1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <sys/mman.h>
29
30 #include "anv_private.h"
31
32 #include "common/intel_aux_map.h"
33 #include "util/anon_file.h"
34 #include "util/futex.h"
35
36 #ifdef HAVE_VALGRIND
37 #define VG_NOACCESS_READ(__ptr) ({ \
38 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
39 __typeof(*(__ptr)) __val = *(__ptr); \
40 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
41 __val; \
42 })
43 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
44 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
45 *(__ptr) = (__val); \
46 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
47 })
48 #else
49 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
50 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
51 #endif
52
53 #ifndef MAP_POPULATE
54 #define MAP_POPULATE 0
55 #endif
56
57 /* Design goals:
58 *
59 * - Lock free (except when resizing underlying bos)
60 *
61 * - Constant time allocation with typically only one atomic
62 *
63 * - Multiple allocation sizes without fragmentation
64 *
65 * - Can grow while keeping addresses and offset of contents stable
66 *
67 * - All allocations within one bo so we can point one of the
68 * STATE_BASE_ADDRESS pointers at it.
69 *
70 * The overall design is a two-level allocator: top level is a fixed size, big
71 * block (8k) allocator, which operates out of a bo. Allocation is done by
72 * either pulling a block from the free list or growing the used range of the
73 * bo. Growing the range may run out of space in the bo which we then need to
74 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
75 * we need to keep all pointers and contents in the old map valid. GEM bos in
76 * general can't grow, but we use a trick: we create a memfd and use ftruncate
77 * to grow it as necessary. We mmap the new size and then create a gem bo for
78 * it using the new gem userptr ioctl. Without heavy-handed locking around
79 * our allocation fast-path, there isn't really a way to munmap the old mmap,
80 * so we just keep it around until garbage collection time. While the block
81 * allocator is lockless for normal operations, we block other threads trying
82 * to allocate while we're growing the map. It shouldn't happen often, and
83 * growing is fast anyway.
84 *
85 * At the next level we can use various sub-allocators. The state pool is a
86 * pool of smaller, fixed size objects, which operates much like the block
87 * pool. It uses a free list for freeing objects, but when it runs out of
88 * space it just allocates a new block from the block pool. This allocator is
89 * intended for longer lived state objects such as SURFACE_STATE and most
90 * other persistent state objects in the API. We may need to track more info
91 * with these object and a pointer back to the CPU object (eg VkImage). In
92 * those cases we just allocate a slightly bigger object and put the extra
93 * state after the GPU state object.
94 *
95 * The state stream allocator works similar to how the i965 DRI driver streams
96 * all its state. Even with Vulkan, we need to emit transient state (whether
97 * surface state base or dynamic state base), and for that we can just get a
98 * block and fill it up. These cases are local to a command buffer and the
99 * sub-allocator need not be thread safe. The streaming allocator gets a new
100 * block when it runs out of space and chains them together so they can be
101 * easily freed.
102 */
103
104 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
105 * We use it to indicate the free list is empty. */
106 #define EMPTY UINT32_MAX
107
108 /* On FreeBSD PAGE_SIZE is already defined in
109 * /usr/include/machine/param.h that is indirectly
110 * included here.
111 */
112 #ifndef PAGE_SIZE
113 #define PAGE_SIZE 4096
114 #endif
115
116 struct anv_mmap_cleanup {
117 void *map;
118 size_t size;
119 };
120
121 static inline uint32_t
ilog2_round_up(uint32_t value)122 ilog2_round_up(uint32_t value)
123 {
124 assert(value != 0);
125 return 32 - __builtin_clz(value - 1);
126 }
127
128 static inline uint32_t
round_to_power_of_two(uint32_t value)129 round_to_power_of_two(uint32_t value)
130 {
131 return 1 << ilog2_round_up(value);
132 }
133
134 struct anv_state_table_cleanup {
135 void *map;
136 size_t size;
137 };
138
139 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
140 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
141
142 static VkResult
143 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
144
145 VkResult
anv_state_table_init(struct anv_state_table * table,struct anv_device * device,uint32_t initial_entries)146 anv_state_table_init(struct anv_state_table *table,
147 struct anv_device *device,
148 uint32_t initial_entries)
149 {
150 VkResult result;
151
152 table->device = device;
153
154 /* Just make it 2GB up-front. The Linux kernel won't actually back it
155 * with pages until we either map and fault on one of them or we use
156 * userptr and send a chunk of it off to the GPU.
157 */
158 table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
159 if (table->fd == -1)
160 return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
161
162 if (!u_vector_init(&table->cleanups, 8,
163 sizeof(struct anv_state_table_cleanup))) {
164 result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
165 goto fail_fd;
166 }
167
168 table->state.next = 0;
169 table->state.end = 0;
170 table->size = 0;
171
172 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
173 result = anv_state_table_expand_range(table, initial_size);
174 if (result != VK_SUCCESS)
175 goto fail_cleanups;
176
177 return VK_SUCCESS;
178
179 fail_cleanups:
180 u_vector_finish(&table->cleanups);
181 fail_fd:
182 close(table->fd);
183
184 return result;
185 }
186
187 static VkResult
anv_state_table_expand_range(struct anv_state_table * table,uint32_t size)188 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
189 {
190 void *map;
191 struct anv_state_table_cleanup *cleanup;
192
193 /* Assert that we only ever grow the pool */
194 assert(size >= table->state.end);
195
196 /* Make sure that we don't go outside the bounds of the memfd */
197 if (size > BLOCK_POOL_MEMFD_SIZE)
198 return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
199
200 cleanup = u_vector_add(&table->cleanups);
201 if (!cleanup)
202 return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
203
204 *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
205
206 /* Just leak the old map until we destroy the pool. We can't munmap it
207 * without races or imposing locking on the block allocate fast path. On
208 * the whole the leaked maps adds up to less than the size of the
209 * current map. MAP_POPULATE seems like the right thing to do, but we
210 * should try to get some numbers.
211 */
212 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
213 MAP_SHARED | MAP_POPULATE, table->fd, 0);
214 if (map == MAP_FAILED) {
215 return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY,
216 "mmap failed: %m");
217 }
218
219 cleanup->map = map;
220 cleanup->size = size;
221
222 table->map = map;
223 table->size = size;
224
225 return VK_SUCCESS;
226 }
227
228 static VkResult
anv_state_table_grow(struct anv_state_table * table)229 anv_state_table_grow(struct anv_state_table *table)
230 {
231 VkResult result = VK_SUCCESS;
232
233 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
234 PAGE_SIZE);
235 uint32_t old_size = table->size;
236
237 /* The block pool is always initialized to a nonzero size and this function
238 * is always called after initialization.
239 */
240 assert(old_size > 0);
241
242 uint32_t required = MAX2(used, old_size);
243 if (used * 2 <= required) {
244 /* If we're in this case then this isn't the firsta allocation and we
245 * already have enough space on both sides to hold double what we
246 * have allocated. There's nothing for us to do.
247 */
248 goto done;
249 }
250
251 uint32_t size = old_size * 2;
252 while (size < required)
253 size *= 2;
254
255 assert(size > table->size);
256
257 result = anv_state_table_expand_range(table, size);
258
259 done:
260 return result;
261 }
262
263 void
anv_state_table_finish(struct anv_state_table * table)264 anv_state_table_finish(struct anv_state_table *table)
265 {
266 struct anv_state_table_cleanup *cleanup;
267
268 u_vector_foreach(cleanup, &table->cleanups) {
269 if (cleanup->map)
270 munmap(cleanup->map, cleanup->size);
271 }
272
273 u_vector_finish(&table->cleanups);
274
275 close(table->fd);
276 }
277
278 VkResult
anv_state_table_add(struct anv_state_table * table,uint32_t * idx,uint32_t count)279 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
280 uint32_t count)
281 {
282 struct anv_block_state state, old, new;
283 VkResult result;
284
285 assert(idx);
286
287 while(1) {
288 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
289 if (state.next + count <= state.end) {
290 assert(table->map);
291 struct anv_free_entry *entry = &table->map[state.next];
292 for (int i = 0; i < count; i++) {
293 entry[i].state.idx = state.next + i;
294 }
295 *idx = state.next;
296 return VK_SUCCESS;
297 } else if (state.next <= state.end) {
298 /* We allocated the first block outside the pool so we have to grow
299 * the pool. pool_state->next acts a mutex: threads who try to
300 * allocate now will get block indexes above the current limit and
301 * hit futex_wait below.
