1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "compiler.h"
28 #include "bi_builder.h"
29
30 /* Arguments common to worklist, passed by value for convenience */
31
32 struct bi_worklist {
33 /* # of instructions in the block */
34 unsigned count;
35
36 /* Instructions in the block */
37 bi_instr **instructions;
38
39 /* Bitset of instructions in the block ready for scheduling */
40 BITSET_WORD *worklist;
41
42 /* The backwards dependency graph. nr_dependencies is the number of
43 * unscheduled instructions that must still be scheduled after (before)
44 * this instruction. dependents are which instructions need to be
45 * scheduled before (after) this instruction. */
46 unsigned *dep_counts;
47 BITSET_WORD **dependents;
48 };
49
50 /* State of a single tuple and clause under construction */
51
52 struct bi_reg_state {
53 /* Number of register writes */
54 unsigned nr_writes;
55
56 /* Register reads, expressed as (equivalence classes of)
57 * sources. Only 3 reads are allowed, but up to 2 may spill as
58 * "forced" for the next scheduled tuple, provided such a tuple
59 * can be constructed */
60 bi_index reads[5];
61 unsigned nr_reads;
62
63 /* The previous tuple scheduled (= the next tuple executed in the
64 * program) may require certain writes, in order to bypass the register
65 * file and use a temporary passthrough for the value. Up to 2 such
66 * constraints are architecturally satisfiable */
67 unsigned forced_count;
68 bi_index forceds[2];
69 };
70
71 struct bi_tuple_state {
72 /* Is this the last tuple in the clause */
73 bool last;
74
75 /* Scheduled ADD instruction, or null if none */
76 bi_instr *add;
77
78 /* Reads for previous (succeeding) tuple */
79 bi_index prev_reads[5];
80 unsigned nr_prev_reads;
81 bi_tuple *prev;
82
83 /* Register slot state for current tuple */
84 struct bi_reg_state reg;
85
86 /* Constants are shared in the tuple. If constant_count is nonzero, it
87 * is a size for constant count. Otherwise, fau is the slot read from
88 * FAU, or zero if none is assigned. Ordinarily FAU slot 0 reads zero,
89 * but within a tuple, that should be encoded as constant_count != 0
90 * and constants[0] = constants[1] = 0 */
91 unsigned constant_count;
92
93 union {
94 uint32_t constants[2];
95 enum bir_fau fau;
96 };
97
98 unsigned pcrel_idx;
99 };
100
101 struct bi_const_state {
102 unsigned constant_count;
103 bool pcrel; /* applies to first const */
104 uint32_t constants[2];
105
106 /* Index of the constant into the clause */
107 unsigned word_idx;
108 };
109
110 enum bi_ftz_state {
111 /* No flush-to-zero state assigned yet */
112 BI_FTZ_STATE_NONE,
113
114 /* Never flush-to-zero */
115 BI_FTZ_STATE_DISABLE,
116
117 /* Always flush-to-zero */
118 BI_FTZ_STATE_ENABLE,
119 };
120
121 struct bi_clause_state {
122 /* Has a message-passing instruction already been assigned? */
123 bool message;
124
125 /* Indices already accessed, this needs to be tracked to avoid hazards
126 * around message-passing instructions */
127 unsigned access_count;
128 bi_index accesses[(BI_MAX_SRCS + BI_MAX_DESTS) * 16];
129
130 unsigned tuple_count;
131 struct bi_const_state consts[8];
132
133 /* Numerical state of the clause */
134 enum bi_ftz_state ftz;
135 };
136
137 /* Determines messsage type by checking the table and a few special cases. Only
138 * case missing is tilebuffer instructions that access depth/stencil, which
139 * require a Z_STENCIL message (to implement
140 * ARM_shader_framebuffer_fetch_depth_stencil) */
141
142 static enum bifrost_message_type
bi_message_type_for_instr(bi_instr * ins)143 bi_message_type_for_instr(bi_instr *ins)
144 {
145 enum bifrost_message_type msg = bi_opcode_props[ins->op].message;
146 bool ld_var_special = (ins->op == BI_OPCODE_LD_VAR_SPECIAL);
147
148 if (ld_var_special && ins->varying_name == BI_VARYING_NAME_FRAG_Z)
149 return BIFROST_MESSAGE_Z_STENCIL;
150
151 if (msg == BIFROST_MESSAGE_LOAD && ins->seg == BI_SEG_UBO)
152 return BIFROST_MESSAGE_ATTRIBUTE;
153
154 return msg;
155 }
156
157 /* Attribute, texture, and UBO load (attribute message) instructions support
158 * bindless, so just check the message type */
159
160 ASSERTED static bool
bi_supports_dtsel(bi_instr * ins)161 bi_supports_dtsel(bi_instr *ins)
162 {
163 switch (bi_message_type_for_instr(ins)) {
164 case BIFROST_MESSAGE_ATTRIBUTE:
165 return ins->op != BI_OPCODE_LD_GCLK_U64;
166 case BIFROST_MESSAGE_TEX:
167 return true;
168 default:
169 return false;
170 }
171 }
172
173 /* Adds an edge to the dependency graph */
174
175 static void
bi_push_dependency(unsigned parent,unsigned child,BITSET_WORD ** dependents,unsigned * dep_counts)176 bi_push_dependency(unsigned parent, unsigned child,
177 BITSET_WORD **dependents, unsigned *dep_counts)
178 {
179 if (!BITSET_TEST(dependents[parent], child)) {
180 BITSET_SET(dependents[parent], child);
181 dep_counts[child]++;
182 }
183 }
184
185 static void
add_dependency(struct util_dynarray * table,unsigned index,unsigned child,BITSET_WORD ** dependents,unsigned * dep_counts)186 add_dependency(struct util_dynarray *table, unsigned index, unsigned child,
187 BITSET_WORD **dependents, unsigned *dep_counts)
188 {
189 assert(index < 64);
190 util_dynarray_foreach(table + index, unsigned, parent)
191 bi_push_dependency(*parent, child, dependents, dep_counts);
192 }
193
194 static void
mark_access(struct util_dynarray * table,unsigned index,unsigned parent)195 mark_access(struct util_dynarray *table, unsigned index, unsigned parent)
196 {
197 assert(index < 64);
198 util_dynarray_append(&table[index], unsigned, parent);
199 }
200
201 static bool
bi_is_sched_barrier(bi_instr * I)202 bi_is_sched_barrier(bi_instr *I)
203 {
204 switch (I->op) {
205 case BI_OPCODE_BARRIER:
206 case BI_OPCODE_DISCARD_F32:
207 return true;
208 default:
209 return false;
210 }
211 }
212
213 static void
bi_create_dependency_graph(struct bi_worklist st,bool inorder,bool is_blend)214 bi_create_dependency_graph(struct bi_worklist st, bool inorder, bool is_blend)
215 {
216 struct util_dynarray last_read[64], last_write[64];
217
218 for (unsigned i = 0; i < 64; ++i) {
219 util_dynarray_init(&last_read[i], NULL);
220 util_dynarray_init(&last_write[i], NULL);
221 }
222
223 /* Initialize dependency graph */
224 for (unsigned i = 0; i < st.count; ++i) {
225 st.dependents[i] =
226 calloc(BITSET_WORDS(st.count), sizeof(BITSET_WORD));
227
228 st.dep_counts[i] = 0;
229 }
230
231 unsigned prev_msg = ~0;
232
233 /* Populate dependency graph */
234 for (signed i = st.count - 1; i >= 0; --i) {
235 bi_instr *ins = st.instructions[i];
236
237 bi_foreach_src(ins, s) {
238 if (ins->src[s].type != BI_INDEX_REGISTER) continue;
239 unsigned count = bi_count_read_registers(ins, s);
240
241 for (unsigned c = 0; c < count; ++c)
242 add_dependency(last_write, ins->src[s].value + c, i, st.dependents, st.dep_counts);
243 }
244
245 /* Keep message-passing ops in order. (This pass only cares
246 * about bundling; reordering of message-passing instructions
247 * happens during earlier scheduling.) */
248
249 if (bi_message_type_for_instr(ins)) {
250 if (prev_msg != ~0)
251 bi_push_dependency(prev_msg, i, st.dependents, st.dep_counts);
252
253 prev_msg = i;
254 }
255
256 /* Handle schedule barriers, adding All the deps */
257 if (inorder || bi_is_sched_barrier(ins)) {
258 for (unsigned j = 0; j < st.count; ++j) {
259 if (i == j) continue;
260
261 bi_push_dependency(MAX2(i, j), MIN2(i, j),
262 st.dependents, st.dep_counts);
263 }
264 }
265
266 bi_foreach_dest(ins, d) {
267 if (ins->dest[d].type != BI_INDEX_REGISTER) continue;
268 unsigned dest = ins->dest[d].value;
269
270 unsigned count = bi_count_write_registers(ins, d);
271
272 for (unsigned c = 0; c < count; ++c) {
273 add_dependency(last_read, dest + c, i, st.dependents, st.dep_counts);
274 add_dependency(last_write, dest + c, i, st.dependents, st.dep_counts);
275 mark_access(last_write, dest + c, i);
276 }
277 }
278
279 /* Blend shaders are allowed to clobber R0-R15. Treat these
280 * registers like extra destinations for scheduling purposes.
281 */
282 if (ins->op == BI_OPCODE_BLEND && !is_blend) {
283 for (unsigned c = 0; c < 16; ++c) {
284 add_dependency(last_read, c, i, st.dependents, st.dep_counts);
285 add_dependency(last_write, c, i, st.dependents, st.dep_counts);
286 mark_access(last_write, c, i);
287 }
288 }
289
290 bi_foreach_src(ins, s) {
291 if (ins->src[s].type != BI_INDEX_REGISTER) continue;
292
293 unsigned count = bi_count_read_registers(ins, s);
294
295 for (unsigned c = 0; c < count; ++c)
296 mark_access(last_read, ins->src[s].value + c, i);
297 }
298 }
299
300 /* If there is a branch, all instructions depend on it, as interblock
301 * execution must be purely in-order */
302
303 bi_instr *last = st.instructions[st.count - 1];
304 if (last->branch_target || last->op == BI_OPCODE_JUMP) {
305 for (signed i = st.count - 2; i >= 0; --i)
306 bi_push_dependency(st.count - 1, i, st.dependents, st.dep_counts);
307 }
308
309 /* Free the intermediate structures */
310 for (unsigned i = 0; i < 64; ++i) {
311 util_dynarray_fini(&last_read[i]);
312 util_dynarray_fini(&last_write[i]);
313 }
314 }
315
316 /* Scheduler pseudoinstruction lowerings to enable instruction pairings.
