• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) "SVM: " fmt
16 
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21 
22 #include <asm/irq_remapping.h>
23 
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29 
30 /* enable / disable AVIC */
31 int avic;
32 #ifdef CONFIG_X86_LOCAL_APIC
33 module_param(avic, int, S_IRUGO);
34 #endif
35 
36 #define SVM_AVIC_DOORBELL	0xc001011b
37 
38 #define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
39 
40 /*
41  * 0xff is broadcast, so the max index allowed for physical APIC ID
42  * table is 0xfe.  APIC IDs above 0xff are reserved.
43  */
44 #define AVIC_MAX_PHYSICAL_ID_COUNT	255
45 
46 #define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
47 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
48 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
49 
50 /* AVIC GATAG is encoded using VM and VCPU IDs */
51 #define AVIC_VCPU_ID_BITS		8
52 #define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
53 
54 #define AVIC_VM_ID_BITS			24
55 #define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
56 #define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
57 
58 #define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
59 						(y & AVIC_VCPU_ID_MASK))
60 #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
61 #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
62 
63 /* Note:
64  * This hash table is used to map VM_ID to a struct kvm_svm,
65  * when handling AMD IOMMU GALOG notification to schedule in
66  * a particular vCPU.
67  */
68 #define SVM_VM_DATA_HASH_BITS	8
69 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
70 static u32 next_vm_id = 0;
71 static bool next_vm_id_wrapped = 0;
72 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
73 
74 /*
75  * This is a wrapper of struct amd_iommu_ir_data.
76  */
77 struct amd_svm_iommu_ir {
78 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
79 	void *data;		/* Storing pointer to struct amd_ir_data */
80 };
81 
82 enum avic_ipi_failure_cause {
83 	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
84 	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
85 	AVIC_IPI_FAILURE_INVALID_TARGET,
86 	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
87 };
88 
89 /* Note:
90  * This function is called from IOMMU driver to notify
91  * SVM to schedule in a particular vCPU of a particular VM.
92  */
avic_ga_log_notifier(u32 ga_tag)93 int avic_ga_log_notifier(u32 ga_tag)
94 {
95 	unsigned long flags;
96 	struct kvm_svm *kvm_svm;
97 	struct kvm_vcpu *vcpu = NULL;
98 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
99 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
100 
101 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
102 	trace_kvm_avic_ga_log(vm_id, vcpu_id);
103 
104 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
105 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
106 		if (kvm_svm->avic_vm_id != vm_id)
107 			continue;
108 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
109 		break;
110 	}
111 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
112 
113 	/* Note:
114 	 * At this point, the IOMMU should have already set the pending
115 	 * bit in the vAPIC backing page. So, we just need to schedule
116 	 * in the vcpu.
117 	 */
118 	if (vcpu)
119 		kvm_vcpu_wake_up(vcpu);
120 
121 	return 0;
122 }
123 
avic_vm_destroy(struct kvm * kvm)124 void avic_vm_destroy(struct kvm *kvm)
125 {
126 	unsigned long flags;
127 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
128 
129 	if (!avic)
130 		return;
131 
132 	if (kvm_svm->avic_logical_id_table_page)
133 		__free_page(kvm_svm->avic_logical_id_table_page);
134 	if (kvm_svm->avic_physical_id_table_page)
135 		__free_page(kvm_svm->avic_physical_id_table_page);
136 
137 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
138 	hash_del(&kvm_svm->hnode);
139 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
140 }
141 
avic_vm_init(struct kvm * kvm)142 int avic_vm_init(struct kvm *kvm)
143 {
144 	unsigned long flags;
145 	int err = -ENOMEM;
146 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
147 	struct kvm_svm *k2;
148 	struct page *p_page;
149 	struct page *l_page;
150 	u32 vm_id;
151 
152 	if (!avic)
153 		return 0;
154 
155 	/* Allocating physical APIC ID table (4KB) */
156 	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
157 	if (!p_page)
158 		goto free_avic;
159 
160 	kvm_svm->avic_physical_id_table_page = p_page;
161 
162 	/* Allocating logical APIC ID table (4KB) */
163 	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
164 	if (!l_page)
165 		goto free_avic;
166 
167 	kvm_svm->avic_logical_id_table_page = l_page;
168 
169 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
170  again:
171 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
172 	if (vm_id == 0) { /* id is 1-based, zero is not okay */
173 		next_vm_id_wrapped = 1;
174 		goto again;
175 	}
176 	/* Is it still in use? Only possible if wrapped at least once */
