1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 #include <linux/mm_purgeable.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include <linux/xpm.h>
90
91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
93 #endif
94
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 /* use the per-pgdat data instead for discontigmem - mbligh */
97 unsigned long max_mapnr;
98 EXPORT_SYMBOL(max_mapnr);
99
100 struct page *mem_map;
101 EXPORT_SYMBOL(mem_map);
102 #endif
103
104 /*
105 * A number of key systems in x86 including ioremap() rely on the assumption
106 * that high_memory defines the upper bound on direct map memory, then end
107 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
108 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
109 * and ZONE_HIGHMEM.
110 */
111 void *high_memory;
112 EXPORT_SYMBOL(high_memory);
113
114 /*
115 * Randomize the address space (stacks, mmaps, brk, etc.).
116 *
117 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
118 * as ancient (libc5 based) binaries can segfault. )
119 */
120 int randomize_va_space __read_mostly =
121 #ifdef CONFIG_COMPAT_BRK
122 1;
123 #else
124 2;
125 #endif
126
127 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)128 static inline bool arch_faults_on_old_pte(void)
129 {
130 /*
131 * Those arches which don't have hw access flag feature need to
132 * implement their own helper. By default, "true" means pagefault
133 * will be hit on old pte.
134 */
135 return true;
136 }
137 #endif
138
disable_randmaps(char * s)139 static int __init disable_randmaps(char *s)
140 {
141 randomize_va_space = 0;
142 return 1;
143 }
144 __setup("norandmaps", disable_randmaps);
145
146 unsigned long zero_pfn __read_mostly;
147 EXPORT_SYMBOL(zero_pfn);
148
149 unsigned long highest_memmap_pfn __read_mostly;
150
151 /*
152 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
153 */
init_zero_pfn(void)154 static int __init init_zero_pfn(void)
155 {
156 zero_pfn = page_to_pfn(ZERO_PAGE(0));
157 return 0;
158 }
159 early_initcall(init_zero_pfn);
160
mm_trace_rss_stat(struct mm_struct * mm,int member,long count)161 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
162 {
163 trace_rss_stat(mm, member, count);
164 }
165
166 #if defined(SPLIT_RSS_COUNTING)
167
sync_mm_rss(struct mm_struct * mm)168 void sync_mm_rss(struct mm_struct *mm)
169 {
170 int i;
171
172 for (i = 0; i < NR_MM_COUNTERS; i++) {
173 if (current->rss_stat.count[i]) {
174 add_mm_counter(mm, i, current->rss_stat.count[i]);
175 current->rss_stat.count[i] = 0;
176 }
177 }
178 current->rss_stat.events = 0;
179 }
180
add_mm_counter_fast(struct mm_struct * mm,int member,int val)181 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
182 {
183 struct task_struct *task = current;
184
185 if (likely(task->mm == mm))
186 task->rss_stat.count[member] += val;
187 else
188 add_mm_counter(mm, member, val);
189 }
190 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
191 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
192
193 /* sync counter once per 64 page faults */
194 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)195 static void check_sync_rss_stat(struct task_struct *task)
196 {
197 if (unlikely(task != current))
198 return;
199 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
200 sync_mm_rss(task->mm);
201 }
202 #else /* SPLIT_RSS_COUNTING */
203
204 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
205 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
206
check_sync_rss_stat(struct task_struct * task)207 static void check_sync_rss_stat(struct task_struct *task)
208 {
209 }
210
211 #endif /* SPLIT_RSS_COUNTING */
212
213 /*
214 * Note: this doesn't free the actual pages themselves. That
215 * has been handled earlier when unmapping all the memory regions.
216 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)217 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
218 unsigned long addr)
219 {
220 pgtable_t token = pmd_pgtable(*pmd);
221 pmd_clear(pmd);
222 pte_free_tlb(tlb, token, addr);
223 mm_dec_nr_ptes(tlb->mm);
224 }
225
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)226 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
227 unsigned long addr, unsigned long end,
228 unsigned long floor, unsigned long ceiling)
229 {
230 pmd_t *pmd;
231 unsigned long next;
232 unsigned long start;
233
234 start = addr;
235 pmd = pmd_offset(pud, addr);
236 do {
237 next = pmd_addr_end(addr, end);
238 if (pmd_none_or_clear_bad(pmd))
239 continue;
240 free_pte_range(tlb, pmd, addr);
241 } while (pmd++, addr = next, addr != end);
242
243 start &= PUD_MASK;
244 if (start < floor)
245 return;
246 if (ceiling) {
247 ceiling &= PUD_MASK;
248 if (!ceiling)
249 return;
250 }
251 if (end - 1 > ceiling - 1)
252 return;
253
254 pmd = pmd_offset(pud, start);
255 pud_clear(pud);
256 pmd_free_tlb(tlb, pmd, start);
257 mm_dec_nr_pmds(tlb->mm);
258 }
259
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)260 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
261 unsigned long addr, unsigned long end,
262 unsigned long floor, unsigned long ceiling)
263 {
264 pud_t *pud;
265 unsigned long next;
266 unsigned long start;
267
268 start = addr;
269 pud = pud_offset(p4d, addr);
270 do {
271 next = pud_addr_end(addr, end);
272 if (pud_none_or_clear_bad(pud))
273 continue;
274 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
275 } while (pud++, addr = next, addr != end);
276
277 start &= P4D_MASK;
278 if (start < floor)
279 return;
280 if (ceiling) {
281 ceiling &= P4D_MASK;
282 if (!ceiling)
283 return;
284 }
285 if (end - 1 > ceiling - 1)
286 return;
287
288 pud = pud_offset(p4d, start);
289 p4d_clear(p4d);
290 pud_free_tlb(tlb, pud, start);
291 mm_dec_nr_puds(tlb->mm);
292 }
293
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)294 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
295 unsigned long addr, unsigned long end,
296 unsigned long floor, unsigned long ceiling)
297 {
298 p4d_t *p4d;
299 unsigned long next;
300 unsigned long start;
301
302 start = addr;
303 p4d = p4d_offset(pgd, addr);
304 do {
305 next = p4d_addr_end(addr, end);
306 if (p4d_none_or_clear_bad(p4d))
307 continue;
308 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
309 } while (p4d++, addr = next, addr != end);
310
311 start &= PGDIR_MASK;
312 if (start < floor)
313 return;
314 if (ceiling) {
315 ceiling &= PGDIR_MASK;
316 if (!ceiling)
317 return;
318 }
319 if (end - 1 > ceiling - 1)
320 return;
321
322 p4d = p4d_offset(pgd, start);
323 pgd_clear(pgd);
324 p4d_free_tlb(tlb, p4d, start);
325 }
326
327 /*
328 * This function frees user-level page tables of a process.
329 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)330 void free_pgd_range(struct mmu_gather *tlb,
331 unsigned long addr, unsigned long end,
332 unsigned long floor, unsigned long ceiling)
333 {
334 pgd_t *pgd;
335 unsigned long next;
336
337 /*
338 * The next few lines have given us lots of grief...
339 *
340 * Why are we testing PMD* at this top level? Because often
341 * there will be no work to do at all, and we'd prefer not to
342 * go all the way down to the bottom just to discover that.
343 *
344 * Why all these "- 1"s? Because 0 represents both the bottom
345 * of the address space and the top of it (using -1 for the
346 * top wouldn't help much: the masks would do the wrong thing).
347 * The rule is that addr 0 and floor 0 refer to the bottom of
348 * the address space, but end 0 and ceiling 0 refer to the top
349 * Comparisons need to use "end - 1" and "ceiling - 1" (though
350 * that end 0 case should be mythical).
351 *
352 * Wherever addr is brought up or ceiling brought down, we must
353 * be careful to reject "the opposite 0" before it confuses the
354 * subsequent tests. But what about where end is brought down
355 * by PMD_SIZE below? no, end can't go down to 0 there.
356 *
357 * Whereas we round start (addr) and ceiling down, by different
358 * masks at different levels, in order to test whether a table
359 * now has no other vmas using it, so can be freed, we don't
360 * bother to round floor or end up - the tests don't need that.
361 */
362
363 addr &= PMD_MASK;
364 if (addr < floor) {
365 addr += PMD_SIZE;
366 if (!addr)
367 return;
368 }
369 if (ceiling) {
370 ceiling &= PMD_MASK;
371 if (!ceiling)
372 return;
373 }
374 if (end - 1 > ceiling - 1)
375 end -= PMD_SIZE;
376 if (addr > end - 1)
377 return;
378 /*
379 * We add page table cache pages with PAGE_SIZE,
380 * (see pte_free_tlb()), flush the tlb if we need
381 */
382 tlb_change_page_size(tlb, PAGE_SIZE);
383 pgd = pgd_offset(tlb->mm, addr);
384 do {
385 next = pgd_addr_end(addr, end);
386 if (pgd_none_or_clear_bad(pgd))
387 continue;
388 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
389 } while (pgd++, addr = next, addr != end);
390 }
391
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)392 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
393 unsigned long floor, unsigned long ceiling)
394 {
395 while (vma) {
396 struct vm_area_struct *next = vma->vm_next;
397 unsigned long addr = vma->vm_start;
398
399 /*
400 * Hide vma from rmap and truncate_pagecache before freeing
401 * pgtables
402 */
403 unlink_anon_vmas(vma);
404 unlink_file_vma(vma);
405
406 if (is_vm_hugetlb_page(vma)) {
407 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
408 floor, next ? next->vm_start : ceiling);
409 } else {
410 /*
411 * Optimization: gather nearby vmas into one call down
412 */
413 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
414 && !is_vm_hugetlb_page(next)) {
415 vma = next;
416 next = vma->vm_next;
417 unlink_anon_vmas(vma);
418 unlink_file_vma(vma);
419 }
420 free_pgd_range(tlb, addr, vma->vm_end,
421 floor, next ? next->vm_start : ceiling);
422 }
423 vma = next;
424 }
425 }
426
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)427 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
428 {
429 spinlock_t *ptl;
430 pgtable_t new = pte_alloc_one(mm);
431 if (!new)
432 return -ENOMEM;
433
434 /*
435 * Ensure all pte setup (eg. pte page lock and page clearing) are
436 * visible before the pte is made visible to other CPUs by being
437 * put into page tables.
438 *
439 * The other side of the story is the pointer chasing in the page
440 * table walking code (when walking the page table without locking;
441 * ie. most of the time). Fortunately, these data accesses consist
442 * of a chain of data-dependent loads, meaning most CPUs (alpha
443 * being the notable exception) will already guarantee loads are
444 * seen in-order. See the alpha page table accessors for the
445 * smp_rmb() barriers in page table walking code.
446 */
447 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
448
449 ptl = pmd_lock(mm, pmd);
450 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
451 mm_inc_nr_ptes(mm);
452 pmd_populate(mm, pmd, new);
453 new = NULL;
454 }
455 spin_unlock(ptl);
456 if (new)
457 pte_free(mm, new);
458 return 0;
459 }
460
__pte_alloc_kernel(pmd_t * pmd)461 int __pte_alloc_kernel(pmd_t *pmd)
462 {
463 pte_t *new = pte_alloc_one_kernel(&init_mm);
464 if (!new)
465 return -ENOMEM;
466
467 smp_wmb(); /* See comment in __pte_alloc */
468
469 spin_lock(&init_mm.page_table_lock);
470 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
471 pmd_populate_kernel(&init_mm, pmd, new);
472 new = NULL;
473 }
474 spin_unlock(&init_mm.page_table_lock);
475 if (new)
476 pte_free_kernel(&init_mm, new);
477 return 0;
478 }
479
init_rss_vec(int * rss)480 static inline void init_rss_vec(int *rss)
481 {
482 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
483 }
484
add_mm_rss_vec(struct mm_struct * mm,int * rss)485 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
486 {
487 int i;
488
489 if (current->mm == mm)
490 sync_mm_rss(mm);
491 for (i = 0; i < NR_MM_COUNTERS; i++)
492 if (rss[i])
493 add_mm_counter(mm, i, rss[i]);
494 }
495
496 /*
497 * This function is called to print an error when a bad pte
498 * is found. For example, we might have a PFN-mapped pte in
499 * a region that doesn't allow it.
500 *
501 * The calling function must still handle the error.
502 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)503 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
504 pte_t pte, struct page *page)
505 {
506 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
507 p4d_t *p4d = p4d_offset(pgd, addr);
508 pud_t *pud = pud_offset(p4d, addr);
509 pmd_t *pmd = pmd_offset(pud, addr);
510 struct address_space *mapping;
511 pgoff_t index;
512 static unsigned long resume;
513 static unsigned long nr_shown;
514 static unsigned long nr_unshown;
515
516 /*
517 * Allow a burst of 60 reports, then keep quiet for that minute;
518 * or allow a steady drip of one report per second.
519 */
520 if (nr_shown == 60) {
521 if (time_before(jiffies, resume)) {
522 nr_unshown++;
523 return;
524 }
525 if (nr_unshown) {
526 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
535 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
536 index = linear_page_index(vma, addr);
537
538 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
539 current->comm,
540 (long long)pte_val(pte), (long long)pmd_val(*pmd));
541 if (page)
542 dump_page(page, "bad pte");
543 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
544 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
545 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
546 vma->vm_file,
547 vma->vm_ops ? vma->vm_ops->fault : NULL,
548 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
549 mapping ? mapping->a_ops->readpage : NULL);
550 dump_stack();
551 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
552 }
553
554 /*
555 * vm_normal_page -- This function gets the "struct page" associated with a pte.
556 *
557 * "Special" mappings do not wish to be associated with a "struct page" (either
558 * it doesn't exist, or it exists but they don't want to touch it). In this
559 * case, NULL is returned here. "Normal" mappings do have a struct page.
560 *
561 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
562 * pte bit, in which case this function is trivial. Secondly, an architecture
563 * may not have a spare pte bit, which requires a more complicated scheme,
564 * described below.
565 *
566 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
567 * special mapping (even if there are underlying and valid "struct pages").
568 * COWed pages of a VM_PFNMAP are always normal.
569 *
570 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
571 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
572 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
573 * mapping will always honor the rule
574 *
575 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
576 *
577 * And for normal mappings this is false.
578 *
579 * This restricts such mappings to be a linear translation from virtual address
580 * to pfn. To get around this restriction, we allow arbitrary mappings so long
581 * as the vma is not a COW mapping; in that case, we know that all ptes are
582 * special (because none can have been COWed).
583 *
584 *
585 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
586 *
587 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
588 * page" backing, however the difference is that _all_ pages with a struct
589 * page (that is, those where pfn_valid is true) are refcounted and considered
590 * normal pages by the VM. The disadvantage is that pages are refcounted
591 * (which can be slower and simply not an option for some PFNMAP users). The
592 * advantage is that we don't have to follow the strict linearity rule of
593 * PFNMAP mappings in order to support COWable mappings.
594 *
595 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)596 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
597 pte_t pte)
598 {
599 unsigned long pfn = pte_pfn(pte);
600
601 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
602 if (likely(!pte_special(pte)))
603 goto check_pfn;
604 if (vma->vm_ops && vma->vm_ops->find_special_page)
605 return vma->vm_ops->find_special_page(vma, addr);
606 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
607 return NULL;
608 if (is_zero_pfn(pfn))
609 return NULL;
610 if (pte_devmap(pte))
611 return NULL;
612
613 print_bad_pte(vma, addr, pte, NULL);
614 return NULL;
615 }
616
617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
631 }
632 }
633
634 if (is_zero_pfn(pfn))
635 return NULL;
636
637 check_pfn:
638 if (unlikely(pfn > highest_memmap_pfn)) {
639 print_bad_pte(vma, addr, pte, NULL);
640 return NULL;
641 }
642
643 /*
644 * NOTE! We still have PageReserved() pages in the page tables.
645 * eg. VDSO mappings can cause them to exist.
646 */
647 out:
648 return pfn_to_page(pfn);
649 }
650
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653 pmd_t pmd)
654 {
655 unsigned long pfn = pmd_pfn(pmd);
656
657 /*
658 * There is no pmd_special() but there may be special pmds, e.g.
659 * in a direct-access (dax) mapping, so let's just replicate the
660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 */
662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663 if (vma->vm_flags & VM_MIXEDMAP) {
664 if (!pfn_valid(pfn))
665 return NULL;
666 goto out;
667 } else {
668 unsigned long off;
669 off = (addr - vma->vm_start) >> PAGE_SHIFT;
670 if (pfn == vma->vm_pgoff + off)
671 return NULL;
672 if (!is_cow_mapping(vma->vm_flags))
673 return NULL;
674 }
675 }
676
677 if (pmd_devmap(pmd))
678 return NULL;
679 if (is_huge_zero_pmd(pmd))
680 return NULL;
681 if (unlikely(pfn > highest_memmap_pfn))
682 return NULL;
683
684 /*
685 * NOTE! We still have PageReserved() pages in the page tables.
686 * eg. VDSO mappings can cause them to exist.
687 */
688 out:
689 return pfn_to_page(pfn);
690 }
691 #endif
692
693 /*
694 * copy one vm_area from one task to the other. Assumes the page tables
695 * already present in the new task to be cleared in the whole range
696 * covered by this vma.
697 */
698
699 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)700 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
702 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
703 {
704 unsigned long vm_flags = dst_vma->vm_flags;
705 pte_t pte = *src_pte;
706 struct page *page;
707 swp_entry_t entry = pte_to_swp_entry(pte);
708
709 if (likely(!non_swap_entry(entry))) {
710 if (swap_duplicate(entry) < 0)
711 return entry.val;
712
713 /* make sure dst_mm is on swapoff's mmlist. */
714 if (unlikely(list_empty(&dst_mm->mmlist))) {
715 spin_lock(&mmlist_lock);
716 if (list_empty(&dst_mm->mmlist))
717 list_add(&dst_mm->mmlist,
718 &src_mm->mmlist);
719 spin_unlock(&mmlist_lock);
720 }
721 rss[MM_SWAPENTS]++;
722 } else if (is_migration_entry(entry)) {
723 page = migration_entry_to_page(entry);
724
725 rss[mm_counter(page)]++;
726
727 if (is_write_migration_entry(entry) &&
728 is_cow_mapping(vm_flags)) {
729 /*
730 * COW mappings require pages in both
731 * parent and child to be set to read.
732 */
733 make_migration_entry_read(&entry);
734 pte = swp_entry_to_pte(entry);
735 if (pte_swp_soft_dirty(*src_pte))
736 pte = pte_swp_mksoft_dirty(pte);
737 if (pte_swp_uffd_wp(*src_pte))
738 pte = pte_swp_mkuffd_wp(pte);
739 set_pte_at(src_mm, addr, src_pte, pte);
740 }
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
743
744 /*
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
747 * respect.
748 *
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
752 */
753 get_page(page);
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
756
757 /*
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
763 */
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 if (pte_swp_uffd_wp(*src_pte))
769 pte = pte_swp_mkuffd_wp(pte);
770 set_pte_at(src_mm, addr, src_pte, pte);
771 }
772 }
773 if (!userfaultfd_wp(dst_vma))
774 pte = pte_swp_clear_uffd_wp(pte);
775 set_pte_at(dst_mm, addr, dst_pte, pte);
776 return 0;
777 }
778
779 /*
780 * Copy a present and normal page if necessary.
781 *
782 * NOTE! The usual case is that this doesn't need to do
783 * anything, and can just return a positive value. That
784 * will let the caller know that it can just increase
785 * the page refcount and re-use the pte the traditional
786 * way.
787 *
788 * But _if_ we need to copy it because it needs to be
789 * pinned in the parent (and the child should get its own
790 * copy rather than just a reference to the same page),
791 * we'll do that here and return zero to let the caller
792 * know we're done.
793 *
794 * And if we need a pre-allocated page but don't yet have
795 * one, return a negative error to let the preallocation
796 * code know so that it can do so outside the page table
797 * lock.
798 */
799 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)800 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
801 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
802 struct page **prealloc, pte_t pte, struct page *page)
803 {
804 struct mm_struct *src_mm = src_vma->vm_mm;
805 struct page *new_page;
806
807 if (!is_cow_mapping(src_vma->vm_flags))
808 return 1;
809
810 /*
811 * What we want to do is to check whether this page may
812 * have been pinned by the parent process. If so,
813 * instead of wrprotect the pte on both sides, we copy
814 * the page immediately so that we'll always guarantee
815 * the pinned page won't be randomly replaced in the
816 * future.