317 * Currently only support CUBEFACE -> *CUBEFACE1/+CUBEFACE2
318 */
319
320 static bi_instr *
bi_lower_cubeface(bi_context * ctx,struct bi_clause_state * clause,struct bi_tuple_state * tuple)321 bi_lower_cubeface(bi_context *ctx,
322 struct bi_clause_state *clause, struct bi_tuple_state *tuple)
323 {
324 bi_instr *pinstr = tuple->add;
325 bi_builder b = bi_init_builder(ctx, bi_before_instr(pinstr));
326 bi_instr *cubeface1 = bi_cubeface1_to(&b, pinstr->dest[0],
327 pinstr->src[0], pinstr->src[1], pinstr->src[2]);
328
329 pinstr->op = BI_OPCODE_CUBEFACE2;
330 pinstr->dest[0] = pinstr->dest[1];
331 pinstr->dest[1] = bi_null();
332 pinstr->src[0] = cubeface1->dest[0];
333 pinstr->src[1] = bi_null();
334 pinstr->src[2] = bi_null();
335
336 return cubeface1;
337 }
338
339 /* Psuedo arguments are (rbase, address lo, address hi). We need *ATOM_C.i32 to
340 * have the arguments (address lo, address hi, rbase), and +ATOM_CX to have the
341 * arguments (rbase, address lo, address hi, rbase) */
342
343 static bi_instr *
bi_lower_atom_c(bi_context * ctx,struct bi_clause_state * clause,struct bi_tuple_state * tuple)344 bi_lower_atom_c(bi_context *ctx, struct bi_clause_state *clause, struct
345 bi_tuple_state *tuple)
346 {
347 bi_instr *pinstr = tuple->add;
348 bi_builder b = bi_init_builder(ctx, bi_before_instr(pinstr));
349 bi_instr *atom_c = bi_atom_c_return_i32(&b,
350 pinstr->src[1], pinstr->src[2], pinstr->src[0],
351 pinstr->atom_opc);
352
353 if (bi_is_null(pinstr->dest[0]))
354 atom_c->op = BI_OPCODE_ATOM_C_I32;
355
356 pinstr->op = BI_OPCODE_ATOM_CX;
357 pinstr->src[3] = atom_c->src[2];
358
359 return atom_c;
360 }
361
362 static bi_instr *
bi_lower_atom_c1(bi_context * ctx,struct bi_clause_state * clause,struct bi_tuple_state * tuple)363 bi_lower_atom_c1(bi_context *ctx, struct bi_clause_state *clause, struct
364 bi_tuple_state *tuple)
365 {
366 bi_instr *pinstr = tuple->add;
367 bi_builder b = bi_init_builder(ctx, bi_before_instr(pinstr));
368 bi_instr *atom_c = bi_atom_c1_return_i32(&b,
369 pinstr->src[0], pinstr->src[1], pinstr->atom_opc);
370
371 if (bi_is_null(pinstr->dest[0]))
372 atom_c->op = BI_OPCODE_ATOM_C1_I32;
373
374 pinstr->op = BI_OPCODE_ATOM_CX;
375 pinstr->src[2] = pinstr->src[1];
376 pinstr->src[1] = pinstr->src[0];
377 pinstr->src[3] = bi_dontcare(&b);
378 pinstr->src[0] = bi_null();
379
380 return atom_c;
381 }
382
383 static bi_instr *
bi_lower_seg_add(bi_context * ctx,struct bi_clause_state * clause,struct bi_tuple_state * tuple)384 bi_lower_seg_add(bi_context *ctx,
385 struct bi_clause_state *clause, struct bi_tuple_state *tuple)
386 {
387 bi_instr *pinstr = tuple->add;
388 bi_builder b = bi_init_builder(ctx, bi_before_instr(pinstr));
389
390 bi_instr *fma = bi_seg_add_to(&b, pinstr->dest[0], pinstr->src[0],
391 pinstr->preserve_null, pinstr->seg);
392
393 pinstr->op = BI_OPCODE_SEG_ADD;
394 pinstr->src[0] = pinstr->src[1];
395 pinstr->src[1] = bi_null();
396
397 assert(pinstr->dest[0].type == BI_INDEX_REGISTER);
398 pinstr->dest[0].value += 1;
399
400 return fma;
401 }
402
403 static bi_instr *
bi_lower_dtsel(bi_context * ctx,struct bi_clause_state * clause,struct bi_tuple_state * tuple)404 bi_lower_dtsel(bi_context *ctx,
405 struct bi_clause_state *clause, struct bi_tuple_state *tuple)
406 {
407 bi_instr *add = tuple->add;
408 bi_builder b = bi_init_builder(ctx, bi_before_instr(add));
409
410 bi_instr *dtsel = bi_dtsel_imm_to(&b, bi_temp(b.shader),
411 add->src[0], add->table);
412 add->src[0] = dtsel->dest[0];
413
414 assert(bi_supports_dtsel(add));
415 return dtsel;
416 }
417
418 /* Flatten linked list to array for O(1) indexing */
419
420 static bi_instr **
bi_flatten_block(bi_block * block,unsigned * len)421 bi_flatten_block(bi_block *block, unsigned *len)
422 {
423 if (list_is_empty(&block->instructions))
424 return NULL;
425
426 *len = list_length(&block->instructions);
427 bi_instr **instructions = malloc(sizeof(bi_instr *) * (*len));
428
429 unsigned i = 0;
430
431 bi_foreach_instr_in_block(block, ins)
432 instructions[i++] = ins;
433
434 return instructions;
435 }
436
437 /* The worklist would track instructions without outstanding dependencies. For
438 * debug, force in-order scheduling (no dependency graph is constructed).
439 */
440
441 static struct bi_worklist
bi_initialize_worklist(bi_block * block,bool inorder,bool is_blend)442 bi_initialize_worklist(bi_block *block, bool inorder, bool is_blend)
443 {
444 struct bi_worklist st = { };
445 st.instructions = bi_flatten_block(block, &st.count);
446
447 if (!st.count)
448 return st;
449
450 st.dependents = calloc(st.count, sizeof(st.dependents[0]));
451 st.dep_counts = calloc(st.count, sizeof(st.dep_counts[0]));
452
453 bi_create_dependency_graph(st, inorder, is_blend);
454 st.worklist = calloc(BITSET_WORDS(st.count), sizeof(BITSET_WORD));
455
456 for (unsigned i = 0; i < st.count; ++i) {
457 if (st.dep_counts[i] == 0)
458 BITSET_SET(st.worklist, i);
459 }
460
461 return st;
462 }
463
464 static void
bi_free_worklist(struct bi_worklist st)465 bi_free_worklist(struct bi_worklist st)
466 {
467 free(st.dep_counts);
468 free(st.dependents);
469 free(st.instructions);
470 free(st.worklist);
471 }
472
473 static void
bi_update_worklist(struct bi_worklist st,unsigned idx)474 bi_update_worklist(struct bi_worklist st, unsigned idx)
475 {
476 assert(st.dep_counts[idx] == 0);
477
478 if (!st.dependents[idx])
479 return;
480
481 /* Iterate each dependent to remove one dependency (`done`),
482 * adding dependents to the worklist where possible. */
483
484 unsigned i;
485 BITSET_FOREACH_SET(i, st.dependents[idx], st.count) {
486 assert(st.dep_counts[i] != 0);
487 unsigned new_deps = --st.dep_counts[i];
488
489 if (new_deps == 0)
490 BITSET_SET(st.worklist, i);
491 }
492
493 free(st.dependents[idx]);
494 }
495
496 /* Scheduler predicates */
497
498 /* IADDC.i32 can implement IADD.u32 if no saturation or swizzling is in use */
499 static bool
bi_can_iaddc(bi_instr * ins)500 bi_can_iaddc(bi_instr *ins)
501 {
502 return (ins->op == BI_OPCODE_IADD_U32 && !ins->saturate &&
503 ins->src[0].swizzle == BI_SWIZZLE_H01 &&
504 ins->src[1].swizzle == BI_SWIZZLE_H01);
505 }
506
507 /*
508 * The encoding of *FADD.v2f16 only specifies a single abs flag. All abs
509 * encodings are permitted by swapping operands; however, this scheme fails if
510 * both operands are equal. Test for this case.
511 */
512 static bool
bi_impacted_abs(bi_instr * I)513 bi_impacted_abs(bi_instr *I)
514 {
515 return I->src[0].abs && I->src[1].abs &&
516 bi_is_word_equiv(I->src[0], I->src[1]);
517 }
518
519 bool
bi_can_fma(bi_instr * ins)520 bi_can_fma(bi_instr *ins)
521 {
522 /* +IADD.i32 -> *IADDC.i32 */
523 if (bi_can_iaddc(ins))
524 return true;
525
526 /* +MUX -> *CSEL */
527 if (bi_can_replace_with_csel(ins))
528 return true;
529
530 /* *FADD.v2f16 has restricted abs modifiers, use +FADD.v2f16 instead */
531 if (ins->op == BI_OPCODE_FADD_V2F16 && bi_impacted_abs(ins))
532 return false;
533
534 /* TODO: some additional fp16 constraints */
535 return bi_opcode_props[ins->op].fma;
536 }
537
538 static bool
bi_impacted_fadd_widens(bi_instr * I)539 bi_impacted_fadd_widens(bi_instr *I)
540 {
541 enum bi_swizzle swz0 = I->src[0].swizzle;
542 enum bi_swizzle swz1 = I->src[1].swizzle;
543
544 return (swz0 == BI_SWIZZLE_H00 && swz1 == BI_SWIZZLE_H11) ||
545 (swz0 == BI_SWIZZLE_H11 && swz1 == BI_SWIZZLE_H11) ||
546 (swz0 == BI_SWIZZLE_H11 && swz1 == BI_SWIZZLE_H00);
547 }
548
549 bool
bi_can_add(bi_instr * ins)550 bi_can_add(bi_instr *ins)
551 {
552 /* +FADD.v2f16 lacks clamp modifier, use *FADD.v2f16 instead */
553 if (ins->op == BI_OPCODE_FADD_V2F16 && ins->clamp)
554 return false;
555
556 /* +FCMP.v2f16 lacks abs modifier, use *FCMP.v2f16 instead */
557 if (ins->op == BI_OPCODE_FCMP_V2F16 && (ins->src[0].abs || ins->src[1].abs))
558 return false;
559
560 /* +FADD.f32 has restricted widens, use +FADD.f32 for the full set */
561 if (ins->op == BI_OPCODE_FADD_F32 && bi_impacted_fadd_widens(ins))
562 return false;
563
564 /* TODO: some additional fp16 constraints */
565 return bi_opcode_props[ins->op].add;
566 }
567
568 /* Architecturally, no single instruction has a "not last" constraint. However,
569 * pseudoinstructions writing multiple destinations (expanding to multiple
570 * paired instructions) can run afoul of the "no two writes on the last clause"
571 * constraint, so we check for that here.