177 	if (next_vm_id_wrapped) {
178 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
179 			if (k2->avic_vm_id == vm_id)
180 				goto again;
181 		}
182 	}
183 	kvm_svm->avic_vm_id = vm_id;
184 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
185 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
186 
187 	return 0;
188 
189 free_avic:
190 	avic_vm_destroy(kvm);
191 	return err;
192 }
193 
avic_init_vmcb(struct vcpu_svm * svm)194 void avic_init_vmcb(struct vcpu_svm *svm)
195 {
196 	struct vmcb *vmcb = svm->vmcb;
197 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
198 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
199 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
200 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
201 
202 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
203 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
204 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
205 	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
206 	if (kvm_apicv_activated(svm->vcpu.kvm))
207 		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
208 	else
209 		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
210 }
211 
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)212 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
213 				       unsigned int index)
214 {
215 	u64 *avic_physical_id_table;
216 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
217 
218 	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
219 		return NULL;
220 
221 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
222 
223 	return &avic_physical_id_table[index];
224 }
225 
226 /**
227  * Note:
228  * AVIC hardware walks the nested page table to check permissions,
229  * but does not use the SPA address specified in the leaf page
230  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
231  * field of the VMCB. Therefore, we set up the
232  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
233  */
avic_update_access_page(struct kvm * kvm,bool activate)234 static int avic_update_access_page(struct kvm *kvm, bool activate)
235 {
236 	int ret = 0;
237 
238 	mutex_lock(&kvm->slots_lock);
239 	/*
240 	 * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
241 	 * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
242 	 * memory region. So, we need to ensure that kvm->mm == current->mm.
243 	 */
244 	if ((kvm->arch.apic_access_page_done == activate) ||
245 	    (kvm->mm != current->mm))
246 		goto out;
247 
248 	ret = __x86_set_memory_region(kvm,
249 				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
250 				      APIC_DEFAULT_PHYS_BASE,
251 				      activate ? PAGE_SIZE : 0);
252 	if (ret)
253 		goto out;
254 
255 	kvm->arch.apic_access_page_done = activate;
256 out:
257 	mutex_unlock(&kvm->slots_lock);
258 	return ret;
259 }
260 
avic_init_backing_page(struct kvm_vcpu * vcpu)261 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
262 {
263 	u64 *entry, new_entry;
264 	int id = vcpu->vcpu_id;
265 	struct vcpu_svm *svm = to_svm(vcpu);
266 
267 	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
268 		return -EINVAL;
269 
270 	if (!svm->vcpu.arch.apic->regs)
271 		return -EINVAL;
272 
273 	if (kvm_apicv_activated(vcpu->kvm)) {
274 		int ret;
275 
276 		ret = avic_update_access_page(vcpu->kvm, true);
277 		if (ret)
278 			return ret;
279 	}
280 
281 	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
282 
283 	/* Setting AVIC backing page address in the phy APIC ID table */
284 	entry = avic_get_physical_id_entry(vcpu, id);
285 	if (!entry)
286 		return -EINVAL;
287 
288 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
289 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
290 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
291 	WRITE_ONCE(*entry, new_entry);
292 
293 	svm->avic_physical_id_cache = entry;
294 
295 	return 0;
296 }
297 
avic_incomplete_ipi_interception(struct vcpu_svm * svm)298 int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
299 {
300 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
301 	u32 icrl = svm->vmcb->control.exit_info_1;
302 	u32 id = svm->vmcb->control.exit_info_2 >> 32;
303 	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
304 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
305 
306 	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
307 
308 	switch (id) {
309 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
310 		/*
311 		 * AVIC hardware handles the generation of
312 		 * IPIs when the specified Message Type is Fixed
313 		 * (also known as fixed delivery mode) and
314 		 * the Trigger Mode is edge-triggered. The hardware
315 		 * also supports self and broadcast delivery modes
316 		 * specified via the Destination Shorthand(DSH)
317 		 * field of the ICRL. Logical and physical APIC ID
318 		 * formats are supported. All other IPI types cause
319 		 * a #VMEXIT, which needs to emulated.