302 */
303 new.next = state.next + count;
304 do {
305 result = anv_state_table_grow(table);
306 if (result != VK_SUCCESS)
307 return result;
308 new.end = table->size / ANV_STATE_ENTRY_SIZE;
309 } while (new.end < new.next);
310
311 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
312 if (old.next != state.next)
313 futex_wake(&table->state.end, INT_MAX);
314 } else {
315 futex_wait(&table->state.end, state.end, NULL);
316 continue;
317 }
318 }
319 }
320
321 void
anv_free_list_push(union anv_free_list * list,struct anv_state_table * table,uint32_t first,uint32_t count)322 anv_free_list_push(union anv_free_list *list,
323 struct anv_state_table *table,
324 uint32_t first, uint32_t count)
325 {
326 union anv_free_list current, old, new;
327 uint32_t last = first;
328
329 for (uint32_t i = 1; i < count; i++, last++)
330 table->map[last].next = last + 1;
331
332 old.u64 = list->u64;
333 do {
334 current = old;
335 table->map[last].next = current.offset;
336 new.offset = first;
337 new.count = current.count + 1;
338 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
339 } while (old.u64 != current.u64);
340 }
341
342 struct anv_state *
anv_free_list_pop(union anv_free_list * list,struct anv_state_table * table)343 anv_free_list_pop(union anv_free_list *list,
344 struct anv_state_table *table)
345 {
346 union anv_free_list current, new, old;
347
348 current.u64 = list->u64;
349 while (current.offset != EMPTY) {
350 __sync_synchronize();
351 new.offset = table->map[current.offset].next;
352 new.count = current.count + 1;
353 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
354 if (old.u64 == current.u64) {
355 struct anv_free_entry *entry = &table->map[current.offset];
356 return &entry->state;
357 }
358 current = old;
359 }
360
361 return NULL;
362 }
363
364 static VkResult
365 anv_block_pool_expand_range(struct anv_block_pool *pool,
366 uint32_t center_bo_offset, uint32_t size);
367
368 VkResult
anv_block_pool_init(struct anv_block_pool * pool,struct anv_device * device,const char * name,uint64_t start_address,uint32_t initial_size)369 anv_block_pool_init(struct anv_block_pool *pool,
370 struct anv_device *device,
371 const char *name,
372 uint64_t start_address,
373 uint32_t initial_size)
374 {
375 VkResult result;
376
377 if (device->info.verx10 >= 125) {
378 /* Make sure VMA addresses are 2MiB aligned for the block pool */
379 assert(anv_is_aligned(start_address, 2 * 1024 * 1024));
380 assert(anv_is_aligned(initial_size, 2 * 1024 * 1024));
381 }
382
383 pool->name = name;
384 pool->device = device;
385 pool->use_relocations = anv_use_relocations(device->physical);
386 pool->nbos = 0;
387 pool->size = 0;
388 pool->center_bo_offset = 0;
389 pool->start_address = intel_canonical_address(start_address);
390 pool->map = NULL;
391
392 if (!pool->use_relocations) {
393 pool->bo = NULL;
394 pool->fd = -1;
395 } else {
396 /* Just make it 2GB up-front. The Linux kernel won't actually back it
397 * with pages until we either map and fault on one of them or we use
398 * userptr and send a chunk of it off to the GPU.
399 */
400 pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
401 if (pool->fd == -1)
402 return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
403
404 pool->wrapper_bo = (struct anv_bo) {
405 .refcount = 1,
406 .offset = -1,
407 .is_wrapper = true,
408 };
409 pool->bo = &pool->wrapper_bo;
410 }
411
412 if (!u_vector_init(&pool->mmap_cleanups, 8,
413 sizeof(struct anv_mmap_cleanup))) {
414 result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
415 goto fail_fd;
416 }
417
418 pool->state.next = 0;
419 pool->state.end = 0;
420 pool->back_state.next = 0;
421 pool->back_state.end = 0;
422
423 result = anv_block_pool_expand_range(pool, 0, initial_size);
424 if (result != VK_SUCCESS)
425 goto fail_mmap_cleanups;
426
427 /* Make the entire pool available in the front of the pool. If back
428 * allocation needs to use this space, the "ends" will be re-arranged.
429 */
430 pool->state.end = pool->size;
431
432 return VK_SUCCESS;
433
434 fail_mmap_cleanups:
435 u_vector_finish(&pool->mmap_cleanups);
436 fail_fd:
437 if (pool->fd >= 0)
438 close(pool->fd);
439
440 return result;
441 }
442
443 void
anv_block_pool_finish(struct anv_block_pool * pool)444 anv_block_pool_finish(struct anv_block_pool *pool)
445 {
446 anv_block_pool_foreach_bo(bo, pool) {
447 assert(bo->refcount == 1);
448 anv_device_release_bo(pool->device, bo);
449 }
450
451 struct anv_mmap_cleanup *cleanup;
452 u_vector_foreach(cleanup, &pool->mmap_cleanups)
453 munmap(cleanup->map, cleanup->size);
454 u_vector_finish(&pool->mmap_cleanups);
455
456 if (pool->fd >= 0)
457 close(pool->fd);
458 }
459
460 static VkResult
anv_block_pool_expand_range(struct anv_block_pool * pool,uint32_t center_bo_offset,uint32_t size)461 anv_block_pool_expand_range(struct anv_block_pool *pool,
462 uint32_t center_bo_offset, uint32_t size)
463 {
464 /* Assert that we only ever grow the pool */
465 assert(center_bo_offset >= pool->back_state.end);
466 assert(size - center_bo_offset >= pool->state.end);
467
468 /* Assert that we don't go outside the bounds of the memfd */
469 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
470 assert(!pool->use_relocations ||
471 size - center_bo_offset <=
472 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
473
474 /* For state pool BOs we have to be a bit careful about where we place them
475 * in the GTT. There are two documented workarounds for state base address
476 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
477 * which state that those two base addresses do not support 48-bit
478 * addresses and need to be placed in the bottom 32-bit range.
479 * Unfortunately, this is not quite accurate.
480 *
481 * The real problem is that we always set the size of our state pools in
482 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
483 * likely significantly smaller. We do this because we do not no at the
484 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
485 * the pool during command buffer building so we don't actually have a
486 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
487 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
488 * as being out of bounds and returns zero. For dynamic state, this
489 * usually just leads to rendering corruptions, but shaders that are all
490 * zero hang the GPU immediately.
491 *
492 * The easiest solution to do is exactly what the bogus workarounds say to
493 * do: restrict these buffers to 32-bit addresses. We could also pin the
494 * BO to some particular location of our choosing, but that's significantly
495 * more work than just not setting a flag. So, we explicitly DO NOT set
496 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
497 * hard work for us. When using softpin, we're in control and the fixed
498 * addresses we choose are fine for base addresses.
499 */
500 enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE;
501 if (pool->use_relocations)
502 bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
503
504 if (!pool->use_relocations) {
505 uint32_t new_bo_size = size - pool->size;
506 struct anv_bo *new_bo;
507 assert(center_bo_offset == 0);
508 VkResult result = anv_device_alloc_bo(pool->device,
509 pool->name,
510 new_bo_size,
511 bo_alloc_flags |
512 ANV_BO_ALLOC_LOCAL_MEM |
513 ANV_BO_ALLOC_FIXED_ADDRESS |
514 ANV_BO_ALLOC_MAPPED |
515 ANV_BO_ALLOC_SNOOPED,
516 pool->start_address + pool->size,
517 &new_bo);
518 if (result != VK_SUCCESS)
519 return result;
520
521 pool->bos[pool->nbos++] = new_bo;
522
523 /* This pointer will always point to the first BO in the list */
524 pool->bo = pool->bos[0];
525 } else {
526 /* Just leak the old map until we destroy the pool. We can't munmap it
527 * without races or imposing locking on the block allocate fast path. On
528 * the whole the leaked maps adds up to less than the size of the
529 * current map. MAP_POPULATE seems like the right thing to do, but we
530 * should try to get some numbers.
531 */
532 void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
533 MAP_SHARED | MAP_POPULATE, pool->fd,
534 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
535 if (map == MAP_FAILED)
536 return vk_errorf(pool->device, VK_ERROR_MEMORY_MAP_FAILED,
537 "mmap failed: %m");
538
539 struct anv_bo *new_bo;
540 VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
541 map, size,
542 bo_alloc_flags,
543 0 /* client_address */,
544 &new_bo);
545 if (result != VK_SUCCESS) {
546 munmap(map, size);
547 return result;
548 }
549
550 struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
551 if (!cleanup) {
552 munmap(map, size);
553 anv_device_release_bo(pool->device, new_bo);
554 return vk_error(pool->device, VK_ERROR_OUT_OF_HOST_MEMORY);
555 }
556 cleanup->map = map;
557 cleanup->size = size;
558
559 /* Now that we mapped the new memory, we can write the new
560 * center_bo_offset back into pool and update pool->map. */
561 pool->center_bo_offset = center_bo_offset;
562 pool->map = map + center_bo_offset;
563
564 pool->bos[pool->nbos++] = new_bo;
565 pool->wrapper_bo.map = new_bo;
566 }
567
568 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
569 pool->size = size;
570
571 return VK_SUCCESS;
572 }
573
574 /** Returns current memory map of the block pool.
575 *
576 * The returned pointer points to the map for the memory at the specified
577 * offset. The offset parameter is relative to the "center" of the block pool
578 * rather than the start of the block pool BO map.