572 *
573 * Exception to the exception: TEXC, which writes to multiple sets of staging
574 * registers. Staging registers bypass the usual register write mechanism so
575 * this restriction does not apply.
576 */
577
578 static bool
bi_must_not_last(bi_instr * ins)579 bi_must_not_last(bi_instr *ins)
580 {
581 return !bi_is_null(ins->dest[0]) && !bi_is_null(ins->dest[1]) &&
582 (ins->op != BI_OPCODE_TEXC);
583 }
584
585 /* Check for a message-passing instruction. +DISCARD.f32 is special-cased; we
586 * treat it as a message-passing instruction for the purpose of scheduling
587 * despite no passing no logical message. Otherwise invalid encoding faults may
588 * be raised for unknown reasons (possibly an errata).
589 */
590
591 bool
bi_must_message(bi_instr * ins)592 bi_must_message(bi_instr *ins)
593 {
594 return (bi_opcode_props[ins->op].message != BIFROST_MESSAGE_NONE) ||
595 (ins->op == BI_OPCODE_DISCARD_F32);
596 }
597
598 static bool
bi_fma_atomic(enum bi_opcode op)599 bi_fma_atomic(enum bi_opcode op)
600 {
601 switch (op) {
602 case BI_OPCODE_ATOM_C_I32:
603 case BI_OPCODE_ATOM_C_I64:
604 case BI_OPCODE_ATOM_C1_I32:
605 case BI_OPCODE_ATOM_C1_I64:
606 case BI_OPCODE_ATOM_C1_RETURN_I32:
607 case BI_OPCODE_ATOM_C1_RETURN_I64:
608 case BI_OPCODE_ATOM_C_RETURN_I32:
609 case BI_OPCODE_ATOM_C_RETURN_I64:
610 case BI_OPCODE_ATOM_POST_I32:
611 case BI_OPCODE_ATOM_POST_I64:
612 case BI_OPCODE_ATOM_PRE_I64:
613 return true;
614 default:
615 return false;
616 }
617 }
618
619 bool
bi_reads_zero(bi_instr * ins)620 bi_reads_zero(bi_instr *ins)
621 {
622 return !(bi_fma_atomic(ins->op) || ins->op == BI_OPCODE_IMULD);
623 }
624
625 bool
bi_reads_temps(bi_instr * ins,unsigned src)626 bi_reads_temps(bi_instr *ins, unsigned src)
627 {
628 switch (ins->op) {
629 /* Cannot permute a temporary */
630 case BI_OPCODE_CLPER_I32:
631 case BI_OPCODE_CLPER_OLD_I32:
632 return src != 0;
633
634 /* ATEST isn't supposed to be restricted, but in practice it always
635 * wants to source its coverage mask input (source 0) from register 60,
636 * which won't work properly if we put the input in a temp. This
637 * requires workarounds in both RA and clause scheduling.
638 */
639 case BI_OPCODE_ATEST:
640 return src != 0;
641
642 case BI_OPCODE_IMULD:
643 return false;
644 default:
645 return true;
646 }
647 }
648
649 static bool
bi_impacted_t_modifiers(bi_instr * I,unsigned src)650 bi_impacted_t_modifiers(bi_instr *I, unsigned src)
651 {
652 enum bi_swizzle swizzle = I->src[src].swizzle;
653
654 switch (I->op) {
655 case BI_OPCODE_F16_TO_F32:
656 case BI_OPCODE_F16_TO_S32:
657 case BI_OPCODE_F16_TO_U32:
658 case BI_OPCODE_MKVEC_V2I16:
659 case BI_OPCODE_S16_TO_F32:
660 case BI_OPCODE_S16_TO_S32:
661 case BI_OPCODE_U16_TO_F32:
662 case BI_OPCODE_U16_TO_U32:
663 return (swizzle != BI_SWIZZLE_H00);
664
665 case BI_OPCODE_BRANCH_F32:
666 case BI_OPCODE_LOGB_F32:
667 case BI_OPCODE_ILOGB_F32:
668 case BI_OPCODE_FADD_F32:
669 case BI_OPCODE_FCMP_F32:
670 case BI_OPCODE_FREXPE_F32:
671 case BI_OPCODE_FREXPM_F32:
672 case BI_OPCODE_FROUND_F32:
673 return (swizzle != BI_SWIZZLE_H01);
674
675 case BI_OPCODE_IADD_S32:
676 case BI_OPCODE_IADD_U32:
677 case BI_OPCODE_ISUB_S32:
678 case BI_OPCODE_ISUB_U32:
679 case BI_OPCODE_IADD_V4S8:
680 case BI_OPCODE_IADD_V4U8:
681 case BI_OPCODE_ISUB_V4S8:
682 case BI_OPCODE_ISUB_V4U8:
683 return (src == 1) && (swizzle != BI_SWIZZLE_H01);
684
685 case BI_OPCODE_S8_TO_F32:
686 case BI_OPCODE_S8_TO_S32:
687 case BI_OPCODE_U8_TO_F32:
688 case BI_OPCODE_U8_TO_U32:
689 return (swizzle != BI_SWIZZLE_B0000);
690
691 case BI_OPCODE_V2S8_TO_V2F16:
692 case BI_OPCODE_V2S8_TO_V2S16:
693 case BI_OPCODE_V2U8_TO_V2F16:
694 case BI_OPCODE_V2U8_TO_V2U16:
695 return (swizzle != BI_SWIZZLE_B0022);
696
697 case BI_OPCODE_IADD_V2S16:
698 case BI_OPCODE_IADD_V2U16:
699 case BI_OPCODE_ISUB_V2S16:
700 case BI_OPCODE_ISUB_V2U16:
701 return (src == 1) && (swizzle >= BI_SWIZZLE_H11);
702
703 #if 0
704 /* Restriction on IADD in 64-bit clauses on G72 */
705 case BI_OPCODE_IADD_S64:
706 case BI_OPCODE_IADD_U64:
707 return (src == 1) && (swizzle != BI_SWIZZLE_D0);
708 #endif
709
710 default:
711 return false;
712 }
713 }
714
715 bool
bi_reads_t(bi_instr * ins,unsigned src)716 bi_reads_t(bi_instr *ins, unsigned src)
717 {
718 /* Branch offset cannot come from passthrough */
719 if (bi_opcode_props[ins->op].branch)
720 return src != 2;
721
722 /* Table can never read passthrough */
723 if (bi_opcode_props[ins->op].table)
724 return false;
725
726 /* Staging register reads may happen before the succeeding register
727 * block encodes a write, so effectively there is no passthrough */
728 if (bi_is_staging_src(ins, src))
729 return false;
730
731 /* Bifrost cores newer than Mali G71 have restrictions on swizzles on
732 * same-cycle temporaries. Check the list for these hazards. */
733 if (bi_impacted_t_modifiers(ins, src))
734 return false;
735
736 /* Descriptor must not come from a passthrough */
737 switch (ins->op) {
738 case BI_OPCODE_LD_CVT:
739 case BI_OPCODE_LD_TILE:
740 case BI_OPCODE_ST_CVT:
741 case BI_OPCODE_ST_TILE:
742 case BI_OPCODE_TEXC:
743 return src != 2;
744 case BI_OPCODE_BLEND:
745 return src != 2 && src != 3;
746
747 /* +JUMP can't read the offset from T */
748 case BI_OPCODE_JUMP:
749 return false;
750
751 /* Else, just check if we can read any temps */
752 default:
753 return bi_reads_temps(ins, src);
754 }
755 }
756
757 /* Counts the number of 64-bit constants required by a clause. TODO: We
758 * might want to account for merging, right now we overestimate, but
759 * that's probably fine most of the time */
760
761 static unsigned
bi_nconstants(struct bi_clause_state * clause)762 bi_nconstants(struct bi_clause_state *clause)
763 {
764 unsigned count_32 = 0;
765
766 for (unsigned i = 0; i < ARRAY_SIZE(clause->consts); ++i)
767 count_32 += clause->consts[i].constant_count;
768
769 return DIV_ROUND_UP(count_32, 2);
770 }
771
772 /* Would there be space for constants if we added one tuple? */
773
774 static bool
bi_space_for_more_constants(struct bi_clause_state * clause)775 bi_space_for_more_constants(struct bi_clause_state *clause)
776 {
777 return (bi_nconstants(clause) < 13 - (clause->tuple_count + 1));
778 }
779
780 /* Updates the FAU assignment for a tuple. A valid FAU assignment must be
781 * possible (as a precondition), though not necessarily on the selected unit;
782 * this is gauranteed per-instruction by bi_lower_fau and per-tuple by
783 * bi_instr_schedulable */
784
785 static bool
bi_update_fau(struct bi_clause_state * clause,struct bi_tuple_state * tuple,bi_instr * instr,bool fma,bool destructive)786 bi_update_fau(struct bi_clause_state *clause,
787 struct bi_tuple_state *tuple,
788 bi_instr *instr, bool fma, bool destructive)
789 {
790 /* Maintain our own constants, for nondestructive mode */
791 uint32_t copied_constants[2], copied_count;
792 unsigned *constant_count = &tuple->constant_count;
793 uint32_t *constants = tuple->constants;
794 enum bir_fau fau = tuple->fau;
795
796 if (!destructive) {
797 memcpy(copied_constants, tuple->constants,
798 (*constant_count) * sizeof(constants[0]));
799 copied_count = tuple->constant_count;
800
801 constant_count = &copied_count;
802 constants = copied_constants;
803 }
804
805 bi_foreach_src(instr, s) {
806 bi_index src = instr->src[s];
807
808 if (src.type == BI_INDEX_FAU) {
809 bool no_constants = *constant_count == 0;
810 bool no_other_fau = (fau == src.value) || !fau;
811 bool mergable = no_constants && no_other_fau;
812
813 if (destructive) {
814 assert(mergable);
815 tuple->fau = src.value;
816 } else if (!mergable) {
817 return false;
818 }
819
820 fau = src.value;
821 } else if (src.type == BI_INDEX_CONSTANT) {
822 /* No need to reserve space if we have a fast 0 */
823 if (src.value == 0 && fma && bi_reads_zero(instr))
824 continue;
825
826 /* If there is a branch target, #0 by convention is the
827 * PC-relative offset to the target */
828 bool pcrel = instr->branch_target && src.value == 0;
829 bool found = false;
830
831 for (unsigned i = 0; i < *constant_count; ++i) {
832 found |= (constants[i] == src.value) &&
833 (i != tuple->pcrel_idx);
834 }
835
836 /* pcrel constants are unique, so don't match */
837 if (found && !pcrel)
838 continue;
839
840 bool no_fau = (*constant_count > 0) || !fau;
841 bool mergable = no_fau && ((*constant_count) < 2);
842
843 if (destructive) {
844 assert(mergable);
845
846 if (pcrel)
847 tuple->pcrel_idx = *constant_count;
848 } else if (!mergable)
849 return false;
850
851 constants[(*constant_count)++] = src.value;
852 }
853 }
854
855 /* Constants per clause may be limited by tuple count */
856 bool room_for_constants = (*constant_count == 0) ||
857 bi_space_for_more_constants(clause);
858
859 if (destructive)
860 assert(room_for_constants);
861 else if (!room_for_constants)
862 return false;
863
864 return true;
865 }
866
867 /* Given an in-progress tuple, a candidate new instruction to add to the tuple,
868 * and a source (index) from that candidate, determine whether this source is
869 * "new", in the sense of requiring an additional read slot. That is, checks
870 * whether the specified source reads from the register file via a read slot
871 * (determined by its type and placement) and whether the source was already
872 * specified by a prior read slot (to avoid double counting) */
873
874 static bool
bi_tuple_is_new_src(bi_instr * instr,struct bi_reg_state * reg,unsigned src_idx)875 bi_tuple_is_new_src(bi_instr *instr, struct bi_reg_state *reg, unsigned src_idx)
876 {
877 bi_index src = instr->src[src_idx];
878
879 /* Only consider sources which come from the register file */
880 if (!(src.type == BI_INDEX_NORMAL || src.type == BI_INDEX_REGISTER))
881 return false;
882
883 /* Staging register reads bypass the usual register file mechanism */
884 if (bi_is_staging_src(instr, src_idx))
885 return false;
886
887 /* If a source is already read in the tuple, it is already counted */
888 for (unsigned t = 0; t < reg->nr_reads; ++t)
889 if (bi_is_word_equiv(src, reg->reads[t]))
890 return false;
891
892 /* If a source is read in _this instruction_, it is already counted */
893 for (unsigned t = 0; t < src_idx; ++t)
894 if (bi_is_word_equiv(src, instr->src[t]))
895 return false;
896
897 return true;
898 }
899
900 /* Given two tuples in source order, count the number of register reads of the
901 * successor, determined as the number of unique words accessed that aren't
902 * written by the predecessor (since those are tempable).