320 		 */
321 		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
322 		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
323 		break;
324 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
325 		int i;
326 		struct kvm_vcpu *vcpu;
327 		struct kvm *kvm = svm->vcpu.kvm;
328 		struct kvm_lapic *apic = svm->vcpu.arch.apic;
329 
330 		/*
331 		 * At this point, we expect that the AVIC HW has already
332 		 * set the appropriate IRR bits on the valid target
333 		 * vcpus. So, we just need to kick the appropriate vcpu.
334 		 */
335 		kvm_for_each_vcpu(i, vcpu, kvm) {
336 			bool m = kvm_apic_match_dest(vcpu, apic,
337 						     icrl & APIC_SHORT_MASK,
338 						     GET_APIC_DEST_FIELD(icrh),
339 						     icrl & APIC_DEST_MASK);
340 
341 			if (m && !avic_vcpu_is_running(vcpu))
342 				kvm_vcpu_wake_up(vcpu);
343 		}
344 		break;
345 	}
346 	case AVIC_IPI_FAILURE_INVALID_TARGET:
347 		break;
348 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
349 		WARN_ONCE(1, "Invalid backing page\n");
350 		break;
351 	default:
352 		pr_err("Unknown IPI interception\n");
353 	}
354 
355 	return 1;
356 }
357 
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)358 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
359 {
360 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
361 	int index;
362 	u32 *logical_apic_id_table;
363 	int dlid = GET_APIC_LOGICAL_ID(ldr);
364 
365 	if (!dlid)
366 		return NULL;
367 
368 	if (flat) { /* flat */
369 		index = ffs(dlid) - 1;
370 		if (index > 7)
371 			return NULL;
372 	} else { /* cluster */
373 		int cluster = (dlid & 0xf0) >> 4;
374 		int apic = ffs(dlid & 0x0f) - 1;
375 
376 		if ((apic < 0) || (apic > 7) ||
377 		    (cluster >= 0xf))
378 			return NULL;
379 		index = (cluster << 2) + apic;
380 	}
381 
382 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
383 
384 	return &logical_apic_id_table[index];
385 }
386 
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)387 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
388 {
389 	bool flat;
390 	u32 *entry, new_entry;
391 
392 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
393 	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
394 	if (!entry)
395 		return -EINVAL;
396 
397 	new_entry = READ_ONCE(*entry);
398 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
399 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
400 	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
401 	WRITE_ONCE(*entry, new_entry);
402 
403 	return 0;
404 }
405 
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)406 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
407 {
408 	struct vcpu_svm *svm = to_svm(vcpu);
409 	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
410 	u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
411 
412 	if (entry)
413 		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
414 }
415 
avic_handle_ldr_update(struct kvm_vcpu * vcpu)416 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
417 {
418 	int ret = 0;
419 	struct vcpu_svm *svm = to_svm(vcpu);
420 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
421 	u32 id = kvm_xapic_id(vcpu->arch.apic);
422 
423 	if (ldr == svm->ldr_reg)
424 		return 0;
425 
426 	avic_invalidate_logical_id_entry(vcpu);
427 
428 	if (ldr)
429 		ret = avic_ldr_write(vcpu, id, ldr);
430 
431 	if (!ret)
432 		svm->ldr_reg = ldr;
433 
434 	return ret;
435 }
436 
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)437 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
438 {
439 	u64 *old, *new;
440 	struct vcpu_svm *svm = to_svm(vcpu);
441 	u32 id = kvm_xapic_id(vcpu->arch.apic);
442 
443 	if (vcpu->vcpu_id == id)
444 		return 0;
445 
446 	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
447 	new = avic_get_physical_id_entry(vcpu, id);
448 	if (!new || !old)
449 		return 1;
450 
451 	/* We need to move physical_id_entry to new offset */
452 	*new = *old;
453 	*old = 0ULL;
454 	to_svm(vcpu)->avic_physical_id_cache = new;
455 
456 	/*
457 	 * Also update the guest physical APIC ID in the logical
458 	 * APIC ID table entry if already setup the LDR.
