1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 #include <linux/blk-cgroup.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-rq-qos.h"
16
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)17 static inline bool bio_will_gap(struct request_queue *q,
18 struct request *prev_rq, struct bio *prev, struct bio *next)
19 {
20 struct bio_vec pb, nb;
21
22 if (!bio_has_data(prev) || !queue_virt_boundary(q))
23 return false;
24
25 /*
26 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
27 * is quite difficult to respect the sg gap limit. We work hard to
28 * merge a huge number of small single bios in case of mkfs.
29 */
30 if (prev_rq)
31 bio_get_first_bvec(prev_rq->bio, &pb);
32 else
33 bio_get_first_bvec(prev, &pb);
34 if (pb.bv_offset & queue_virt_boundary(q))
35 return true;
36
37 /*
38 * We don't need to worry about the situation that the merged segment
39 * ends in unaligned virt boundary:
40 *
41 * - if 'pb' ends aligned, the merged segment ends aligned
42 * - if 'pb' ends unaligned, the next bio must include
43 * one single bvec of 'nb', otherwise the 'nb' can't
44 * merge with 'pb'
45 */
46 bio_get_last_bvec(prev, &pb);
47 bio_get_first_bvec(next, &nb);
48 if (biovec_phys_mergeable(q, &pb, &nb))
49 return false;
50 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
51 }
52
req_gap_back_merge(struct request * req,struct bio * bio)53 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
54 {
55 return bio_will_gap(req->q, req, req->biotail, bio);
56 }
57
req_gap_front_merge(struct request * req,struct bio * bio)58 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
59 {
60 return bio_will_gap(req->q, NULL, bio, req->bio);
61 }
62
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)63 static struct bio *blk_bio_discard_split(struct request_queue *q,
64 struct bio *bio,
65 struct bio_set *bs,
66 unsigned *nsegs)
67 {
68 unsigned int max_discard_sectors, granularity;
69 int alignment;
70 sector_t tmp;
71 unsigned split_sectors;
72
73 *nsegs = 1;
74
75 /* Zero-sector (unknown) and one-sector granularities are the same. */
76 granularity = max(q->limits.discard_granularity >> 9, 1U);
77
78 max_discard_sectors = min(q->limits.max_discard_sectors,
79 bio_allowed_max_sectors(q));
80 max_discard_sectors -= max_discard_sectors % granularity;
81
82 if (unlikely(!max_discard_sectors)) {
83 /* XXX: warn */
84 return NULL;
85 }
86
87 if (bio_sectors(bio) <= max_discard_sectors)
88 return NULL;
89
90 split_sectors = max_discard_sectors;
91
92 /*
93 * If the next starting sector would be misaligned, stop the discard at
94 * the previous aligned sector.
95 */
96 alignment = (q->limits.discard_alignment >> 9) % granularity;
97
98 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
99 tmp = sector_div(tmp, granularity);
100
101 if (split_sectors > tmp)
102 split_sectors -= tmp;
103
104 return bio_split(bio, split_sectors, GFP_NOIO, bs);
105 }
106
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)107 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
108 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
109 {
110 *nsegs = 0;
111
112 if (!q->limits.max_write_zeroes_sectors)
113 return NULL;
114
115 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
116 return NULL;
117
118 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
119 }
120
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)121 static struct bio *blk_bio_write_same_split(struct request_queue *q,
122 struct bio *bio,
123 struct bio_set *bs,
124 unsigned *nsegs)
125 {
126 *nsegs = 1;
127
128 if (!q->limits.max_write_same_sectors)
129 return NULL;
130
131 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
132 return NULL;
133
134 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
135 }
136
137 /*
138 * Return the maximum number of sectors from the start of a bio that may be
139 * submitted as a single request to a block device. If enough sectors remain,
140 * align the end to the physical block size. Otherwise align the end to the
141 * logical block size. This approach minimizes the number of non-aligned
142 * requests that are submitted to a block device if the start of a bio is not
143 * aligned to a physical block boundary.
144 */
get_max_io_size(struct request_queue * q,struct bio * bio)145 static inline unsigned get_max_io_size(struct request_queue *q,
146 struct bio *bio)
147 {
148 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
149 unsigned max_sectors = sectors;
150 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
151 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
152 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
153
154 max_sectors += start_offset;
155 max_sectors &= ~(pbs - 1);
156 if (max_sectors > start_offset)
157 return max_sectors - start_offset;
158
159 return sectors & ~(lbs - 1);
160 }
161
get_max_segment_size(const struct request_queue * q,struct page * start_page,unsigned long offset)162 static inline unsigned get_max_segment_size(const struct request_queue *q,
163 struct page *start_page,
164 unsigned long offset)
165 {
166 unsigned long mask = queue_segment_boundary(q);
167
168 offset = mask & (page_to_phys(start_page) + offset);
169
170 /*
171 * overflow may be triggered in case of zero page physical address
172 * on 32bit arch, use queue's max segment size when that happens.