903 */
904
905 static unsigned
bi_count_succ_reads(bi_index t0,bi_index t1,bi_index * succ_reads,unsigned nr_succ_reads)906 bi_count_succ_reads(bi_index t0, bi_index t1,
907 bi_index *succ_reads, unsigned nr_succ_reads)
908 {
909 unsigned reads = 0;
910
911 for (unsigned i = 0; i < nr_succ_reads; ++i) {
912 bool unique = true;
913
914 for (unsigned j = 0; j < i; ++j)
915 if (bi_is_word_equiv(succ_reads[i], succ_reads[j]))
916 unique = false;
917
918 if (!unique)
919 continue;
920
921 if (bi_is_word_equiv(succ_reads[i], t0))
922 continue;
923
924 if (bi_is_word_equiv(succ_reads[i], t1))
925 continue;
926
927 reads++;
928 }
929
930 return reads;
931 }
932
933 /* Not all instructions can read from the staging passthrough (as determined by
934 * reads_t), check if a given pair of instructions has such a restriction. Note
935 * we also use this mechanism to prevent data races around staging register
936 * reads, so we allow the input source to potentially be vector-valued */
937
938 static bool
bi_has_staging_passthrough_hazard(bi_index fma,bi_instr * add)939 bi_has_staging_passthrough_hazard(bi_index fma, bi_instr *add)
940 {
941 bi_foreach_src(add, s) {
942 bi_index src = add->src[s];
943
944 if (src.type != BI_INDEX_REGISTER)
945 continue;
946
947 unsigned count = bi_count_read_registers(add, s);
948 bool read = false;
949
950 for (unsigned d = 0; d < count; ++d)
951 read |= bi_is_equiv(fma, bi_register(src.value + d));
952
953 if (read && !bi_reads_t(add, s))
954 return true;
955 }
956
957 return false;
958 }
959
960 /* Likewise for cross-tuple passthrough (reads_temps) */
961
962 static bool
bi_has_cross_passthrough_hazard(bi_tuple * succ,bi_instr * ins)963 bi_has_cross_passthrough_hazard(bi_tuple *succ, bi_instr *ins)
964 {
965 bi_foreach_instr_in_tuple(succ, pins) {
966 bi_foreach_src(pins, s) {
967 if (bi_is_word_equiv(ins->dest[0], pins->src[s]) &&
968 !bi_reads_temps(pins, s))
969 return true;
970 }
971 }
972
973 return false;
974 }
975
976 /* Is a register written other than the staging mechanism? ATEST is special,
977 * writing to both a staging register and a regular register (fixed packing).
978 * BLEND is special since it has to write r48 the normal way even if it never
979 * gets read. This depends on liveness analysis, as a register is not needed
980 * for a write that will be discarded after one tuple. */
981
982 static unsigned
bi_write_count(bi_instr * instr,uint64_t live_after_temp)983 bi_write_count(bi_instr *instr, uint64_t live_after_temp)
984 {
985 if (instr->op == BI_OPCODE_ATEST || instr->op == BI_OPCODE_BLEND)
986 return 1;
987
988 unsigned count = 0;
989
990 bi_foreach_dest(instr, d) {
991 if (d == 0 && bi_opcode_props[instr->op].sr_write)
992 continue;
993
994 if (bi_is_null(instr->dest[d]))
995 continue;
996
997 assert(instr->dest[0].type == BI_INDEX_REGISTER);
998 if (live_after_temp & BITFIELD64_BIT(instr->dest[0].value))
999 count++;
1000 }
1001
1002 return count;
1003 }
1004
1005 /*
1006 * Test if an instruction required flush-to-zero mode. Currently only supported
1007 * for f16<-->f32 conversions to implement fquantize16
1008 */
1009 static bool
bi_needs_ftz(bi_instr * I)1010 bi_needs_ftz(bi_instr *I)
1011 {
1012 return (I->op == BI_OPCODE_F16_TO_F32 ||
1013 I->op == BI_OPCODE_V2F32_TO_V2F16) && I->ftz;
1014 }
1015
1016 /*
1017 * Test if an instruction would be numerically incompatible with the clause. At
1018 * present we only consider flush-to-zero modes.
1019 */
1020 static bool
bi_numerically_incompatible(struct bi_clause_state * clause,bi_instr * instr)1021 bi_numerically_incompatible(struct bi_clause_state *clause, bi_instr *instr)
1022 {
1023 return (clause->ftz != BI_FTZ_STATE_NONE) &&
1024 ((clause->ftz == BI_FTZ_STATE_ENABLE) != bi_needs_ftz(instr));
1025 }
1026
1027 /* Instruction placement entails two questions: what subset of instructions in
1028 * the block can legally be scheduled? and of those which is the best? That is,
1029 * we seek to maximize a cost function on a subset of the worklist satisfying a
1030 * particular predicate. The necessary predicate is determined entirely by
1031 * Bifrost's architectural limitations and is described in the accompanying
1032 * whitepaper. The cost function is a heuristic. */
1033
1034 static bool
bi_instr_schedulable(bi_instr * instr,struct bi_clause_state * clause,struct bi_tuple_state * tuple,uint64_t live_after_temp,bool fma)1035 bi_instr_schedulable(bi_instr *instr,
1036 struct bi_clause_state *clause,
1037 struct bi_tuple_state *tuple,
1038 uint64_t live_after_temp,
1039 bool fma)
1040 {
1041 /* The units must match */
1042 if ((fma && !bi_can_fma(instr)) || (!fma && !bi_can_add(instr)))
1043 return false;
1044
1045 /* There can only be one message-passing instruction per clause */
1046 if (bi_must_message(instr) && clause->message)
1047 return false;
1048
1049 /* Some instructions have placement requirements */
1050 if (bi_opcode_props[instr->op].last && !tuple->last)
1051 return false;
1052
1053 if (bi_must_not_last(instr) && tuple->last)
1054 return false;
1055
1056 /* Numerical properties must be compatible with the clause */
1057 if (bi_numerically_incompatible(clause, instr))
1058 return false;
1059
1060 /* Message-passing instructions are not guaranteed write within the
1061 * same clause (most likely they will not), so if a later instruction
1062 * in the clause accesses the destination, the message-passing
1063 * instruction can't be scheduled */
1064 if (bi_opcode_props[instr->op].sr_write) {
1065 bi_foreach_dest(instr, d) {
1066 if (bi_is_null(instr->dest[d]))
1067 continue;
1068
1069 unsigned nr = bi_count_write_registers(instr, d);
1070 assert(instr->dest[d].type == BI_INDEX_REGISTER);
1071 unsigned reg = instr->dest[d].value;
1072
1073 for (unsigned i = 0; i < clause->access_count; ++i) {
1074 bi_index idx = clause->accesses[i];
1075 for (unsigned d = 0; d < nr; ++d) {
1076 if (bi_is_equiv(bi_register(reg + d), idx))
1077 return false;
1078 }
1079 }
1080 }
1081 }
1082
1083 if (bi_opcode_props[instr->op].sr_read && !bi_is_null(instr->src[0])) {
1084 unsigned nr = bi_count_read_registers(instr, 0);
1085 assert(instr->src[0].type == BI_INDEX_REGISTER);
1086 unsigned reg = instr->src[0].value;
1087
1088 for (unsigned i = 0; i < clause->access_count; ++i) {
1089 bi_index idx = clause->accesses[i];
1090 for (unsigned d = 0; d < nr; ++d) {
1091 if (bi_is_equiv(bi_register(reg + d), idx))
1092 return false;
1093 }
1094 }
1095 }
1096
1097 /* If FAU is already assigned, we may not disrupt that. Do a
1098 * non-disruptive test update */
1099 if (!bi_update_fau(clause, tuple, instr, fma, false))
1100 return false;
1101
1102 /* If this choice of FMA would force a staging passthrough, the ADD
1103 * instruction must support such a passthrough */
1104 if (tuple->add && bi_has_staging_passthrough_hazard(instr->dest[0], tuple->add))
1105 return false;
1106
1107 /* If this choice of destination would force a cross-tuple passthrough, the next tuple must support that */
1108 if (tuple->prev && bi_has_cross_passthrough_hazard(tuple->prev, instr))
1109 return false;
1110
1111 /* Register file writes are limited */
1112 unsigned total_writes = tuple->reg.nr_writes;
1113 total_writes += bi_write_count(instr, live_after_temp);
1114
1115 /* Last tuple in a clause can only write a single value */
1116 if (tuple->last && total_writes > 1)
1117 return false;
1118
1119 /* Register file reads are limited, so count unique */
1120
1121 unsigned unique_new_srcs = 0;
1122
1123 bi_foreach_src(instr, s) {
1124 if (bi_tuple_is_new_src(instr, &tuple->reg, s))
1125 unique_new_srcs++;
1126 }
1127
1128 unsigned total_srcs = tuple->reg.nr_reads + unique_new_srcs;
1129
1130 bool can_spill_to_moves = (!tuple->add);
1131 can_spill_to_moves &= (bi_nconstants(clause) < 13 - (clause->tuple_count + 2));
1132 can_spill_to_moves &= (clause->tuple_count < 7);
1133
1134 /* However, we can get an extra 1 or 2 sources by inserting moves */
1135 if (total_srcs > (can_spill_to_moves ? 4 : 3))
1136 return false;
1137
1138 /* Count effective reads for the successor */
1139 unsigned succ_reads = bi_count_succ_reads(instr->dest[0],
