
2127 					existing->prog;
2128 			}
2129 	}
2130 	if (include_prog)
2131 		array->items[new_prog_idx++].prog = include_prog;
2132 	array->items[new_prog_idx].prog = NULL;
2133 	*new_array = array;
2134 	return 0;
2135 }
2136 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2137 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2138 			     u32 *prog_ids, u32 request_cnt,
2139 			     u32 *prog_cnt)
2140 {
2141 	u32 cnt = 0;
2142 
2143 	if (array)
2144 		cnt = bpf_prog_array_length(array);
2145 
2146 	*prog_cnt = cnt;
2147 
2148 	/* return early if user requested only program count or nothing to copy */
2149 	if (!request_cnt || !cnt)
2150 		return 0;
2151 
2152 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2153 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2154 								     : 0;
2155 }
2156 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2157 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2158 			  struct bpf_map **used_maps, u32 len)
2159 {
2160 	struct bpf_map *map;
2161 	u32 i;
2162 
2163 	for (i = 0; i < len; i++) {
2164 		map = used_maps[i];
2165 		if (map->ops->map_poke_untrack)
2166 			map->ops->map_poke_untrack(map, aux);
2167 		bpf_map_put(map);
2168 	}
2169 }
2170 
bpf_free_used_maps(struct bpf_prog_aux * aux)2171 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2172 {
2173 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2174 	kfree(aux->used_maps);
2175 }
2176 
bpf_prog_free_deferred(struct work_struct * work)2177 static void bpf_prog_free_deferred(struct work_struct *work)
2178 {
2179 	struct bpf_prog_aux *aux;
2180 	int i;
2181 
2182 	aux = container_of(work, struct bpf_prog_aux, work);
2183 	bpf_free_used_maps(aux);
2184 	if (bpf_prog_is_dev_bound(aux))
2185 		bpf_prog_offload_destroy(aux->prog);
2186 #ifdef CONFIG_PERF_EVENTS
2187 	if (aux->prog->has_callchain_buf)
2188 		put_callchain_buffers();
2189 #endif
2190 	if (aux->dst_trampoline)
2191 		bpf_trampoline_put(aux->dst_trampoline);
2192 	for (i = 0; i < aux->func_cnt; i++) {
2193 		/* We can just unlink the subprog poke descriptor table as
2194 		 * it was originally linked to the main program and is also
2195 		 * released along with it.
2196 		 */
2197 		aux->func[i]->aux->poke_tab = NULL;
2198 		bpf_jit_free(aux->func[i]);
2199 	}
2200 	if (aux->func_cnt) {
2201 		kfree(aux->func);
2202 		bpf_prog_unlock_free(aux->prog);
2203 	} else {
2204 		bpf_jit_free(aux->prog);
2205 	}
2206 }
2207 
2208 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2209 void bpf_prog_free(struct bpf_prog *fp)
2210 {
2211 	struct bpf_prog_aux *aux = fp->aux;
2212 
2213 	if (aux->dst_prog)
2214 		bpf_prog_put(aux->dst_prog);
2215 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2216 	schedule_work(&aux->work);
2217 }
2218 EXPORT_SYMBOL_GPL(bpf_prog_free);
2219 
2220 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2221 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2222 
bpf_user_rnd_init_once(void)2223 void bpf_user_rnd_init_once(void)
2224 {
2225 	prandom_init_once(&bpf_user_rnd_state);
2226 }
2227 
BPF_CALL_0(bpf_user_rnd_u32)2228 BPF_CALL_0(bpf_user_rnd_u32)
2229 {
2230 	/* Should someone ever have the rather unwise idea to use some
2231 	 * of the registers passed into this function, then note that
2232 	 * this function is called from native eBPF and classic-to-eBPF
2233 	 * transformations. Register assignments from both sides are
2234 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2235 	 */
2236 	struct rnd_state *state;
2237 	u32 res;
2238 
2239 	state = &get_cpu_var(bpf_user_rnd_state);
2240 	res = prandom_u32_state(state);
2241 	put_cpu_var(bpf_user_rnd_state);
2242 
2243 	return res;
2244 }
2245 
BPF_CALL_0(bpf_get_raw_cpu_id)2246 BPF_CALL_0(bpf_get_raw_cpu_id)
2247 {
2248 	return raw_smp_processor_id();
2249 }
2250 
2251 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2252 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2253 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2254 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2255 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2256 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2257 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2258 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2259 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2260 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2261 
2262 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2263 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2264 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2265 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2266 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2267 
2268 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2269 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2270 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2271 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2272 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2273 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2274 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2275 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2276 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2277 
bpf_get_trace_printk_proto(void)2278 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2279 {
2280 	return NULL;
2281 }
2282 
2283 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2284 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2285 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2286 {
2287 	return -ENOTSUPP;
2288 }
2289 EXPORT_SYMBOL_GPL(bpf_event_output);
2290 
2291 /* Always built-in helper functions. */
2292 const struct bpf_func_proto bpf_tail_call_proto = {
2293 	.func		= NULL,
2294 	.gpl_only	= false,
2295 	.ret_type	= RET_VOID,
2296 	.arg1_type	= ARG_PTR_TO_CTX,
2297 	.arg2_type	= ARG_CONST_MAP_PTR,
2298 	.arg3_type	= ARG_ANYTHING,
2299 };
2300 
2301 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2302  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2303  * eBPF and implicitly also cBPF can get JITed!
2304  */
bpf_int_jit_compile(struct bpf_prog * prog)2305 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2306 {
2307 	return prog;
2308 }
2309 
2310 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2311  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2312  */
bpf_jit_compile(struct bpf_prog * prog)2313 void __weak bpf_jit_compile(struct bpf_prog *prog)
2314 {
2315 }
2316 
bpf_helper_changes_pkt_data(void * func)2317 bool __weak bpf_helper_changes_pkt_data(void *func)
2318 {
2319 	return false;
2320 }
2321 
2322 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2323  * analysis code and wants explicit zero extension inserted by verifier.
2324  * Otherwise, return FALSE.
2325  */
bpf_jit_needs_zext(void)2326 bool __weak bpf_jit_needs_zext(void)
2327 {
2328 	return false;
2329 }
2330 
2331 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2332  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2333  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2334 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2335 			 int len)
2336 {
2337 	return -EFAULT;
2338 }
2339 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2340 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2341 			      void *addr1, void *addr2)
2342 {
2343 	return -ENOTSUPP;
2344 }
2345 
2346 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2347 EXPORT_SYMBOL(bpf_stats_enabled_key);
2348 
2349 /* All definitions of tracepoints related to BPF. */
2350 #define CREATE_TRACE_POINTS
2351 #include <linux/bpf_trace.h>
2352 
2353 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2354 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2355