173 */
174 return min_not_zero(mask - offset + 1,
175 (unsigned long)queue_max_segment_size(q));
176 }
177
178 /**
179 * bvec_split_segs - verify whether or not a bvec should be split in the middle
180 * @q: [in] request queue associated with the bio associated with @bv
181 * @bv: [in] bvec to examine
182 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
183 * by the number of segments from @bv that may be appended to that
184 * bio without exceeding @max_segs
185 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
186 * by the number of sectors from @bv that may be appended to that
187 * bio without exceeding @max_sectors
188 * @max_segs: [in] upper bound for *@nsegs
189 * @max_sectors: [in] upper bound for *@sectors
190 *
191 * When splitting a bio, it can happen that a bvec is encountered that is too
192 * big to fit in a single segment and hence that it has to be split in the
193 * middle. This function verifies whether or not that should happen. The value
194 * %true is returned if and only if appending the entire @bv to a bio with
195 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
196 * the block driver.
197 */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)198 static bool bvec_split_segs(const struct request_queue *q,
199 const struct bio_vec *bv, unsigned *nsegs,
200 unsigned *sectors, unsigned max_segs,
201 unsigned max_sectors)
202 {
203 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
204 unsigned len = min(bv->bv_len, max_len);
205 unsigned total_len = 0;
206 unsigned seg_size = 0;
207
208 while (len && *nsegs < max_segs) {
209 seg_size = get_max_segment_size(q, bv->bv_page,
210 bv->bv_offset + total_len);
211 seg_size = min(seg_size, len);
212
213 (*nsegs)++;
214 total_len += seg_size;
215 len -= seg_size;
216
217 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
218 break;
219 }
220
221 *sectors += total_len >> 9;
222
223 /* tell the caller to split the bvec if it is too big to fit */
224 return len > 0 || bv->bv_len > max_len;
225 }
226
227 /**
228 * blk_bio_segment_split - split a bio in two bios
229 * @q: [in] request queue pointer
230 * @bio: [in] bio to be split
231 * @bs: [in] bio set to allocate the clone from
232 * @segs: [out] number of segments in the bio with the first half of the sectors
233 *
234 * Clone @bio, update the bi_iter of the clone to represent the first sectors
235 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
236 * following is guaranteed for the cloned bio:
237 * - That it has at most get_max_io_size(@q, @bio) sectors.
238 * - That it has at most queue_max_segments(@q) segments.
239 *
240 * Except for discard requests the cloned bio will point at the bi_io_vec of
241 * the original bio. It is the responsibility of the caller to ensure that the
242 * original bio is not freed before the cloned bio. The caller is also
243 * responsible for ensuring that @bs is only destroyed after processing of the
244 * split bio has finished.
245 */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)246 static struct bio *blk_bio_segment_split(struct request_queue *q,
247 struct bio *bio,
248 struct bio_set *bs,
249 unsigned *segs)
250 {
251 struct bio_vec bv, bvprv, *bvprvp = NULL;
252 struct bvec_iter iter;
253 unsigned nsegs = 0, sectors = 0;
254 const unsigned max_sectors = get_max_io_size(q, bio);
255 const unsigned max_segs = queue_max_segments(q);
256
257 bio_for_each_bvec(bv, bio, iter) {
258 /*
259 * If the queue doesn't support SG gaps and adding this
260 * offset would create a gap, disallow it.
261 */
262 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
263 goto split;
264
265 if (nsegs < max_segs &&
266 sectors + (bv.bv_len >> 9) <= max_sectors &&
267 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
268 nsegs++;
269 sectors += bv.bv_len >> 9;
270 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs,
271 max_sectors)) {
272 goto split;
273 }
274
275 bvprv = bv;
276 bvprvp = &bvprv;
277 }
278
279 *segs = nsegs;
280 return NULL;
281 split:
282 *segs = nsegs;
283 return bio_split(bio, sectors, GFP_NOIO, bs);
284 }
285
286 /**
287 * __blk_queue_split - split a bio and submit the second half
288 * @bio: [in, out] bio to be split
289 * @nr_segs: [out] number of segments in the first bio
290 *
291 * Split a bio into two bios, chain the two bios, submit the second half and
292 * store a pointer to the first half in *@bio. If the second bio is still too
293 * big it will be split by a recursive call to this function. Since this
294 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
295 * the responsibility of the caller to ensure that
296 * @bio->bi_disk->queue->bio_split is only released after processing of the
297 * split bio has finished.