1140 tuple->add ? tuple->add->dest[0] : bi_null(),
1141 tuple->prev_reads, tuple->nr_prev_reads);
1142
1143 /* Successor must satisfy R+W <= 4, so we require W <= 4-R */
1144 if ((signed) total_writes > (4 - (signed) succ_reads))
1145 return false;
1146
1147 return true;
1148 }
1149
1150 static signed
bi_instr_cost(bi_instr * instr,struct bi_tuple_state * tuple)1151 bi_instr_cost(bi_instr *instr, struct bi_tuple_state *tuple)
1152 {
1153 signed cost = 0;
1154
1155 /* Instructions that can schedule to either FMA or to ADD should be
1156 * deprioritized since they're easier to reschedule elsewhere */
1157 if (bi_can_fma(instr) && bi_can_add(instr))
1158 cost++;
1159
1160 /* Message-passing instructions impose constraints on the registers
1161 * later in the clause, so schedule them as late within a clause as
1162 * possible (<==> prioritize them since we're backwards <==> decrease
1163 * cost) */
1164 if (bi_must_message(instr))
1165 cost--;
1166
1167 /* Last instructions are big constraints (XXX: no effect on shader-db) */
1168 if (bi_opcode_props[instr->op].last)
1169 cost -= 2;
1170
1171 return cost;
1172 }
1173
1174 static unsigned
bi_choose_index(struct bi_worklist st,struct bi_clause_state * clause,struct bi_tuple_state * tuple,uint64_t live_after_temp,bool fma)1175 bi_choose_index(struct bi_worklist st,
1176 struct bi_clause_state *clause,
1177 struct bi_tuple_state *tuple,
1178 uint64_t live_after_temp,
1179 bool fma)
1180 {
1181 unsigned i, best_idx = ~0;
1182 signed best_cost = INT_MAX;
1183
1184 BITSET_FOREACH_SET(i, st.worklist, st.count) {
1185 bi_instr *instr = st.instructions[i];
1186
1187 if (!bi_instr_schedulable(instr, clause, tuple, live_after_temp, fma))
1188 continue;
1189
1190 signed cost = bi_instr_cost(instr, tuple);
1191
1192 /* Tie break in favour of later instructions, under the
1193 * assumption this promotes temporary usage (reducing pressure
1194 * on the register file). This is a side effect of a prepass
1195 * scheduling for pressure. */
1196
1197 if (cost <= best_cost) {
1198 best_idx = i;
1199 best_cost = cost;
1200 }
1201 }
1202
1203 return best_idx;
1204 }
1205
1206 static void
bi_pop_instr(struct bi_clause_state * clause,struct bi_tuple_state * tuple,bi_instr * instr,uint64_t live_after_temp,bool fma)1207 bi_pop_instr(struct bi_clause_state *clause, struct bi_tuple_state *tuple,
1208 bi_instr *instr, uint64_t live_after_temp, bool fma)
1209 {
1210 bi_update_fau(clause, tuple, instr, fma, true);
1211
1212 /* TODO: maybe opt a bit? or maybe doesn't matter */
1213 assert(clause->access_count + BI_MAX_SRCS + BI_MAX_DESTS <= ARRAY_SIZE(clause->accesses));
1214 memcpy(clause->accesses + clause->access_count, instr->src, sizeof(instr->src));
1215 clause->access_count += BI_MAX_SRCS;
1216 memcpy(clause->accesses + clause->access_count, instr->dest, sizeof(instr->dest));
1217 clause->access_count += BI_MAX_DESTS;
1218 tuple->reg.nr_writes += bi_write_count(instr, live_after_temp);
1219
1220 bi_foreach_src(instr, s) {
1221 if (bi_tuple_is_new_src(instr, &tuple->reg, s))
1222 tuple->reg.reads[tuple->reg.nr_reads++] = instr->src[s];
1223 }
1224
1225 /* This could be optimized to allow pairing integer instructions with
1226 * special flush-to-zero instructions, but punting on this until we have
1227 * a workload that cares.
1228 */
1229 clause->ftz = bi_needs_ftz(instr) ? BI_FTZ_STATE_ENABLE :
1230 BI_FTZ_STATE_DISABLE;
1231 }
1232
1233 /* Choose the best instruction and pop it off the worklist. Returns NULL if no
1234 * instruction is available. This function is destructive. */
1235
1236 static bi_instr *
bi_take_instr(bi_context * ctx,struct bi_worklist st,struct bi_clause_state * clause,struct bi_tuple_state * tuple,uint64_t live_after_temp,bool fma)1237 bi_take_instr(bi_context *ctx, struct bi_worklist st,
1238 struct bi_clause_state *clause,
1239 struct bi_tuple_state *tuple,
1240 uint64_t live_after_temp,
1241 bool fma)
1242 {
1243 if (tuple->add && tuple->add->op == BI_OPCODE_CUBEFACE)
1244 return bi_lower_cubeface(ctx, clause, tuple);
1245 else if (tuple->add && tuple->add->op == BI_OPCODE_ATOM_RETURN_I32)
1246 return bi_lower_atom_c(ctx, clause, tuple);
1247 else if (tuple->add && tuple->add->op == BI_OPCODE_ATOM1_RETURN_I32)
1248 return bi_lower_atom_c1(ctx, clause, tuple);
1249 else if (tuple->add && tuple->add->op == BI_OPCODE_SEG_ADD_I64)
1250 return bi_lower_seg_add(ctx, clause, tuple);
1251 else if (tuple->add && tuple->add->table)
1252 return bi_lower_dtsel(ctx, clause, tuple);
1253
1254 /* TODO: Optimize these moves */
1255 if (!fma && tuple->nr_prev_reads > 3) {
1256 /* Only spill by one source for now */
1257 assert(tuple->nr_prev_reads == 4);
1258
1259 /* Pick a source to spill */
1260 bi_index src = tuple->prev_reads[0];
1261
1262 /* Schedule the spill */
1263 bi_builder b = bi_init_builder(ctx, bi_before_tuple(tuple->prev));
1264 bi_instr *mov = bi_mov_i32_to(&b, src, src);
1265 bi_pop_instr(clause, tuple, mov, live_after_temp, fma);
1266 return mov;
1267 }
1268
1269 #ifndef NDEBUG
1270 /* Don't pair instructions if debugging */
1271 if ((bifrost_debug & BIFROST_DBG_NOSCHED) && tuple->add)
1272 return NULL;
1273 #endif
1274
1275 unsigned idx = bi_choose_index(st, clause, tuple, live_after_temp, fma);
1276
1277 if (idx >= st.count)
1278 return NULL;
1279
1280 /* Update state to reflect taking the instruction */
1281 bi_instr *instr = st.instructions[idx];
1282
1283 BITSET_CLEAR(st.worklist, idx);
1284 bi_update_worklist(st, idx);
1285 bi_pop_instr(clause, tuple, instr, live_after_temp, fma);
1286
1287 /* Fixups */
1288 if (instr->op == BI_OPCODE_IADD_U32 && fma) {
1289 assert(bi_can_iaddc(instr));
1290 instr->op = BI_OPCODE_IADDC_I32;
1291 instr->src[2] = bi_zero();
1292 } else if (fma && bi_can_replace_with_csel(instr)) {
1293 bi_replace_mux_with_csel(instr, false);
1294 }
1295
1296 return instr;
1297 }
1298
1299 /* Variant of bi_rewrite_index_src_single that uses word-equivalence, rewriting
1300 * to a passthrough register. If except_sr is true, the staging sources are
1301 * skipped, so staging register reads are not accidentally encoded as
1302 * passthrough (which is impossible) */
1303
1304 static void
bi_use_passthrough(bi_instr * ins,bi_index old,enum bifrost_packed_src new,bool except_sr)1305 bi_use_passthrough(bi_instr *ins, bi_index old,
1306 enum bifrost_packed_src new,
1307 bool except_sr)
1308 {
1309 /* Optional for convenience */
1310 if (!ins || bi_is_null(old))
1311 return;
1312
1313 bi_foreach_src(ins, i) {
1314 if ((i == 0 || i == 4) && except_sr)
1315 continue;
1316
1317 if (bi_is_word_equiv(ins->src[i], old)) {
1318 ins->src[i].type = BI_INDEX_PASS;
1319 ins->src[i].value = new;
1320 ins->src[i].reg = false;
1321 ins->src[i].offset = 0;
1322 }
1323 }
1324 }
1325
1326 /* Rewrites an adjacent pair of tuples _prec_eding and _succ_eding to use
1327 * intertuple passthroughs where necessary. Passthroughs are allowed as a
1328 * post-condition of scheduling. Note we rewrite ADD first, FMA second --
1329 * opposite the order of execution. This is deliberate -- if both FMA and ADD
1330 * write to the same logical register, the next executed tuple will get the
1331 * latter result. There's no interference issue under the assumption of correct
1332 * register allocation. */
1333
1334 static void
bi_rewrite_passthrough(bi_tuple prec,bi_tuple succ)1335 bi_rewrite_passthrough(bi_tuple prec, bi_tuple succ)
1336 {
1337 bool sr_read = succ.add ? bi_opcode_props[succ.add->op].sr_read : false;
1338
1339 if (prec.add) {
1340 bi_use_passthrough(succ.fma, prec.add->dest[0], BIFROST_SRC_PASS_ADD, false);
1341 bi_use_passthrough(succ.add, prec.add->dest[0], BIFROST_SRC_PASS_ADD, sr_read);
1342 }
1343
1344 if (prec.fma) {
1345 bi_use_passthrough(succ.fma, prec.fma->dest[0], BIFROST_SRC_PASS_FMA, false);
1346 bi_use_passthrough(succ.add, prec.fma->dest[0], BIFROST_SRC_PASS_FMA, sr_read);
1347 }
1348 }
1349
1350 static void
bi_rewrite_fau_to_pass(bi_tuple * tuple)1351 bi_rewrite_fau_to_pass(bi_tuple *tuple)
1352 {
1353 bi_foreach_instr_and_src_in_tuple(tuple, ins, s) {
1354 if (ins->src[s].type != BI_INDEX_FAU) continue;
1355
1356 bi_index pass = bi_passthrough(ins->src[s].offset ?