579 */
580 void*
anv_block_pool_map(struct anv_block_pool * pool,int32_t offset,uint32_t size)581 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size)
582 {
583 if (!pool->use_relocations) {
584 struct anv_bo *bo = NULL;
585 int32_t bo_offset = 0;
586 anv_block_pool_foreach_bo(iter_bo, pool) {
587 if (offset < bo_offset + iter_bo->size) {
588 bo = iter_bo;
589 break;
590 }
591 bo_offset += iter_bo->size;
592 }
593 assert(bo != NULL);
594 assert(offset >= bo_offset);
595 assert((offset - bo_offset) + size <= bo->size);
596
597 return bo->map + (offset - bo_offset);
598 } else {
599 return pool->map + offset;
600 }
601 }
602
603 /** Grows and re-centers the block pool.
604 *
605 * We grow the block pool in one or both directions in such a way that the
606 * following conditions are met:
607 *
608 * 1) The size of the entire pool is always a power of two.
609 *
610 * 2) The pool only grows on both ends. Neither end can get
611 * shortened.
612 *
613 * 3) At the end of the allocation, we have about twice as much space
614 * allocated for each end as we have used. This way the pool doesn't
615 * grow too far in one direction or the other.
616 *
617 * 4) If the _alloc_back() has never been called, then the back portion of
618 * the pool retains a size of zero. (This makes it easier for users of
619 * the block pool that only want a one-sided pool.)
620 *
621 * 5) We have enough space allocated for at least one more block in
622 * whichever side `state` points to.
623 *
624 * 6) The center of the pool is always aligned to both the block_size of
625 * the pool and a 4K CPU page.
626 */
627 static uint32_t
anv_block_pool_grow(struct anv_block_pool * pool,struct anv_block_state * state,uint32_t contiguous_size)628 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state,
629 uint32_t contiguous_size)
630 {
631 VkResult result = VK_SUCCESS;
632
633 pthread_mutex_lock(&pool->device->mutex);
634
635 assert(state == &pool->state || state == &pool->back_state);
636
637 /* Gather a little usage information on the pool. Since we may have
638 * threadsd waiting in queue to get some storage while we resize, it's
639 * actually possible that total_used will be larger than old_size. In
640 * particular, block_pool_alloc() increments state->next prior to
641 * calling block_pool_grow, so this ensures that we get enough space for
642 * which ever side tries to grow the pool.
643 *
644 * We align to a page size because it makes it easier to do our
645 * calculations later in such a way that we state page-aigned.
646 */
647 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
648 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
649 uint32_t total_used = front_used + back_used;
650
651 assert(state == &pool->state || back_used > 0);
652
653 uint32_t old_size = pool->size;
654
655 /* The block pool is always initialized to a nonzero size and this function
656 * is always called after initialization.
657 */
658 assert(old_size > 0);
659
660 const uint32_t old_back = pool->center_bo_offset;
661 const uint32_t old_front = old_size - pool->center_bo_offset;
662
663 /* The back_used and front_used may actually be smaller than the actual
664 * requirement because they are based on the next pointers which are
665 * updated prior to calling this function.
666 */
667 uint32_t back_required = MAX2(back_used, old_back);
668 uint32_t front_required = MAX2(front_used, old_front);
669
670 if (!pool->use_relocations) {
671 /* With softpin, the pool is made up of a bunch of buffers with separate
672 * maps. Make sure we have enough contiguous space that we can get a
673 * properly contiguous map for the next chunk.
674 */
675 assert(old_back == 0);
676 front_required = MAX2(front_required, old_front + contiguous_size);
677 }
678
679 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
680 /* If we're in this case then this isn't the firsta allocation and we
681 * already have enough space on both sides to hold double what we
682 * have allocated. There's nothing for us to do.
683 */
684 goto done;
685 }
686
687 uint32_t size = old_size * 2;
688 while (size < back_required + front_required)
689 size *= 2;
690
691 assert(size > pool->size);
692
693 /* We compute a new center_bo_offset such that, when we double the size
694 * of the pool, we maintain the ratio of how much is used by each side.
695 * This way things should remain more-or-less balanced.
696 */
697 uint32_t center_bo_offset;
698 if (back_used == 0) {
699 /* If we're in this case then we have never called alloc_back(). In
700 * this case, we want keep the offset at 0 to make things as simple
701 * as possible for users that don't care about back allocations.
702 */
703 center_bo_offset = 0;
704 } else {
705 /* Try to "center" the allocation based on how much is currently in
706 * use on each side of the center line.
707 */
708 center_bo_offset = ((uint64_t)size * back_used) / total_used;
709
710 /* Align down to a multiple of the page size */
711 center_bo_offset &= ~(PAGE_SIZE - 1);
712
713 assert(center_bo_offset >= back_used);
714
715 /* Make sure we don't shrink the back end of the pool */
716 if (center_bo_offset < back_required)
717 center_bo_offset = back_required;
718
719 /* Make sure that we don't shrink the front end of the pool */
720 if (size - center_bo_offset < front_required)
721 center_bo_offset = size - front_required;
722 }
723
724 assert(center_bo_offset % PAGE_SIZE == 0);
725
726 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
727
728 done:
729 pthread_mutex_unlock(&pool->device->mutex);
730
731 if (result == VK_SUCCESS) {
732 /* Return the appropriate new size. This function never actually
733 * updates state->next. Instead, we let the caller do that because it
734 * needs to do so in order to maintain its concurrency model.
735 */
736 if (state == &pool->state) {
737 return pool->size - pool->center_bo_offset;
738 } else {
739 assert(pool->center_bo_offset > 0);
740 return pool->center_bo_offset;
741 }
742 } else {
743 return 0;
744 }
745 }
746
747 static uint32_t
anv_block_pool_alloc_new(struct anv_block_pool * pool,struct anv_block_state * pool_state,uint32_t block_size,uint32_t * padding)748 anv_block_pool_alloc_new(struct anv_block_pool *pool,
749 struct anv_block_state *pool_state,
750 uint32_t block_size, uint32_t *padding)
751 {
752 struct anv_block_state state, old, new;
753
754 /* Most allocations won't generate any padding */
755 if (padding)
756 *padding = 0;
757
758 while (1) {
759 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
760 if (state.next + block_size <= state.end) {
761 return state.next;
762 } else if (state.next <= state.end) {
763 if (!pool->use_relocations && state.next < state.end) {
764 /* We need to grow the block pool, but still have some leftover
765 * space that can't be used by that particular allocation. So we
766 * add that as a "padding", and return it.
767 */
768 uint32_t leftover = state.end - state.next;
769
770 /* If there is some leftover space in the pool, the caller must
771 * deal with it.
772 */
773 assert(leftover == 0 || padding);
774 if (padding)
775 *padding = leftover;
776 state.next += leftover;
777 }
778
779 /* We allocated the first block outside the pool so we have to grow
780 * the pool. pool_state->next acts a mutex: threads who try to
781 * allocate now will get block indexes above the current limit and
782 * hit futex_wait below.
783 */
784 new.next = state.next + block_size;
785 do {
786 new.end = anv_block_pool_grow(pool, pool_state, block_size);
787 } while (new.end < new.next);
788
789 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
790 if (old.next != state.next)
791 futex_wake(&pool_state->end, INT_MAX);
792 return state.next;
793 } else {
794 futex_wait(&pool_state->end, state.end, NULL);
795 continue;
796 }
797 }
798 }
799
800 int32_t
anv_block_pool_alloc(struct anv_block_pool * pool,uint32_t block_size,uint32_t * padding)801 anv_block_pool_alloc(struct anv_block_pool *pool,
802 uint32_t block_size, uint32_t *padding)
803 {
804 uint32_t offset;
805
806 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
807
808 return offset;
809 }
810
811 /* Allocates a block out of the back of the block pool.
812 *
813 * This will allocated a block earlier than the "start" of the block pool.
814 * The offsets returned from this function will be negative but will still
815 * be correct relative to the block pool's map pointer.
816 *
817 * If you ever use anv_block_pool_alloc_back, then you will have to do
818 * gymnastics with the block pool's BO when doing relocations.
819 */
820 int32_t
anv_block_pool_alloc_back(struct anv_block_pool * pool,uint32_t block_size)821 anv_block_pool_alloc_back(struct anv_block_pool *pool,
822 uint32_t block_size)
823 {
824 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
825 block_size, NULL);
826
827 /* The offset we get out of anv_block_pool_alloc_new() is actually the
828 * number of bytes downwards from the middle to the end of the block.
829 * We need to turn it into a (negative) offset from the middle to the
830 * start of the block.