817 *
818 * The page pinning checks are just "has this mm ever
819 * seen pinning", along with the (inexact) check of
820 * the page count. That might give false positives for
821 * for pinning, but it will work correctly.
822 */
823 if (likely(!atomic_read(&src_mm->has_pinned)))
824 return 1;
825 if (likely(!page_maybe_dma_pinned(page)))
826 return 1;
827
828 /*
829 * The vma->anon_vma of the child process may be NULL
830 * because the entire vma does not contain anonymous pages.
831 * A BUG will occur when the copy_present_page() passes
832 * a copy of a non-anonymous page of that vma to the
833 * page_add_new_anon_rmap() to set up new anonymous rmap.
834 * Return 1 if the page is not an anonymous page.
835 */
836 if (!PageAnon(page))
837 return 1;
838
839 new_page = *prealloc;
840 if (!new_page)
841 return -EAGAIN;
842
843 /*
844 * We have a prealloc page, all good! Take it
845 * over and copy the page & arm it.
846 */
847 *prealloc = NULL;
848 copy_user_highpage(new_page, page, addr, src_vma);
849 __SetPageUptodate(new_page);
850 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
851 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
852 rss[mm_counter(new_page)]++;
853
854 /* All done, just insert the new page copy in the child */
855 pte = mk_pte(new_page, dst_vma->vm_page_prot);
856 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
857 if (userfaultfd_pte_wp(dst_vma, *src_pte))
858 /* Uffd-wp needs to be delivered to dest pte as well */
859 pte = pte_wrprotect(pte_mkuffd_wp(pte));
860 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
861 return 0;
862 }
863
864 /*
865 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
866 * is required to copy this pte.
867 */
868 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)869 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
870 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
871 struct page **prealloc)
872 {
873 struct mm_struct *src_mm = src_vma->vm_mm;
874 unsigned long vm_flags = src_vma->vm_flags;
875 pte_t pte = *src_pte;
876 struct page *page;
877
878 page = vm_normal_page(src_vma, addr, pte);
879 if (page) {
880 int retval;
881
882 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
883 addr, rss, prealloc, pte, page);
884 if (retval <= 0)
885 return retval;
886
887 get_page(page);
888 page_dup_rmap(page, false);
889 rss[mm_counter(page)]++;
890 }
891
892 /*
893 * If it's a COW mapping, write protect it both
894 * in the parent and the child
895 */
896 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
897 ptep_set_wrprotect(src_mm, addr, src_pte);
898 pte = pte_wrprotect(pte);
899 }
900
901 /*
902 * If it's a shared mapping, mark it clean in
903 * the child
904 */
905 if (vm_flags & VM_SHARED)
906 pte = pte_mkclean(pte);
907 pte = pte_mkold(pte);
908
909 if (!userfaultfd_wp(dst_vma))
910 pte = pte_clear_uffd_wp(pte);
911
912 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
913 return 0;
914 }
915
916 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)917 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
918 unsigned long addr)
919 {
920 struct page *new_page;
921
922 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
923 if (!new_page)
924 return NULL;
925
926 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
927 put_page(new_page);
928 return NULL;
929 }
930 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
931
932 return new_page;
933 }
934
935 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)936 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
938 unsigned long end)
939 {
940 struct mm_struct *dst_mm = dst_vma->vm_mm;
941 struct mm_struct *src_mm = src_vma->vm_mm;
942 pte_t *orig_src_pte, *orig_dst_pte;
943 pte_t *src_pte, *dst_pte;
944 spinlock_t *src_ptl, *dst_ptl;
945 int progress, ret = 0;
946 int rss[NR_MM_COUNTERS];
947 swp_entry_t entry = (swp_entry_t){0};
948 struct page *prealloc = NULL;
949
950 again:
951 progress = 0;
952 init_rss_vec(rss);
953
954 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
955 if (!dst_pte) {
956 ret = -ENOMEM;
957 goto out;
958 }
959 src_pte = pte_offset_map(src_pmd, addr);
960 src_ptl = pte_lockptr(src_mm, src_pmd);
961 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
962 orig_src_pte = src_pte;
963 orig_dst_pte = dst_pte;
964 arch_enter_lazy_mmu_mode();
965
966 do {
967 /*
968 * We are holding two locks at this point - either of them
969 * could generate latencies in another task on another CPU.
970 */
971 if (progress >= 32) {
972 progress = 0;
973 if (need_resched() ||
974 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
975 break;
976 }
977 if (pte_none(*src_pte)) {
978 progress++;
979 continue;
980 }
981 if (unlikely(!pte_present(*src_pte))) {
982 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
983 dst_pte, src_pte,
984 dst_vma, src_vma,
985 addr, rss);
986 if (entry.val)
987 break;
988 progress += 8;
989 continue;
990 }
991 /* copy_present_pte() will clear `*prealloc' if consumed */
992 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
993 addr, rss, &prealloc);
994 /*
995 * If we need a pre-allocated page for this pte, drop the
996 * locks, allocate, and try again.
997 */
998 if (unlikely(ret == -EAGAIN))
999 break;
1000 if (unlikely(prealloc)) {
1001 /*
1002 * pre-alloc page cannot be reused by next time so as
1003 * to strictly follow mempolicy (e.g., alloc_page_vma()
1004 * will allocate page according to address). This
1005 * could only happen if one pinned pte changed.
1006 */
1007 put_page(prealloc);
1008 prealloc = NULL;
1009 }
1010 progress += 8;
1011 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1012
1013 arch_leave_lazy_mmu_mode();
1014 spin_unlock(src_ptl);
1015 pte_unmap(orig_src_pte);
1016 add_mm_rss_vec(dst_mm, rss);
1017 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1018 cond_resched();
1019
1020 if (entry.val) {
1021 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1022 ret = -ENOMEM;
1023 goto out;
1024 }
1025 entry.val = 0;
1026 } else if (ret) {
1027 WARN_ON_ONCE(ret != -EAGAIN);
1028 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1029 if (!prealloc)
1030 return -ENOMEM;
1031 /* We've captured and resolved the error. Reset, try again. */
1032 ret = 0;
1033 }
1034 if (addr != end)
1035 goto again;
1036 out:
1037 if (unlikely(prealloc))
1038 put_page(prealloc);
1039 return ret;
1040 }
1041
1042 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1043 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1044 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1045 unsigned long end)
1046 {
1047 struct mm_struct *dst_mm = dst_vma->vm_mm;
1048 struct mm_struct *src_mm = src_vma->vm_mm;
1049 pmd_t *src_pmd, *dst_pmd;
1050 unsigned long next;
1051
1052 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1053 if (!dst_pmd)
1054 return -ENOMEM;
1055 src_pmd = pmd_offset(src_pud, addr);
1056 do {
1057 next = pmd_addr_end(addr, end);
1058 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1059 || pmd_devmap(*src_pmd)) {
1060 int err;
1061 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1062 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1063 addr, dst_vma, src_vma);
1064 if (err == -ENOMEM)
1065 return -ENOMEM;
1066 if (!err)
1067 continue;
1068 /* fall through */
1069 }
1070 if (pmd_none_or_clear_bad(src_pmd))
1071 continue;
1072 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1073 addr, next))
1074 return -ENOMEM;
1075 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1076 return 0;
1077 }
1078
1079 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1080 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1081 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1082 unsigned long end)
1083 {
1084 struct mm_struct *dst_mm = dst_vma->vm_mm;
1085 struct mm_struct *src_mm = src_vma->vm_mm;
1086 pud_t *src_pud, *dst_pud;
1087 unsigned long next;
1088
1089 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1090 if (!dst_pud)
1091 return -ENOMEM;
1092 src_pud = pud_offset(src_p4d, addr);
1093 do {
1094 next = pud_addr_end(addr, end);
1095 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1096 int err;
1097
1098 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1099 err = copy_huge_pud(dst_mm, src_mm,
1100 dst_pud, src_pud, addr, src_vma);
1101 if (err == -ENOMEM)
1102 return -ENOMEM;
1103 if (!err)
1104 continue;
1105 /* fall through */
1106 }
1107 if (pud_none_or_clear_bad(src_pud))
1108 continue;
1109 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1110 addr, next))
1111 return -ENOMEM;
1112 } while (dst_pud++, src_pud++, addr = next, addr != end);
1113 return 0;
1114 }
1115
1116 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1117 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1118 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1119 unsigned long end)
1120 {
1121 struct mm_struct *dst_mm = dst_vma->vm_mm;
1122 p4d_t *src_p4d, *dst_p4d;
1123 unsigned long next;
1124
1125 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1126 if (!dst_p4d)
1127 return -ENOMEM;
1128 src_p4d = p4d_offset(src_pgd, addr);
1129 do {
1130 next = p4d_addr_end(addr, end);
1131 if (p4d_none_or_clear_bad(src_p4d))
1132 continue;
1133 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1134 addr, next))
1135 return -ENOMEM;
1136 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1137 return 0;
1138 }
1139
1140 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1141 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1142 {
1143 pgd_t *src_pgd, *dst_pgd;
1144 unsigned long next;
1145 unsigned long addr = src_vma->vm_start;
1146 unsigned long end = src_vma->vm_end;
1147 struct mm_struct *dst_mm = dst_vma->vm_mm;
1148 struct mm_struct *src_mm = src_vma->vm_mm;
1149 struct mmu_notifier_range range;
1150 bool is_cow;
1151 int ret;
1152
1153 /*
1154 * Don't copy ptes where a page fault will fill them correctly.
1155 * Fork becomes much lighter when there are big shared or private
1156 * readonly mappings. The tradeoff is that copy_page_range is more
1157 * efficient than faulting.
1158 */
1159 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1160 !src_vma->anon_vma)
1161 return 0;
1162
1163 if (is_vm_hugetlb_page(src_vma))
1164 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1165
1166 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1167 /*
1168 * We do not free on error cases below as remove_vma
1169 * gets called on error from higher level routine
1170 */
1171 ret = track_pfn_copy(src_vma);
1172 if (ret)
1173 return ret;
1174 }
1175
1176 /*
1177 * We need to invalidate the secondary MMU mappings only when
1178 * there could be a permission downgrade on the ptes of the
1179 * parent mm. And a permission downgrade will only happen if
1180 * is_cow_mapping() returns true.
1181 */
1182 is_cow = is_cow_mapping(src_vma->vm_flags);
1183
1184 if (is_cow) {
1185 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1186 0, src_vma, src_mm, addr, end);
1187 mmu_notifier_invalidate_range_start(&range);
1188 /*
1189 * Disabling preemption is not needed for the write side, as
1190 * the read side doesn't spin, but goes to the mmap_lock.
1191 *
1192 * Use the raw variant of the seqcount_t write API to avoid
1193 * lockdep complaining about preemptibility.
1194 */
1195 mmap_assert_write_locked(src_mm);
1196 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1197 }
1198
1199 ret = 0;
1200 dst_pgd = pgd_offset(dst_mm, addr);
1201 src_pgd = pgd_offset(src_mm, addr);
1202 do {
1203 next = pgd_addr_end(addr, end);
1204 if (pgd_none_or_clear_bad(src_pgd))
1205 continue;
1206 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1207 addr, next))) {
1208 ret = -ENOMEM;
1209 break;
1210 }
1211 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1212
1213 if (is_cow) {
1214 raw_write_seqcount_end(&src_mm->write_protect_seq);
1215 mmu_notifier_invalidate_range_end(&range);
1216 }
1217 return ret;
1218 }
1219
1220 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1221 static inline bool should_zap_cows(struct zap_details *details)
1222 {
1223 /* By default, zap all pages */
1224 if (!details)
1225 return true;
1226
1227 /* Or, we zap COWed pages only if the caller wants to */
1228 return !details->check_mapping;
1229 }
1230
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1231 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1232 struct vm_area_struct *vma, pmd_t *pmd,
1233 unsigned long addr, unsigned long end,
1234 struct zap_details *details)
1235 {
1236 struct mm_struct *mm = tlb->mm;
1237 int force_flush = 0;
1238 int rss[NR_MM_COUNTERS];
1239 spinlock_t *ptl;
1240 pte_t *start_pte;
1241 pte_t *pte;
1242 swp_entry_t entry;
1243
1244 tlb_change_page_size(tlb, PAGE_SIZE);
1245 again:
1246 init_rss_vec(rss);
1247 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1248 pte = start_pte;
1249 flush_tlb_batched_pending(mm);
1250 arch_enter_lazy_mmu_mode();
1251 do {
1252 pte_t ptent = *pte;
1253 if (pte_none(ptent))
1254 continue;
1255
1256 if (need_resched())
1257 break;
1258
1259 if (pte_present(ptent)) {
1260 struct page *page;
1261
1262 page = vm_normal_page(vma, addr, ptent);
1263 if (vma->vm_flags & VM_USEREXPTE)
1264 page = NULL;
1265 if (unlikely(details) && page) {
1266 /*
1267 * unmap_shared_mapping_pages() wants to
1268 * invalidate cache without truncating:
1269 * unmap shared but keep private pages.
1270 */
1271 if (details->check_mapping &&
1272 details->check_mapping != page_rmapping(page))
1273 continue;
1274 }
1275 ptent = ptep_get_and_clear_full(mm, addr, pte,
1276 tlb->fullmm);
1277 tlb_remove_tlb_entry(tlb, pte, addr);
1278 if (unlikely(!page))
1279 continue;
1280 if (vma->vm_flags & VM_PURGEABLE)
1281 uxpte_clear_present(vma, addr);
1282 if (!PageAnon(page)) {
1283 if (pte_dirty(ptent)) {
1284 force_flush = 1;
1285 set_page_dirty(page);
1286 }
1287 if (pte_young(ptent) &&
1288 likely(!(vma->vm_flags & VM_SEQ_READ)))
1289 mark_page_accessed(page);
1290 }
1291 rss[mm_counter(page)]--;
1292 page_remove_rmap(page, false);
1293 if (unlikely(page_mapcount(page) < 0))
1294 print_bad_pte(vma, addr, ptent, page);
1295 if (unlikely(__tlb_remove_page(tlb, page))) {
1296 force_flush = 1;
1297 addr += PAGE_SIZE;
1298 break;
1299 }
1300 continue;
1301 }
1302
1303 entry = pte_to_swp_entry(ptent);
1304 if (is_device_private_entry(entry)) {
1305 struct page *page = device_private_entry_to_page(entry);
1306
1307 if (unlikely(details && details->check_mapping)) {
1308 /*
1309 * unmap_shared_mapping_pages() wants to
1310 * invalidate cache without truncating:
1311 * unmap shared but keep private pages.
1312 */
1313 if (details->check_mapping !=
1314 page_rmapping(page))
1315 continue;
1316 }
1317
1318 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1319 rss[mm_counter(page)]--;
1320 page_remove_rmap(page, false);
1321 put_page(page);
1322 continue;
1323 }
1324
1325 if (!non_swap_entry(entry)) {
1326 /* Genuine swap entry, hence a private anon page */
1327 if (!should_zap_cows(details))
1328 continue;
1329 rss[MM_SWAPENTS]--;
1330 } else if (is_migration_entry(entry)) {
1331 struct page *page;
1332
1333 page = migration_entry_to_page(entry);
1334 if (details && details->check_mapping &&
1335 details->check_mapping != page_rmapping(page))
1336 continue;
1337 rss[mm_counter(page)]--;
1338 }
1339 if (unlikely(!free_swap_and_cache(entry)))
1340 print_bad_pte(vma, addr, ptent, NULL);
1341 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1342 } while (pte++, addr += PAGE_SIZE, addr != end);
1343
1344 add_mm_rss_vec(mm, rss);
1345 arch_leave_lazy_mmu_mode();
1346
1347 /* Do the actual TLB flush before dropping ptl */
1348 if (force_flush)
1349 tlb_flush_mmu_tlbonly(tlb);
1350 pte_unmap_unlock(start_pte, ptl);
1351
1352 /*
1353 * If we forced a TLB flush (either due to running out of
1354 * batch buffers or because we needed to flush dirty TLB
1355 * entries before releasing the ptl), free the batched
1356 * memory too. Restart if we didn't do everything.
1357 */
1358 if (force_flush) {
1359 force_flush = 0;
1360 tlb_flush_mmu(tlb);
1361 }
1362
1363 if (addr != end) {
1364 cond_resched();
1365 goto again;
1366 }
1367
1368 return addr;
1369 }
1370
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1371 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1372 struct vm_area_struct *vma, pud_t *pud,
1373 unsigned long addr, unsigned long end,
1374 struct zap_details *details)
1375 {
1376 pmd_t *pmd;
1377 unsigned long next;
1378
1379 pmd = pmd_offset(pud, addr);
1380 do {
1381 next = pmd_addr_end(addr, end);
1382 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1383 if (next - addr != HPAGE_PMD_SIZE)
1384 __split_huge_pmd(vma, pmd, addr, false, NULL);
1385 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1386 goto next;
1387 /* fall through */
1388 } else if (details && details->single_page &&
1389 PageTransCompound(details->single_page) &&
1390 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1391 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1392 /*
1393 * Take and drop THP pmd lock so that we cannot return
1394 * prematurely, while zap_huge_pmd() has cleared *pmd,
1395 * but not yet decremented compound_mapcount().
1396 */
1397 spin_unlock(ptl);
1398 }
1399
1400 /*
1401 * Here there can be other concurrent MADV_DONTNEED or
1402 * trans huge page faults running, and if the pmd is
1403 * none or trans huge it can change under us. This is
1404 * because MADV_DONTNEED holds the mmap_lock in read
1405 * mode.
1406 */
1407 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1408 goto next;
1409 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1410 next:
1411 cond_resched();
1412 } while (pmd++, addr = next, addr != end);
1413
1414 return addr;
1415 }
1416
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1417 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1418 struct vm_area_struct *vma, p4d_t *p4d,
1419 unsigned long addr, unsigned long end,
1420 struct zap_details *details)
1421 {
1422 pud_t *pud;
1423 unsigned long next;
1424
1425 pud = pud_offset(p4d, addr);
1426 do {
1427 next = pud_addr_end(addr, end);
1428 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1429 if (next - addr != HPAGE_PUD_SIZE) {
1430 mmap_assert_locked(tlb->mm);
1431 split_huge_pud(vma, pud, addr);
1432 } else if (zap_huge_pud(tlb, vma, pud, addr))
1433 goto next;
1434 /* fall through */
1435 }
1436 if (pud_none_or_clear_bad(pud))
1437 continue;
1438 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1439 next:
1440 cond_resched();
1441 } while (pud++, addr = next, addr != end);
1442
1443 return addr;
1444 }
1445
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1446 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1447 struct vm_area_struct *vma, pgd_t *pgd,
1448 unsigned long addr, unsigned long end,
1449 struct zap_details *details)
1450 {
1451 p4d_t *p4d;
1452 unsigned long next;
1453
1454 p4d = p4d_offset(pgd, addr);
1455 do {
1456 next = p4d_addr_end(addr, end);
1457 if (p4d_none_or_clear_bad(p4d))
1458 continue;
1459 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1460 } while (p4d++, addr = next, addr != end);
1461
1462 return addr;
1463 }
1464
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1465 void unmap_page_range(struct mmu_gather *tlb,
1466 struct vm_area_struct *vma,
1467 unsigned long addr, unsigned long end,
1468 struct zap_details *details)
1469 {
1470 pgd_t *pgd;
1471 unsigned long next;
1472
1473 BUG_ON(addr >= end);
1474 tlb_start_vma(tlb, vma);
1475 pgd = pgd_offset(vma->vm_mm, addr);
1476 do {
1477 next = pgd_addr_end(addr, end);
1478 if (pgd_none_or_clear_bad(pgd))
1479 continue;
1480 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1481 } while (pgd++, addr = next, addr != end);
1482 tlb_end_vma(tlb, vma);
1483 }
1484
1485
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1486 static void unmap_single_vma(struct mmu_gather *tlb,
1487 struct vm_area_struct *vma, unsigned long start_addr,
1488 unsigned long end_addr,
1489 struct zap_details *details)
1490 {
1491 unsigned long start = max(vma->vm_start, start_addr);
1492 unsigned long end;
1493
1494 if (start >= vma->vm_end)
1495 return;
1496 end = min(vma->vm_end, end_addr);
1497 if (end <= vma->vm_start)
1498 return;
1499
1500 if (vma->vm_file)
1501 uprobe_munmap(vma, start, end);
1502
1503 if (unlikely(vma->vm_flags & VM_PFNMAP))
1504 untrack_pfn(vma, 0, 0);
1505
1506 if (start != end) {
1507 if (unlikely(is_vm_hugetlb_page(vma))) {
1508 /*
1509 * It is undesirable to test vma->vm_file as it
1510 * should be non-null for valid hugetlb area.