1357 BIFROST_SRC_FAU_HI : BIFROST_SRC_FAU_LO);
1358
1359 ins->src[s] = bi_replace_index(ins->src[s], pass);
1360 }
1361 }
1362
1363 static void
bi_rewrite_zero(bi_instr * ins,bool fma)1364 bi_rewrite_zero(bi_instr *ins, bool fma)
1365 {
1366 bi_index zero = bi_passthrough(fma ? BIFROST_SRC_STAGE : BIFROST_SRC_FAU_LO);
1367
1368 bi_foreach_src(ins, s) {
1369 bi_index src = ins->src[s];
1370
1371 if (src.type == BI_INDEX_CONSTANT && src.value == 0)
1372 ins->src[s] = bi_replace_index(src, zero);
1373 }
1374 }
1375
1376 /* Assumes #0 to {T, FAU} rewrite has already occurred */
1377
1378 static void
bi_rewrite_constants_to_pass(bi_tuple * tuple,uint64_t constant,bool pcrel)1379 bi_rewrite_constants_to_pass(bi_tuple *tuple, uint64_t constant, bool pcrel)
1380 {
1381 bi_foreach_instr_and_src_in_tuple(tuple, ins, s) {
1382 if (ins->src[s].type != BI_INDEX_CONSTANT) continue;
1383
1384 uint32_t cons = ins->src[s].value;
1385
1386 ASSERTED bool lo = (cons == (constant & 0xffffffff));
1387 bool hi = (cons == (constant >> 32ull));
1388
1389 /* PC offsets always live in the upper half, set to zero by
1390 * convention before pack time. (This is safe, since if you
1391 * wanted to compare against zero, you would use a BRANCHZ
1392 * instruction instead.) */
1393 if (cons == 0 && ins->branch_target != NULL) {
1394 assert(pcrel);
1395 hi = true;
1396 lo = false;
1397 } else if (pcrel) {
1398 hi = false;
1399 }
1400
1401 assert(lo || hi);
1402
1403 ins->src[s] = bi_replace_index(ins->src[s],
1404 bi_passthrough(hi ? BIFROST_SRC_FAU_HI :
1405 BIFROST_SRC_FAU_LO));
1406 }
1407 }
1408
1409 /* Constructs a constant state given a tuple state. This has the
1410 * postcondition that pcrel applies to the first constant by convention,
1411 * and PC-relative constants will be #0 by convention here, so swap to
1412 * match if needed */
1413
1414 static struct bi_const_state
bi_get_const_state(struct bi_tuple_state * tuple)1415 bi_get_const_state(struct bi_tuple_state *tuple)
1416 {
1417 struct bi_const_state consts = {
1418 .constant_count = tuple->constant_count,
1419 .constants[0] = tuple->constants[0],
1420 .constants[1] = tuple->constants[1],
1421 .pcrel = tuple->add && tuple->add->branch_target,
1422 };
1423
1424 /* pcrel applies to the first constant by convention, and
1425 * PC-relative constants will be #0 by convention here, so swap
1426 * to match if needed */
1427 if (consts.pcrel && consts.constants[0]) {
1428 assert(consts.constant_count == 2);
1429 assert(consts.constants[1] == 0);
1430
1431 consts.constants[1] = consts.constants[0];
1432 consts.constants[0] = 0;
1433 }
1434
1435 return consts;
1436 }
1437
1438 /* Merges constants in a clause, satisfying the following rules, assuming no
1439 * more than one tuple has pcrel:
1440 *
1441 * 1. If a tuple has two constants, they must be packed together. If one is
1442 * pcrel, it must be the high constant to use the M1=4 modification [sx64(E0) +
1443 * (PC << 32)]. Otherwise choose an arbitrary order.
1444 *
1445 * 4. If a tuple has one constant, it may be shared with an existing
1446 * pair that already contains that constant, or it may be combined with another
1447 * (distinct) tuple of a single constant.
1448 *
1449 * This gaurantees a packing is possible. The next routine handles modification
1450 * related swapping, to satisfy format 12 and the lack of modification for
1451 * tuple count 5/8 in EC0.
1452 */
1453
1454 static uint64_t
bi_merge_u32(uint32_t c0,uint32_t c1,bool pcrel)1455 bi_merge_u32(uint32_t c0, uint32_t c1, bool pcrel)
1456 {
1457 /* At this point in the constant merge algorithm, pcrel constants are
1458 * treated as zero, so pcrel implies at least one constants is zero */
1459 assert(!pcrel || (c0 == 0 || c1 == 0));
1460
1461 /* Order: pcrel, maximum non-pcrel, minimum non-pcrel */
1462 uint32_t hi = pcrel ? 0 : MAX2(c0, c1);
1463 uint32_t lo = (c0 == hi) ? c1 : c0;
1464
1465 /* Merge in the selected order */
1466 return lo | (((uint64_t) hi) << 32ull);
1467 }
1468
1469 static unsigned
bi_merge_pairs(struct bi_const_state * consts,unsigned tuple_count,uint64_t * merged,unsigned * pcrel_pair)1470 bi_merge_pairs(struct bi_const_state *consts, unsigned tuple_count,
1471 uint64_t *merged, unsigned *pcrel_pair)
1472 {
1473 unsigned merge_count = 0;
1474
1475 for (unsigned t = 0; t < tuple_count; ++t) {
1476 if (consts[t].constant_count != 2) continue;
1477
1478 unsigned idx = ~0;
1479 uint64_t val = bi_merge_u32(consts[t].constants[0],
1480 consts[t].constants[1], consts[t].pcrel);
1481
1482 /* Skip the pcrel pair if assigned, because if one is assigned,
1483 * this one is not pcrel by uniqueness so it's a mismatch */
1484 for (unsigned s = 0; s < merge_count; ++s) {
1485 if (merged[s] == val && (*pcrel_pair) != s) {
1486 idx = s;
1487 break;
1488 }
1489 }
1490
1491 if (idx == ~0) {
1492 idx = merge_count++;
1493 merged[idx] = val;
1494
1495 if (consts[t].pcrel)
1496 (*pcrel_pair) = idx;
1497 }
1498
1499 consts[t].word_idx = idx;
1500 }
1501
1502 return merge_count;
1503 }
1504
1505 static unsigned
bi_merge_singles(struct bi_const_state * consts,unsigned tuple_count,uint64_t * pairs,unsigned pair_count,unsigned * pcrel_pair)1506 bi_merge_singles(struct bi_const_state *consts, unsigned tuple_count,
1507 uint64_t *pairs, unsigned pair_count, unsigned *pcrel_pair)
1508 {
1509 bool pending = false, pending_pcrel = false;
1510 uint32_t pending_single = 0;
1511
1512 for (unsigned t = 0; t < tuple_count; ++t) {
1513 if (consts[t].constant_count != 1) continue;
1514
1515 uint32_t val = consts[t].constants[0];
1516 unsigned idx = ~0;
1517
1518 /* Try to match, but don't match pcrel with non-pcrel, even
1519 * though we can merge a pcrel with a non-pcrel single */
1520 for (unsigned i = 0; i < pair_count; ++i) {
1521 bool lo = ((pairs[i] & 0xffffffff) == val);
1522 bool hi = ((pairs[i] >> 32) == val);
1523 bool match = (lo || hi);
1524 match &= ((*pcrel_pair) != i);
1525 if (match && !consts[t].pcrel) {
1526 idx = i;
1527 break;
1528 }
1529 }
1530
1531 if (idx == ~0) {
1532 idx = pair_count;
1533
1534 if (pending && pending_single != val) {
1535 assert(!(pending_pcrel && consts[t].pcrel));
1536 bool pcrel = pending_pcrel || consts[t].pcrel;
1537
1538 if (pcrel)
1539 *pcrel_pair = idx;
1540
1541 pairs[pair_count++] = bi_merge_u32(pending_single, val, pcrel);
1542
1543 pending = pending_pcrel = false;
1544 } else {
1545 pending = true;
1546 pending_pcrel = consts[t].pcrel;
1547 pending_single = val;
1548 }
1549 }
1550
1551 consts[t].word_idx = idx;
1552 }
1553
1554 /* Shift so it works whether pending_pcrel is set or not */
1555 if (pending) {
1556 if (pending_pcrel)
1557 *pcrel_pair = pair_count;
1558
1559 pairs[pair_count++] = ((uint64_t) pending_single) << 32ull;
1560 }
1561
1562 return pair_count;
1563 }
1564
1565 static unsigned
bi_merge_constants(struct bi_const_state * consts,uint64_t * pairs,unsigned * pcrel_idx)1566 bi_merge_constants(struct bi_const_state *consts, uint64_t *pairs, unsigned *pcrel_idx)
1567 {
1568 unsigned pair_count = bi_merge_pairs(consts, 8, pairs, pcrel_idx);
1569 return bi_merge_singles(consts, 8, pairs, pair_count, pcrel_idx);
1570 }
1571
1572 /* Swap two constants at word i and i+1 by swapping their actual positions and
1573 * swapping all references so the meaning of the clause is preserved */
1574
1575 static void
bi_swap_constants(struct bi_const_state * consts,uint64_t * pairs,unsigned i)1576 bi_swap_constants(struct bi_const_state *consts, uint64_t *pairs, unsigned i)
1577 {
1578 uint64_t tmp_pair = pairs[i + 0];
1579 pairs[i + 0] = pairs[i + 1];
1580 pairs[i + 1] = tmp_pair;
1581
1582 for (unsigned t = 0; t < 8; ++t) {
1583 if (consts[t].word_idx == i)
1584 consts[t].word_idx = (i + 1);
1585 else if (consts[t].word_idx == (i + 1))
1586 consts[t].word_idx = i;
1587 }
1588 }
1589
1590 /* Given merged constants, one of which might be PC-relative, fix up the M
1591 * values so the PC-relative constant (if it exists) has the M1=4 modification
1592 * and other constants are used as-is (which might require swapping) */
1593
1594 static unsigned
bi_apply_constant_modifiers(struct bi_const_state * consts,uint64_t * pairs,unsigned * pcrel_idx,unsigned tuple_count,unsigned constant_count)1595 bi_apply_constant_modifiers(struct bi_const_state *consts,