831 */
832 assert(offset >= 0);
833 return -(offset + block_size);
834 }
835
836 VkResult
anv_state_pool_init(struct anv_state_pool * pool,struct anv_device * device,const char * name,uint64_t base_address,int32_t start_offset,uint32_t block_size)837 anv_state_pool_init(struct anv_state_pool *pool,
838 struct anv_device *device,
839 const char *name,
840 uint64_t base_address,
841 int32_t start_offset,
842 uint32_t block_size)
843 {
844 /* We don't want to ever see signed overflow */
845 assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE);
846
847 uint32_t initial_size = block_size * 16;
848 if (device->info.verx10 >= 125)
849 initial_size = MAX2(initial_size, 2 * 1024 * 1024);
850
851 VkResult result = anv_block_pool_init(&pool->block_pool, device, name,
852 base_address + start_offset,
853 initial_size);
854 if (result != VK_SUCCESS)
855 return result;
856
857 pool->start_offset = start_offset;
858
859 result = anv_state_table_init(&pool->table, device, 64);
860 if (result != VK_SUCCESS) {
861 anv_block_pool_finish(&pool->block_pool);
862 return result;
863 }
864
865 assert(util_is_power_of_two_or_zero(block_size));
866 pool->block_size = block_size;
867 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
868 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
869 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
870 pool->buckets[i].block.next = 0;
871 pool->buckets[i].block.end = 0;
872 }
873 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
874
875 return VK_SUCCESS;
876 }
877
878 void
anv_state_pool_finish(struct anv_state_pool * pool)879 anv_state_pool_finish(struct anv_state_pool *pool)
880 {
881 VG(VALGRIND_DESTROY_MEMPOOL(pool));
882 anv_state_table_finish(&pool->table);
883 anv_block_pool_finish(&pool->block_pool);
884 }
885
886 static uint32_t
anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool * pool,struct anv_block_pool * block_pool,uint32_t state_size,uint32_t block_size,uint32_t * padding)887 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
888 struct anv_block_pool *block_pool,
889 uint32_t state_size,
890 uint32_t block_size,
891 uint32_t *padding)
892 {
893 struct anv_block_state block, old, new;
894 uint32_t offset;
895
896 /* We don't always use anv_block_pool_alloc(), which would set *padding to
897 * zero for us. So if we have a pointer to padding, we must zero it out
898 * ourselves here, to make sure we always return some sensible value.
899 */
900 if (padding)
901 *padding = 0;
902
903 /* If our state is large, we don't need any sub-allocation from a block.
904 * Instead, we just grab whole (potentially large) blocks.
905 */
906 if (state_size >= block_size)
907 return anv_block_pool_alloc(block_pool, state_size, padding);
908
909 restart:
910 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
911
912 if (block.next < block.end) {
913 return block.next;
914 } else if (block.next == block.end) {
915 offset = anv_block_pool_alloc(block_pool, block_size, padding);
916 new.next = offset + state_size;
917 new.end = offset + block_size;
918 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
919 if (old.next != block.next)
920 futex_wake(&pool->block.end, INT_MAX);
921 return offset;
922 } else {
923 futex_wait(&pool->block.end, block.end, NULL);
924 goto restart;
925 }
926 }
927
928 static uint32_t
anv_state_pool_get_bucket(uint32_t size)929 anv_state_pool_get_bucket(uint32_t size)
930 {
931 unsigned size_log2 = ilog2_round_up(size);
932 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
933 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
934 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
935 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
936 }
937
938 static uint32_t
anv_state_pool_get_bucket_size(uint32_t bucket)939 anv_state_pool_get_bucket_size(uint32_t bucket)
940 {
941 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
942 return 1 << size_log2;
943 }
944
945 /** Helper to push a chunk into the state table.
946 *
947 * It creates 'count' entries into the state table and update their sizes,
948 * offsets and maps, also pushing them as "free" states.
949 */
950 static void
anv_state_pool_return_blocks(struct anv_state_pool * pool,uint32_t chunk_offset,uint32_t count,uint32_t block_size)951 anv_state_pool_return_blocks(struct anv_state_pool *pool,
952 uint32_t chunk_offset, uint32_t count,
953 uint32_t block_size)
954 {
955 /* Disallow returning 0 chunks */
956 assert(count != 0);
957
958 /* Make sure we always return chunks aligned to the block_size */
959 assert(chunk_offset % block_size == 0);
960
961 uint32_t st_idx;
962 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
963 assert(result == VK_SUCCESS);
964 for (int i = 0; i < count; i++) {
965 /* update states that were added back to the state table */
966 struct anv_state *state_i = anv_state_table_get(&pool->table,
967 st_idx + i);
968 state_i->alloc_size = block_size;
969 state_i->offset = pool->start_offset + chunk_offset + block_size * i;
970 state_i->map = anv_block_pool_map(&pool->block_pool,
971 state_i->offset,
972 state_i->alloc_size);
973 }
974
975 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
976 anv_free_list_push(&pool->buckets[block_bucket].free_list,
977 &pool->table, st_idx, count);
978 }
979
980 /** Returns a chunk of memory back to the state pool.
981 *
982 * Do a two-level split. If chunk_size is bigger than divisor
983 * (pool->block_size), we return as many divisor sized blocks as we can, from
984 * the end of the chunk.
985 *
986 * The remaining is then split into smaller blocks (starting at small_size if
987 * it is non-zero), with larger blocks always being taken from the end of the
988 * chunk.
989 */
990 static void
anv_state_pool_return_chunk(struct anv_state_pool * pool,uint32_t chunk_offset,uint32_t chunk_size,uint32_t small_size)991 anv_state_pool_return_chunk(struct anv_state_pool *pool,
992 uint32_t chunk_offset, uint32_t chunk_size,
993 uint32_t small_size)
994 {
995 uint32_t divisor = pool->block_size;
996 uint32_t nblocks = chunk_size / divisor;
997 uint32_t rest = chunk_size - nblocks * divisor;
998
999 if (nblocks > 0) {
1000 /* First return divisor aligned and sized chunks. We start returning
1001 * larger blocks from the end of the chunk, since they should already be
1002 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
1003 * aligned chunks.
1004 */
1005 uint32_t offset = chunk_offset + rest;
1006 anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
1007 }
1008
1009 chunk_size = rest;
1010 divisor /= 2;
1011
1012 if (small_size > 0 && small_size < divisor)
1013 divisor = small_size;
1014
1015 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
1016
1017 /* Just as before, return larger divisor aligned blocks from the end of the
1018 * chunk first.
1019 */
1020 while (chunk_size > 0 && divisor >= min_size) {
1021 nblocks = chunk_size / divisor;
1022 rest = chunk_size - nblocks * divisor;
1023 if (nblocks > 0) {
1024 anv_state_pool_return_blocks(pool, chunk_offset + rest,
1025 nblocks, divisor);
1026 chunk_size = rest;
1027 }
1028 divisor /= 2;
1029 }
1030 }
1031
1032 static struct anv_state
anv_state_pool_alloc_no_vg(struct anv_state_pool * pool,uint32_t size,uint32_t align)1033 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1034 uint32_t size, uint32_t align)
1035 {
1036 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1037
1038 struct anv_state *state;
1039 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1040 int32_t offset;
1041
1042 /* Try free list first. */
1043 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1044 &pool->table);
1045 if (state) {
1046 assert(state->offset >= pool->start_offset);
1047 goto done;
1048 }
1049
1050 /* Try to grab a chunk from some larger bucket and split it up */
1051 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1052 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1053 if (state) {
1054 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1055 int32_t chunk_offset = state->offset;
1056
1057 /* First lets update the state we got to its new size. offset and map
1058 * remain the same.
1059 */
1060 state->alloc_size = alloc_size;
1061
1062 /* Now return the unused part of the chunk back to the pool as free
1063 * blocks
1064 *
1065 * There are a couple of options as to what we do with it:
1066 *
1067 * 1) We could fully split the chunk into state.alloc_size sized
1068 * pieces. However, this would mean that allocating a 16B
1069 * state could potentially split a 2MB chunk into 512K smaller
1070 * chunks. This would lead to unnecessary fragmentation.
1071 *
1072 * 2) The classic "buddy allocator" method would have us split the
1073 * chunk in half and return one half. Then we would split the
1074 * remaining half in half and return one half, and repeat as
1075 * needed until we get down to the size we want. However, if
1076 * you are allocating a bunch of the same size state (which is
1077 * the common case), this means that every other allocation has
1078 * to go up a level and every fourth goes up two levels, etc.
1079 * This is not nearly as efficient as it could be if we did a
1080 * little more work up-front.
1081 *
1082 * 3) Split the difference between (1) and (2) by doing a
1083 * two-level split. If it's bigger than some fixed block_size,
1084 * we split it into block_size sized chunks and return all but
1085 * one of them. Then we split what remains into
1086 * state.alloc_size sized chunks and return them.
1087 *
1088 * We choose something close to option (3), which is implemented with
1089 * anv_state_pool_return_chunk(). That is done by returning the
1090 * remaining of the chunk, with alloc_size as a hint of the size that
1091 * we want the smaller chunk split into.