1511 * However, vm_file will be NULL in the error
1512 * cleanup path of mmap_region. When
1513 * hugetlbfs ->mmap method fails,
1514 * mmap_region() nullifies vma->vm_file
1515 * before calling this function to clean up.
1516 * Since no pte has actually been setup, it is
1517 * safe to do nothing in this case.
1518 */
1519 if (vma->vm_file) {
1520 i_mmap_lock_write(vma->vm_file->f_mapping);
1521 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1522 i_mmap_unlock_write(vma->vm_file->f_mapping);
1523 }
1524 } else
1525 unmap_page_range(tlb, vma, start, end, details);
1526 }
1527 }
1528
1529 /**
1530 * unmap_vmas - unmap a range of memory covered by a list of vma's
1531 * @tlb: address of the caller's struct mmu_gather
1532 * @vma: the starting vma
1533 * @start_addr: virtual address at which to start unmapping
1534 * @end_addr: virtual address at which to end unmapping
1535 *
1536 * Unmap all pages in the vma list.
1537 *
1538 * Only addresses between `start' and `end' will be unmapped.
1539 *
1540 * The VMA list must be sorted in ascending virtual address order.
1541 *
1542 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1543 * range after unmap_vmas() returns. So the only responsibility here is to
1544 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1545 * drops the lock and schedules.
1546 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1547 void unmap_vmas(struct mmu_gather *tlb,
1548 struct vm_area_struct *vma, unsigned long start_addr,
1549 unsigned long end_addr)
1550 {
1551 struct mmu_notifier_range range;
1552
1553 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1554 start_addr, end_addr);
1555 mmu_notifier_invalidate_range_start(&range);
1556 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1557 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1558 mmu_notifier_invalidate_range_end(&range);
1559 }
1560
1561 /**
1562 * zap_page_range - remove user pages in a given range
1563 * @vma: vm_area_struct holding the applicable pages
1564 * @start: starting address of pages to zap
1565 * @size: number of bytes to zap
1566 *
1567 * Caller must protect the VMA list
1568 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1569 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1570 unsigned long size)
1571 {
1572 struct mmu_notifier_range range;
1573 struct mmu_gather tlb;
1574
1575 lru_add_drain();
1576 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1577 start, start + size);
1578 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1579 update_hiwater_rss(vma->vm_mm);
1580 mmu_notifier_invalidate_range_start(&range);
1581 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1582 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1583 mmu_notifier_invalidate_range_end(&range);
1584 tlb_finish_mmu(&tlb, start, range.end);
1585 }
1586
1587 /**
1588 * zap_page_range_single - remove user pages in a given range
1589 * @vma: vm_area_struct holding the applicable pages
1590 * @address: starting address of pages to zap
1591 * @size: number of bytes to zap
1592 * @details: details of shared cache invalidation
1593 *
1594 * The range must fit into one VMA.
1595 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1596 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1597 unsigned long size, struct zap_details *details)
1598 {
1599 struct mmu_notifier_range range;
1600 struct mmu_gather tlb;
1601
1602 lru_add_drain();
1603 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1604 address, address + size);
1605 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1606 update_hiwater_rss(vma->vm_mm);
1607 mmu_notifier_invalidate_range_start(&range);
1608 unmap_single_vma(&tlb, vma, address, range.end, details);
1609 mmu_notifier_invalidate_range_end(&range);
1610 tlb_finish_mmu(&tlb, address, range.end);
1611 }
1612
1613 /**
1614 * zap_vma_ptes - remove ptes mapping the vma
1615 * @vma: vm_area_struct holding ptes to be zapped
1616 * @address: starting address of pages to zap
1617 * @size: number of bytes to zap
1618 *
1619 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1620 *
1621 * The entire address range must be fully contained within the vma.
1622 *
1623 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1624 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1625 unsigned long size)
1626 {
1627 if (address < vma->vm_start || address + size > vma->vm_end ||
1628 !(vma->vm_flags & VM_PFNMAP))
1629 return;
1630
1631 zap_page_range_single(vma, address, size, NULL);
1632 }
1633 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1634
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1635 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1636 {
1637 pgd_t *pgd;
1638 p4d_t *p4d;
1639 pud_t *pud;
1640 pmd_t *pmd;
1641
1642 pgd = pgd_offset(mm, addr);
1643 p4d = p4d_alloc(mm, pgd, addr);
1644 if (!p4d)
1645 return NULL;
1646 pud = pud_alloc(mm, p4d, addr);
1647 if (!pud)
1648 return NULL;
1649 pmd = pmd_alloc(mm, pud, addr);
1650 if (!pmd)
1651 return NULL;
1652
1653 VM_BUG_ON(pmd_trans_huge(*pmd));
1654 return pmd;
1655 }
1656
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1657 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1658 spinlock_t **ptl)
1659 {
1660 pmd_t *pmd = walk_to_pmd(mm, addr);
1661
1662 if (!pmd)
1663 return NULL;
1664 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1665 }
1666
validate_page_before_insert(struct page * page)1667 static int validate_page_before_insert(struct page *page)
1668 {
1669 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1670 return -EINVAL;
1671 flush_dcache_page(page);
1672 return 0;
1673 }
1674
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1675 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1676 unsigned long addr, struct page *page, pgprot_t prot)
1677 {
1678 if (!pte_none(*pte))
1679 return -EBUSY;
1680 /* Ok, finally just insert the thing.. */
1681 get_page(page);
1682 inc_mm_counter_fast(mm, mm_counter_file(page));
1683 page_add_file_rmap(page, false);
1684 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1685 return 0;
1686 }
1687
1688 /*
1689 * This is the old fallback for page remapping.
1690 *
1691 * For historical reasons, it only allows reserved pages. Only
1692 * old drivers should use this, and they needed to mark their
1693 * pages reserved for the old functions anyway.
1694 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1695 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1696 struct page *page, pgprot_t prot)
1697 {
1698 struct mm_struct *mm = vma->vm_mm;
1699 int retval;
1700 pte_t *pte;
1701 spinlock_t *ptl;
1702
1703 retval = validate_page_before_insert(page);
1704 if (retval)
1705 goto out;
1706 retval = -ENOMEM;
1707 pte = get_locked_pte(mm, addr, &ptl);
1708 if (!pte)
1709 goto out;
1710 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1711 pte_unmap_unlock(pte, ptl);
1712 out:
1713 return retval;
1714 }
1715
1716 #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1717 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1718 unsigned long addr, struct page *page, pgprot_t prot)
1719 {
1720 int err;
1721
1722 if (!page_count(page))
1723 return -EINVAL;
1724 err = validate_page_before_insert(page);
1725 if (err)
1726 return err;
1727 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1728 }
1729
1730 /* insert_pages() amortizes the cost of spinlock operations
1731 * when inserting pages in a loop. Arch *must* define pte_index.
1732 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1733 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1734 struct page **pages, unsigned long *num, pgprot_t prot)
1735 {
1736 pmd_t *pmd = NULL;
1737 pte_t *start_pte, *pte;
1738 spinlock_t *pte_lock;
1739 struct mm_struct *const mm = vma->vm_mm;
1740 unsigned long curr_page_idx = 0;
1741 unsigned long remaining_pages_total = *num;
1742 unsigned long pages_to_write_in_pmd;
1743 int ret;
1744 more:
1745 ret = -EFAULT;
1746 pmd = walk_to_pmd(mm, addr);
1747 if (!pmd)
1748 goto out;
1749
1750 pages_to_write_in_pmd = min_t(unsigned long,
1751 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1752
1753 /* Allocate the PTE if necessary; takes PMD lock once only. */
1754 ret = -ENOMEM;
1755 if (pte_alloc(mm, pmd))
1756 goto out;
1757
1758 while (pages_to_write_in_pmd) {
1759 int pte_idx = 0;
1760 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1761
1762 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1763 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1764 int err = insert_page_in_batch_locked(mm, pte,
1765 addr, pages[curr_page_idx], prot);
1766 if (unlikely(err)) {
1767 pte_unmap_unlock(start_pte, pte_lock);
1768 ret = err;
1769 remaining_pages_total -= pte_idx;
1770 goto out;
1771 }
1772 addr += PAGE_SIZE;
1773 ++curr_page_idx;
1774 }
1775 pte_unmap_unlock(start_pte, pte_lock);
1776 pages_to_write_in_pmd -= batch_size;
1777 remaining_pages_total -= batch_size;
1778 }
1779 if (remaining_pages_total)
1780 goto more;
1781 ret = 0;
1782 out:
1783 *num = remaining_pages_total;
1784 return ret;
1785 }
1786 #endif /* ifdef pte_index */
1787
1788 /**
1789 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1790 * @vma: user vma to map to
1791 * @addr: target start user address of these pages
1792 * @pages: source kernel pages
1793 * @num: in: number of pages to map. out: number of pages that were *not*
1794 * mapped. (0 means all pages were successfully mapped).
1795 *
1796 * Preferred over vm_insert_page() when inserting multiple pages.
1797 *
1798 * In case of error, we may have mapped a subset of the provided
1799 * pages. It is the caller's responsibility to account for this case.
1800 *
1801 * The same restrictions apply as in vm_insert_page().
1802 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1803 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1804 struct page **pages, unsigned long *num)
1805 {
1806 #ifdef pte_index
1807 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1808
1809 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1810 return -EFAULT;
1811 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1812 BUG_ON(mmap_read_trylock(vma->vm_mm));
1813 BUG_ON(vma->vm_flags & VM_PFNMAP);
1814 vma->vm_flags |= VM_MIXEDMAP;
1815 }
1816 /* Defer page refcount checking till we're about to map that page. */
1817 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1818 #else
1819 unsigned long idx = 0, pgcount = *num;
1820 int err = -EINVAL;
1821
1822 for (; idx < pgcount; ++idx) {
1823 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1824 if (err)
1825 break;
1826 }
1827 *num = pgcount - idx;
1828 return err;
1829 #endif /* ifdef pte_index */
1830 }
1831 EXPORT_SYMBOL(vm_insert_pages);
1832
1833 /**
1834 * vm_insert_page - insert single page into user vma
1835 * @vma: user vma to map to
1836 * @addr: target user address of this page
1837 * @page: source kernel page
1838 *
1839 * This allows drivers to insert individual pages they've allocated
1840 * into a user vma.
1841 *
1842 * The page has to be a nice clean _individual_ kernel allocation.
1843 * If you allocate a compound page, you need to have marked it as
1844 * such (__GFP_COMP), or manually just split the page up yourself
1845 * (see split_page()).
1846 *
1847 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1848 * took an arbitrary page protection parameter. This doesn't allow
1849 * that. Your vma protection will have to be set up correctly, which
1850 * means that if you want a shared writable mapping, you'd better
1851 * ask for a shared writable mapping!
1852 *
1853 * The page does not need to be reserved.
1854 *
1855 * Usually this function is called from f_op->mmap() handler
1856 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1857 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1858 * function from other places, for example from page-fault handler.
1859 *
1860 * Return: %0 on success, negative error code otherwise.
1861 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1862 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1863 struct page *page)
1864 {
1865 if (addr < vma->vm_start || addr >= vma->vm_end)
1866 return -EFAULT;
1867 if (!page_count(page))
1868 return -EINVAL;
1869 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1870 BUG_ON(mmap_read_trylock(vma->vm_mm));
1871 BUG_ON(vma->vm_flags & VM_PFNMAP);
1872 vma->vm_flags |= VM_MIXEDMAP;
1873 }
1874 return insert_page(vma, addr, page, vma->vm_page_prot);
1875 }
1876 EXPORT_SYMBOL(vm_insert_page);
1877
1878 /*
1879 * __vm_map_pages - maps range of kernel pages into user vma
1880 * @vma: user vma to map to
1881 * @pages: pointer to array of source kernel pages
1882 * @num: number of pages in page array
1883 * @offset: user's requested vm_pgoff
1884 *
1885 * This allows drivers to map range of kernel pages into a user vma.
1886 *
1887 * Return: 0 on success and error code otherwise.
1888 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1889 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1890 unsigned long num, unsigned long offset)
1891 {
1892 unsigned long count = vma_pages(vma);
1893 unsigned long uaddr = vma->vm_start;
1894 int ret, i;
1895
1896 /* Fail if the user requested offset is beyond the end of the object */
1897 if (offset >= num)
1898 return -ENXIO;
1899
1900 /* Fail if the user requested size exceeds available object size */
1901 if (count > num - offset)
1902 return -ENXIO;
1903
1904 for (i = 0; i < count; i++) {
1905 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1906 if (ret < 0)
1907 return ret;
1908 uaddr += PAGE_SIZE;
1909 }
1910
1911 return 0;
1912 }
1913
1914 /**
1915 * vm_map_pages - maps range of kernel pages starts with non zero offset
1916 * @vma: user vma to map to
1917 * @pages: pointer to array of source kernel pages
1918 * @num: number of pages in page array
1919 *
1920 * Maps an object consisting of @num pages, catering for the user's
1921 * requested vm_pgoff
1922 *
1923 * If we fail to insert any page into the vma, the function will return
1924 * immediately leaving any previously inserted pages present. Callers
1925 * from the mmap handler may immediately return the error as their caller
1926 * will destroy the vma, removing any successfully inserted pages. Other
1927 * callers should make their own arrangements for calling unmap_region().
1928 *
1929 * Context: Process context. Called by mmap handlers.
1930 * Return: 0 on success and error code otherwise.
1931 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1932 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1933 unsigned long num)
1934 {
1935 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1936 }
1937 EXPORT_SYMBOL(vm_map_pages);
1938
1939 /**
1940 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1941 * @vma: user vma to map to
1942 * @pages: pointer to array of source kernel pages
1943 * @num: number of pages in page array
1944 *
1945 * Similar to vm_map_pages(), except that it explicitly sets the offset
1946 * to 0. This function is intended for the drivers that did not consider
1947 * vm_pgoff.
1948 *
1949 * Context: Process context. Called by mmap handlers.
1950 * Return: 0 on success and error code otherwise.
1951 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1952 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1953 unsigned long num)
1954 {
1955 return __vm_map_pages(vma, pages, num, 0);
1956 }
1957 EXPORT_SYMBOL(vm_map_pages_zero);
1958
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1959 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1960 pfn_t pfn, pgprot_t prot, bool mkwrite)
1961 {
1962 struct mm_struct *mm = vma->vm_mm;
1963 pte_t *pte, entry;
1964 spinlock_t *ptl;
1965
1966 pte = get_locked_pte(mm, addr, &ptl);
1967 if (!pte)
1968 return VM_FAULT_OOM;
1969 if (!pte_none(*pte)) {
1970 if (mkwrite) {
1971 /*
1972 * For read faults on private mappings the PFN passed
1973 * in may not match the PFN we have mapped if the
1974 * mapped PFN is a writeable COW page. In the mkwrite
1975 * case we are creating a writable PTE for a shared
1976 * mapping and we expect the PFNs to match. If they
1977 * don't match, we are likely racing with block
1978 * allocation and mapping invalidation so just skip the
1979 * update.
1980 */
1981 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1982 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1983 goto out_unlock;
1984 }
1985 entry = pte_mkyoung(*pte);
1986 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1987 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1988 update_mmu_cache(vma, addr, pte);
1989 }
1990 goto out_unlock;
1991 }
1992
1993 /* Ok, finally just insert the thing.. */
1994 if (pfn_t_devmap(pfn))
1995 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1996 else
1997 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1998
1999 if (mkwrite) {
2000 entry = pte_mkyoung(entry);
2001 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2002 }
2003
2004 set_pte_at(mm, addr, pte, entry);
2005 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2006
2007 out_unlock:
2008 pte_unmap_unlock(pte, ptl);
2009 return VM_FAULT_NOPAGE;
2010 }
2011
2012 /**
2013 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2014 * @vma: user vma to map to
2015 * @addr: target user address of this page
2016 * @pfn: source kernel pfn
2017 * @pgprot: pgprot flags for the inserted page
2018 *
2019 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2020 * to override pgprot on a per-page basis.
2021 *
2022 * This only makes sense for IO mappings, and it makes no sense for
2023 * COW mappings. In general, using multiple vmas is preferable;
2024 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2025 * impractical.
2026 *
2027 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2028 * a value of @pgprot different from that of @vma->vm_page_prot.
2029 *
2030 * Context: Process context. May allocate using %GFP_KERNEL.
2031 * Return: vm_fault_t value.
2032 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2033 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2034 unsigned long pfn, pgprot_t pgprot)
2035 {
2036 /*
2037 * Technically, architectures with pte_special can avoid all these
2038 * restrictions (same for remap_pfn_range). However we would like
2039 * consistency in testing and feature parity among all, so we should
2040 * try to keep these invariants in place for everybody.
2041 */
2042 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2043 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2044 (VM_PFNMAP|VM_MIXEDMAP));
2045 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2046 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2047
2048 if (addr < vma->vm_start || addr >= vma->vm_end)
2049 return VM_FAULT_SIGBUS;
2050
2051 if (!pfn_modify_allowed(pfn, pgprot))
2052 return VM_FAULT_SIGBUS;
2053
2054 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2055
2056 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2057 false);
2058 }
2059 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2060
2061 /**
2062 * vmf_insert_pfn - insert single pfn into user vma
2063 * @vma: user vma to map to
2064 * @addr: target user address of this page
2065 * @pfn: source kernel pfn
2066 *
2067 * Similar to vm_insert_page, this allows drivers to insert individual pages
2068 * they've allocated into a user vma. Same comments apply.
2069 *
2070 * This function should only be called from a vm_ops->fault handler, and
2071 * in that case the handler should return the result of this function.
2072 *
2073 * vma cannot be a COW mapping.
2074 *
2075 * As this is called only for pages that do not currently exist, we
2076 * do not need to flush old virtual caches or the TLB.
2077 *
2078 * Context: Process context. May allocate using %GFP_KERNEL.
2079 * Return: vm_fault_t value.
2080 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2081 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2082 unsigned long pfn)
2083 {
2084 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2085 }
2086 EXPORT_SYMBOL(vmf_insert_pfn);
2087
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2088 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2089 {
2090 /* these checks mirror the abort conditions in vm_normal_page */
2091 if (vma->vm_flags & VM_MIXEDMAP)
2092 return true;
2093 if (pfn_t_devmap(pfn))
2094 return true;
2095 if (pfn_t_special(pfn))
2096 return true;
2097 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2098 return true;
2099 return false;
2100 }
2101
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2102 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2103 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2104 bool mkwrite)
2105 {
2106 int err;
2107
2108 BUG_ON(!vm_mixed_ok(vma, pfn));
2109
2110 if (addr < vma->vm_start || addr >= vma->vm_end)
2111 return VM_FAULT_SIGBUS;
2112
2113 track_pfn_insert(vma, &pgprot, pfn);
2114
2115 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2116 return VM_FAULT_SIGBUS;
2117
2118 /*
2119 * If we don't have pte special, then we have to use the pfn_valid()
2120 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2121 * refcount the page if pfn_valid is true (hence insert_page rather
2122 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2123 * without pte special, it would there be refcounted as a normal page.
2124 */
2125 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2126 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2127 struct page *page;
2128
2129 /*
2130 * At this point we are committed to insert_page()
2131 * regardless of whether the caller specified flags that
2132 * result in pfn_t_has_page() == false.
2133 */
2134 page = pfn_to_page(pfn_t_to_pfn(pfn));
2135 err = insert_page(vma, addr, page, pgprot);
2136 } else {
2137 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2138 }
2139
2140 if (err == -ENOMEM)
2141 return VM_FAULT_OOM;
2142 if (err < 0 && err != -EBUSY)
2143 return VM_FAULT_SIGBUS;
2144
2145 return VM_FAULT_NOPAGE;
2146 }
2147
2148 /**
2149 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2150 * @vma: user vma to map to
2151 * @addr: target user address of this page
2152 * @pfn: source kernel pfn
2153 * @pgprot: pgprot flags for the inserted page
2154 *
2155 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2156 * to override pgprot on a per-page basis.
2157 *
2158 * Typically this function should be used by drivers to set caching- and
2159 * encryption bits different than those of @vma->vm_page_prot, because
2160 * the caching- or encryption mode may not be known at mmap() time.