459 	 */
460 	if (svm->ldr_reg)
461 		avic_handle_ldr_update(vcpu);
462 
463 	return 0;
464 }
465 
avic_handle_dfr_update(struct kvm_vcpu * vcpu)466 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
467 {
468 	struct vcpu_svm *svm = to_svm(vcpu);
469 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
470 
471 	if (svm->dfr_reg == dfr)
472 		return;
473 
474 	avic_invalidate_logical_id_entry(vcpu);
475 	svm->dfr_reg = dfr;
476 }
477 
avic_unaccel_trap_write(struct vcpu_svm * svm)478 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
479 {
480 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
481 	u32 offset = svm->vmcb->control.exit_info_1 &
482 				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
483 
484 	switch (offset) {
485 	case APIC_ID:
486 		if (avic_handle_apic_id_update(&svm->vcpu))
487 			return 0;
488 		break;
489 	case APIC_LDR:
490 		if (avic_handle_ldr_update(&svm->vcpu))
491 			return 0;
492 		break;
493 	case APIC_DFR:
494 		avic_handle_dfr_update(&svm->vcpu);
495 		break;
496 	default:
497 		break;
498 	}
499 
500 	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
501 
502 	return 1;
503 }
504 
is_avic_unaccelerated_access_trap(u32 offset)505 static bool is_avic_unaccelerated_access_trap(u32 offset)
506 {
507 	bool ret = false;
508 
509 	switch (offset) {
510 	case APIC_ID:
511 	case APIC_EOI:
512 	case APIC_RRR:
513 	case APIC_LDR:
514 	case APIC_DFR:
515 	case APIC_SPIV:
516 	case APIC_ESR:
517 	case APIC_ICR:
518 	case APIC_LVTT:
519 	case APIC_LVTTHMR:
520 	case APIC_LVTPC:
521 	case APIC_LVT0:
522 	case APIC_LVT1:
523 	case APIC_LVTERR:
524 	case APIC_TMICT:
525 	case APIC_TDCR:
526 		ret = true;
527 		break;
528 	default:
529 		break;
530 	}
531 	return ret;
532 }
533 
avic_unaccelerated_access_interception(struct vcpu_svm * svm)534 int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
535 {
536 	int ret = 0;
537 	u32 offset = svm->vmcb->control.exit_info_1 &
538 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
539 	u32 vector = svm->vmcb->control.exit_info_2 &
540 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
541 	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
542 		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
543 	bool trap = is_avic_unaccelerated_access_trap(offset);
544 
545 	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
546 					    trap, write, vector);
547 	if (trap) {
548 		/* Handling Trap */
549 		WARN_ONCE(!write, "svm: Handling trap read.\n");
550 		ret = avic_unaccel_trap_write(svm);
551 	} else {
552 		/* Handling Fault */
553 		ret = kvm_emulate_instruction(&svm->vcpu, 0);
554 	}
555 
556 	return ret;
557 }
558 
avic_init_vcpu(struct vcpu_svm * svm)559 int avic_init_vcpu(struct vcpu_svm *svm)
560 {
561 	int ret;
562 	struct kvm_vcpu *vcpu = &svm->vcpu;
563 
564 	if (!avic || !irqchip_in_kernel(vcpu->kvm))
565 		return 0;
566 
567 	ret = avic_init_backing_page(&svm->vcpu);
568 	if (ret)
569 		return ret;
570 
571 	INIT_LIST_HEAD(&svm->ir_list);
572 	spin_lock_init(&svm->ir_list_lock);
573 	svm->dfr_reg = APIC_DFR_FLAT;
574 
575 	return ret;
576 }
577 
avic_post_state_restore(struct kvm_vcpu * vcpu)578 void avic_post_state_restore(struct kvm_vcpu *vcpu)
579 {
580 	if (avic_handle_apic_id_update(vcpu) != 0)
581 		return;
582 	avic_handle_dfr_update(vcpu);
583 	avic_handle_ldr_update(vcpu);
584 }
585 
svm_toggle_avic_for_irq_window(struct kvm_vcpu * vcpu,bool activate)586 void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
587 {
588 	if (!avic || !lapic_in_kernel(vcpu))
589 		return;
590 
591 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
592 	kvm_request_apicv_update(vcpu->kvm, activate,
593 				 APICV_INHIBIT_REASON_IRQWIN);
594 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
595 }
596 
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)597 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
598 {
599 	return;
600 }
601 
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)602 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
603 {
604 }
605 
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)606 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
607 {
608 }
609 
svm_set_pi_irte_mode(struct kvm_vcpu * vcpu,bool activate)610 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
611 {
612 	int ret = 0;
613 	unsigned long flags;
614 	struct amd_svm_iommu_ir *ir;
615 	struct vcpu_svm *svm = to_svm(vcpu);
616 
617 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
618 		return 0;
619 
620 	/*
621 	 * Here, we go through the per-vcpu ir_list to update all existing
622 	 * interrupt remapping table entry targeting this vcpu.