1092 */
1093 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1094 chunk_size - alloc_size, alloc_size);
1095 goto done;
1096 }
1097 }
1098
1099 uint32_t padding;
1100 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1101 &pool->block_pool,
1102 alloc_size,
1103 pool->block_size,
1104 &padding);
1105 /* Every time we allocate a new state, add it to the state pool */
1106 uint32_t idx;
1107 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1108 assert(result == VK_SUCCESS);
1109
1110 state = anv_state_table_get(&pool->table, idx);
1111 state->offset = pool->start_offset + offset;
1112 state->alloc_size = alloc_size;
1113 state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1114
1115 if (padding > 0) {
1116 uint32_t return_offset = offset - padding;
1117 anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1118 }
1119
1120 done:
1121 return *state;
1122 }
1123
1124 struct anv_state
anv_state_pool_alloc(struct anv_state_pool * pool,uint32_t size,uint32_t align)1125 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1126 {
1127 if (size == 0)
1128 return ANV_STATE_NULL;
1129
1130 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1131 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1132 return state;
1133 }
1134
1135 struct anv_state
anv_state_pool_alloc_back(struct anv_state_pool * pool)1136 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1137 {
1138 struct anv_state *state;
1139 uint32_t alloc_size = pool->block_size;
1140
1141 /* This function is only used with pools where start_offset == 0 */
1142 assert(pool->start_offset == 0);
1143
1144 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1145 if (state) {
1146 assert(state->offset < pool->start_offset);
1147 goto done;
1148 }
1149
1150 int32_t offset;
1151 offset = anv_block_pool_alloc_back(&pool->block_pool,
1152 pool->block_size);
1153 uint32_t idx;
1154 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1155 assert(result == VK_SUCCESS);
1156
1157 state = anv_state_table_get(&pool->table, idx);
1158 state->offset = pool->start_offset + offset;
1159 state->alloc_size = alloc_size;
1160 state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1161
1162 done:
1163 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1164 return *state;
1165 }
1166
1167 static void
anv_state_pool_free_no_vg(struct anv_state_pool * pool,struct anv_state state)1168 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1169 {
1170 assert(util_is_power_of_two_or_zero(state.alloc_size));
1171 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1172
1173 if (state.offset < pool->start_offset) {
1174 assert(state.alloc_size == pool->block_size);
1175 anv_free_list_push(&pool->back_alloc_free_list,
1176 &pool->table, state.idx, 1);
1177 } else {
1178 anv_free_list_push(&pool->buckets[bucket].free_list,
1179 &pool->table, state.idx, 1);
1180 }
1181 }
1182
1183 void
anv_state_pool_free(struct anv_state_pool * pool,struct anv_state state)1184 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1185 {
1186 if (state.alloc_size == 0)
1187 return;
1188
1189 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1190 anv_state_pool_free_no_vg(pool, state);
1191 }
1192
1193 struct anv_state_stream_block {
1194 struct anv_state block;
1195
1196 /* The next block */
1197 struct anv_state_stream_block *next;
1198
1199 #ifdef HAVE_VALGRIND
1200 /* A pointer to the first user-allocated thing in this block. This is
1201 * what valgrind sees as the start of the block.
1202 */
1203 void *_vg_ptr;
1204 #endif
1205 };
1206
1207 /* The state stream allocator is a one-shot, single threaded allocator for
1208 * variable sized blocks. We use it for allocating dynamic state.
1209 */
1210 void
anv_state_stream_init(struct anv_state_stream * stream,struct anv_state_pool * state_pool,uint32_t block_size)1211 anv_state_stream_init(struct anv_state_stream *stream,
1212 struct anv_state_pool *state_pool,
1213 uint32_t block_size)
1214 {
1215 stream->state_pool = state_pool;
1216 stream->block_size = block_size;
1217
1218 stream->block = ANV_STATE_NULL;
1219
1220 /* Ensure that next + whatever > block_size. This way the first call to
1221 * state_stream_alloc fetches a new block.
1222 */
1223 stream->next = block_size;
1224
1225 util_dynarray_init(&stream->all_blocks, NULL);
1226
1227 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1228 }
1229
1230 void
anv_state_stream_finish(struct anv_state_stream * stream)1231 anv_state_stream_finish(struct anv_state_stream *stream)
1232 {
1233 util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) {
1234 VG(VALGRIND_MEMPOOL_FREE(stream, block->map));
1235 VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size));
1236 anv_state_pool_free_no_vg(stream->state_pool, *block);
1237 }
1238 util_dynarray_fini(&stream->all_blocks);
1239
1240 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1241 }
1242
1243 struct anv_state
anv_state_stream_alloc(struct anv_state_stream * stream,uint32_t size,uint32_t alignment)1244 anv_state_stream_alloc(struct anv_state_stream *stream,
1245 uint32_t size, uint32_t alignment)
1246 {
1247 if (size == 0)
1248 return ANV_STATE_NULL;
1249
1250 assert(alignment <= PAGE_SIZE);
1251
1252 uint32_t offset = align_u32(stream->next, alignment);
1253 if (offset + size > stream->block.alloc_size) {
1254 uint32_t block_size = stream->block_size;
1255 if (block_size < size)
1256 block_size = round_to_power_of_two(size);
1257
1258 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1259 block_size, PAGE_SIZE);
1260 util_dynarray_append(&stream->all_blocks,
1261 struct anv_state, stream->block);
1262 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size));
1263
1264 /* Reset back to the start */
1265 stream->next = offset = 0;
1266 assert(offset + size <= stream->block.alloc_size);
1267 }
1268 const bool new_block = stream->next == 0;
1269
1270 struct anv_state state = stream->block;
1271 state.offset += offset;
1272 state.alloc_size = size;
1273 state.map += offset;
1274
1275 stream->next = offset + size;
1276
1277 if (new_block) {
1278 assert(state.map == stream->block.map);
1279 VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size));
1280 } else {
1281 /* This only updates the mempool. The newly allocated chunk is still
1282 * marked as NOACCESS. */
1283 VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map,
1284 stream->next));
1285 /* Mark the newly allocated chunk as undefined */
1286 VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size));
1287 }
1288
1289 return state;
1290 }
1291
1292 void
anv_state_reserved_pool_init(struct anv_state_reserved_pool * pool,struct anv_state_pool * parent,uint32_t count,uint32_t size,uint32_t alignment)1293 anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
1294 struct anv_state_pool *parent,
1295 uint32_t count, uint32_t size, uint32_t alignment)
1296 {
1297 pool->pool = parent;
1298 pool->reserved_blocks = ANV_FREE_LIST_EMPTY;
1299 pool->count = count;
1300
1301 for (unsigned i = 0; i < count; i++) {
1302 struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment);
1303 anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1304 }
1305 }
1306
1307 void
anv_state_reserved_pool_finish(struct anv_state_reserved_pool * pool)1308 anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool)
1309 {
1310 struct anv_state *state;
1311
1312 while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) {
1313 anv_state_pool_free(pool->pool, *state);
1314 pool->count--;
1315 }
1316 assert(pool->count == 0);
1317 }
1318
1319 struct anv_state
anv_state_reserved_pool_alloc(struct anv_state_reserved_pool * pool)1320 anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool)
1321 {
1322 return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table);
1323 }
1324
1325 void
anv_state_reserved_pool_free(struct anv_state_reserved_pool * pool,struct anv_state state)1326 anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
1327 struct anv_state state)
1328 {
1329 anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1330 }
1331
1332 void
anv_bo_pool_init(struct anv_bo_pool * pool,struct anv_device * device,const char * name)1333 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1334 const char *name)
1335 {
1336 pool->name = name;
1337 pool->device = device;
1338 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1339 util_sparse_array_free_list_init(&pool->free_list[i],
1340 &device->bo_cache.bo_map, 0,
1341 offsetof(struct anv_bo, free_index));
1342 }
1343
1344 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1345 }
1346
1347 void
anv_bo_pool_finish(struct anv_bo_pool * pool)1348 anv_bo_pool_finish(struct anv_bo_pool *pool)
1349 {
1350 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1351 while (1) {
1352 struct anv_bo *bo =
1353 util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1354 if (bo == NULL)
1355 break;
1356
1357 /* anv_device_release_bo is going to "free" it */
1358 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1359 anv_device_release_bo(pool->device, bo);
1360 }
1361 }
1362
1363 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1364 }
1365
1366 VkResult
anv_bo_pool_alloc(struct anv_bo_pool * pool,uint32_t size,struct anv_bo ** bo_out)1367 anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1368 struct anv_bo **bo_out)
1369 {
1370 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1371 const unsigned pow2_size = 1 << size_log2;
1372 const unsigned bucket = size_log2 - 12;
1373 assert(bucket < ARRAY_SIZE(pool->free_list));
1374
1375 struct anv_bo *bo =
1376 util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1377 if (bo != NULL) {
1378 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1379 *bo_out = bo;
1380 return VK_SUCCESS;
1381 }
1382
1383 VkResult result = anv_device_alloc_bo(pool->device,
1384 pool->name,
1385 pow2_size,
1386 ANV_BO_ALLOC_LOCAL_MEM |
1387 ANV_BO_ALLOC_MAPPED |
1388 ANV_BO_ALLOC_SNOOPED |
1389 ANV_BO_ALLOC_CAPTURE,
1390 0 /* explicit_address */,
1391 &bo);
1392 if (result != VK_SUCCESS)
1393 return result;
1394
1395 /* We want it to look like it came from this pool */
1396 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1397 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1398
1399 *bo_out = bo;
1400
1401 return VK_SUCCESS;
1402 }
1403
1404 void
anv_bo_pool_free(struct anv_bo_pool * pool,struct anv_bo * bo)1405 anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1406 {
1407 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1408
1409 assert(util_is_power_of_two_or_zero(bo->size));
1410 const unsigned size_log2 = ilog2_round_up(bo->size);
1411 const unsigned bucket = size_log2 - 12;
1412 assert(bucket < ARRAY_SIZE(pool->free_list));
1413
1414 assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1415 bo->gem_handle) == bo);
1416 util_sparse_array_free_list_push(&pool->free_list[bucket],
1417 &bo->gem_handle, 1);
1418 }
1419
1420 // Scratch pool
1421
1422 void
anv_scratch_pool_init(struct anv_device * device,struct anv_scratch_pool * pool)1423 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1424 {
1425 memset(pool, 0, sizeof(*pool));
1426 }
1427
1428 void
anv_scratch_pool_finish(struct anv_device * device,struct anv_scratch_pool * pool)1429 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1430 {
1431 for (unsigned s = 0; s < ARRAY_SIZE(pool->bos[0]); s++) {
1432 for (unsigned i = 0; i < 16; i++) {
1433 if (pool->bos[i][s] != NULL)
1434 anv_device_release_bo(device, pool->bos[i][s]);
1435 }
1436 }
1437
1438 for (unsigned i = 0; i < 16; i++) {
1439 if (pool->surf_states[i].map != NULL) {
1440 anv_state_pool_free(&device->surface_state_pool,
1441 pool->surf_states[i]);
1442 }
1443 }
1444 }
1445
1446 struct anv_bo *
anv_scratch_pool_alloc(struct anv_device * device,struct anv_scratch_pool * pool,gl_shader_stage stage,unsigned per_thread_scratch)1447 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1448 gl_shader_stage stage, unsigned per_thread_scratch)
1449 {
1450 if (per_thread_scratch == 0)
1451 return NULL;
1452
1453 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1454 assert(scratch_size_log2 < 16);
1455
1456 assert(stage < ARRAY_SIZE(pool->bos));
1457
1458 const struct intel_device_info *devinfo = &device->info;
1459
1460 /* On GFX version 12.5, scratch access changed to a surface-based model.