2161 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2162 * to set caching and encryption bits for those vmas (except for COW pages).
2163 * This is ensured by core vm only modifying these page table entries using
2164 * functions that don't touch caching- or encryption bits, using pte_modify()
2165 * if needed. (See for example mprotect()).
2166 * Also when new page-table entries are created, this is only done using the
2167 * fault() callback, and never using the value of vma->vm_page_prot,
2168 * except for page-table entries that point to anonymous pages as the result
2169 * of COW.
2170 *
2171 * Context: Process context. May allocate using %GFP_KERNEL.
2172 * Return: vm_fault_t value.
2173 */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2174 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2175 pfn_t pfn, pgprot_t pgprot)
2176 {
2177 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2178 }
2179 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2180
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2181 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2182 pfn_t pfn)
2183 {
2184 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2185 }
2186 EXPORT_SYMBOL(vmf_insert_mixed);
2187
2188 /*
2189 * If the insertion of PTE failed because someone else already added a
2190 * different entry in the mean time, we treat that as success as we assume
2191 * the same entry was actually inserted.
2192 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2193 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2194 unsigned long addr, pfn_t pfn)
2195 {
2196 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2197 }
2198 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2199
2200 /*
2201 * maps a range of physical memory into the requested pages. the old
2202 * mappings are removed. any references to nonexistent pages results
2203 * in null mappings (currently treated as "copy-on-access")
2204 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2205 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2206 unsigned long addr, unsigned long end,
2207 unsigned long pfn, pgprot_t prot)
2208 {
2209 pte_t *pte, *mapped_pte;
2210 spinlock_t *ptl;
2211 int err = 0;
2212
2213 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214 if (!pte)
2215 return -ENOMEM;
2216 arch_enter_lazy_mmu_mode();
2217 do {
2218 BUG_ON(!pte_none(*pte));
2219 if (!pfn_modify_allowed(pfn, prot)) {
2220 err = -EACCES;
2221 break;
2222 }
2223 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2224 pfn++;
2225 } while (pte++, addr += PAGE_SIZE, addr != end);
2226 arch_leave_lazy_mmu_mode();
2227 pte_unmap_unlock(mapped_pte, ptl);
2228 return err;
2229 }
2230
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2231 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2232 unsigned long addr, unsigned long end,
2233 unsigned long pfn, pgprot_t prot)
2234 {
2235 pmd_t *pmd;
2236 unsigned long next;
2237 int err;
2238
2239 pfn -= addr >> PAGE_SHIFT;
2240 pmd = pmd_alloc(mm, pud, addr);
2241 if (!pmd)
2242 return -ENOMEM;
2243 VM_BUG_ON(pmd_trans_huge(*pmd));
2244 do {
2245 next = pmd_addr_end(addr, end);
2246 err = remap_pte_range(mm, pmd, addr, next,
2247 pfn + (addr >> PAGE_SHIFT), prot);
2248 if (err)
2249 return err;
2250 } while (pmd++, addr = next, addr != end);
2251 return 0;
2252 }
2253
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2254 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2255 unsigned long addr, unsigned long end,
2256 unsigned long pfn, pgprot_t prot)
2257 {
2258 pud_t *pud;
2259 unsigned long next;
2260 int err;
2261
2262 pfn -= addr >> PAGE_SHIFT;
2263 pud = pud_alloc(mm, p4d, addr);
2264 if (!pud)
2265 return -ENOMEM;
2266 do {
2267 next = pud_addr_end(addr, end);
2268 err = remap_pmd_range(mm, pud, addr, next,
2269 pfn + (addr >> PAGE_SHIFT), prot);
2270 if (err)
2271 return err;
2272 } while (pud++, addr = next, addr != end);
2273 return 0;
2274 }
2275
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2276 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2277 unsigned long addr, unsigned long end,
2278 unsigned long pfn, pgprot_t prot)
2279 {
2280 p4d_t *p4d;
2281 unsigned long next;
2282 int err;
2283
2284 pfn -= addr >> PAGE_SHIFT;
2285 p4d = p4d_alloc(mm, pgd, addr);
2286 if (!p4d)
2287 return -ENOMEM;
2288 do {
2289 next = p4d_addr_end(addr, end);
2290 err = remap_pud_range(mm, p4d, addr, next,
2291 pfn + (addr >> PAGE_SHIFT), prot);
2292 if (err)
2293 return err;
2294 } while (p4d++, addr = next, addr != end);
2295 return 0;
2296 }
2297
2298 /**
2299 * remap_pfn_range - remap kernel memory to userspace
2300 * @vma: user vma to map to
2301 * @addr: target page aligned user address to start at
2302 * @pfn: page frame number of kernel physical memory address
2303 * @size: size of mapping area
2304 * @prot: page protection flags for this mapping
2305 *
2306 * Note: this is only safe if the mm semaphore is held when called.
2307 *
2308 * Return: %0 on success, negative error code otherwise.
2309 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2310 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2311 unsigned long pfn, unsigned long size, pgprot_t prot)
2312 {
2313 pgd_t *pgd;
2314 unsigned long next;
2315 unsigned long end = addr + PAGE_ALIGN(size);
2316 struct mm_struct *mm = vma->vm_mm;
2317 unsigned long remap_pfn = pfn;
2318 int err;
2319
2320 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2321 return -EINVAL;
2322
2323 /*
2324 * Physically remapped pages are special. Tell the
2325 * rest of the world about it:
2326 * VM_IO tells people not to look at these pages
2327 * (accesses can have side effects).
2328 * VM_PFNMAP tells the core MM that the base pages are just
2329 * raw PFN mappings, and do not have a "struct page" associated
2330 * with them.
2331 * VM_DONTEXPAND
2332 * Disable vma merging and expanding with mremap().
2333 * VM_DONTDUMP
2334 * Omit vma from core dump, even when VM_IO turned off.
2335 *
2336 * There's a horrible special case to handle copy-on-write
2337 * behaviour that some programs depend on. We mark the "original"
2338 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2339 * See vm_normal_page() for details.
2340 */
2341 if (is_cow_mapping(vma->vm_flags)) {
2342 if (addr != vma->vm_start || end != vma->vm_end)
2343 return -EINVAL;
2344 vma->vm_pgoff = pfn;
2345 }
2346
2347 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2348 if (err)
2349 return -EINVAL;
2350
2351 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2352
2353 BUG_ON(addr >= end);
2354 pfn -= addr >> PAGE_SHIFT;
2355 pgd = pgd_offset(mm, addr);
2356 flush_cache_range(vma, addr, end);
2357 do {
2358 next = pgd_addr_end(addr, end);
2359 err = remap_p4d_range(mm, pgd, addr, next,
2360 pfn + (addr >> PAGE_SHIFT), prot);
2361 if (err)
2362 break;
2363 } while (pgd++, addr = next, addr != end);
2364
2365 if (err)
2366 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2367
2368 return err;
2369 }
2370 EXPORT_SYMBOL(remap_pfn_range);
2371
2372 /**
2373 * vm_iomap_memory - remap memory to userspace
2374 * @vma: user vma to map to
2375 * @start: start of the physical memory to be mapped
2376 * @len: size of area
2377 *
2378 * This is a simplified io_remap_pfn_range() for common driver use. The
2379 * driver just needs to give us the physical memory range to be mapped,
2380 * we'll figure out the rest from the vma information.
2381 *
2382 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2383 * whatever write-combining details or similar.
2384 *
2385 * Return: %0 on success, negative error code otherwise.
2386 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2387 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2388 {
2389 unsigned long vm_len, pfn, pages;
2390
2391 /* Check that the physical memory area passed in looks valid */
2392 if (start + len < start)
2393 return -EINVAL;
2394 /*
2395 * You *really* shouldn't map things that aren't page-aligned,
2396 * but we've historically allowed it because IO memory might
2397 * just have smaller alignment.
2398 */
2399 len += start & ~PAGE_MASK;
2400 pfn = start >> PAGE_SHIFT;
2401 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2402 if (pfn + pages < pfn)
2403 return -EINVAL;
2404
2405 /* We start the mapping 'vm_pgoff' pages into the area */
2406 if (vma->vm_pgoff > pages)
2407 return -EINVAL;
2408 pfn += vma->vm_pgoff;
2409 pages -= vma->vm_pgoff;
2410
2411 /* Can we fit all of the mapping? */
2412 vm_len = vma->vm_end - vma->vm_start;
2413 if (vm_len >> PAGE_SHIFT > pages)
2414 return -EINVAL;
2415
2416 /* Ok, let it rip */
2417 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2418 }
2419 EXPORT_SYMBOL(vm_iomap_memory);
2420
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2421 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2422 unsigned long addr, unsigned long end,
2423 pte_fn_t fn, void *data, bool create,
2424 pgtbl_mod_mask *mask)
2425 {
2426 pte_t *pte;
2427 int err = 0;
2428 spinlock_t *ptl;
2429
2430 if (create) {
2431 pte = (mm == &init_mm) ?
2432 pte_alloc_kernel_track(pmd, addr, mask) :
2433 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2434 if (!pte)
2435 return -ENOMEM;
2436 } else {
2437 pte = (mm == &init_mm) ?
2438 pte_offset_kernel(pmd, addr) :
2439 pte_offset_map_lock(mm, pmd, addr, &ptl);
2440 }
2441
2442 BUG_ON(pmd_huge(*pmd));
2443
2444 arch_enter_lazy_mmu_mode();
2445
2446 if (fn) {
2447 do {
2448 if (create || !pte_none(*pte)) {
2449 err = fn(pte++, addr, data);
2450 if (err)
2451 break;
2452 }
2453 } while (addr += PAGE_SIZE, addr != end);
2454 }
2455 *mask |= PGTBL_PTE_MODIFIED;
2456
2457 arch_leave_lazy_mmu_mode();
2458
2459 if (mm != &init_mm)
2460 pte_unmap_unlock(pte-1, ptl);
2461 return err;
2462 }
2463
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2464 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2465 unsigned long addr, unsigned long end,
2466 pte_fn_t fn, void *data, bool create,
2467 pgtbl_mod_mask *mask)
2468 {
2469 pmd_t *pmd;
2470 unsigned long next;
2471 int err = 0;
2472
2473 BUG_ON(pud_huge(*pud));
2474
2475 if (create) {
2476 pmd = pmd_alloc_track(mm, pud, addr, mask);
2477 if (!pmd)
2478 return -ENOMEM;
2479 } else {
2480 pmd = pmd_offset(pud, addr);
2481 }
2482 do {
2483 next = pmd_addr_end(addr, end);
2484 if (create || !pmd_none_or_clear_bad(pmd)) {
2485 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2486 create, mask);
2487 if (err)
2488 break;
2489 }
2490 } while (pmd++, addr = next, addr != end);
2491 return err;
2492 }
2493
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2494 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2495 unsigned long addr, unsigned long end,
2496 pte_fn_t fn, void *data, bool create,
2497 pgtbl_mod_mask *mask)
2498 {
2499 pud_t *pud;
2500 unsigned long next;
2501 int err = 0;
2502
2503 if (create) {
2504 pud = pud_alloc_track(mm, p4d, addr, mask);
2505 if (!pud)
2506 return -ENOMEM;
2507 } else {
2508 pud = pud_offset(p4d, addr);
2509 }
2510 do {
2511 next = pud_addr_end(addr, end);
2512 if (create || !pud_none_or_clear_bad(pud)) {
2513 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2514 create, mask);
2515 if (err)
2516 break;
2517 }
2518 } while (pud++, addr = next, addr != end);
2519 return err;
2520 }
2521
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2522 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2523 unsigned long addr, unsigned long end,
2524 pte_fn_t fn, void *data, bool create,
2525 pgtbl_mod_mask *mask)
2526 {
2527 p4d_t *p4d;
2528 unsigned long next;
2529 int err = 0;
2530
2531 if (create) {
2532 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2533 if (!p4d)
2534 return -ENOMEM;
2535 } else {
2536 p4d = p4d_offset(pgd, addr);
2537 }
2538 do {
2539 next = p4d_addr_end(addr, end);
2540 if (create || !p4d_none_or_clear_bad(p4d)) {
2541 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2542 create, mask);
2543 if (err)
2544 break;
2545 }
2546 } while (p4d++, addr = next, addr != end);
2547 return err;
2548 }
2549
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2550 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2551 unsigned long size, pte_fn_t fn,
2552 void *data, bool create)
2553 {
2554 pgd_t *pgd;
2555 unsigned long start = addr, next;
2556 unsigned long end = addr + size;
2557 pgtbl_mod_mask mask = 0;
2558 int err = 0;
2559
2560 if (WARN_ON(addr >= end))
2561 return -EINVAL;
2562
2563 pgd = pgd_offset(mm, addr);
2564 do {
2565 next = pgd_addr_end(addr, end);
2566 if (!create && pgd_none_or_clear_bad(pgd))
2567 continue;
2568 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2569 if (err)
2570 break;
2571 } while (pgd++, addr = next, addr != end);
2572
2573 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2574 arch_sync_kernel_mappings(start, start + size);
2575
2576 return err;
2577 }
2578
2579 /*
2580 * Scan a region of virtual memory, filling in page tables as necessary
2581 * and calling a provided function on each leaf page table.
2582 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2583 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2584 unsigned long size, pte_fn_t fn, void *data)
2585 {
2586 return __apply_to_page_range(mm, addr, size, fn, data, true);
2587 }
2588 EXPORT_SYMBOL_GPL(apply_to_page_range);
2589
2590 /*
2591 * Scan a region of virtual memory, calling a provided function on
2592 * each leaf page table where it exists.
2593 *
2594 * Unlike apply_to_page_range, this does _not_ fill in page tables
2595 * where they are absent.
2596 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2597 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2598 unsigned long size, pte_fn_t fn, void *data)
2599 {
2600 return __apply_to_page_range(mm, addr, size, fn, data, false);
2601 }
2602 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2603
2604 /*
2605 * handle_pte_fault chooses page fault handler according to an entry which was
2606 * read non-atomically. Before making any commitment, on those architectures
2607 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2608 * parts, do_swap_page must check under lock before unmapping the pte and
2609 * proceeding (but do_wp_page is only called after already making such a check;
2610 * and do_anonymous_page can safely check later on).
2611 */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2612 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2613 pte_t *page_table, pte_t orig_pte)
2614 {
2615 int same = 1;
2616 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2617 if (sizeof(pte_t) > sizeof(unsigned long)) {
2618 spinlock_t *ptl = pte_lockptr(mm, pmd);
2619 spin_lock(ptl);
2620 same = pte_same(*page_table, orig_pte);
2621 spin_unlock(ptl);
2622 }
2623 #endif
2624 pte_unmap(page_table);
2625 return same;
2626 }
2627
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2628 static inline bool cow_user_page(struct page *dst, struct page *src,
2629 struct vm_fault *vmf)
2630 {
2631 bool ret;
2632 void *kaddr;
2633 void __user *uaddr;
2634 bool locked = false;
2635 struct vm_area_struct *vma = vmf->vma;
2636 struct mm_struct *mm = vma->vm_mm;
2637 unsigned long addr = vmf->address;
2638
2639 if (likely(src)) {
2640 copy_user_highpage(dst, src, addr, vma);
2641 return true;
2642 }
2643
2644 /*
2645 * If the source page was a PFN mapping, we don't have
2646 * a "struct page" for it. We do a best-effort copy by
2647 * just copying from the original user address. If that
2648 * fails, we just zero-fill it. Live with it.
2649 */
2650 kaddr = kmap_atomic(dst);
2651 uaddr = (void __user *)(addr & PAGE_MASK);
2652
2653 /*
2654 * On architectures with software "accessed" bits, we would
2655 * take a double page fault, so mark it accessed here.
2656 */
2657 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2658 pte_t entry;
2659
2660 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2661 locked = true;
2662 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2663 /*
2664 * Other thread has already handled the fault
2665 * and update local tlb only
2666 */
2667 update_mmu_tlb(vma, addr, vmf->pte);
2668 ret = false;
2669 goto pte_unlock;
2670 }
2671
2672 entry = pte_mkyoung(vmf->orig_pte);
2673 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2674 update_mmu_cache(vma, addr, vmf->pte);
2675 }
2676
2677 /*
2678 * This really shouldn't fail, because the page is there
2679 * in the page tables. But it might just be unreadable,
2680 * in which case we just give up and fill the result with
2681 * zeroes.
2682 */
2683 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2684 if (locked)
2685 goto warn;
2686
2687 /* Re-validate under PTL if the page is still mapped */
2688 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2689 locked = true;
2690 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2691 /* The PTE changed under us, update local tlb */
2692 update_mmu_tlb(vma, addr, vmf->pte);
2693 ret = false;
2694 goto pte_unlock;
2695 }
2696
2697 /*
2698 * The same page can be mapped back since last copy attempt.
2699 * Try to copy again under PTL.
2700 */
2701 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2702 /*
2703 * Give a warn in case there can be some obscure
2704 * use-case
2705 */
2706 warn:
2707 WARN_ON_ONCE(1);
2708 clear_page(kaddr);
2709 }
2710 }
2711
2712 ret = true;
2713
2714 pte_unlock:
2715 if (locked)
2716 pte_unmap_unlock(vmf->pte, vmf->ptl);
2717 kunmap_atomic(kaddr);
2718 flush_dcache_page(dst);
2719
2720 return ret;
2721 }
2722
__get_fault_gfp_mask(struct vm_area_struct * vma)2723 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2724 {
2725 struct file *vm_file = vma->vm_file;
2726
2727 if (vm_file)
2728 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2729
2730 /*
2731 * Special mappings (e.g. VDSO) do not have any file so fake
2732 * a default GFP_KERNEL for them.
2733 */
2734 return GFP_KERNEL;
2735 }
2736
2737 /*
2738 * Notify the address space that the page is about to become writable so that
2739 * it can prohibit this or wait for the page to get into an appropriate state.
2740 *
2741 * We do this without the lock held, so that it can sleep if it needs to.
2742 */
do_page_mkwrite(struct vm_fault * vmf)2743 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2744 {
2745 vm_fault_t ret;
2746 struct page *page = vmf->page;
2747 unsigned int old_flags = vmf->flags;
2748
2749 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2750
2751 if (vmf->vma->vm_file &&
2752 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2753 return VM_FAULT_SIGBUS;
2754
2755 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2756 /* Restore original flags so that caller is not surprised */
2757 vmf->flags = old_flags;
2758 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2759 return ret;
2760 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2761 lock_page(page);
2762 if (!page->mapping) {
2763 unlock_page(page);
2764 return 0; /* retry */
2765 }
2766 ret |= VM_FAULT_LOCKED;
2767 } else
2768 VM_BUG_ON_PAGE(!PageLocked(page), page);
2769 return ret;
2770 }
2771
2772 /*
2773 * Handle dirtying of a page in shared file mapping on a write fault.
2774 *
2775 * The function expects the page to be locked and unlocks it.
2776 */
fault_dirty_shared_page(struct vm_fault * vmf)2777 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2778 {
2779 struct vm_area_struct *vma = vmf->vma;
2780 struct address_space *mapping;
2781 struct page *page = vmf->page;
2782 bool dirtied;
2783 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2784
2785 dirtied = set_page_dirty(page);
2786 VM_BUG_ON_PAGE(PageAnon(page), page);
2787 /*
2788 * Take a local copy of the address_space - page.mapping may be zeroed
2789 * by truncate after unlock_page(). The address_space itself remains
2790 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2791 * release semantics to prevent the compiler from undoing this copying.
2792 */
2793 mapping = page_rmapping(page);
2794 unlock_page(page);
2795
2796 if (!page_mkwrite)
2797 file_update_time(vma->vm_file);
2798
2799 /*
2800 * Throttle page dirtying rate down to writeback speed.
2801 *
2802 * mapping may be NULL here because some device drivers do not
2803 * set page.mapping but still dirty their pages
2804 *
2805 * Drop the mmap_lock before waiting on IO, if we can. The file
2806 * is pinning the mapping, as per above.
2807 */
2808 if ((dirtied || page_mkwrite) && mapping) {
2809 struct file *fpin;
2810
2811 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2812 balance_dirty_pages_ratelimited(mapping);
2813 if (fpin) {
2814 fput(fpin);
2815 return VM_FAULT_RETRY;
2816 }
2817 }
2818
2819 return 0;
2820 }
2821
2822 /*
2823 * Handle write page faults for pages that can be reused in the current vma
2824 *
2825 * This can happen either due to the mapping being with the VM_SHARED flag,
2826 * or due to us being the last reference standing to the page. In either
2827 * case, all we need to do here is to mark the page as writable and update
2828 * any related book-keeping.