623 	 */
624 	spin_lock_irqsave(&svm->ir_list_lock, flags);
625 
626 	if (list_empty(&svm->ir_list))
627 		goto out;
628 
629 	list_for_each_entry(ir, &svm->ir_list, node) {
630 		if (activate)
631 			ret = amd_iommu_activate_guest_mode(ir->data);
632 		else
633 			ret = amd_iommu_deactivate_guest_mode(ir->data);
634 		if (ret)
635 			break;
636 	}
637 out:
638 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
639 	return ret;
640 }
641 
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)642 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
643 {
644 	struct vcpu_svm *svm = to_svm(vcpu);
645 	struct vmcb *vmcb = svm->vmcb;
646 	bool activated = kvm_vcpu_apicv_active(vcpu);
647 
648 	if (!avic)
649 		return;
650 
651 	if (activated) {
652 		/**
653 		 * During AVIC temporary deactivation, guest could update
654 		 * APIC ID, DFR and LDR registers, which would not be trapped
655 		 * by avic_unaccelerated_access_interception(). In this case,
656 		 * we need to check and update the AVIC logical APIC ID table
657 		 * accordingly before re-activating.
658 		 */
659 		avic_post_state_restore(vcpu);
660 		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
661 	} else {
662 		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
663 	}
664 	vmcb_mark_dirty(vmcb, VMCB_AVIC);
665 
666 	svm_set_pi_irte_mode(vcpu, activated);
667 }
668 
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)669 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
670 {
671 	return;
672 }
673 
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)674 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
675 {
676 	if (!vcpu->arch.apicv_active)
677 		return -1;
678 
679 	kvm_lapic_set_irr(vec, vcpu->arch.apic);
680 	smp_mb__after_atomic();
681 
682 	if (avic_vcpu_is_running(vcpu)) {
683 		int cpuid = vcpu->cpu;
684 
685 		if (cpuid != get_cpu())
686 			wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
687 		put_cpu();
688 	} else
689 		kvm_vcpu_wake_up(vcpu);
690 
691 	return 0;
692 }
693 
svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)694 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
695 {
696 	return false;
697 }
698 
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)699 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
700 {
701 	unsigned long flags;
702 	struct amd_svm_iommu_ir *cur;
703 
704 	spin_lock_irqsave(&svm->ir_list_lock, flags);
705 	list_for_each_entry(cur, &svm->ir_list, node) {
706 		if (cur->data != pi->ir_data)
707 			continue;
708 		list_del(&cur->node);
709 		kfree(cur);
710 		break;
711 	}
712 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
713 }
714 
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)715 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
716 {
717 	int ret = 0;
718 	unsigned long flags;
719 	struct amd_svm_iommu_ir *ir;
720 
721 	/**
722 	 * In some cases, the existing irte is updaed and re-set,
723 	 * so we need to check here if it's already been * added
724 	 * to the ir_list.
725 	 */
726 	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
727 		struct kvm *kvm = svm->vcpu.kvm;
728 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
729 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
730 		struct vcpu_svm *prev_svm;
731 
732 		if (!prev_vcpu) {
733 			ret = -EINVAL;
734 			goto out;
735 		}
736 
737 		prev_svm = to_svm(prev_vcpu);
738 		svm_ir_list_del(prev_svm, pi);
739 	}
740 
741 	/**
742 	 * Allocating new amd_iommu_pi_data, which will get
743 	 * add to the per-vcpu ir_list.
744 	 */
745 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
746 	if (!ir) {
747 		ret = -ENOMEM;
748 		goto out;
749 	}
750 	ir->data = pi->ir_data;
751 
752 	spin_lock_irqsave(&svm->ir_list_lock, flags);
753 	list_add(&ir->node, &svm->ir_list);
754 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
755 out:
756 	return ret;
757 }
758 
759 /**
760  * Note:
761  * The HW cannot support posting multicast/broadcast
762  * interrupts to a vCPU. So, we still use legacy interrupt
763  * remapping for these kind of interrupts.