1596 uint64_t *pairs, unsigned *pcrel_idx,
1597 unsigned tuple_count, unsigned constant_count)
1598 {
1599 unsigned start = bi_ec0_packed(tuple_count) ? 1 : 0;
1600
1601 /* Clauses with these tuple counts lack an M field for the packed EC0,
1602 * so EC0 cannot be PC-relative, which might require swapping (and
1603 * possibly adding an unused constant) to fit */
1604
1605 if (*pcrel_idx == 0 && (tuple_count == 5 || tuple_count == 8)) {
1606 constant_count = MAX2(constant_count, 2);
1607 *pcrel_idx = 1;
1608 bi_swap_constants(consts, pairs, 0);
1609 }
1610
1611 /* EC0 might be packed free, after that constants are packed in pairs
1612 * (with clause format 12), with M1 values computed from the pair */
1613
1614 for (unsigned i = start; i < constant_count; i += 2) {
1615 bool swap = false;
1616 bool last = (i + 1) == constant_count;
1617
1618 unsigned A1 = (pairs[i] >> 60);
1619 unsigned B1 = (pairs[i + 1] >> 60);
1620
1621 if (*pcrel_idx == i || *pcrel_idx == (i + 1)) {
1622 /* PC-relative constant must be E0, not E1 */
1623 swap = (*pcrel_idx == (i + 1));
1624
1625 /* Set M1 = 4 by noting (A - B) mod 16 = 4 is
1626 * equivalent to A = (B + 4) mod 16 and that we can
1627 * control A */
1628 unsigned B = swap ? A1 : B1;
1629 unsigned A = (B + 4) & 0xF;
1630 pairs[*pcrel_idx] |= ((uint64_t) A) << 60;
1631
1632 /* Swapped if swap set, identity if swap not set */
1633 *pcrel_idx = i;
1634 } else {
1635 /* Compute M1 value if we don't swap */
1636 unsigned M1 = (16 + A1 - B1) & 0xF;
1637
1638 /* For M1 = 0 or M1 >= 8, the constants are unchanged,
1639 * we have 0 < (A1 - B1) % 16 < 8, which implies (B1 -
1640 * A1) % 16 >= 8, so swapping will let them be used
1641 * unchanged */
1642 swap = (M1 != 0) && (M1 < 8);
1643
1644 /* However, we can't swap the last constant, so we
1645 * force M1 = 0 instead for this case */
1646 if (last && swap) {
1647 pairs[i + 1] |= pairs[i] & (0xfull << 60);
1648 swap = false;
1649 }
1650 }
1651
1652 if (swap) {
1653 assert(!last);
1654 bi_swap_constants(consts, pairs, i);
1655 }
1656 }
1657
1658 return constant_count;
1659 }
1660
1661 /* Schedule a single clause. If no instructions remain, return NULL. */
1662
1663 static bi_clause *
bi_schedule_clause(bi_context * ctx,bi_block * block,struct bi_worklist st,uint64_t * live)1664 bi_schedule_clause(bi_context *ctx, bi_block *block, struct bi_worklist st, uint64_t *live)
1665 {
1666 struct bi_clause_state clause_state = { 0 };
1667 bi_clause *clause = rzalloc(ctx, bi_clause);
1668 bi_tuple *tuple = NULL;
1669
1670 const unsigned max_tuples = ARRAY_SIZE(clause->tuples);
1671
1672 /* TODO: Decide flow control better */
1673 clause->flow_control = BIFROST_FLOW_NBTB;
1674
1675 /* The last clause can only write one instruction, so initialize that */
1676 struct bi_reg_state reg_state = {};
1677 bi_index prev_reads[5] = { bi_null() };
1678 unsigned nr_prev_reads = 0;
1679
1680 /* We need to track future liveness. The main *live set tracks what is
1681 * live at the current point int he program we are scheduling, but to
1682 * determine temp eligibility, we instead want what will be live after
1683 * the next tuple in the program. If you scheduled forwards, you'd need
1684 * a crystall ball for this. Luckily we schedule backwards, so we just
1685 * delay updates to the live_after_temp by an extra tuple. */
1686 uint64_t live_after_temp = *live;
1687 uint64_t live_next_tuple = live_after_temp;
1688
1689 do {
1690 struct bi_tuple_state tuple_state = {
1691 .last = (clause->tuple_count == 0),
1692 .reg = reg_state,
1693 .nr_prev_reads = nr_prev_reads,
1694 .prev = tuple,
1695 .pcrel_idx = ~0,
1696 };
1697
1698 assert(nr_prev_reads < ARRAY_SIZE(prev_reads));
1699 memcpy(tuple_state.prev_reads, prev_reads, sizeof(prev_reads));
1700
1701 unsigned idx = max_tuples - clause->tuple_count - 1;
1702
1703 tuple = &clause->tuples[idx];
1704
1705 if (clause->message && bi_opcode_props[clause->message->op].sr_read && !bi_is_null(clause->message->src[0])) {
1706 unsigned nr = bi_count_read_registers(clause->message, 0);
1707 live_after_temp |= (BITFIELD64_MASK(nr) << clause->message->src[0].value);
1708 }
1709
1710 /* Since we schedule backwards, we schedule ADD first */
1711 tuple_state.add = bi_take_instr(ctx, st, &clause_state, &tuple_state, live_after_temp, false);
1712 tuple->fma = bi_take_instr(ctx, st, &clause_state, &tuple_state, live_after_temp, true);
1713 tuple->add = tuple_state.add;
1714
1715 /* Update liveness from the new instructions */
1716 if (tuple->add)
1717 *live = bi_postra_liveness_ins(*live, tuple->add);
1718
1719 if (tuple->fma)
1720 *live = bi_postra_liveness_ins(*live, tuple->fma);
1721
1722 /* Rotate in the new per-tuple liveness */
1723 live_after_temp = live_next_tuple;
1724 live_next_tuple = *live;
1725
1726 /* We may have a message, but only one per clause */
1727 if (tuple->add && bi_must_message(tuple->add)) {
1728 assert(!clause_state.message);
1729 clause_state.message = true;
1730
1731 clause->message_type =
1732 bi_message_type_for_instr(tuple->add);
1733 clause->message = tuple->add;
1734
1735 /* We don't need to set dependencies for blend shaders
1736 * because the BLEND instruction in the fragment
1737 * shader should have already done the wait */
1738 if (!ctx->inputs->is_blend) {
1739 switch (tuple->add->op) {
1740 case BI_OPCODE_ATEST:
1741 clause->dependencies |= (1 << BIFROST_SLOT_ELDEST_DEPTH);
1742 break;
1743 case BI_OPCODE_LD_TILE:
1744 case BI_OPCODE_ST_TILE:
1745 clause->dependencies |= (1 << BIFROST_SLOT_ELDEST_COLOUR);
1746 break;
1747 case BI_OPCODE_BLEND:
1748 clause->dependencies |= (1 << BIFROST_SLOT_ELDEST_DEPTH);
1749 clause->dependencies |= (1 << BIFROST_SLOT_ELDEST_COLOUR);
1750 break;
1751 default:
1752 break;
1753 }
1754 }
1755 }
1756
1757 clause_state.consts[idx] = bi_get_const_state(&tuple_state);
1758
1759 /* Before merging constants, eliminate zeroes, otherwise the
1760 * merging will fight over the #0 that never gets read (and is
1761 * never marked as read by update_fau) */
1762 if (tuple->fma && bi_reads_zero(tuple->fma))
1763 bi_rewrite_zero(tuple->fma, true);
1764
1765 /* Rewrite away FAU, constant write is deferred */
1766 if (!tuple_state.constant_count) {
1767 tuple->fau_idx = tuple_state.fau;
1768 bi_rewrite_fau_to_pass(tuple);
1769 }
1770
1771 /* Use passthrough register for cross-stage accesses. Since
1772 * there are just FMA and ADD stages, that means we rewrite to
1773 * passthrough the sources of the ADD that read from the
1774 * destination of the FMA */
1775
1776 if (tuple->fma) {
1777 bi_use_passthrough(tuple->add, tuple->fma->dest[0],
1778 BIFROST_SRC_STAGE, false);
1779 }
1780
1781 /* Don't add an empty tuple, unless the worklist has nothing
1782 * but a (pseudo)instruction failing to schedule due to a "not
1783 * last instruction" constraint */
1784
1785 int some_instruction = __bitset_ffs(st.worklist, BITSET_WORDS(st.count));
1786 bool not_last = (some_instruction > 0) &&
1787 bi_must_not_last(st.instructions[some_instruction - 1]);
1788
1789 bool insert_empty = tuple_state.last && not_last;
1790
1791 if (!(tuple->fma || tuple->add || insert_empty))
1792 break;
1793
1794 clause->tuple_count++;
1795
1796 /* Adding enough tuple might overflow constants */
1797 if (!bi_space_for_more_constants(&clause_state))
1798 break;
1799
1800 #ifndef NDEBUG
1801 /* Don't schedule more than 1 tuple if debugging */
1802 if ((bifrost_debug & BIFROST_DBG_NOSCHED) && !insert_empty)
1803 break;
1804 #endif
1805
1806 /* Link through the register state */
1807 STATIC_ASSERT(sizeof(prev_reads) == sizeof(tuple_state.reg.reads));
1808 memcpy(prev_reads, tuple_state.reg.reads, sizeof(prev_reads));
1809 nr_prev_reads = tuple_state.reg.nr_reads;
1810 clause_state.tuple_count++;
1811 } while(clause->tuple_count < 8);
1812
1813 /* Don't schedule an empty clause */
1814 if (!clause->tuple_count)
1815 return NULL;
1816
1817 /* Before merging, rewrite away any tuples that read only zero */
1818 for (unsigned i = max_tuples - clause->tuple_count; i < max_tuples; ++i) {
1819 bi_tuple *tuple = &clause->tuples[i];
1820 struct bi_const_state *st = &clause_state.consts[i];
1821
1822 if (st->constant_count == 0 || st->constants[0] || st->constants[1] || st->pcrel)
1823 continue;
1824
1825 bi_foreach_instr_in_tuple(tuple, ins)