2829 */
wp_page_reuse(struct vm_fault * vmf)2830 static inline void wp_page_reuse(struct vm_fault *vmf)
2831 __releases(vmf->ptl)
2832 {
2833 struct vm_area_struct *vma = vmf->vma;
2834 struct page *page = vmf->page;
2835 pte_t entry;
2836 /*
2837 * Clear the pages cpupid information as the existing
2838 * information potentially belongs to a now completely
2839 * unrelated process.
2840 */
2841 if (page)
2842 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2843
2844 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2845 entry = pte_mkyoung(vmf->orig_pte);
2846 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2847 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2848 update_mmu_cache(vma, vmf->address, vmf->pte);
2849 pte_unmap_unlock(vmf->pte, vmf->ptl);
2850 count_vm_event(PGREUSE);
2851 }
2852
2853 /*
2854 * Handle the case of a page which we actually need to copy to a new page.
2855 *
2856 * Called with mmap_lock locked and the old page referenced, but
2857 * without the ptl held.
2858 *
2859 * High level logic flow:
2860 *
2861 * - Allocate a page, copy the content of the old page to the new one.
2862 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2863 * - Take the PTL. If the pte changed, bail out and release the allocated page
2864 * - If the pte is still the way we remember it, update the page table and all
2865 * relevant references. This includes dropping the reference the page-table
2866 * held to the old page, as well as updating the rmap.
2867 * - In any case, unlock the PTL and drop the reference we took to the old page.
2868 */
wp_page_copy(struct vm_fault * vmf)2869 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2870 {
2871 struct vm_area_struct *vma = vmf->vma;
2872 struct mm_struct *mm = vma->vm_mm;
2873 struct page *old_page = vmf->page;
2874 struct page *new_page = NULL;
2875 pte_t entry;
2876 int page_copied = 0;
2877 struct mmu_notifier_range range;
2878
2879 if (unlikely(anon_vma_prepare(vma)))
2880 goto oom;
2881
2882 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2883 new_page = alloc_zeroed_user_highpage_movable(vma,
2884 vmf->address);
2885 if (!new_page)
2886 goto oom;
2887 } else {
2888 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2889 vmf->address);
2890 if (!new_page)
2891 goto oom;
2892
2893 if (!cow_user_page(new_page, old_page, vmf)) {
2894 /*
2895 * COW failed, if the fault was solved by other,
2896 * it's fine. If not, userspace would re-fault on
2897 * the same address and we will handle the fault
2898 * from the second attempt.
2899 */
2900 put_page(new_page);
2901 if (old_page)
2902 put_page(old_page);
2903 return 0;
2904 }
2905 }
2906
2907 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2908 goto oom_free_new;
2909 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2910
2911 __SetPageUptodate(new_page);
2912
2913 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2914 vmf->address & PAGE_MASK,
2915 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2916 mmu_notifier_invalidate_range_start(&range);
2917
2918 /*
2919 * Re-check the pte - we dropped the lock
2920 */
2921 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2922 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2923 if (old_page) {
2924 if (!PageAnon(old_page)) {
2925 dec_mm_counter_fast(mm,
2926 mm_counter_file(old_page));
2927 inc_mm_counter_fast(mm, MM_ANONPAGES);
2928 }
2929 } else {
2930 inc_mm_counter_fast(mm, MM_ANONPAGES);
2931 }
2932 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2933 entry = mk_pte(new_page, vma->vm_page_prot);
2934 entry = pte_sw_mkyoung(entry);
2935 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2936 /*
2937 * Clear the pte entry and flush it first, before updating the
2938 * pte with the new entry. This will avoid a race condition
2939 * seen in the presence of one thread doing SMC and another
2940 * thread doing COW.
2941 */
2942 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2943 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2944 if (vma->vm_flags & VM_PURGEABLE) {
2945 pr_info("set wp new page %lx purgeable\n", page_to_pfn(new_page));
2946 SetPagePurgeable(new_page);
2947 uxpte_set_present(vma, vmf->address);
2948 }
2949 lru_cache_add_inactive_or_unevictable(new_page, vma);
2950 /*
2951 * We call the notify macro here because, when using secondary
2952 * mmu page tables (such as kvm shadow page tables), we want the
2953 * new page to be mapped directly into the secondary page table.
2954 */
2955 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2956 update_mmu_cache(vma, vmf->address, vmf->pte);
2957 xpm_integrity_update_hook(vma, vmf->flags, new_page);
2958 if (old_page) {
2959 /*
2960 * Only after switching the pte to the new page may
2961 * we remove the mapcount here. Otherwise another
2962 * process may come and find the rmap count decremented
2963 * before the pte is switched to the new page, and
2964 * "reuse" the old page writing into it while our pte
2965 * here still points into it and can be read by other
2966 * threads.
2967 *
2968 * The critical issue is to order this
2969 * page_remove_rmap with the ptp_clear_flush above.
2970 * Those stores are ordered by (if nothing else,)
2971 * the barrier present in the atomic_add_negative
2972 * in page_remove_rmap.
2973 *
2974 * Then the TLB flush in ptep_clear_flush ensures that
2975 * no process can access the old page before the
2976 * decremented mapcount is visible. And the old page
2977 * cannot be reused until after the decremented
2978 * mapcount is visible. So transitively, TLBs to
2979 * old page will be flushed before it can be reused.
2980 */
2981 page_remove_rmap(old_page, false);
2982 }
2983
2984 /* Free the old page.. */
2985 new_page = old_page;
2986 page_copied = 1;
2987 } else {
2988 update_mmu_tlb(vma, vmf->address, vmf->pte);
2989 }
2990
2991 if (new_page)
2992 put_page(new_page);
2993
2994 pte_unmap_unlock(vmf->pte, vmf->ptl);
2995 /*
2996 * No need to double call mmu_notifier->invalidate_range() callback as
2997 * the above ptep_clear_flush_notify() did already call it.
2998 */
2999 mmu_notifier_invalidate_range_only_end(&range);
3000 if (old_page) {
3001 /*
3002 * Don't let another task, with possibly unlocked vma,
3003 * keep the mlocked page.
3004 */
3005 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3006 lock_page(old_page); /* LRU manipulation */
3007 if (PageMlocked(old_page))
3008 munlock_vma_page(old_page);
3009 unlock_page(old_page);
3010 }
3011 put_page(old_page);
3012 }
3013 return page_copied ? VM_FAULT_WRITE : 0;
3014 oom_free_new:
3015 put_page(new_page);
3016 oom:
3017 if (old_page)
3018 put_page(old_page);
3019 return VM_FAULT_OOM;
3020 }
3021
3022 /**
3023 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3024 * writeable once the page is prepared
3025 *
3026 * @vmf: structure describing the fault
3027 *
3028 * This function handles all that is needed to finish a write page fault in a
3029 * shared mapping due to PTE being read-only once the mapped page is prepared.
3030 * It handles locking of PTE and modifying it.
3031 *
3032 * The function expects the page to be locked or other protection against
3033 * concurrent faults / writeback (such as DAX radix tree locks).
3034 *
3035 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3036 * we acquired PTE lock.
3037 */
finish_mkwrite_fault(struct vm_fault * vmf)3038 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3039 {
3040 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3041 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3042 &vmf->ptl);
3043 /*
3044 * We might have raced with another page fault while we released the
3045 * pte_offset_map_lock.
3046 */
3047 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3048 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3049 pte_unmap_unlock(vmf->pte, vmf->ptl);
3050 return VM_FAULT_NOPAGE;
3051 }
3052
3053 if (unlikely(xpm_integrity_validate_hook(vmf->vma, vmf->flags,
3054 vmf->address, vmf->page))) {
3055 pte_unmap_unlock(vmf->pte, vmf->ptl);
3056 return VM_FAULT_SIGSEGV;
3057 }
3058
3059 wp_page_reuse(vmf);
3060 return 0;
3061 }
3062
3063 /*
3064 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3065 * mapping
3066 */
wp_pfn_shared(struct vm_fault * vmf)3067 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3068 {
3069 struct vm_area_struct *vma = vmf->vma;
3070
3071 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3072 vm_fault_t ret;
3073
3074 pte_unmap_unlock(vmf->pte, vmf->ptl);
3075 vmf->flags |= FAULT_FLAG_MKWRITE;
3076 ret = vma->vm_ops->pfn_mkwrite(vmf);
3077 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3078 return ret;
3079 return finish_mkwrite_fault(vmf);
3080 }
3081 wp_page_reuse(vmf);
3082 return VM_FAULT_WRITE;
3083 }
3084
wp_page_shared(struct vm_fault * vmf)3085 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3086 __releases(vmf->ptl)
3087 {
3088 struct vm_area_struct *vma = vmf->vma;
3089 vm_fault_t ret = VM_FAULT_WRITE;
3090
3091 get_page(vmf->page);
3092
3093 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3094 vm_fault_t tmp;
3095
3096 pte_unmap_unlock(vmf->pte, vmf->ptl);
3097 tmp = do_page_mkwrite(vmf);
3098 if (unlikely(!tmp || (tmp &
3099 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3100 put_page(vmf->page);
3101 return tmp;
3102 }
3103 tmp = finish_mkwrite_fault(vmf);
3104 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3105 unlock_page(vmf->page);
3106 put_page(vmf->page);
3107 return tmp;
3108 }
3109 } else {
3110 if (unlikely(xpm_integrity_validate_hook(vmf->vma, vmf->flags, vmf->address,
3111 vmf->page))){
3112 pte_unmap_unlock(vmf->pte, vmf->ptl);
3113 put_page(vmf->page);
3114 return VM_FAULT_SIGSEGV;
3115 }
3116
3117 wp_page_reuse(vmf);
3118 lock_page(vmf->page);
3119 }
3120 ret |= fault_dirty_shared_page(vmf);
3121 put_page(vmf->page);
3122
3123 return ret;
3124 }
3125
3126 /*
3127 * This routine handles present pages, when users try to write
3128 * to a shared page. It is done by copying the page to a new address
3129 * and decrementing the shared-page counter for the old page.
3130 *
3131 * Note that this routine assumes that the protection checks have been
3132 * done by the caller (the low-level page fault routine in most cases).
3133 * Thus we can safely just mark it writable once we've done any necessary
3134 * COW.
3135 *
3136 * We also mark the page dirty at this point even though the page will
3137 * change only once the write actually happens. This avoids a few races,
3138 * and potentially makes it more efficient.
3139 *
3140 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3141 * but allow concurrent faults), with pte both mapped and locked.
3142 * We return with mmap_lock still held, but pte unmapped and unlocked.
3143 */
do_wp_page(struct vm_fault * vmf)3144 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3145 __releases(vmf->ptl)
3146 {
3147 struct vm_area_struct *vma = vmf->vma;
3148
3149 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3150 pte_unmap_unlock(vmf->pte, vmf->ptl);
3151 return handle_userfault(vmf, VM_UFFD_WP);
3152 }
3153
3154 /*
3155 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3156 * is flushed in this case before copying.
3157 */
3158 if (unlikely(userfaultfd_wp(vmf->vma) &&
3159 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3160 flush_tlb_page(vmf->vma, vmf->address);
3161
3162 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3163 if (!vmf->page) {
3164 /*
3165 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3166 * VM_PFNMAP VMA.
3167 *
3168 * We should not cow pages in a shared writeable mapping.
3169 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3170 */
3171 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3172 (VM_WRITE|VM_SHARED))
3173 return wp_pfn_shared(vmf);
3174
3175 pte_unmap_unlock(vmf->pte, vmf->ptl);
3176 return wp_page_copy(vmf);
3177 }
3178
3179 /*
3180 * Take out anonymous pages first, anonymous shared vmas are
3181 * not dirty accountable.
3182 */
3183 if (PageAnon(vmf->page)) {
3184 struct page *page = vmf->page;
3185
3186 /* PageKsm() doesn't necessarily raise the page refcount */
3187 if (PageKsm(page) || page_count(page) != 1)
3188 goto copy;
3189 if (!trylock_page(page))
3190 goto copy;
3191 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3192 unlock_page(page);
3193 goto copy;
3194 }
3195 /*
3196 * Ok, we've got the only map reference, and the only
3197 * page count reference, and the page is locked,
3198 * it's dark out, and we're wearing sunglasses. Hit it.
3199 */
3200 unlock_page(page);
3201
3202 if (unlikely(xpm_integrity_validate_hook(vmf->vma, vmf->flags, vmf->address,
3203 vmf->page))){
3204 pte_unmap_unlock(vmf->pte, vmf->ptl);
3205 return VM_FAULT_SIGSEGV;
3206 }
3207
3208 wp_page_reuse(vmf);
3209 return VM_FAULT_WRITE;
3210 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3211 (VM_WRITE|VM_SHARED))) {
3212 return wp_page_shared(vmf);
3213 }
3214 copy:
3215 /*
3216 * Ok, we need to copy. Oh, well..
3217 */
3218 get_page(vmf->page);
3219
3220 pte_unmap_unlock(vmf->pte, vmf->ptl);
3221 return wp_page_copy(vmf);
3222 }
3223
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3224 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3225 unsigned long start_addr, unsigned long end_addr,
3226 struct zap_details *details)
3227 {
3228 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3229 }
3230
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3231 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3232 struct zap_details *details)
3233 {
3234 struct vm_area_struct *vma;
3235 pgoff_t vba, vea, zba, zea;
3236
3237 vma_interval_tree_foreach(vma, root,
3238 details->first_index, details->last_index) {
3239
3240 vba = vma->vm_pgoff;
3241 vea = vba + vma_pages(vma) - 1;
3242 zba = details->first_index;
3243 if (zba < vba)
3244 zba = vba;
3245 zea = details->last_index;
3246 if (zea > vea)
3247 zea = vea;
3248
3249 unmap_mapping_range_vma(vma,
3250 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3251 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3252 details);
3253 }
3254 }
3255
3256 /**
3257 * unmap_mapping_page() - Unmap single page from processes.
3258 * @page: The locked page to be unmapped.
3259 *
3260 * Unmap this page from any userspace process which still has it mmaped.
3261 * Typically, for efficiency, the range of nearby pages has already been
3262 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3263 * truncation or invalidation holds the lock on a page, it may find that
3264 * the page has been remapped again: and then uses unmap_mapping_page()
3265 * to unmap it finally.
3266 */
unmap_mapping_page(struct page * page)3267 void unmap_mapping_page(struct page *page)
3268 {
3269 struct address_space *mapping = page->mapping;
3270 struct zap_details details = { };
3271
3272 VM_BUG_ON(!PageLocked(page));
3273 VM_BUG_ON(PageTail(page));
3274
3275 details.check_mapping = mapping;
3276 details.first_index = page->index;
3277 details.last_index = page->index + thp_nr_pages(page) - 1;
3278 details.single_page = page;
3279
3280 i_mmap_lock_write(mapping);
3281 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3282 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3283 i_mmap_unlock_write(mapping);
3284 }
3285
3286 /**
3287 * unmap_mapping_pages() - Unmap pages from processes.
3288 * @mapping: The address space containing pages to be unmapped.
3289 * @start: Index of first page to be unmapped.
3290 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3291 * @even_cows: Whether to unmap even private COWed pages.
3292 *
3293 * Unmap the pages in this address space from any userspace process which
3294 * has them mmaped. Generally, you want to remove COWed pages as well when
3295 * a file is being truncated, but not when invalidating pages from the page
3296 * cache.
3297 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3298 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3299 pgoff_t nr, bool even_cows)
3300 {
3301 struct zap_details details = { };
3302
3303 details.check_mapping = even_cows ? NULL : mapping;
3304 details.first_index = start;
3305 details.last_index = start + nr - 1;
3306 if (details.last_index < details.first_index)
3307 details.last_index = ULONG_MAX;
3308
3309 i_mmap_lock_write(mapping);
3310 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3311 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3312 i_mmap_unlock_write(mapping);
3313 }
3314
3315 /**
3316 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3317 * address_space corresponding to the specified byte range in the underlying
3318 * file.
3319 *
3320 * @mapping: the address space containing mmaps to be unmapped.
3321 * @holebegin: byte in first page to unmap, relative to the start of
3322 * the underlying file. This will be rounded down to a PAGE_SIZE
3323 * boundary. Note that this is different from truncate_pagecache(), which
3324 * must keep the partial page. In contrast, we must get rid of
3325 * partial pages.
3326 * @holelen: size of prospective hole in bytes. This will be rounded
3327 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3328 * end of the file.
3329 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3330 * but 0 when invalidating pagecache, don't throw away private data.
3331 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3332 void unmap_mapping_range(struct address_space *mapping,
3333 loff_t const holebegin, loff_t const holelen, int even_cows)
3334 {
3335 pgoff_t hba = holebegin >> PAGE_SHIFT;
3336 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3337
3338 /* Check for overflow. */
3339 if (sizeof(holelen) > sizeof(hlen)) {
3340 long long holeend =
3341 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3342 if (holeend & ~(long long)ULONG_MAX)
3343 hlen = ULONG_MAX - hba + 1;
3344 }
3345
3346 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3347 }
3348 EXPORT_SYMBOL(unmap_mapping_range);
3349
3350 /*
3351 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3352 * but allow concurrent faults), and pte mapped but not yet locked.
3353 * We return with pte unmapped and unlocked.
3354 *
3355 * We return with the mmap_lock locked or unlocked in the same cases
3356 * as does filemap_fault().
3357 */
do_swap_page(struct vm_fault * vmf)3358 vm_fault_t do_swap_page(struct vm_fault *vmf)
3359 {
3360 struct vm_area_struct *vma = vmf->vma;
3361 struct page *page = NULL, *swapcache;
3362 swp_entry_t entry;
3363 pte_t pte;
3364 int locked;
3365 int exclusive = 0;
3366 vm_fault_t ret = 0;
3367 void *shadow = NULL;
3368
3369 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3370 goto out;
3371
3372 entry = pte_to_swp_entry(vmf->orig_pte);
3373 if (unlikely(non_swap_entry(entry))) {
3374 if (is_migration_entry(entry)) {
3375 migration_entry_wait(vma->vm_mm, vmf->pmd,
3376 vmf->address);
3377 } else if (is_device_private_entry(entry)) {
3378 vmf->page = device_private_entry_to_page(entry);
3379 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3380 vmf->address, &vmf->ptl);
3381 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3382 spin_unlock(vmf->ptl);
3383 goto out;
3384 }
3385
3386 /*
3387 * Get a page reference while we know the page can't be
3388 * freed.
3389 */
3390 get_page(vmf->page);
3391 pte_unmap_unlock(vmf->pte, vmf->ptl);
3392 vmf->page->pgmap->ops->migrate_to_ram(vmf);
3393 put_page(vmf->page);
3394 } else if (is_hwpoison_entry(entry)) {
3395 ret = VM_FAULT_HWPOISON;
3396 } else {
3397 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3398 ret = VM_FAULT_SIGBUS;
3399 }
3400 goto out;
3401 }
3402
3403
3404 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3405 page = lookup_swap_cache(entry, vma, vmf->address);
3406 swapcache = page;
3407
3408 if (!page) {
3409 struct swap_info_struct *si = swp_swap_info(entry);
3410
3411 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3412 __swap_count(entry) == 1) {
3413 /* skip swapcache */
3414 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3415 vmf->address);
3416 if (page) {
3417 int err;
3418
3419 __SetPageLocked(page);
3420 __SetPageSwapBacked(page);
3421 set_page_private(page, entry.val);
3422
3423 /* Tell memcg to use swap ownership records */
3424 SetPageSwapCache(page);
3425 err = mem_cgroup_charge(page, vma->vm_mm,
3426 GFP_KERNEL);
3427 ClearPageSwapCache(page);
3428 if (err) {
3429 ret = VM_FAULT_OOM;
3430 goto out_page;
3431 }
3432
3433 shadow = get_shadow_from_swap_cache(entry);
3434 if (shadow)
3435 workingset_refault(page, shadow);
3436
3437 lru_cache_add(page);
3438 swap_readpage(page, true);
3439 }
3440 } else {
3441 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3442 vmf);
3443 swapcache = page;
3444 }
3445
3446 if (!page) {
3447 /*
3448 * Back out if somebody else faulted in this pte
3449 * while we released the pte lock.