764  *
765  * For lowest-priority interrupts, we only support
766  * those with single CPU as the destination, e.g. user
767  * configures the interrupts via /proc/irq or uses
768  * irqbalance to make the interrupts single-CPU.
769  */
770 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)771 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
772 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
773 {
774 	struct kvm_lapic_irq irq;
775 	struct kvm_vcpu *vcpu = NULL;
776 
777 	kvm_set_msi_irq(kvm, e, &irq);
778 
779 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
780 	    !kvm_irq_is_postable(&irq)) {
781 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
782 			 __func__, irq.vector);
783 		return -1;
784 	}
785 
786 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
787 		 irq.vector);
788 	*svm = to_svm(vcpu);
789 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
790 	vcpu_info->vector = irq.vector;
791 
792 	return 0;
793 }
794 
795 /*
796  * svm_update_pi_irte - set IRTE for Posted-Interrupts
797  *
798  * @kvm: kvm
799  * @host_irq: host irq of the interrupt
800  * @guest_irq: gsi of the interrupt
801  * @set: set or unset PI
802  * returns 0 on success, < 0 on failure
803  */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)804 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
805 		       uint32_t guest_irq, bool set)
806 {
807 	struct kvm_kernel_irq_routing_entry *e;
808 	struct kvm_irq_routing_table *irq_rt;
809 	int idx, ret = 0;
810 
811 	if (!kvm_arch_has_assigned_device(kvm) ||
812 	    !irq_remapping_cap(IRQ_POSTING_CAP))
813 		return 0;
814 
815 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
816 		 __func__, host_irq, guest_irq, set);
817 
818 	idx = srcu_read_lock(&kvm->irq_srcu);
819 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
820 
821 	if (guest_irq >= irq_rt->nr_rt_entries ||
822 		hlist_empty(&irq_rt->map[guest_irq])) {
823 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
824 			     guest_irq, irq_rt->nr_rt_entries);
825 		goto out;
826 	}
827 
828 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
829 		struct vcpu_data vcpu_info;
830 		struct vcpu_svm *svm = NULL;
831 
832 		if (e->type != KVM_IRQ_ROUTING_MSI)
833 			continue;
834 
835 		/**
836 		 * Here, we setup with legacy mode in the following cases:
837 		 * 1. When cannot target interrupt to a specific vcpu.
838 		 * 2. Unsetting posted interrupt.
839 		 * 3. APIC virtialization is disabled for the vcpu.
840 		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
841 		 */
842 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
843 		    kvm_vcpu_apicv_active(&svm->vcpu)) {
844 			struct amd_iommu_pi_data pi;
845 
846 			/* Try to enable guest_mode in IRTE */
847 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
848 					    AVIC_HPA_MASK);
849 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
850 						     svm->vcpu.vcpu_id);
851 			pi.is_guest_mode = true;
852 			pi.vcpu_data = &vcpu_info;
853 			ret = irq_set_vcpu_affinity(host_irq, &pi);
854 
855 			/**
856 			 * Here, we successfully setting up vcpu affinity in
857 			 * IOMMU guest mode. Now, we need to store the posted
858 			 * interrupt information in a per-vcpu ir_list so that
859 			 * we can reference to them directly when we update vcpu
860 			 * scheduling information in IOMMU irte.
861 			 */
862 			if (!ret && pi.is_guest_mode)
863 				svm_ir_list_add(svm, &pi);
864 		} else {
865 			/* Use legacy mode in IRTE */
866 			struct amd_iommu_pi_data pi;
867 
868 			/**
869 			 * Here, pi is used to:
870 			 * - Tell IOMMU to use legacy mode for this interrupt.
871 			 * - Retrieve ga_tag of prior interrupt remapping data.
872 			 */
873 			pi.prev_ga_tag = 0;
874 			pi.is_guest_mode = false;
875 			ret = irq_set_vcpu_affinity(host_irq, &pi);
876 
877 			/**
878 			 * Check if the posted interrupt was previously
879 			 * setup with the guest_mode by checking if the ga_tag
880 			 * was cached. If so, we need to clean up the per-vcpu
881 			 * ir_list.