1461 * Instead of each shader type having its own layout based on IDs passed
1462 * from the relevant fixed-function unit, all scratch access is based on
1463 * thread IDs like it always has been for compute.
1464 */
1465 if (devinfo->verx10 >= 125)
1466 stage = MESA_SHADER_COMPUTE;
1467
1468 struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1469
1470 if (bo != NULL)
1471 return bo;
1472
1473 assert(stage < ARRAY_SIZE(devinfo->max_scratch_ids));
1474 uint32_t size = per_thread_scratch * devinfo->max_scratch_ids[stage];
1475
1476 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1477 * are still relative to the general state base address. When we emit
1478 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1479 * to the maximum (1 page under 4GB). This allows us to just place the
1480 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1481 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1482 * However, in order to do so, we need to ensure that the kernel does not
1483 * place the scratch BO above the 32-bit boundary.
1484 *
1485 * NOTE: Technically, it can't go "anywhere" because the top page is off
1486 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1487 * kernel allocates space using
1488 *
1489 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1490 *
1491 * so nothing will ever touch the top page.
1492 */
1493 VkResult result = anv_device_alloc_bo(device, "scratch", size,
1494 ANV_BO_ALLOC_32BIT_ADDRESS |
1495 ANV_BO_ALLOC_LOCAL_MEM,
1496 0 /* explicit_address */,
1497 &bo);
1498 if (result != VK_SUCCESS)
1499 return NULL; /* TODO */
1500
1501 struct anv_bo *current_bo =
1502 p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1503 if (current_bo) {
1504 anv_device_release_bo(device, bo);
1505 return current_bo;
1506 } else {
1507 return bo;
1508 }
1509 }
1510
1511 uint32_t
anv_scratch_pool_get_surf(struct anv_device * device,struct anv_scratch_pool * pool,unsigned per_thread_scratch)1512 anv_scratch_pool_get_surf(struct anv_device *device,
1513 struct anv_scratch_pool *pool,
1514 unsigned per_thread_scratch)
1515 {
1516 if (per_thread_scratch == 0)
1517 return 0;
1518
1519 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1520 assert(scratch_size_log2 < 16);
1521
1522 uint32_t surf = p_atomic_read(&pool->surfs[scratch_size_log2]);
1523 if (surf > 0)
1524 return surf;
1525
1526 struct anv_bo *bo =
1527 anv_scratch_pool_alloc(device, pool, MESA_SHADER_COMPUTE,
1528 per_thread_scratch);
1529 struct anv_address addr = { .bo = bo };
1530
1531 struct anv_state state =
1532 anv_state_pool_alloc(&device->surface_state_pool,
1533 device->isl_dev.ss.size, 64);
1534
1535 isl_buffer_fill_state(&device->isl_dev, state.map,
1536 .address = anv_address_physical(addr),
1537 .size_B = bo->size,
1538 .mocs = anv_mocs(device, bo, 0),
1539 .format = ISL_FORMAT_RAW,
1540 .swizzle = ISL_SWIZZLE_IDENTITY,
1541 .stride_B = per_thread_scratch,
1542 .is_scratch = true);
1543
1544 uint32_t current = p_atomic_cmpxchg(&pool->surfs[scratch_size_log2],
1545 0, state.offset);
1546 if (current) {
1547 anv_state_pool_free(&device->surface_state_pool, state);
1548 return current;
1549 } else {
1550 pool->surf_states[scratch_size_log2] = state;
1551 return state.offset;
1552 }
1553 }
1554
1555 VkResult
anv_bo_cache_init(struct anv_bo_cache * cache,struct anv_device * device)1556 anv_bo_cache_init(struct anv_bo_cache *cache, struct anv_device *device)
1557 {
1558 util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1559
1560 if (pthread_mutex_init(&cache->mutex, NULL)) {
1561 util_sparse_array_finish(&cache->bo_map);
1562 return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
1563 "pthread_mutex_init failed: %m");
1564 }
1565
1566 return VK_SUCCESS;
1567 }
1568
1569 void
anv_bo_cache_finish(struct anv_bo_cache * cache)1570 anv_bo_cache_finish(struct anv_bo_cache *cache)
1571 {
1572 util_sparse_array_finish(&cache->bo_map);
1573 pthread_mutex_destroy(&cache->mutex);
1574 }
1575
1576 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1577 (EXEC_OBJECT_WRITE | \
1578 EXEC_OBJECT_ASYNC | \
1579 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1580 EXEC_OBJECT_PINNED | \
1581 EXEC_OBJECT_CAPTURE)
1582
1583 static uint32_t
anv_bo_alloc_flags_to_bo_flags(struct anv_device * device,enum anv_bo_alloc_flags alloc_flags)1584 anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1585 enum anv_bo_alloc_flags alloc_flags)
1586 {
1587 struct anv_physical_device *pdevice = device->physical;
1588
1589 uint64_t bo_flags = 0;
1590 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1591 pdevice->supports_48bit_addresses)
1592 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1593
1594 if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1595 bo_flags |= EXEC_OBJECT_CAPTURE;
1596
1597 if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1598 assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1599 bo_flags |= EXEC_OBJECT_WRITE;
1600 }
1601
1602 if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1603 bo_flags |= EXEC_OBJECT_ASYNC;
1604
1605 if (pdevice->use_softpin)
1606 bo_flags |= EXEC_OBJECT_PINNED;
1607
1608 return bo_flags;
1609 }
1610
1611 static void
anv_bo_finish(struct anv_device * device,struct anv_bo * bo)1612 anv_bo_finish(struct anv_device *device, struct anv_bo *bo)
1613 {
1614 if (bo->offset != 0 && anv_bo_is_pinned(bo) && !bo->has_fixed_address)
1615 anv_vma_free(device, bo->offset, bo->size + bo->_ccs_size);
1616
1617 if (bo->map && !bo->from_host_ptr)
1618 anv_device_unmap_bo(device, bo, bo->map, bo->size);
1619
1620 assert(bo->gem_handle != 0);
1621 anv_gem_close(device, bo->gem_handle);
1622 }
1623
1624 static VkResult
anv_bo_vma_alloc_or_close(struct anv_device * device,struct anv_bo * bo,enum anv_bo_alloc_flags alloc_flags,uint64_t explicit_address)1625 anv_bo_vma_alloc_or_close(struct anv_device *device,
1626 struct anv_bo *bo,
1627 enum anv_bo_alloc_flags alloc_flags,
1628 uint64_t explicit_address)
1629 {
1630 assert(anv_bo_is_pinned(bo));
1631 assert(explicit_address == intel_48b_address(explicit_address));
1632
1633 uint32_t align = 4096;
1634
1635 /* Gen12 CCS surface addresses need to be 64K aligned. */
1636 if (device->info.ver >= 12 && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS))
1637 align = 64 * 1024;
1638
1639 /* For XeHP, lmem and smem cannot share a single PDE, which means they
1640 * can't live in the same 2MiB aligned region.