3450 */
3451 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3452 vmf->address, &vmf->ptl);
3453 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3454 ret = VM_FAULT_OOM;
3455 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3456 goto unlock;
3457 }
3458
3459 /* Had to read the page from swap area: Major fault */
3460 ret = VM_FAULT_MAJOR;
3461 count_vm_event(PGMAJFAULT);
3462 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3463 } else if (PageHWPoison(page)) {
3464 /*
3465 * hwpoisoned dirty swapcache pages are kept for killing
3466 * owner processes (which may be unknown at hwpoison time)
3467 */
3468 ret = VM_FAULT_HWPOISON;
3469 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3470 goto out_release;
3471 }
3472
3473 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3474
3475 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3476 if (!locked) {
3477 ret |= VM_FAULT_RETRY;
3478 goto out_release;
3479 }
3480
3481 /*
3482 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3483 * release the swapcache from under us. The page pin, and pte_same
3484 * test below, are not enough to exclude that. Even if it is still
3485 * swapcache, we need to check that the page's swap has not changed.
3486 */
3487 if (unlikely((!PageSwapCache(page) ||
3488 page_private(page) != entry.val)) && swapcache)
3489 goto out_page;
3490
3491 page = ksm_might_need_to_copy(page, vma, vmf->address);
3492 if (unlikely(!page)) {
3493 ret = VM_FAULT_OOM;
3494 page = swapcache;
3495 goto out_page;
3496 }
3497
3498 cgroup_throttle_swaprate(page, GFP_KERNEL);
3499
3500 /*
3501 * Back out if somebody else already faulted in this pte.
3502 */
3503 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3504 &vmf->ptl);
3505 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3506 goto out_nomap;
3507
3508 if (unlikely(!PageUptodate(page))) {
3509 ret = VM_FAULT_SIGBUS;
3510 goto out_nomap;
3511 }
3512
3513 /*
3514 * The page isn't present yet, go ahead with the fault.
3515 *
3516 * Be careful about the sequence of operations here.
3517 * To get its accounting right, reuse_swap_page() must be called
3518 * while the page is counted on swap but not yet in mapcount i.e.
3519 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3520 * must be called after the swap_free(), or it will never succeed.
3521 */
3522 if (unlikely(xpm_integrity_validate_hook(vmf->vma, vmf->flags,
3523 vmf->address, page))){
3524 ret = VM_FAULT_SIGSEGV;
3525 goto out_nomap;
3526 }
3527
3528 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3529 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3530 pte = mk_pte(page, vma->vm_page_prot);
3531 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3532 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3533 vmf->flags &= ~FAULT_FLAG_WRITE;
3534 ret |= VM_FAULT_WRITE;
3535 exclusive = RMAP_EXCLUSIVE;
3536 }
3537 flush_icache_page(vma, page);
3538 if (pte_swp_soft_dirty(vmf->orig_pte))
3539 pte = pte_mksoft_dirty(pte);
3540 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3541 pte = pte_mkuffd_wp(pte);
3542 pte = pte_wrprotect(pte);
3543 }
3544 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3545 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3546 vmf->orig_pte = pte;
3547
3548 /* ksm created a completely new copy */
3549 if (unlikely(page != swapcache && swapcache)) {
3550 page_add_new_anon_rmap(page, vma, vmf->address, false);
3551 lru_cache_add_inactive_or_unevictable(page, vma);
3552 } else {
3553 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3554 }
3555
3556 swap_free(entry);
3557 if (mem_cgroup_swap_full(page) ||
3558 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3559 try_to_free_swap(page);
3560 unlock_page(page);
3561 if (page != swapcache && swapcache) {
3562 /*
3563 * Hold the lock to avoid the swap entry to be reused
3564 * until we take the PT lock for the pte_same() check
3565 * (to avoid false positives from pte_same). For
3566 * further safety release the lock after the swap_free
3567 * so that the swap count won't change under a
3568 * parallel locked swapcache.
3569 */
3570 unlock_page(swapcache);
3571 put_page(swapcache);
3572 }
3573
3574 if (vmf->flags & FAULT_FLAG_WRITE) {
3575 ret |= do_wp_page(vmf);
3576 if (ret & VM_FAULT_ERROR)
3577 ret &= VM_FAULT_ERROR;
3578 goto out;
3579 }
3580
3581 /* No need to invalidate - it was non-present before */
3582 update_mmu_cache(vma, vmf->address, vmf->pte);
3583 unlock:
3584 pte_unmap_unlock(vmf->pte, vmf->ptl);
3585 out:
3586 return ret;
3587 out_nomap:
3588 pte_unmap_unlock(vmf->pte, vmf->ptl);
3589 out_page:
3590 unlock_page(page);
3591 out_release:
3592 put_page(page);
3593 if (page != swapcache && swapcache) {
3594 unlock_page(swapcache);
3595 put_page(swapcache);
3596 }
3597 return ret;
3598 }
3599
3600 /*
3601 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3602 * but allow concurrent faults), and pte mapped but not yet locked.
3603 * We return with mmap_lock still held, but pte unmapped and unlocked.
3604 */
do_anonymous_page(struct vm_fault * vmf)3605 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3606 {
3607 struct vm_area_struct *vma = vmf->vma;
3608 struct page *page;
3609 vm_fault_t ret = 0;
3610 pte_t entry;
3611
3612 /* File mapping without ->vm_ops ? */
3613 if (vma->vm_flags & VM_SHARED)
3614 return VM_FAULT_SIGBUS;
3615
3616 /*
3617 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3618 * pte_offset_map() on pmds where a huge pmd might be created
3619 * from a different thread.
3620 *
3621 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3622 * parallel threads are excluded by other means.
3623 *
3624 * Here we only have mmap_read_lock(mm).
3625 */
3626 if (pte_alloc(vma->vm_mm, vmf->pmd))
3627 return VM_FAULT_OOM;
3628
3629 /* See the comment in pte_alloc_one_map() */
3630 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3631 return 0;
3632
3633 /* use extra page table for userexpte */
3634 if (vma->vm_flags & VM_USEREXPTE) {
3635 if (do_uxpte_page_fault(vmf, &entry))
3636 goto oom;
3637
3638 if(xpm_integrity_check_hook(vma, vmf->flags, vmf->address,
3639 pte_page(entry)))
3640 return VM_FAULT_SIGSEGV;
3641 else
3642 goto got_page;
3643 }
3644
3645 /* Use the zero-page for reads */
3646 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3647 !mm_forbids_zeropage(vma->vm_mm)) {
3648 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3649 vma->vm_page_prot));
3650 got_page:
3651 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3652 vmf->address, &vmf->ptl);
3653 if (!pte_none(*vmf->pte)) {
3654 update_mmu_tlb(vma, vmf->address, vmf->pte);
3655 goto unlock;
3656 }
3657 ret = check_stable_address_space(vma->vm_mm);
3658 if (ret)
3659 goto unlock;
3660 /* Deliver the page fault to userland, check inside PT lock */
3661 if (userfaultfd_missing(vma)) {
3662 pte_unmap_unlock(vmf->pte, vmf->ptl);
3663 return handle_userfault(vmf, VM_UFFD_MISSING);
3664 }
3665 goto setpte;
3666 }
3667
3668 /* Allocate our own private page. */
3669 if (unlikely(anon_vma_prepare(vma)))
3670 goto oom;
3671 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3672 if (!page)
3673 goto oom;
3674
3675 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3676 goto oom_free_page;
3677 cgroup_throttle_swaprate(page, GFP_KERNEL);
3678
3679 /*
3680 * The memory barrier inside __SetPageUptodate makes sure that
3681 * preceding stores to the page contents become visible before
3682 * the set_pte_at() write.
3683 */
3684 __SetPageUptodate(page);
3685
3686 entry = mk_pte(page, vma->vm_page_prot);
3687 entry = pte_sw_mkyoung(entry);
3688 if (vma->vm_flags & VM_WRITE)
3689 entry = pte_mkwrite(pte_mkdirty(entry));
3690
3691 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3692 &vmf->ptl);
3693 if (!pte_none(*vmf->pte)) {
3694 update_mmu_cache(vma, vmf->address, vmf->pte);
3695 goto release;
3696 }
3697
3698 ret = check_stable_address_space(vma->vm_mm);
3699 if (ret)
3700 goto release;
3701
3702 /* Deliver the page fault to userland, check inside PT lock */
3703 if (userfaultfd_missing(vma)) {
3704 pte_unmap_unlock(vmf->pte, vmf->ptl);
3705 put_page(page);
3706 return handle_userfault(vmf, VM_UFFD_MISSING);
3707 }
3708
3709 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3710 page_add_new_anon_rmap(page, vma, vmf->address, false);
3711 if (vma->vm_flags & VM_PURGEABLE)
3712 SetPagePurgeable(page);
3713
3714 lru_cache_add_inactive_or_unevictable(page, vma);
3715 setpte:
3716 if (vma->vm_flags & VM_PURGEABLE)
3717 uxpte_set_present(vma, vmf->address);
3718
3719 if(!pte_special(entry)){
3720 xpm_integrity_update_hook(vma, vmf->flags, page);
3721 }
3722
3723 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3724
3725 /* No need to invalidate - it was non-present before */
3726 update_mmu_cache(vma, vmf->address, vmf->pte);
3727 unlock:
3728 pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 return ret;
3730 release:
3731 put_page(page);
3732 goto unlock;
3733 oom_free_page:
3734 put_page(page);
3735 oom:
3736 return VM_FAULT_OOM;
3737 }
3738
3739 /*
3740 * The mmap_lock must have been held on entry, and may have been
3741 * released depending on flags and vma->vm_ops->fault() return value.
3742 * See filemap_fault() and __lock_page_retry().
3743 */
__do_fault(struct vm_fault * vmf)3744 static vm_fault_t __do_fault(struct vm_fault *vmf)
3745 {
3746 struct vm_area_struct *vma = vmf->vma;
3747 vm_fault_t ret;
3748
3749 /*
3750 * Preallocate pte before we take page_lock because this might lead to
3751 * deadlocks for memcg reclaim which waits for pages under writeback:
3752 * lock_page(A)
3753 * SetPageWriteback(A)
3754 * unlock_page(A)
3755 * lock_page(B)
3756 * lock_page(B)
3757 * pte_alloc_one
3758 * shrink_page_list
3759 * wait_on_page_writeback(A)
3760 * SetPageWriteback(B)
3761 * unlock_page(B)
3762 * # flush A, B to clear the writeback
3763 */
3764 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3765 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3766 if (!vmf->prealloc_pte)
3767 return VM_FAULT_OOM;
3768 smp_wmb(); /* See comment in __pte_alloc() */
3769 }
3770
3771 ret = vma->vm_ops->fault(vmf);
3772 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3773 VM_FAULT_DONE_COW)))
3774 return ret;
3775
3776 if (unlikely(PageHWPoison(vmf->page))) {
3777 struct page *page = vmf->page;
3778 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3779 if (ret & VM_FAULT_LOCKED) {
3780 if (page_mapped(page))
3781 unmap_mapping_pages(page_mapping(page),
3782 page->index, 1, false);
3783 /* Retry if a clean page was removed from the cache. */
3784 if (invalidate_inode_page(page))
3785 poisonret = VM_FAULT_NOPAGE;
3786 unlock_page(page);
3787 }
3788 put_page(page);
3789 vmf->page = NULL;
3790 return poisonret;
3791 }
3792
3793 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3794 lock_page(vmf->page);
3795 else
3796 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3797
3798 return ret;
3799 }
3800
3801 /*
3802 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3803 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3804 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3805 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3806 */
pmd_devmap_trans_unstable(pmd_t * pmd)3807 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3808 {
3809 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3810 }
3811
pte_alloc_one_map(struct vm_fault * vmf)3812 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3813 {
3814 struct vm_area_struct *vma = vmf->vma;
3815
3816 if (!pmd_none(*vmf->pmd))
3817 goto map_pte;
3818 if (vmf->prealloc_pte) {
3819 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3820 if (unlikely(!pmd_none(*vmf->pmd))) {
3821 spin_unlock(vmf->ptl);
3822 goto map_pte;
3823 }
3824
3825 mm_inc_nr_ptes(vma->vm_mm);
3826 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3827 spin_unlock(vmf->ptl);
3828 vmf->prealloc_pte = NULL;
3829 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3830 return VM_FAULT_OOM;
3831 }
3832 map_pte:
3833 /*
3834 * If a huge pmd materialized under us just retry later. Use
3835 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3836 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3837 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3838 * running immediately after a huge pmd fault in a different thread of
3839 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3840 * All we have to ensure is that it is a regular pmd that we can walk
3841 * with pte_offset_map() and we can do that through an atomic read in
3842 * C, which is what pmd_trans_unstable() provides.
3843 */
3844 if (pmd_devmap_trans_unstable(vmf->pmd))
3845 return VM_FAULT_NOPAGE;
3846
3847 /*
3848 * At this point we know that our vmf->pmd points to a page of ptes
3849 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3850 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3851 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3852 * be valid and we will re-check to make sure the vmf->pte isn't
3853 * pte_none() under vmf->ptl protection when we return to
3854 * alloc_set_pte().
3855 */
3856 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3857 &vmf->ptl);
3858 return 0;
3859 }
3860
3861 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)3862 static void deposit_prealloc_pte(struct vm_fault *vmf)
3863 {
3864 struct vm_area_struct *vma = vmf->vma;
3865
3866 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3867 /*
3868 * We are going to consume the prealloc table,
3869 * count that as nr_ptes.
3870 */
3871 mm_inc_nr_ptes(vma->vm_mm);
3872 vmf->prealloc_pte = NULL;
3873 }
3874
do_set_pmd(struct vm_fault * vmf,struct page * page)3875 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3876 {
3877 struct vm_area_struct *vma = vmf->vma;
3878 bool write = vmf->flags & FAULT_FLAG_WRITE;
3879 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3880 pmd_t entry;
3881 int i;
3882 vm_fault_t ret = VM_FAULT_FALLBACK;
3883
3884 if (!transhuge_vma_suitable(vma, haddr))
3885 return ret;
3886
3887 page = compound_head(page);
3888 if (compound_order(page) != HPAGE_PMD_ORDER)
3889 return ret;
3890
3891 /*
3892 * Archs like ppc64 need additonal space to store information
3893 * related to pte entry. Use the preallocated table for that.
3894 */
3895 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3896 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3897 if (!vmf->prealloc_pte)
3898 return VM_FAULT_OOM;
3899 smp_wmb(); /* See comment in __pte_alloc() */
3900 }
3901
3902 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3903 if (unlikely(!pmd_none(*vmf->pmd)))
3904 goto out;
3905
3906 for (i = 0; i < HPAGE_PMD_NR; i++)
3907 flush_icache_page(vma, page + i);
3908
3909 entry = mk_huge_pmd(page, vma->vm_page_prot);
3910 if (write)
3911 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3912
3913 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3914 page_add_file_rmap(page, true);
3915 /*
3916 * deposit and withdraw with pmd lock held
3917 */
3918 if (arch_needs_pgtable_deposit())
3919 deposit_prealloc_pte(vmf);
3920
3921 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3922
3923 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3924
3925 /* fault is handled */
3926 ret = 0;
3927 count_vm_event(THP_FILE_MAPPED);
3928 out:
3929 spin_unlock(vmf->ptl);
3930 return ret;
3931 }
3932 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3933 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3934 {
3935 BUILD_BUG();
3936 return 0;
3937 }
3938 #endif
3939
3940 /**
3941 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3942 * mapping. If needed, the function allocates page table or use pre-allocated.
3943 *
3944 * @vmf: fault environment
3945 * @page: page to map
3946 *
3947 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3948 * return.
3949 *
3950 * Target users are page handler itself and implementations of
3951 * vm_ops->map_pages.
3952 *
3953 * Return: %0 on success, %VM_FAULT_ code in case of error.
3954 */
alloc_set_pte(struct vm_fault * vmf,struct page * page)3955 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3956 {
3957 struct vm_area_struct *vma = vmf->vma;
3958 bool write = vmf->flags & FAULT_FLAG_WRITE;
3959 pte_t entry;
3960 vm_fault_t ret;
3961
3962 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3963 ret = do_set_pmd(vmf, page);
3964 if (ret != VM_FAULT_FALLBACK)
3965 return ret;
3966 }
3967
3968 if (!vmf->pte) {
3969 ret = pte_alloc_one_map(vmf);
3970 if (ret)
3971 return ret;
3972 }
3973
3974 /* Re-check under ptl */
3975 if (unlikely(!pte_none(*vmf->pte))) {
3976 update_mmu_tlb(vma, vmf->address, vmf->pte);
3977 return VM_FAULT_NOPAGE;
3978 }
3979
3980 /* check the confliction of xpm integrity flags*/
3981 if (unlikely(xpm_integrity_validate_hook(vmf->vma, vmf->flags,
3982 vmf->address, page)))
3983 return VM_FAULT_SIGSEGV;
3984
3985 flush_icache_page(vma, page);
3986 entry = mk_pte(page, vma->vm_page_prot);
3987 entry = pte_sw_mkyoung(entry);
3988 if (write)
3989 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3990 /* copy-on-write page */
3991 if (write && !(vma->vm_flags & VM_SHARED)) {
3992 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3993 page_add_new_anon_rmap(page, vma, vmf->address, false);
3994 lru_cache_add_inactive_or_unevictable(page, vma);
3995 } else {
3996 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3997 page_add_file_rmap(page, false);
3998 }
3999 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4000
4001 /* no need to invalidate: a not-present page won't be cached */
4002 update_mmu_cache(vma, vmf->address, vmf->pte);
4003
4004 return 0;
4005 }
4006
4007
4008 /**
4009 * finish_fault - finish page fault once we have prepared the page to fault
4010 *
4011 * @vmf: structure describing the fault
4012 *
4013 * This function handles all that is needed to finish a page fault once the
4014 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4015 * given page, adds reverse page mapping, handles memcg charges and LRU
4016 * addition.
4017 *
4018 * The function expects the page to be locked and on success it consumes a
4019 * reference of a page being mapped (for the PTE which maps it).
4020 *
4021 * Return: %0 on success, %VM_FAULT_ code in case of error.
4022 */
finish_fault(struct vm_fault * vmf)4023 vm_fault_t finish_fault(struct vm_fault *vmf)
4024 {
4025 struct page *page;
4026 vm_fault_t ret = 0;
4027
4028 /* Did we COW the page? */
4029 if ((vmf->flags & FAULT_FLAG_WRITE) &&
4030 !(vmf->vma->vm_flags & VM_SHARED))
4031 page = vmf->cow_page;
4032 else
4033 page = vmf->page;
4034
4035 /*
4036 * check even for read faults because we might have lost our CoWed
4037 * page
4038 */
4039 if (!(vmf->vma->vm_flags & VM_SHARED))
4040 ret = check_stable_address_space(vmf->vma->vm_mm);
4041 if (!ret)
4042 ret = alloc_set_pte(vmf, page);
4043 if (vmf->pte)
4044 pte_unmap_unlock(vmf->pte, vmf->ptl);
4045 return ret;
4046 }
4047
4048 static unsigned long fault_around_bytes __read_mostly =
4049 rounddown_pow_of_two(65536);
4050
4051 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4052 static int fault_around_bytes_get(void *data, u64 *val)
4053 {
4054 *val = fault_around_bytes;
4055 return 0;
4056 }
4057
4058 /*
4059 * fault_around_bytes must be rounded down to the nearest page order as it's
4060 * what do_fault_around() expects to see.
4061 */
fault_around_bytes_set(void * data,u64 val)4062 static int fault_around_bytes_set(void *data, u64 val)
4063 {
4064 if (val / PAGE_SIZE > PTRS_PER_PTE)
4065 return -EINVAL;
4066 if (val > PAGE_SIZE)
4067 fault_around_bytes = rounddown_pow_of_two(val);
4068 else
4069 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4070 return 0;
4071 }
4072 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4073 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4074
fault_around_debugfs(void)4075 static int __init fault_around_debugfs(void)
4076 {
4077 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4078 &fault_around_bytes_fops);
4079 return 0;
4080 }
4081 late_initcall(fault_around_debugfs);
4082 #endif
4083
4084 /*
4085 * do_fault_around() tries to map few pages around the fault address. The hope
4086 * is that the pages will be needed soon and this will lower the number of
4087 * faults to handle.