882 			 */
883 			if (!ret && pi.prev_ga_tag) {
884 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
885 				struct kvm_vcpu *vcpu;
886 
887 				vcpu = kvm_get_vcpu_by_id(kvm, id);
888 				if (vcpu)
889 					svm_ir_list_del(to_svm(vcpu), &pi);
890 			}
891 		}
892 
893 		if (!ret && svm) {
894 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
895 						 e->gsi, vcpu_info.vector,
896 						 vcpu_info.pi_desc_addr, set);
897 		}
898 
899 		if (ret < 0) {
900 			pr_err("%s: failed to update PI IRTE\n", __func__);
901 			goto out;
902 		}
903 	}
904 
905 	ret = 0;
906 out:
907 	srcu_read_unlock(&kvm->irq_srcu, idx);
908 	return ret;
909 }
910 
svm_check_apicv_inhibit_reasons(ulong bit)911 bool svm_check_apicv_inhibit_reasons(ulong bit)
912 {
913 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
914 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
915 			  BIT(APICV_INHIBIT_REASON_NESTED) |
916 			  BIT(APICV_INHIBIT_REASON_IRQWIN) |
917 			  BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
918 			  BIT(APICV_INHIBIT_REASON_X2APIC);
919 
920 	return supported & BIT(bit);
921 }
922 
svm_pre_update_apicv_exec_ctrl(struct kvm * kvm,bool activate)923 void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
924 {
925 	avic_update_access_page(kvm, activate);
926 }
927 
928 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)929 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
930 {
931 	int ret = 0;
932 	unsigned long flags;
933 	struct amd_svm_iommu_ir *ir;
934 	struct vcpu_svm *svm = to_svm(vcpu);
935 
936 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
937 		return 0;
938 
939 	/*
940 	 * Here, we go through the per-vcpu ir_list to update all existing
941 	 * interrupt remapping table entry targeting this vcpu.
942 	 */
943 	spin_lock_irqsave(&svm->ir_list_lock, flags);
944 
945 	if (list_empty(&svm->ir_list))
946 		goto out;
947 
948 	list_for_each_entry(ir, &svm->ir_list, node) {
949 		ret = amd_iommu_update_ga(cpu, r, ir->data);
950 		if (ret)
951 			break;
952 	}
953 out:
954 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
955 	return ret;
956 }
957 
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)958 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
959 {
960 	u64 entry;
961 	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
962 	int h_physical_id = kvm_cpu_get_apicid(cpu);
963 	struct vcpu_svm *svm = to_svm(vcpu);
964 
965 	if (!kvm_vcpu_apicv_active(vcpu))
966 		return;
967 
968 	/*
969 	 * Since the host physical APIC id is 8 bits,
970 	 * we can support host APIC ID upto 255.
971 	 */
972 	if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
973 		return;
974 
975 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
976 	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
977 
978 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
979 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
980 
981 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
982 	if (svm->avic_is_running)
983 		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
984 
985 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
986 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
987 					svm->avic_is_running);
988 }
989 
avic_vcpu_put(struct kvm_vcpu * vcpu)990 void avic_vcpu_put(struct kvm_vcpu *vcpu)
991 {
992 	u64 entry;
993 	struct vcpu_svm *svm = to_svm(vcpu);
994 
995 	if (!kvm_vcpu_apicv_active(vcpu))
996 		return;
997 
998 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
999 	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1000 		avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1001 
1002 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1003 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1004 }
1005 
1006 /**
1007  * This function is called during VCPU halt/unhalt.
1008  */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)1009 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1010 {
1011 	struct vcpu_svm *svm = to_svm(vcpu);
1012 
1013 	svm->avic_is_running = is_run;
1014 	if (is_run)
1015 		avic_vcpu_load(vcpu, vcpu->cpu);
1016 	else
1017 		avic_vcpu_put(vcpu);
1018 }
1019 
svm_vcpu_blocking(struct kvm_vcpu * vcpu)1020 void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1021 {
1022 	avic_set_running(vcpu, false);
1023 }
1024 
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)1025 void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1026 {
1027 	if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
1028 		kvm_vcpu_update_apicv(vcpu);
1029 	avic_set_running(vcpu, true);
1030 }
1031