1826 bi_rewrite_zero(ins, false);
1827
1828 /* Constant has been demoted to FAU, so don't pack it separately */
1829 st->constant_count = 0;
1830
1831 /* Default */
1832 assert(tuple->fau_idx == BIR_FAU_ZERO);
1833 }
1834
1835 uint64_t constant_pairs[8] = { 0 };
1836 unsigned pcrel_idx = ~0;
1837 unsigned constant_words =
1838 bi_merge_constants(clause_state.consts, constant_pairs, &pcrel_idx);
1839
1840 constant_words = bi_apply_constant_modifiers(clause_state.consts,
1841 constant_pairs, &pcrel_idx, clause->tuple_count,
1842 constant_words);
1843
1844 clause->pcrel_idx = pcrel_idx;
1845
1846 for (unsigned i = max_tuples - clause->tuple_count; i < max_tuples; ++i) {
1847 bi_tuple *tuple = &clause->tuples[i];
1848
1849 /* If no constants, leave FAU as it is, possibly defaulting to 0 */
1850 if (clause_state.consts[i].constant_count == 0)
1851 continue;
1852
1853 /* FAU is already handled */
1854 assert(!tuple->fau_idx);
1855
1856 unsigned word_idx = clause_state.consts[i].word_idx;
1857 assert(word_idx <= 8);
1858
1859 /* We could try to merge regardless of bottom bits as well, but
1860 * that's probably diminishing returns */
1861 uint64_t pair = constant_pairs[word_idx];
1862 unsigned lo = pair & 0xF;
1863
1864 tuple->fau_idx = bi_constant_field(word_idx) | lo;
1865 bi_rewrite_constants_to_pass(tuple, pair, word_idx == pcrel_idx);
1866 }
1867
1868 clause->constant_count = constant_words;
1869 memcpy(clause->constants, constant_pairs, sizeof(constant_pairs));
1870
1871 /* Branches must be last, so this can be factored out */
1872 bi_instr *last = clause->tuples[max_tuples - 1].add;
1873 clause->next_clause_prefetch = !last || (last->op != BI_OPCODE_JUMP);
1874 clause->block = block;
1875
1876 clause->ftz = (clause_state.ftz == BI_FTZ_STATE_ENABLE);
1877
1878 /* We emit in reverse and emitted to the back of the tuples array, so
1879 * move it up front for easy indexing */
1880 memmove(clause->tuples,
1881 clause->tuples + (max_tuples - clause->tuple_count),
1882 clause->tuple_count * sizeof(clause->tuples[0]));
1883
1884 /* Use passthrough register for cross-tuple accesses. Note this is
1885 * after the memmove, so this is forwards. Skip the first tuple since
1886 * there is nothing before it to passthrough */
1887
1888 for (unsigned t = 1; t < clause->tuple_count; ++t)
1889 bi_rewrite_passthrough(clause->tuples[t - 1], clause->tuples[t]);
1890
1891 return clause;
1892 }
1893
1894 static void
bi_schedule_block(bi_context * ctx,bi_block * block)1895 bi_schedule_block(bi_context *ctx, bi_block *block)
1896 {
1897 list_inithead(&block->clauses);
1898
1899 /* Copy list to dynamic array */
1900 struct bi_worklist st = bi_initialize_worklist(block,
1901 bifrost_debug & BIFROST_DBG_INORDER,
1902 ctx->inputs->is_blend);
1903
1904 if (!st.count) {
1905 bi_free_worklist(st);
1906 return;
1907 }
1908
1909 /* We need to track liveness during scheduling in order to determine whether we can use temporary (passthrough) registers */
1910 uint64_t live = block->reg_live_out;
1911
1912 /* Schedule as many clauses as needed to fill the block */
1913 bi_clause *u = NULL;
1914 while((u = bi_schedule_clause(ctx, block, st, &live)))
1915 list_add(&u->link, &block->clauses);
1916
1917 /* Back-to-back bit affects only the last clause of a block,
1918 * the rest are implicitly true */
1919 if (!list_is_empty(&block->clauses)) {
1920 bi_clause *last_clause = list_last_entry(&block->clauses, bi_clause, link);
1921 if (bi_reconverge_branches(block))
1922 last_clause->flow_control = BIFROST_FLOW_NBTB_UNCONDITIONAL;
1923 }
1924
1925 /* Reorder instructions to match the new schedule. First remove
1926 * existing instructions and then recreate the list */
1927
1928 bi_foreach_instr_in_block_safe(block, ins) {
1929 list_del(&ins->link);
1930 }
1931
1932 bi_foreach_clause_in_block(block, clause) {
1933 for (unsigned i = 0; i < clause->tuple_count; ++i) {
1934 bi_foreach_instr_in_tuple(&clause->tuples[i], ins) {
1935 list_addtail(&ins->link, &block->instructions);
1936 }
1937 }
1938 }
1939
1940 block->scheduled = true;
1941
1942 #ifndef NDEBUG
1943 unsigned i;
1944 bool incomplete = false;
1945
1946 BITSET_FOREACH_SET(i, st.worklist, st.count) {
1947 bi_print_instr(st.instructions[i], stderr);
1948 incomplete = true;
1949 }
1950
1951 if (incomplete)
1952 unreachable("The above instructions failed to schedule.");
1953 #endif
1954
1955 bi_free_worklist(st);
1956 }
1957
1958 static bool
bi_check_fau_src(bi_instr * ins,unsigned s,uint32_t * constants,unsigned * cwords,bi_index * fau)1959 bi_check_fau_src(bi_instr *ins, unsigned s, uint32_t *constants, unsigned *cwords, bi_index *fau)
1960 {
1961 bi_index src = ins->src[s];
1962
1963 /* Staging registers can't have FAU accesses */
1964 if (bi_is_staging_src(ins, s))
1965 return (src.type != BI_INDEX_CONSTANT) && (src.type != BI_INDEX_FAU);
1966
1967 if (src.type == BI_INDEX_CONSTANT) {
1968 /* Allow fast zero */
1969 if (src.value == 0 && bi_opcode_props[ins->op].fma && bi_reads_zero(ins))
1970 return true;
1971
1972 if (!bi_is_null(*fau))
1973 return false;
1974
1975 /* Else, try to inline a constant */
1976 for (unsigned i = 0; i < *cwords; ++i) {
1977 if (src.value == constants[i])
1978 return true;
1979 }
1980
1981 if (*cwords >= 2)
1982 return false;
1983
1984 constants[(*cwords)++] = src.value;
1985 } else if (src.type == BI_INDEX_FAU) {
1986 if (*cwords != 0)
1987 return false;
1988
1989 /* Can only read from one pair of FAU words */
1990 if (!bi_is_null(*fau) && (src.value != fau->value))
1991 return false;
1992
1993 /* If there is a target, we'll need a PC-relative constant */
1994 if (ins->branch_target)
1995 return false;
1996
1997 *fau = src;
1998 }
1999
2000 return true;
2001 }
2002
2003 void
bi_lower_fau(bi_context * ctx)2004 bi_lower_fau(bi_context *ctx)
2005 {
2006 bi_foreach_instr_global_safe(ctx, ins) {
2007 bi_builder b = bi_init_builder(ctx, bi_before_instr(ins));
2008
2009 uint32_t constants[2];
2010 unsigned cwords = 0;
2011 bi_index fau = bi_null();
2012
2013 /* ATEST must have the ATEST datum encoded, not any other
2014 * uniform. See to it this is the case. */
2015 if (ins->op == BI_OPCODE_ATEST)
2016 fau = ins->src[2];
2017
2018 /* Dual texturing requires the texture operation descriptor
2019 * encoded as an immediate so we can fix up.
2020 */
2021 if (ins->op == BI_OPCODE_TEXC) {
2022 assert(ins->src[3].type == BI_INDEX_CONSTANT);
2023 constants[cwords++] = ins->src[3].value;
2024 }
2025
2026 bi_foreach_src(ins, s) {
2027 if (bi_check_fau_src(ins, s, constants, &cwords, &fau)) continue;
2028
2029 bi_index copy = bi_mov_i32(&b, ins->src[s]);
2030 ins->src[s] = bi_replace_index(ins->src[s], copy);
2031 }
2032 }
2033 }
2034
2035 /* Only v7 allows specifying a dependency on the tilebuffer for the first
2036 * clause of a shader. v6 requires adding a NOP clause with the depedency. */
2037
2038 static void
bi_add_nop_for_atest(bi_context * ctx)2039 bi_add_nop_for_atest(bi_context *ctx)
2040 {
2041 /* Only needed on v6 */
2042 if (ctx->arch >= 7)
2043 return;
2044
2045 if (list_is_empty(&ctx->blocks))
2046 return;
2047
2048 /* Fetch the first clause of the shader */
2049 bi_block *block = list_first_entry(&ctx->blocks, bi_block, link);
2050 bi_clause *clause = bi_next_clause(ctx, block, NULL);
2051
2052 if (!clause || !(clause->dependencies & ((1 << BIFROST_SLOT_ELDEST_DEPTH) |
2053 (1 << BIFROST_SLOT_ELDEST_COLOUR))))
2054 return;
2055
2056 /* Add a NOP so we can wait for the dependencies required by the first
2057 * clause */
2058
2059 bi_instr *I = rzalloc(ctx, bi_instr);
2060 I->op = BI_OPCODE_NOP;
2061 I->dest[0] = bi_null();
2062
2063 bi_clause *new_clause = ralloc(ctx, bi_clause);
2064 *new_clause = (bi_clause) {
2065 .flow_control = BIFROST_FLOW_NBTB,
2066 .next_clause_prefetch = true,
2067 .block = clause->block,
2068
2069 .tuple_count = 1,
2070 .tuples[0] = { .fma = I, },
2071 };
2072
2073 list_add(&new_clause->link, &clause->block->clauses);
2074 }
2075
2076 void
bi_schedule(bi_context * ctx)2077 bi_schedule(bi_context *ctx)
2078 {
2079 /* Fed into both scheduling and DCE */
2080 bi_postra_liveness(ctx);
2081
2082 bi_foreach_block(ctx, block) {
2083 bi_schedule_block(ctx, block);
2084 }
2085
2086 bi_opt_dce_post_ra(ctx);
2087 bi_add_nop_for_atest(ctx);
2088 }
2089