1641 */
1642 if (device->info.verx10 >= 125)
1643 align = 2 * 1024 * 1024;
1644
1645 if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1646 bo->has_fixed_address = true;
1647 bo->offset = explicit_address;
1648 } else {
1649 bo->offset = anv_vma_alloc(device, bo->size + bo->_ccs_size,
1650 align, alloc_flags, explicit_address);
1651 if (bo->offset == 0) {
1652 anv_bo_finish(device, bo);
1653 return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1654 "failed to allocate virtual address for BO");
1655 }
1656 }
1657
1658 return VK_SUCCESS;
1659 }
1660
1661 VkResult
anv_device_alloc_bo(struct anv_device * device,const char * name,uint64_t size,enum anv_bo_alloc_flags alloc_flags,uint64_t explicit_address,struct anv_bo ** bo_out)1662 anv_device_alloc_bo(struct anv_device *device,
1663 const char *name,
1664 uint64_t size,
1665 enum anv_bo_alloc_flags alloc_flags,
1666 uint64_t explicit_address,
1667 struct anv_bo **bo_out)
1668 {
1669 if (!(alloc_flags & ANV_BO_ALLOC_LOCAL_MEM))
1670 anv_perf_warn(VK_LOG_NO_OBJS(&device->physical->instance->vk.base),
1671 "system memory used");
1672
1673 if (!device->physical->has_implicit_ccs)
1674 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1675
1676 const uint32_t bo_flags =
1677 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1678 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1679
1680 /* The kernel is going to give us whole pages anyway */
1681 size = align_u64(size, 4096);
1682
1683 uint64_t ccs_size = 0;
1684 if (device->info.has_aux_map && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) {
1685 /* Align the size up to the next multiple of 64K so we don't have any
1686 * AUX-TT entries pointing from a 64K page to itself.
1687 */
1688 size = align_u64(size, 64 * 1024);
1689
1690 /* See anv_bo::_ccs_size */
1691 ccs_size = align_u64(DIV_ROUND_UP(size, INTEL_AUX_MAP_GFX12_CCS_SCALE), 4096);
1692 }
1693
1694 uint32_t gem_handle;
1695
1696 /* If we have vram size, we have multiple memory regions and should choose
1697 * one of them.
1698 */
1699 if (anv_physical_device_has_vram(device->physical)) {
1700 struct drm_i915_gem_memory_class_instance regions[2];
1701 uint32_t nregions = 0;
1702
1703 if (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM) {
1704 /* vram_non_mappable & vram_mappable actually are the same region. */
1705 regions[nregions++] = device->physical->vram_non_mappable.region;
1706 } else {
1707 regions[nregions++] = device->physical->sys.region;
1708 }
1709
1710 uint32_t flags = 0;
1711 if (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE) {
1712 assert(alloc_flags & ANV_BO_ALLOC_LOCAL_MEM);
1713 /* We're required to add smem as a region when using mappable vram. */
1714 regions[nregions++] = device->physical->sys.region;
1715 flags |= I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS;
1716 }
1717
1718 gem_handle = anv_gem_create_regions(device, size + ccs_size,
1719 flags, nregions, regions);
1720 } else {
1721 gem_handle = anv_gem_create(device, size + ccs_size);
1722 }
1723
1724 if (gem_handle == 0)
1725 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
1726
1727 struct anv_bo new_bo = {
1728 .name = name,
1729 .gem_handle = gem_handle,
1730 .refcount = 1,
1731 .offset = -1,
1732 .size = size,
1733 ._ccs_size = ccs_size,
1734 .flags = bo_flags,
1735 .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1736 .has_client_visible_address =
1737 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1738 .has_implicit_ccs = ccs_size > 0 || (device->info.verx10 >= 125 &&
1739 (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM)),
1740 };
1741
1742 if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1743 VkResult result = anv_device_map_bo(device, &new_bo, 0, size,
1744 0 /* gem_flags */, &new_bo.map);
1745 if (unlikely(result != VK_SUCCESS)) {
1746 anv_gem_close(device, new_bo.gem_handle);
1747 return result;
1748 }
1749 }
1750
1751 if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1752 assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1753 /* We don't want to change these defaults if it's going to be shared
1754 * with another process.
1755 */
1756 assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1757
1758 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1759 * I915_CACHING_NONE on non-LLC platforms. For many internal state
1760 * objects, we'd rather take the snooping overhead than risk forgetting
1761 * a CLFLUSH somewhere. Userptr objects are always created as
1762 * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1763 * need to do this there.
1764 */
1765 if (!device->info.has_llc) {
1766 anv_gem_set_caching(device, new_bo.gem_handle,
1767 I915_CACHING_CACHED);
1768 }
1769 }
1770
1771 if (anv_bo_is_pinned(&new_bo)) {
1772 VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
1773 alloc_flags,
1774 explicit_address);
1775 if (result != VK_SUCCESS)
1776 return result;
1777 } else {
1778 assert(!new_bo.has_client_visible_address);
1779 }
1780
1781 if (new_bo._ccs_size > 0) {
1782 assert(device->info.has_aux_map);
1783 intel_aux_map_add_mapping(device->aux_map_ctx,
1784 intel_canonical_address(new_bo.offset),
1785 intel_canonical_address(new_bo.offset + new_bo.size),
1786 new_bo.size, 0 /* format_bits */);
1787 }
1788
1789 assert(new_bo.gem_handle);
1790
1791 /* If we just got this gem_handle from anv_bo_init_new then we know no one
1792 * else is touching this BO at the moment so we don't need to lock here.
1793 */
1794 struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1795 *bo = new_bo;
1796
1797 *bo_out = bo;
1798
1799 return VK_SUCCESS;
1800 }
1801
1802 VkResult
anv_device_map_bo(struct anv_device * device,struct anv_bo * bo,uint64_t offset,size_t size,uint32_t gem_flags,void ** map_out)1803 anv_device_map_bo(struct anv_device *device,
1804 struct anv_bo *bo,
1805 uint64_t offset,
1806 size_t size,
1807 uint32_t gem_flags,
1808 void **map_out)
1809 {
1810 assert(!bo->is_wrapper && !bo->from_host_ptr);
1811 assert(size > 0);
1812
1813 void *map = anv_gem_mmap(device, bo->gem_handle, offset, size, gem_flags);
1814 if (unlikely(map == MAP_FAILED))
1815 return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
1816
1817 assert(map != NULL);
1818
1819 if (map_out)
1820 *map_out = map;
1821
1822 return VK_SUCCESS;
1823 }
1824
1825 void
anv_device_unmap_bo(struct anv_device * device,struct anv_bo * bo,void * map,size_t map_size)1826 anv_device_unmap_bo(struct anv_device *device,
1827 struct anv_bo *bo,
1828 void *map, size_t map_size)
1829 {
1830 assert(!bo->is_wrapper && !bo->from_host_ptr);
1831
1832 anv_gem_munmap(device, map, map_size);
1833 }
1834
1835 VkResult
anv_device_import_bo_from_host_ptr(struct anv_device * device,void * host_ptr,uint32_t size,enum anv_bo_alloc_flags alloc_flags,uint64_t client_address,struct anv_bo ** bo_out)1836 anv_device_import_bo_from_host_ptr(struct anv_device *device,
1837 void *host_ptr, uint32_t size,
1838 enum anv_bo_alloc_flags alloc_flags,
1839 uint64_t client_address,
1840 struct anv_bo **bo_out)
1841 {
1842 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1843 ANV_BO_ALLOC_SNOOPED |
1844 ANV_BO_ALLOC_FIXED_ADDRESS)));
1845
1846 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS) ||
1847 (device->physical->has_implicit_ccs && device->info.has_aux_map));
1848
1849 struct anv_bo_cache *cache = &device->bo_cache;
1850 const uint32_t bo_flags =
1851 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1852 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1853
1854 uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1855 if (!gem_handle)
1856 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1857
1858 pthread_mutex_lock(&cache->mutex);
1859
1860 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1861 if (bo->refcount > 0) {
1862 /* VK_EXT_external_memory_host doesn't require handling importing the
1863 * same pointer twice at the same time, but we don't get in the way. If
1864 * kernel gives us the same gem_handle, only succeed if the flags match.
1865 */
1866 assert(bo->gem_handle == gem_handle);
1867 if (bo_flags != bo->flags) {
1868 pthread_mutex_unlock(&cache->mutex);
1869 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1870 "same host pointer imported two different ways");
1871 }
1872
1873 if (bo->has_client_visible_address !=
1874 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1875 pthread_mutex_unlock(&cache->mutex);
1876 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1877 "The same BO was imported with and without buffer "
1878 "device address");
1879 }
1880
1881 if (client_address && client_address != intel_48b_address(bo->offset)) {
1882 pthread_mutex_unlock(&cache->mutex);
1883 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1884 "The same BO was imported at two different "
1885 "addresses");
1886 }
1887
1888 __sync_fetch_and_add(&bo->refcount, 1);
1889 } else {
1890 struct anv_bo new_bo = {
1891 .name = "host-ptr",
1892 .gem_handle = gem_handle,
1893 .refcount = 1,
1894 .offset = -1,
1895 .size = size,
1896 .map = host_ptr,
1897 .flags = bo_flags,
1898 .is_external = true,
1899 .from_host_ptr = true,
1900 .has_client_visible_address =
1901 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1902 };
1903
1904 if (anv_bo_is_pinned(&new_bo)) {
1905 VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
1906 alloc_flags,
1907 client_address);
1908 if (result != VK_SUCCESS) {
1909 pthread_mutex_unlock(&cache->mutex);
1910 return result;
1911 }
1912 } else {
1913 assert(!new_bo.has_client_visible_address);
1914 }
1915
1916 *bo = new_bo;
1917 }
1918
1919 pthread_mutex_unlock(&cache->mutex);
1920 *bo_out = bo;
1921
1922 return VK_SUCCESS;
1923 }
1924
1925 VkResult
anv_device_import_bo(struct anv_device * device,int fd,enum anv_bo_alloc_flags alloc_flags,uint64_t client_address,struct anv_bo ** bo_out)1926 anv_device_import_bo(struct anv_device *device,
1927 int fd,
1928 enum anv_bo_alloc_flags alloc_flags,
1929 uint64_t client_address,
1930 struct anv_bo **bo_out)
1931 {
1932 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1933 ANV_BO_ALLOC_SNOOPED |
1934 ANV_BO_ALLOC_FIXED_ADDRESS)));
1935
1936 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS) ||
1937 (device->physical->has_implicit_ccs && device->info.has_aux_map));
1938
1939 struct anv_bo_cache *cache = &device->bo_cache;
1940 const uint32_t bo_flags =
1941 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1942 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1943
1944 pthread_mutex_lock(&cache->mutex);
1945
1946 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1947 if (!gem_handle) {
1948 pthread_mutex_unlock(&cache->mutex);
1949 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1950 }
1951
1952 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1953 if (bo->refcount > 0) {
1954 /* We have to be careful how we combine flags so that it makes sense.