298 */
__blk_queue_split(struct bio ** bio,unsigned int * nr_segs)299 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
300 {
301 struct request_queue *q = (*bio)->bi_disk->queue;
302 struct bio *split = NULL;
303
304 switch (bio_op(*bio)) {
305 case REQ_OP_DISCARD:
306 case REQ_OP_SECURE_ERASE:
307 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
308 break;
309 case REQ_OP_WRITE_ZEROES:
310 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
311 nr_segs);
312 break;
313 case REQ_OP_WRITE_SAME:
314 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
315 nr_segs);
316 break;
317 default:
318 /*
319 * All drivers must accept single-segments bios that are <=
320 * PAGE_SIZE. This is a quick and dirty check that relies on
321 * the fact that bi_io_vec[0] is always valid if a bio has data.
322 * The check might lead to occasional false negatives when bios
323 * are cloned, but compared to the performance impact of cloned
324 * bios themselves the loop below doesn't matter anyway.
325 */
326 if (!q->limits.chunk_sectors &&
327 (*bio)->bi_vcnt == 1 &&
328 ((*bio)->bi_io_vec[0].bv_len +
329 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
330 *nr_segs = 1;
331 break;
332 }
333 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
334 break;
335 }
336
337 if (split) {
338 /* there isn't chance to merge the splitted bio */
339 split->bi_opf |= REQ_NOMERGE;
340
341 bio_chain(split, *bio);
342 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
343 submit_bio_noacct(*bio);
344 *bio = split;
345
346 blk_throtl_charge_bio_split(*bio);
347 }
348 }
349
350 /**
351 * blk_queue_split - split a bio and submit the second half
352 * @bio: [in, out] bio to be split
353 *
354 * Split a bio into two bios, chains the two bios, submit the second half and
355 * store a pointer to the first half in *@bio. Since this function may allocate
356 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
357 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
358 * after processing of the split bio has finished.
359 */
blk_queue_split(struct bio ** bio)360 void blk_queue_split(struct bio **bio)
361 {
362 unsigned int nr_segs;
363
364 __blk_queue_split(bio, &nr_segs);
365 }
366 EXPORT_SYMBOL(blk_queue_split);
367
blk_recalc_rq_segments(struct request * rq)368 unsigned int blk_recalc_rq_segments(struct request *rq)
369 {
370 unsigned int nr_phys_segs = 0;
371 unsigned int nr_sectors = 0;
372 struct req_iterator iter;
373 struct bio_vec bv;
374
375 if (!rq->bio)
376 return 0;
377
378 switch (bio_op(rq->bio)) {
379 case REQ_OP_DISCARD:
380 case REQ_OP_SECURE_ERASE:
381 if (queue_max_discard_segments(rq->q) > 1) {
382 struct bio *bio = rq->bio;
383
384 for_each_bio(bio)
385 nr_phys_segs++;
386 return nr_phys_segs;
387 }
388 return 1;
389 case REQ_OP_WRITE_ZEROES:
390 return 0;
391 case REQ_OP_WRITE_SAME:
392 return 1;
393 }
394
395 rq_for_each_bvec(bv, rq, iter)
396 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
397 UINT_MAX, UINT_MAX);
398 return nr_phys_segs;
399 }
400
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)401 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
402 struct scatterlist *sglist)
403 {
404 if (!*sg)
405 return sglist;
406
407 /*
408 * If the driver previously mapped a shorter list, we could see a
409 * termination bit prematurely unless it fully inits the sg table
410 * on each mapping. We KNOW that there must be more entries here
411 * or the driver would be buggy, so force clear the termination bit
412 * to avoid doing a full sg_init_table() in drivers for each command.
413 */
414 sg_unmark_end(*sg);
415 return sg_next(*sg);
416 }
417
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)418 static unsigned blk_bvec_map_sg(struct request_queue *q,
419 struct bio_vec *bvec, struct scatterlist *sglist,
420 struct scatterlist **sg)
421 {
422 unsigned nbytes = bvec->bv_len;
423 unsigned nsegs = 0, total = 0;
424
425 while (nbytes > 0) {
426 unsigned offset = bvec->bv_offset + total;
427 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
428 offset), nbytes);
429 struct page *page = bvec->bv_page;
430
431 /*
432 * Unfortunately a fair number of drivers barf on scatterlists
433 * that have an offset larger than PAGE_SIZE, despite other
434 * subsystems dealing with that invariant just fine. For now
435 * stick to the legacy format where we never present those from
436 * the block layer, but the code below should be removed once
437 * these offenders (mostly MMC/SD drivers) are fixed.