4088 *
4089 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4090 * not ready to be mapped: not up-to-date, locked, etc.
4091 *
4092 * This function is called with the page table lock taken. In the split ptlock
4093 * case the page table lock only protects only those entries which belong to
4094 * the page table corresponding to the fault address.
4095 *
4096 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4097 * only once.
4098 *
4099 * fault_around_bytes defines how many bytes we'll try to map.
4100 * do_fault_around() expects it to be set to a power of two less than or equal
4101 * to PTRS_PER_PTE.
4102 *
4103 * The virtual address of the area that we map is naturally aligned to
4104 * fault_around_bytes rounded down to the machine page size
4105 * (and therefore to page order). This way it's easier to guarantee
4106 * that we don't cross page table boundaries.
4107 */
do_fault_around(struct vm_fault * vmf)4108 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4109 {
4110 unsigned long address = vmf->address, nr_pages, mask;
4111 pgoff_t start_pgoff = vmf->pgoff;
4112 pgoff_t end_pgoff;
4113 int off;
4114 vm_fault_t ret = 0;
4115
4116 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4117 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4118
4119 vmf->address = max(address & mask, vmf->vma->vm_start);
4120 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4121 start_pgoff -= off;
4122
4123 /*
4124 * end_pgoff is either the end of the page table, the end of
4125 * the vma or nr_pages from start_pgoff, depending what is nearest.
4126 */
4127 end_pgoff = start_pgoff -
4128 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4129 PTRS_PER_PTE - 1;
4130 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4131 start_pgoff + nr_pages - 1);
4132
4133 if (pmd_none(*vmf->pmd)) {
4134 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4135 if (!vmf->prealloc_pte)
4136 goto out;
4137 smp_wmb(); /* See comment in __pte_alloc() */
4138 }
4139
4140 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4141
4142 /* Huge page is mapped? Page fault is solved */
4143 if (pmd_trans_huge(*vmf->pmd)) {
4144 ret = VM_FAULT_NOPAGE;
4145 goto out;
4146 }
4147
4148 /* ->map_pages() haven't done anything useful. Cold page cache? */
4149 if (!vmf->pte)
4150 goto out;
4151
4152 /* check if the page fault is solved */
4153 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4154 if (!pte_none(*vmf->pte))
4155 ret = VM_FAULT_NOPAGE;
4156 pte_unmap_unlock(vmf->pte, vmf->ptl);
4157 out:
4158 vmf->address = address;
4159 vmf->pte = NULL;
4160 return ret;
4161 }
4162
do_read_fault(struct vm_fault * vmf)4163 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4164 {
4165 struct vm_area_struct *vma = vmf->vma;
4166 vm_fault_t ret = 0;
4167
4168 /*
4169 * Let's call ->map_pages() first and use ->fault() as fallback
4170 * if page by the offset is not ready to be mapped (cold cache or
4171 * something).
4172 */
4173 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4174 ret = do_fault_around(vmf);
4175 if (ret)
4176 return ret;
4177 }
4178
4179 ret = __do_fault(vmf);
4180 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4181 return ret;
4182
4183 ret |= finish_fault(vmf);
4184 unlock_page(vmf->page);
4185 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4186 put_page(vmf->page);
4187 return ret;
4188 }
4189
do_cow_fault(struct vm_fault * vmf)4190 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4191 {
4192 struct vm_area_struct *vma = vmf->vma;
4193 vm_fault_t ret;
4194
4195 if (unlikely(anon_vma_prepare(vma)))
4196 return VM_FAULT_OOM;
4197
4198 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4199 if (!vmf->cow_page)
4200 return VM_FAULT_OOM;
4201
4202 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4203 put_page(vmf->cow_page);
4204 return VM_FAULT_OOM;
4205 }
4206 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4207
4208 ret = __do_fault(vmf);
4209 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4210 goto uncharge_out;
4211 if (ret & VM_FAULT_DONE_COW)
4212 return ret;
4213
4214 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4215 __SetPageUptodate(vmf->cow_page);
4216
4217 ret |= finish_fault(vmf);
4218 unlock_page(vmf->page);
4219 put_page(vmf->page);
4220 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4221 goto uncharge_out;
4222 return ret;
4223 uncharge_out:
4224 put_page(vmf->cow_page);
4225 return ret;
4226 }
4227
do_shared_fault(struct vm_fault * vmf)4228 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4229 {
4230 struct vm_area_struct *vma = vmf->vma;
4231 vm_fault_t ret, tmp;
4232
4233 ret = __do_fault(vmf);
4234 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4235 return ret;
4236
4237 /*
4238 * Check if the backing address space wants to know that the page is
4239 * about to become writable
4240 */
4241 if (vma->vm_ops->page_mkwrite) {
4242 unlock_page(vmf->page);
4243 tmp = do_page_mkwrite(vmf);
4244 if (unlikely(!tmp ||
4245 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4246 put_page(vmf->page);
4247 return tmp;
4248 }
4249 }
4250
4251 ret |= finish_fault(vmf);
4252 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4253 VM_FAULT_RETRY))) {
4254 unlock_page(vmf->page);
4255 put_page(vmf->page);
4256 return ret;
4257 }
4258
4259 ret |= fault_dirty_shared_page(vmf);
4260 return ret;
4261 }
4262
4263 /*
4264 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4265 * but allow concurrent faults).
4266 * The mmap_lock may have been released depending on flags and our
4267 * return value. See filemap_fault() and __lock_page_or_retry().
4268 * If mmap_lock is released, vma may become invalid (for example
4269 * by other thread calling munmap()).
4270 */
do_fault(struct vm_fault * vmf)4271 static vm_fault_t do_fault(struct vm_fault *vmf)
4272 {
4273 struct vm_area_struct *vma = vmf->vma;
4274 struct mm_struct *vm_mm = vma->vm_mm;
4275 vm_fault_t ret;
4276
4277 /*
4278 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4279 */
4280 if (!vma->vm_ops->fault) {
4281 /*
4282 * If we find a migration pmd entry or a none pmd entry, which
4283 * should never happen, return SIGBUS
4284 */
4285 if (unlikely(!pmd_present(*vmf->pmd)))
4286 ret = VM_FAULT_SIGBUS;
4287 else {
4288 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4289 vmf->pmd,
4290 vmf->address,
4291 &vmf->ptl);
4292 /*
4293 * Make sure this is not a temporary clearing of pte
4294 * by holding ptl and checking again. A R/M/W update
4295 * of pte involves: take ptl, clearing the pte so that
4296 * we don't have concurrent modification by hardware
4297 * followed by an update.
4298 */
4299 if (unlikely(pte_none(*vmf->pte)))
4300 ret = VM_FAULT_SIGBUS;
4301 else
4302 ret = VM_FAULT_NOPAGE;
4303
4304 pte_unmap_unlock(vmf->pte, vmf->ptl);
4305 }
4306 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4307 ret = do_read_fault(vmf);
4308 else if (!(vma->vm_flags & VM_SHARED))
4309 ret = do_cow_fault(vmf);
4310 else
4311 ret = do_shared_fault(vmf);
4312
4313 /* preallocated pagetable is unused: free it */
4314 if (vmf->prealloc_pte) {
4315 pte_free(vm_mm, vmf->prealloc_pte);
4316 vmf->prealloc_pte = NULL;
4317 }
4318 return ret;
4319 }
4320
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4321 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4322 unsigned long addr, int page_nid,
4323 int *flags)
4324 {
4325 get_page(page);
4326
4327 count_vm_numa_event(NUMA_HINT_FAULTS);
4328 if (page_nid == numa_node_id()) {
4329 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4330 *flags |= TNF_FAULT_LOCAL;
4331 }
4332
4333 return mpol_misplaced(page, vma, addr);
4334 }
4335
do_numa_page(struct vm_fault * vmf)4336 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4337 {
4338 struct vm_area_struct *vma = vmf->vma;
4339 struct page *page = NULL;
4340 int page_nid = NUMA_NO_NODE;
4341 int last_cpupid;
4342 int target_nid;
4343 bool migrated = false;
4344 pte_t pte, old_pte;
4345 bool was_writable = pte_savedwrite(vmf->orig_pte);
4346 int flags = 0;
4347
4348 /*
4349 * The "pte" at this point cannot be used safely without
4350 * validation through pte_unmap_same(). It's of NUMA type but
4351 * the pfn may be screwed if the read is non atomic.
4352 */
4353 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4354 spin_lock(vmf->ptl);
4355 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4356 pte_unmap_unlock(vmf->pte, vmf->ptl);
4357 goto out;
4358 }
4359
4360 /*
4361 * Make it present again, Depending on how arch implementes non
4362 * accessible ptes, some can allow access by kernel mode.
4363 */
4364 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4365 pte = pte_modify(old_pte, vma->vm_page_prot);
4366 pte = pte_mkyoung(pte);
4367 if (was_writable)
4368 pte = pte_mkwrite(pte);
4369 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4370 update_mmu_cache(vma, vmf->address, vmf->pte);
4371
4372 page = vm_normal_page(vma, vmf->address, pte);
4373 if (!page) {
4374 pte_unmap_unlock(vmf->pte, vmf->ptl);
4375 return 0;
4376 }
4377
4378 /* TODO: handle PTE-mapped THP */
4379 if (PageCompound(page)) {
4380 pte_unmap_unlock(vmf->pte, vmf->ptl);
4381 return 0;
4382 }
4383
4384 /*
4385 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4386 * much anyway since they can be in shared cache state. This misses
4387 * the case where a mapping is writable but the process never writes
4388 * to it but pte_write gets cleared during protection updates and
4389 * pte_dirty has unpredictable behaviour between PTE scan updates,
4390 * background writeback, dirty balancing and application behaviour.
4391 */
4392 if (!pte_write(pte))
4393 flags |= TNF_NO_GROUP;
4394
4395 /*
4396 * Flag if the page is shared between multiple address spaces. This
4397 * is later used when determining whether to group tasks together
4398 */
4399 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4400 flags |= TNF_SHARED;
4401
4402 last_cpupid = page_cpupid_last(page);
4403 page_nid = page_to_nid(page);
4404 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4405 &flags);
4406 pte_unmap_unlock(vmf->pte, vmf->ptl);
4407 if (target_nid == NUMA_NO_NODE) {
4408 put_page(page);
4409 goto out;
4410 }
4411
4412 /* Migrate to the requested node */
4413 migrated = migrate_misplaced_page(page, vma, target_nid);
4414 if (migrated) {
4415 page_nid = target_nid;
4416 flags |= TNF_MIGRATED;
4417 } else
4418 flags |= TNF_MIGRATE_FAIL;
4419
4420 out:
4421 if (page_nid != NUMA_NO_NODE)
4422 task_numa_fault(last_cpupid, page_nid, 1, flags);
4423 return 0;
4424 }
4425
create_huge_pmd(struct vm_fault * vmf)4426 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4427 {
4428 if (vma_is_anonymous(vmf->vma))
4429 return do_huge_pmd_anonymous_page(vmf);
4430 if (vmf->vma->vm_ops->huge_fault)
4431 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4432 return VM_FAULT_FALLBACK;
4433 }
4434
4435 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)4436 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4437 {
4438 if (vma_is_anonymous(vmf->vma)) {
4439 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4440 return handle_userfault(vmf, VM_UFFD_WP);
4441 return do_huge_pmd_wp_page(vmf, orig_pmd);
4442 }
4443 if (vmf->vma->vm_ops->huge_fault) {
4444 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4445
4446 if (!(ret & VM_FAULT_FALLBACK))
4447 return ret;
4448 }
4449
4450 /* COW or write-notify handled on pte level: split pmd. */
4451 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4452
4453 return VM_FAULT_FALLBACK;
4454 }
4455
create_huge_pud(struct vm_fault * vmf)4456 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4457 {
4458 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4459 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4460 /* No support for anonymous transparent PUD pages yet */
4461 if (vma_is_anonymous(vmf->vma))
4462 return VM_FAULT_FALLBACK;
4463 if (vmf->vma->vm_ops->huge_fault)
4464 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4466 return VM_FAULT_FALLBACK;
4467 }
4468
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4469 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4470 {
4471 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4472 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4473 /* No support for anonymous transparent PUD pages yet */
4474 if (vma_is_anonymous(vmf->vma))
4475 goto split;
4476 if (vmf->vma->vm_ops->huge_fault) {
4477 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4478
4479 if (!(ret & VM_FAULT_FALLBACK))
4480 return ret;
4481 }
4482 split:
4483 /* COW or write-notify not handled on PUD level: split pud.*/
4484 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4485 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4486 return VM_FAULT_FALLBACK;
4487 }
4488
4489 /*
4490 * These routines also need to handle stuff like marking pages dirty
4491 * and/or accessed for architectures that don't do it in hardware (most
4492 * RISC architectures). The early dirtying is also good on the i386.
4493 *
4494 * There is also a hook called "update_mmu_cache()" that architectures
4495 * with external mmu caches can use to update those (ie the Sparc or
4496 * PowerPC hashed page tables that act as extended TLBs).
4497 *
4498 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4499 * concurrent faults).
4500 *
4501 * The mmap_lock may have been released depending on flags and our return value.
4502 * See filemap_fault() and __lock_page_or_retry().
4503 */
handle_pte_fault(struct vm_fault * vmf)4504 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4505 {
4506 pte_t entry;
4507
4508 if (unlikely(pmd_none(*vmf->pmd))) {
4509 /*
4510 * Leave __pte_alloc() until later: because vm_ops->fault may
4511 * want to allocate huge page, and if we expose page table
4512 * for an instant, it will be difficult to retract from
4513 * concurrent faults and from rmap lookups.
4514 */
4515 vmf->pte = NULL;
4516 } else {
4517 /* See comment in pte_alloc_one_map() */
4518 if (pmd_devmap_trans_unstable(vmf->pmd))
4519 return 0;
4520 /*
4521 * A regular pmd is established and it can't morph into a huge
4522 * pmd from under us anymore at this point because we hold the
4523 * mmap_lock read mode and khugepaged takes it in write mode.
4524 * So now it's safe to run pte_offset_map().
4525 */
4526 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4527 vmf->orig_pte = *vmf->pte;
4528
4529 /*
4530 * some architectures can have larger ptes than wordsize,
4531 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4532 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4533 * accesses. The code below just needs a consistent view
4534 * for the ifs and we later double check anyway with the
4535 * ptl lock held. So here a barrier will do.
4536 */
4537 barrier();
4538 if (pte_none(vmf->orig_pte)) {
4539 pte_unmap(vmf->pte);
4540 vmf->pte = NULL;
4541 }
4542 }
4543
4544 if (!vmf->pte) {
4545 if (vma_is_anonymous(vmf->vma))
4546 return do_anonymous_page(vmf);
4547 else
4548 return do_fault(vmf);
4549 }
4550
4551 if (!pte_present(vmf->orig_pte))
4552 return do_swap_page(vmf);
4553
4554 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4555 return do_numa_page(vmf);
4556
4557 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4558 spin_lock(vmf->ptl);
4559 entry = vmf->orig_pte;
4560 if (unlikely(!pte_same(*vmf->pte, entry))) {
4561 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4562 goto unlock;
4563 }
4564 if (vmf->flags & FAULT_FLAG_WRITE) {
4565 if (!pte_write(entry))
4566 return do_wp_page(vmf);
4567 entry = pte_mkdirty(entry);
4568 }
4569 entry = pte_mkyoung(entry);
4570 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4571 vmf->flags & FAULT_FLAG_WRITE)) {
4572 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4573 } else {
4574 /* Skip spurious TLB flush for retried page fault */
4575 if (vmf->flags & FAULT_FLAG_TRIED)
4576 goto unlock;
4577 /*
4578 * This is needed only for protection faults but the arch code
4579 * is not yet telling us if this is a protection fault or not.
4580 * This still avoids useless tlb flushes for .text page faults
4581 * with threads.
4582 */
4583 if (vmf->flags & FAULT_FLAG_WRITE)
4584 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4585 }
4586 unlock:
4587 pte_unmap_unlock(vmf->pte, vmf->ptl);
4588 return 0;
4589 }
4590
4591 /*
4592 * By the time we get here, we already hold the mm semaphore
4593 *
4594 * The mmap_lock may have been released depending on flags and our
4595 * return value. See filemap_fault() and __lock_page_or_retry().
4596 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4597 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4598 unsigned long address, unsigned int flags)
4599 {
4600 struct vm_fault vmf = {
4601 .vma = vma,
4602 .address = address & PAGE_MASK,
4603 .flags = flags,
4604 .pgoff = linear_page_index(vma, address),
4605 .gfp_mask = __get_fault_gfp_mask(vma),
4606 };
4607 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4608 struct mm_struct *mm = vma->vm_mm;
4609 pgd_t *pgd;
4610 p4d_t *p4d;
4611 vm_fault_t ret;
4612
4613 pgd = pgd_offset(mm, address);
4614 p4d = p4d_alloc(mm, pgd, address);
4615 if (!p4d)
4616 return VM_FAULT_OOM;
4617
4618 vmf.pud = pud_alloc(mm, p4d, address);
4619 if (!vmf.pud)
4620 return VM_FAULT_OOM;
4621 retry_pud:
4622 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4623 ret = create_huge_pud(&vmf);
4624 if (!(ret & VM_FAULT_FALLBACK))
4625 return ret;
4626 } else {
4627 pud_t orig_pud = *vmf.pud;
4628
4629 barrier();
4630 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4631
4632 /* NUMA case for anonymous PUDs would go here */
4633
4634 if (dirty && !pud_write(orig_pud)) {
4635 ret = wp_huge_pud(&vmf, orig_pud);
4636 if (!(ret & VM_FAULT_FALLBACK))
4637 return ret;
4638 } else {
4639 huge_pud_set_accessed(&vmf, orig_pud);
4640 return 0;
4641 }
4642 }
4643 }
4644
4645 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4646 if (!vmf.pmd)
4647 return VM_FAULT_OOM;
4648
4649 /* Huge pud page fault raced with pmd_alloc? */
4650 if (pud_trans_unstable(vmf.pud))
4651 goto retry_pud;
4652
4653 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4654 ret = create_huge_pmd(&vmf);
4655 if (!(ret & VM_FAULT_FALLBACK))
4656 return ret;
4657 } else {
4658 pmd_t orig_pmd = *vmf.pmd;
4659
4660 barrier();
4661 if (unlikely(is_swap_pmd(orig_pmd))) {
4662 VM_BUG_ON(thp_migration_supported() &&
4663 !is_pmd_migration_entry(orig_pmd));
4664 if (is_pmd_migration_entry(orig_pmd))
4665 pmd_migration_entry_wait(mm, vmf.pmd);
4666 return 0;
4667 }
4668 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4669 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4670 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4671
4672 if (dirty && !pmd_write(orig_pmd)) {
4673 ret = wp_huge_pmd(&vmf, orig_pmd);
4674 if (!(ret & VM_FAULT_FALLBACK))
4675 return ret;
4676 } else {
4677 huge_pmd_set_accessed(&vmf, orig_pmd);
4678 return 0;
4679 }
4680 }
4681 }
4682
4683 return handle_pte_fault(&vmf);
4684 }
4685
4686 /**
4687 * mm_account_fault - Do page fault accountings
4688 *
4689 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4690 * of perf event counters, but we'll still do the per-task accounting to
4691 * the task who triggered this page fault.
4692 * @address: the faulted address.
4693 * @flags: the fault flags.
4694 * @ret: the fault retcode.
4695 *
4696 * This will take care of most of the page fault accountings. Meanwhile, it
4697 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4698 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4699 * still be in per-arch page fault handlers at the entry of page fault.
4700 */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)4701 static inline void mm_account_fault(struct pt_regs *regs,
4702 unsigned long address, unsigned int flags,
4703 vm_fault_t ret)
4704 {
4705 bool major;
4706
4707 /*
4708 * We don't do accounting for some specific faults:
4709 *
4710 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4711 * includes arch_vma_access_permitted() failing before reaching here.
4712 * So this is not a "this many hardware page faults" counter. We
4713 * should use the hw profiling for that.
4714 *
4715 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4716 * once they're completed.
4717 */
4718 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4719 return;
4720
4721 /*
4722 * We define the fault as a major fault when the final successful fault
4723 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4724 * handle it immediately previously).
4725 */
4726 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4727
4728 if (major)
4729 current->maj_flt++;
4730 else
4731 current->min_flt++;
4732
4733 /*
4734 * If the fault is done for GUP, regs will be NULL. We only do the
4735 * accounting for the per thread fault counters who triggered the
4736 * fault, and we skip the perf event updates.