1955 * Really, though, if we get to this case and it actually matters, the
1956 * client has imported a BO twice in different ways and they get what
1957 * they have coming.
1958 */
1959 uint64_t new_flags = 0;
1960 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1961 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1962 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1963 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1964 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1965
1966 /* It's theoretically possible for a BO to get imported such that it's
1967 * both pinned and not pinned. The only way this can happen is if it
1968 * gets imported as both a semaphore and a memory object and that would
1969 * be an application error. Just fail out in that case.
1970 */
1971 if ((bo->flags & EXEC_OBJECT_PINNED) !=
1972 (bo_flags & EXEC_OBJECT_PINNED)) {
1973 pthread_mutex_unlock(&cache->mutex);
1974 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1975 "The same BO was imported two different ways");
1976 }
1977
1978 /* It's also theoretically possible that someone could export a BO from
1979 * one heap and import it into another or to import the same BO into two
1980 * different heaps. If this happens, we could potentially end up both
1981 * allowing and disallowing 48-bit addresses. There's not much we can
1982 * do about it if we're pinning so we just throw an error and hope no
1983 * app is actually that stupid.
1984 */
1985 if ((new_flags & EXEC_OBJECT_PINNED) &&
1986 (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1987 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1988 pthread_mutex_unlock(&cache->mutex);
1989 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1990 "The same BO was imported on two different heaps");
1991 }
1992
1993 if (bo->has_client_visible_address !=
1994 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1995 pthread_mutex_unlock(&cache->mutex);
1996 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1997 "The same BO was imported with and without buffer "
1998 "device address");
1999 }
2000
2001 if (client_address && client_address != intel_48b_address(bo->offset)) {
2002 pthread_mutex_unlock(&cache->mutex);
2003 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
2004 "The same BO was imported at two different "
2005 "addresses");
2006 }
2007
2008 bo->flags = new_flags;
2009
2010 __sync_fetch_and_add(&bo->refcount, 1);
2011 } else {
2012 off_t size = lseek(fd, 0, SEEK_END);
2013 if (size == (off_t)-1) {
2014 anv_gem_close(device, gem_handle);
2015 pthread_mutex_unlock(&cache->mutex);
2016 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
2017 }
2018
2019 struct anv_bo new_bo = {
2020 .name = "imported",
2021 .gem_handle = gem_handle,
2022 .refcount = 1,
2023 .offset = -1,
2024 .size = size,
2025 .flags = bo_flags,
2026 .is_external = true,
2027 .has_client_visible_address =
2028 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
2029 };
2030
2031 if (anv_bo_is_pinned(&new_bo)) {
2032 assert(new_bo._ccs_size == 0);
2033 VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
2034 alloc_flags,
2035 client_address);
2036 if (result != VK_SUCCESS) {
2037 pthread_mutex_unlock(&cache->mutex);
2038 return result;
2039 }
2040 } else {
2041 assert(!new_bo.has_client_visible_address);
2042 }
2043
2044 *bo = new_bo;
2045 }
2046
2047 pthread_mutex_unlock(&cache->mutex);
2048 *bo_out = bo;
2049
2050 return VK_SUCCESS;
2051 }
2052
2053 VkResult
anv_device_export_bo(struct anv_device * device,struct anv_bo * bo,int * fd_out)2054 anv_device_export_bo(struct anv_device *device,
2055 struct anv_bo *bo, int *fd_out)
2056 {
2057 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
2058
2059 /* This BO must have been flagged external in order for us to be able
2060 * to export it. This is done based on external options passed into
2061 * anv_AllocateMemory.
2062 */
2063 assert(bo->is_external);
2064
2065 int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
2066 if (fd < 0)
2067 return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
2068
2069 *fd_out = fd;
2070
2071 return VK_SUCCESS;
2072 }
2073
2074 VkResult
anv_device_get_bo_tiling(struct anv_device * device,struct anv_bo * bo,enum isl_tiling * tiling_out)2075 anv_device_get_bo_tiling(struct anv_device *device,
2076 struct anv_bo *bo,
2077 enum isl_tiling *tiling_out)
2078 {
2079 int i915_tiling = anv_gem_get_tiling(device, bo->gem_handle);
2080 if (i915_tiling < 0) {
2081 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
2082 "failed to get BO tiling: %m");
2083 }
2084
2085 *tiling_out = isl_tiling_from_i915_tiling(i915_tiling);
2086
2087 return VK_SUCCESS;
2088 }
2089
2090 VkResult
anv_device_set_bo_tiling(struct anv_device * device,struct anv_bo * bo,uint32_t row_pitch_B,enum isl_tiling tiling)2091 anv_device_set_bo_tiling(struct anv_device *device,
2092 struct anv_bo *bo,
2093 uint32_t row_pitch_B,
2094 enum isl_tiling tiling)
2095 {
2096 int ret = anv_gem_set_tiling(device, bo->gem_handle, row_pitch_B,
2097 isl_tiling_to_i915_tiling(tiling));
2098 if (ret) {
2099 return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
2100 "failed to set BO tiling: %m");
2101 }
2102
2103 return VK_SUCCESS;
2104 }
2105
2106 static bool
atomic_dec_not_one(uint32_t * counter)2107 atomic_dec_not_one(uint32_t *counter)
2108 {
2109 uint32_t old, val;
2110
2111 val = *counter;
2112 while (1) {
2113 if (val == 1)
2114 return false;
2115
2116 old = __sync_val_compare_and_swap(counter, val, val - 1);
2117 if (old == val)
2118 return true;
2119
2120 val = old;
2121 }
2122 }
2123
2124 void
anv_device_release_bo(struct anv_device * device,struct anv_bo * bo)2125 anv_device_release_bo(struct anv_device *device,
2126 struct anv_bo *bo)
2127 {
2128 struct anv_bo_cache *cache = &device->bo_cache;
2129 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
2130
2131 /* Try to decrement the counter but don't go below one. If this succeeds
2132 * then the refcount has been decremented and we are not the last
2133 * reference.
2134 */
2135 if (atomic_dec_not_one(&bo->refcount))
2136 return;
2137
2138 pthread_mutex_lock(&cache->mutex);
2139
2140 /* We are probably the last reference since our attempt to decrement above
2141 * failed. However, we can't actually know until we are inside the mutex.
2142 * Otherwise, someone could import the BO between the decrement and our
2143 * taking the mutex.
2144 */
2145 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
2146 /* Turns out we're not the last reference. Unlock and bail. */
2147 pthread_mutex_unlock(&cache->mutex);
2148 return;
2149 }
2150 assert(bo->refcount == 0);
2151
2152 if (bo->_ccs_size > 0) {
2153 assert(device->physical->has_implicit_ccs);
2154 assert(device->info.has_aux_map);
2155 assert(bo->has_implicit_ccs);
2156 intel_aux_map_unmap_range(device->aux_map_ctx,
2157 intel_canonical_address(bo->offset),
2158 bo->size);
2159 }
2160
2161 /* Memset the BO just in case. The refcount being zero should be enough to
2162 * prevent someone from assuming the data is valid but it's safer to just
2163 * stomp to zero just in case. We explicitly do this *before* we actually
2164 * close the GEM handle to ensure that if anyone allocates something and
2165 * gets the same GEM handle, the memset has already happen and won't stomp
2166 * all over any data they may write in this BO.
2167 */
2168 struct anv_bo old_bo = *bo;
2169
2170 memset(bo, 0, sizeof(*bo));
2171
2172 anv_bo_finish(device, &old_bo);
2173
2174 /* Don't unlock until we've actually closed the BO. The whole point of
2175 * the BO cache is to ensure that we correctly handle races with creating
2176 * and releasing GEM handles and we don't want to let someone import the BO
2177 * again between mutex unlock and closing the GEM handle.
2178 */
2179 pthread_mutex_unlock(&cache->mutex);
2180 }
2181