438 */
439 page += (offset >> PAGE_SHIFT);
440 offset &= ~PAGE_MASK;
441
442 *sg = blk_next_sg(sg, sglist);
443 sg_set_page(*sg, page, len, offset);
444
445 total += len;
446 nbytes -= len;
447 nsegs++;
448 }
449
450 return nsegs;
451 }
452
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)453 static inline int __blk_bvec_map_sg(struct bio_vec bv,
454 struct scatterlist *sglist, struct scatterlist **sg)
455 {
456 *sg = blk_next_sg(sg, sglist);
457 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
458 return 1;
459 }
460
461 /* only try to merge bvecs into one sg if they are from two bios */
462 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)463 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
464 struct bio_vec *bvprv, struct scatterlist **sg)
465 {
466
467 int nbytes = bvec->bv_len;
468
469 if (!*sg)
470 return false;
471
472 if ((*sg)->length + nbytes > queue_max_segment_size(q))
473 return false;
474
475 if (!biovec_phys_mergeable(q, bvprv, bvec))
476 return false;
477
478 (*sg)->length += nbytes;
479
480 return true;
481 }
482
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)483 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
484 struct scatterlist *sglist,
485 struct scatterlist **sg)
486 {
487 struct bio_vec bvec, bvprv = { NULL };
488 struct bvec_iter iter;
489 int nsegs = 0;
490 bool new_bio = false;
491
492 for_each_bio(bio) {
493 bio_for_each_bvec(bvec, bio, iter) {
494 /*
495 * Only try to merge bvecs from two bios given we
496 * have done bio internal merge when adding pages
497 * to bio
498 */
499 if (new_bio &&
500 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
501 goto next_bvec;
502
503 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
504 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
505 else
506 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
507 next_bvec:
508 new_bio = false;
509 }
510 if (likely(bio->bi_iter.bi_size)) {
511 bvprv = bvec;
512 new_bio = true;
513 }
514 }
515
516 return nsegs;
517 }
518
519 /*
520 * map a request to scatterlist, return number of sg entries setup. Caller
521 * must make sure sg can hold rq->nr_phys_segments entries
522 */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)523 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
524 struct scatterlist *sglist, struct scatterlist **last_sg)
525 {
526 int nsegs = 0;
527
528 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
529 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
530 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
531 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
532 else if (rq->bio)
533 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
534
535 if (*last_sg)
536 sg_mark_end(*last_sg);
537
538 /*
539 * Something must have been wrong if the figured number of
540 * segment is bigger than number of req's physical segments
541 */
542 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
543
544 return nsegs;
545 }
546 EXPORT_SYMBOL(__blk_rq_map_sg);
547
blk_rq_get_max_segments(struct request * rq)548 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
549 {
550 if (req_op(rq) == REQ_OP_DISCARD)
551 return queue_max_discard_segments(rq->q);
552 return queue_max_segments(rq->q);
553 }
554
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)555 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
556 unsigned int nr_phys_segs)
557 {
558 if (!blk_cgroup_mergeable(req, bio))
559 goto no_merge;
560
561 if (blk_integrity_merge_bio(req->q, req, bio) == false)
562 goto no_merge;
563
564 /* discard request merge won't add new segment */
565 if (req_op(req) == REQ_OP_DISCARD)
566 return 1;
567
568 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
569 goto no_merge;
570
571 /*
572 * This will form the start of a new hw segment. Bump both
573 * counters.