4737 */
4738 if (!regs)
4739 return;
4740
4741 if (major)
4742 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4743 else
4744 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4745 }
4746
4747 /*
4748 * By the time we get here, we already hold the mm semaphore
4749 *
4750 * The mmap_lock may have been released depending on flags and our
4751 * return value. See filemap_fault() and __lock_page_or_retry().
4752 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)4753 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4754 unsigned int flags, struct pt_regs *regs)
4755 {
4756 vm_fault_t ret;
4757
4758 __set_current_state(TASK_RUNNING);
4759
4760 count_vm_event(PGFAULT);
4761 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4762
4763 /* do counter updates before entering really critical section. */
4764 check_sync_rss_stat(current);
4765
4766 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4767 flags & FAULT_FLAG_INSTRUCTION,
4768 flags & FAULT_FLAG_REMOTE))
4769 return VM_FAULT_SIGSEGV;
4770
4771 /*
4772 * Enable the memcg OOM handling for faults triggered in user
4773 * space. Kernel faults are handled more gracefully.
4774 */
4775 if (flags & FAULT_FLAG_USER)
4776 mem_cgroup_enter_user_fault();
4777
4778 if (unlikely(is_vm_hugetlb_page(vma)))
4779 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4780 else
4781 ret = __handle_mm_fault(vma, address, flags);
4782
4783 if (flags & FAULT_FLAG_USER) {
4784 mem_cgroup_exit_user_fault();
4785 /*
4786 * The task may have entered a memcg OOM situation but
4787 * if the allocation error was handled gracefully (no
4788 * VM_FAULT_OOM), there is no need to kill anything.
4789 * Just clean up the OOM state peacefully.
4790 */
4791 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4792 mem_cgroup_oom_synchronize(false);
4793 }
4794
4795 mm_account_fault(regs, address, flags, ret);
4796
4797 return ret;
4798 }
4799 EXPORT_SYMBOL_GPL(handle_mm_fault);
4800
4801 #ifndef __PAGETABLE_P4D_FOLDED
4802 /*
4803 * Allocate p4d page table.
4804 * We've already handled the fast-path in-line.
4805 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4806 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4807 {
4808 p4d_t *new = p4d_alloc_one(mm, address);
4809 if (!new)
4810 return -ENOMEM;
4811
4812 smp_wmb(); /* See comment in __pte_alloc */
4813
4814 spin_lock(&mm->page_table_lock);
4815 if (pgd_present(*pgd)) /* Another has populated it */
4816 p4d_free(mm, new);
4817 else
4818 pgd_populate(mm, pgd, new);
4819 spin_unlock(&mm->page_table_lock);
4820 return 0;
4821 }
4822 #endif /* __PAGETABLE_P4D_FOLDED */
4823
4824 #ifndef __PAGETABLE_PUD_FOLDED
4825 /*
4826 * Allocate page upper directory.
4827 * We've already handled the fast-path in-line.
4828 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4829 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4830 {
4831 pud_t *new = pud_alloc_one(mm, address);
4832 if (!new)
4833 return -ENOMEM;
4834
4835 smp_wmb(); /* See comment in __pte_alloc */
4836
4837 spin_lock(&mm->page_table_lock);
4838 if (!p4d_present(*p4d)) {
4839 mm_inc_nr_puds(mm);
4840 p4d_populate(mm, p4d, new);
4841 } else /* Another has populated it */
4842 pud_free(mm, new);
4843 spin_unlock(&mm->page_table_lock);
4844 return 0;
4845 }
4846 #endif /* __PAGETABLE_PUD_FOLDED */
4847
4848 #ifndef __PAGETABLE_PMD_FOLDED
4849 /*
4850 * Allocate page middle directory.
4851 * We've already handled the fast-path in-line.
4852 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4853 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4854 {
4855 spinlock_t *ptl;
4856 pmd_t *new = pmd_alloc_one(mm, address);
4857 if (!new)
4858 return -ENOMEM;
4859
4860 smp_wmb(); /* See comment in __pte_alloc */
4861
4862 ptl = pud_lock(mm, pud);
4863 if (!pud_present(*pud)) {
4864 mm_inc_nr_pmds(mm);
4865 pud_populate(mm, pud, new);
4866 } else /* Another has populated it */
4867 pmd_free(mm, new);
4868 spin_unlock(ptl);
4869 return 0;
4870 }
4871 #endif /* __PAGETABLE_PMD_FOLDED */
4872
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4873 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4874 struct mmu_notifier_range *range, pte_t **ptepp,
4875 pmd_t **pmdpp, spinlock_t **ptlp)
4876 {
4877 pgd_t *pgd;
4878 p4d_t *p4d;
4879 pud_t *pud;
4880 pmd_t *pmd;
4881 pte_t *ptep;
4882
4883 pgd = pgd_offset(mm, address);
4884 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4885 goto out;
4886
4887 p4d = p4d_offset(pgd, address);
4888 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4889 goto out;
4890
4891 pud = pud_offset(p4d, address);
4892 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4893 goto out;
4894
4895 pmd = pmd_offset(pud, address);
4896 VM_BUG_ON(pmd_trans_huge(*pmd));
4897
4898 if (pmd_huge(*pmd)) {
4899 if (!pmdpp)
4900 goto out;
4901
4902 if (range) {
4903 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4904 NULL, mm, address & PMD_MASK,
4905 (address & PMD_MASK) + PMD_SIZE);
4906 mmu_notifier_invalidate_range_start(range);
4907 }
4908 *ptlp = pmd_lock(mm, pmd);
4909 if (pmd_huge(*pmd)) {
4910 *pmdpp = pmd;
4911 return 0;
4912 }
4913 spin_unlock(*ptlp);
4914 if (range)
4915 mmu_notifier_invalidate_range_end(range);
4916 }
4917
4918 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4919 goto out;
4920
4921 if (range) {
4922 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4923 address & PAGE_MASK,
4924 (address & PAGE_MASK) + PAGE_SIZE);
4925 mmu_notifier_invalidate_range_start(range);
4926 }
4927 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4928 if (!pte_present(*ptep))
4929 goto unlock;
4930 *ptepp = ptep;
4931 return 0;
4932 unlock:
4933 pte_unmap_unlock(ptep, *ptlp);
4934 if (range)
4935 mmu_notifier_invalidate_range_end(range);
4936 out:
4937 return -EINVAL;
4938 }
4939
4940 /**
4941 * follow_pte - look up PTE at a user virtual address
4942 * @mm: the mm_struct of the target address space
4943 * @address: user virtual address
4944 * @ptepp: location to store found PTE
4945 * @ptlp: location to store the lock for the PTE
4946 *
4947 * On a successful return, the pointer to the PTE is stored in @ptepp;
4948 * the corresponding lock is taken and its location is stored in @ptlp.
4949 * The contents of the PTE are only stable until @ptlp is released;
4950 * any further use, if any, must be protected against invalidation
4951 * with MMU notifiers.
4952 *
4953 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4954 * should be taken for read.
4955 *
4956 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4957 * it is not a good general-purpose API.
4958 *
4959 * Return: zero on success, -ve otherwise.
4960 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4961 int follow_pte(struct mm_struct *mm, unsigned long address,
4962 pte_t **ptepp, spinlock_t **ptlp)
4963 {
4964 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4965 }
4966 EXPORT_SYMBOL_GPL(follow_pte);
4967
4968 /**
4969 * follow_pfn - look up PFN at a user virtual address
4970 * @vma: memory mapping
4971 * @address: user virtual address
4972 * @pfn: location to store found PFN
4973 *
4974 * Only IO mappings and raw PFN mappings are allowed.
4975 *
4976 * This function does not allow the caller to read the permissions
4977 * of the PTE. Do not use it.
4978 *
4979 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4980 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4981 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4982 unsigned long *pfn)
4983 {
4984 int ret = -EINVAL;
4985 spinlock_t *ptl;
4986 pte_t *ptep;
4987
4988 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4989 return ret;
4990
4991 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4992 if (ret)
4993 return ret;
4994 *pfn = pte_pfn(*ptep);
4995 pte_unmap_unlock(ptep, ptl);
4996 return 0;
4997 }
4998 EXPORT_SYMBOL(follow_pfn);
4999
5000 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5001 int follow_phys(struct vm_area_struct *vma,
5002 unsigned long address, unsigned int flags,
5003 unsigned long *prot, resource_size_t *phys)
5004 {
5005 int ret = -EINVAL;
5006 pte_t *ptep, pte;
5007 spinlock_t *ptl;
5008
5009 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5010 goto out;
5011
5012 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5013 goto out;
5014 pte = *ptep;
5015
5016 if ((flags & FOLL_WRITE) && !pte_write(pte))
5017 goto unlock;
5018
5019 *prot = pgprot_val(pte_pgprot(pte));
5020 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5021
5022 ret = 0;
5023 unlock:
5024 pte_unmap_unlock(ptep, ptl);
5025 out:
5026 return ret;
5027 }
5028
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5029 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5030 void *buf, int len, int write)
5031 {
5032 resource_size_t phys_addr;
5033 unsigned long prot = 0;
5034 void __iomem *maddr;
5035 int offset = addr & (PAGE_SIZE-1);
5036
5037 if (follow_phys(vma, addr, write, &prot, &phys_addr))
5038 return -EINVAL;
5039
5040 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5041 if (!maddr)
5042 return -ENOMEM;
5043
5044 if (write)
5045 memcpy_toio(maddr + offset, buf, len);
5046 else
5047 memcpy_fromio(buf, maddr + offset, len);
5048 iounmap(maddr);
5049
5050 return len;
5051 }
5052 EXPORT_SYMBOL_GPL(generic_access_phys);
5053 #endif
5054
5055 /*
5056 * Access another process' address space as given in mm. If non-NULL, use the
5057 * given task for page fault accounting.
5058 */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5059 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
5060 unsigned long addr, void *buf, int len, unsigned int gup_flags)
5061 {
5062 struct vm_area_struct *vma;
5063 void *old_buf = buf;
5064 int write = gup_flags & FOLL_WRITE;
5065
5066 if (mmap_read_lock_killable(mm))
5067 return 0;
5068
5069 /* ignore errors, just check how much was successfully transferred */
5070 while (len) {
5071 int bytes, ret, offset;
5072 void *maddr;
5073 struct page *page = NULL;
5074
5075 ret = get_user_pages_remote(mm, addr, 1,
5076 gup_flags, &page, &vma, NULL);
5077 if (ret <= 0) {
5078 #ifndef CONFIG_HAVE_IOREMAP_PROT
5079 break;
5080 #else
5081 /*
5082 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5083 * we can access using slightly different code.
5084 */
5085 vma = find_vma(mm, addr);
5086 if (!vma || vma->vm_start > addr)
5087 break;
5088 if (vma->vm_ops && vma->vm_ops->access)
5089 ret = vma->vm_ops->access(vma, addr, buf,
5090 len, write);
5091 if (ret <= 0)
5092 break;
5093 bytes = ret;
5094 #endif
5095 } else {
5096 bytes = len;
5097 offset = addr & (PAGE_SIZE-1);
5098 if (bytes > PAGE_SIZE-offset)
5099 bytes = PAGE_SIZE-offset;
5100
5101 maddr = kmap(page);
5102 if (write) {
5103 copy_to_user_page(vma, page, addr,
5104 maddr + offset, buf, bytes);
5105 set_page_dirty_lock(page);
5106 } else {
5107 copy_from_user_page(vma, page, addr,
5108 buf, maddr + offset, bytes);
5109 }
5110 kunmap(page);
5111 put_page(page);
5112 }
5113 len -= bytes;
5114 buf += bytes;
5115 addr += bytes;
5116 }
5117 mmap_read_unlock(mm);
5118
5119 return buf - old_buf;
5120 }
5121
5122 /**
5123 * access_remote_vm - access another process' address space
5124 * @mm: the mm_struct of the target address space
5125 * @addr: start address to access
5126 * @buf: source or destination buffer
5127 * @len: number of bytes to transfer
5128 * @gup_flags: flags modifying lookup behaviour
5129 *
5130 * The caller must hold a reference on @mm.
5131 *
5132 * Return: number of bytes copied from source to destination.
5133 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5134 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5135 void *buf, int len, unsigned int gup_flags)
5136 {
5137 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5138 }
5139
5140 /*
5141 * Access another process' address space.
5142 * Source/target buffer must be kernel space,
5143 * Do not walk the page table directly, use get_user_pages
5144 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5145 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5146 void *buf, int len, unsigned int gup_flags)
5147 {
5148 struct mm_struct *mm;
5149 int ret;
5150
5151 mm = get_task_mm(tsk);
5152 if (!mm)
5153 return 0;
5154
5155 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5156
5157 mmput(mm);
5158
5159 return ret;
5160 }
5161 EXPORT_SYMBOL_GPL(access_process_vm);
5162
5163 /*
5164 * Print the name of a VMA.
5165 */
print_vma_addr(char * prefix,unsigned long ip)5166 void print_vma_addr(char *prefix, unsigned long ip)
5167 {
5168 struct mm_struct *mm = current->mm;
5169 struct vm_area_struct *vma;
5170
5171 /*
5172 * we might be running from an atomic context so we cannot sleep
5173 */
5174 if (!mmap_read_trylock(mm))
5175 return;
5176
5177 vma = find_vma(mm, ip);
5178 if (vma && vma->vm_file) {
5179 struct file *f = vma->vm_file;
5180 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5181 if (buf) {
5182 char *p;
5183
5184 p = file_path(f, buf, PAGE_SIZE);
5185 if (IS_ERR(p))
5186 p = "?";
5187 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5188 vma->vm_start,
5189 vma->vm_end - vma->vm_start);
5190 free_page((unsigned long)buf);
5191 }
5192 }
5193 mmap_read_unlock(mm);
5194 }
5195
5196 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5197 void __might_fault(const char *file, int line)
5198 {
5199 /*
5200 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5201 * holding the mmap_lock, this is safe because kernel memory doesn't
5202 * get paged out, therefore we'll never actually fault, and the
5203 * below annotations will generate false positives.
5204 */
5205 if (uaccess_kernel())
5206 return;
5207 if (pagefault_disabled())
5208 return;
5209 __might_sleep(file, line, 0);
5210 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5211 if (current->mm)
5212 might_lock_read(¤t->mm->mmap_lock);
5213 #endif
5214 }
5215 EXPORT_SYMBOL(__might_fault);
5216 #endif
5217
5218 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5219 /*
5220 * Process all subpages of the specified huge page with the specified
5221 * operation. The target subpage will be processed last to keep its
5222 * cache lines hot.
5223 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5224 static inline void process_huge_page(
5225 unsigned long addr_hint, unsigned int pages_per_huge_page,
5226 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5227 void *arg)
5228 {
5229 int i, n, base, l;
5230 unsigned long addr = addr_hint &
5231 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5232
5233 /* Process target subpage last to keep its cache lines hot */
5234 might_sleep();
5235 n = (addr_hint - addr) / PAGE_SIZE;
5236 if (2 * n <= pages_per_huge_page) {
5237 /* If target subpage in first half of huge page */
5238 base = 0;
5239 l = n;
5240 /* Process subpages at the end of huge page */
5241 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5242 cond_resched();
5243 process_subpage(addr + i * PAGE_SIZE, i, arg);
5244 }
5245 } else {
5246 /* If target subpage in second half of huge page */
5247 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5248 l = pages_per_huge_page - n;
5249 /* Process subpages at the begin of huge page */
5250 for (i = 0; i < base; i++) {
5251 cond_resched();
5252 process_subpage(addr + i * PAGE_SIZE, i, arg);
5253 }
5254 }
5255 /*
5256 * Process remaining subpages in left-right-left-right pattern
5257 * towards the target subpage
5258 */
5259 for (i = 0; i < l; i++) {
5260 int left_idx = base + i;
5261 int right_idx = base + 2 * l - 1 - i;
5262
5263 cond_resched();
5264 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5265 cond_resched();
5266 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5267 }
5268 }
5269
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5270 static void clear_gigantic_page(struct page *page,
5271 unsigned long addr,
5272 unsigned int pages_per_huge_page)
5273 {
5274 int i;
5275 struct page *p = page;
5276
5277 might_sleep();
5278 for (i = 0; i < pages_per_huge_page;
5279 i++, p = mem_map_next(p, page, i)) {
5280 cond_resched();
5281 clear_user_highpage(p, addr + i * PAGE_SIZE);
5282 }
5283 }
5284
clear_subpage(unsigned long addr,int idx,void * arg)5285 static void clear_subpage(unsigned long addr, int idx, void *arg)
5286 {
5287 struct page *page = arg;
5288
5289 clear_user_highpage(page + idx, addr);
5290 }
5291
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5292 void clear_huge_page(struct page *page,
5293 unsigned long addr_hint, unsigned int pages_per_huge_page)
5294 {
5295 unsigned long addr = addr_hint &
5296 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5297
5298 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5299 clear_gigantic_page(page, addr, pages_per_huge_page);
5300 return;
5301 }
5302
5303 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5304 }
5305
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5306 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5307 unsigned long addr,
5308 struct vm_area_struct *vma,
5309 unsigned int pages_per_huge_page)
5310 {
5311 int i;
5312 struct page *dst_base = dst;
5313 struct page *src_base = src;
5314
5315 for (i = 0; i < pages_per_huge_page; ) {
5316 cond_resched();
5317 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5318
5319 i++;
5320 dst = mem_map_next(dst, dst_base, i);
5321 src = mem_map_next(src, src_base, i);
5322 }
5323 }
5324
5325 struct copy_subpage_arg {
5326 struct page *dst;
5327 struct page *src;
5328 struct vm_area_struct *vma;
5329 };
5330
copy_subpage(unsigned long addr,int idx,void * arg)5331 static void copy_subpage(unsigned long addr, int idx, void *arg)
5332 {
5333 struct copy_subpage_arg *copy_arg = arg;
5334
5335 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5336 addr, copy_arg->vma);
5337 }
5338
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5339 void copy_user_huge_page(struct page *dst, struct page *src,
5340 unsigned long addr_hint, struct vm_area_struct *vma,
5341 unsigned int pages_per_huge_page)
5342 {
5343 unsigned long addr = addr_hint &
5344 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5345 struct copy_subpage_arg arg = {
5346 .dst = dst,
5347 .src = src,
5348 .vma = vma,
5349 };
5350
5351 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5352 copy_user_gigantic_page(dst, src, addr, vma,
5353 pages_per_huge_page);
5354 return;
5355 }
5356
5357 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5358 }
5359
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5360 long copy_huge_page_from_user(struct page *dst_page,
5361 const void __user *usr_src,
5362 unsigned int pages_per_huge_page,
5363 bool allow_pagefault)
5364 {
5365 void *src = (void *)usr_src;
5366 void *page_kaddr;
5367 unsigned long i, rc = 0;
5368 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5369 struct page *subpage = dst_page;
5370
5371 for (i = 0; i < pages_per_huge_page;
5372 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5373 if (allow_pagefault)
5374 page_kaddr = kmap(subpage);
5375 else
5376 page_kaddr = kmap_atomic(subpage);
5377 rc = copy_from_user(page_kaddr,
5378 (const void __user *)(src + i * PAGE_SIZE),
5379 PAGE_SIZE);
5380 if (allow_pagefault)
5381 kunmap(subpage);
5382 else
5383 kunmap_atomic(page_kaddr);
5384
5385 ret_val -= (PAGE_SIZE - rc);
5386 if (rc)
5387 break;
5388
5389 flush_dcache_page(subpage);
5390
5391 cond_resched();
5392 }
5393 return ret_val;
5394 }
5395 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5396
5397 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5398
5399 static struct kmem_cache *page_ptl_cachep;
5400
ptlock_cache_init(void)5401 void __init ptlock_cache_init(void)
5402 {
5403 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5404 SLAB_PANIC, NULL);
5405 }
5406
ptlock_alloc(struct page * page)5407 bool ptlock_alloc(struct page *page)
5408 {
5409 spinlock_t *ptl;
5410
5411 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5412 if (!ptl)
5413 return false;
5414 page->ptl = ptl;
5415 return true;
5416 }
5417
ptlock_free(struct page * page)5418 void ptlock_free(struct page *page)
5419 {
5420 kmem_cache_free(page_ptl_cachep, page->ptl);
5421 }
5422 #endif
5423