574 */
575 req->nr_phys_segments += nr_phys_segs;
576 return 1;
577
578 no_merge:
579 req_set_nomerge(req->q, req);
580 return 0;
581 }
582
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)583 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
584 {
585 if (req_gap_back_merge(req, bio))
586 return 0;
587 if (blk_integrity_rq(req) &&
588 integrity_req_gap_back_merge(req, bio))
589 return 0;
590 if (!bio_crypt_ctx_back_mergeable(req, bio))
591 return 0;
592 if (blk_rq_sectors(req) + bio_sectors(bio) >
593 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
594 req_set_nomerge(req->q, req);
595 return 0;
596 }
597
598 return ll_new_hw_segment(req, bio, nr_segs);
599 }
600
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)601 static int ll_front_merge_fn(struct request *req, struct bio *bio,
602 unsigned int nr_segs)
603 {
604 if (req_gap_front_merge(req, bio))
605 return 0;
606 if (blk_integrity_rq(req) &&
607 integrity_req_gap_front_merge(req, bio))
608 return 0;
609 if (!bio_crypt_ctx_front_mergeable(req, bio))
610 return 0;
611 if (blk_rq_sectors(req) + bio_sectors(bio) >
612 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
613 req_set_nomerge(req->q, req);
614 return 0;
615 }
616
617 return ll_new_hw_segment(req, bio, nr_segs);
618 }
619
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)620 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
621 struct request *next)
622 {
623 unsigned short segments = blk_rq_nr_discard_segments(req);
624
625 if (segments >= queue_max_discard_segments(q))
626 goto no_merge;
627 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
628 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
629 goto no_merge;
630
631 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
632 return true;
633 no_merge:
634 req_set_nomerge(q, req);
635 return false;
636 }
637
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)638 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
639 struct request *next)
640 {
641 int total_phys_segments;
642
643 if (req_gap_back_merge(req, next->bio))
644 return 0;
645
646 /*
647 * Will it become too large?
648 */
649 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
650 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
651 return 0;
652
653 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
654 if (total_phys_segments > blk_rq_get_max_segments(req))
655 return 0;
656
657 if (!blk_cgroup_mergeable(req, next->bio))
658 return 0;
659
660 if (blk_integrity_merge_rq(q, req, next) == false)
661 return 0;
662
663 if (!bio_crypt_ctx_merge_rq(req, next))
664 return 0;
665
666 /* Merge is OK... */
667 req->nr_phys_segments = total_phys_segments;
668 return 1;
669 }
670
671 /**
672 * blk_rq_set_mixed_merge - mark a request as mixed merge
673 * @rq: request to mark as mixed merge
674 *
675 * Description:
676 * @rq is about to be mixed merged. Make sure the attributes
677 * which can be mixed are set in each bio and mark @rq as mixed
678 * merged.
679 */
blk_rq_set_mixed_merge(struct request * rq)680 void blk_rq_set_mixed_merge(struct request *rq)
681 {
682 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
683 struct bio *bio;
684
685 if (rq->rq_flags & RQF_MIXED_MERGE)
686 return;
687
688 /*
689 * @rq will no longer represent mixable attributes for all the
690 * contained bios. It will just track those of the first one.
691 * Distributes the attributs to each bio.
692 */
693 for (bio = rq->bio; bio; bio = bio->bi_next) {
694 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
695 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
696 bio->bi_opf |= ff;
697 }
698 rq->rq_flags |= RQF_MIXED_MERGE;
699 }
700
blk_account_io_merge_request(struct request * req)701 static void blk_account_io_merge_request(struct request *req)
702 {
703 if (blk_do_io_stat(req)) {
704 part_stat_lock();
705 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
706 part_stat_unlock();
707
708 hd_struct_put(req->part);
709 }
710 }
711
blk_try_req_merge(struct request * req,struct request * next)712 static enum elv_merge blk_try_req_merge(struct request *req,
713 struct request *next)
714 {
715 if (blk_discard_mergable(req))
716 return ELEVATOR_DISCARD_MERGE;
717 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
718 return ELEVATOR_BACK_MERGE;
719
720 return ELEVATOR_NO_MERGE;
721 }
722
723 /*
724 * For non-mq, this has to be called with the request spinlock acquired.
725 * For mq with scheduling, the appropriate queue wide lock should be held.
726 */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)727 static struct request *attempt_merge(struct request_queue *q,
728 struct request *req, struct request *next)
729 {
730 if (!rq_mergeable(req) || !rq_mergeable(next))
731 return NULL;
732
733 if (req_op(req) != req_op(next))
734 return NULL;
735
736 if (rq_data_dir(req) != rq_data_dir(next)
737 || req->rq_disk != next->rq_disk)
738 return NULL;
739
740 if (req_op(req) == REQ_OP_WRITE_SAME &&
741 !blk_write_same_mergeable(req->bio, next->bio))
742 return NULL;
743
744 /*
745 * Don't allow merge of different write hints, or for a hint with
746 * non-hint IO.
747 */
748 if (req->write_hint != next->write_hint)
749 return NULL;
750
751 if (req->ioprio != next->ioprio)
752 return NULL;
753
754 /*
755 * If we are allowed to merge, then append bio list
756 * from next to rq and release next. merge_requests_fn
757 * will have updated segment counts, update sector
758 * counts here. Handle DISCARDs separately, as they
759 * have separate settings.
760 */
761
762 switch (blk_try_req_merge(req, next)) {
763 case ELEVATOR_DISCARD_MERGE:
764 if (!req_attempt_discard_merge(q, req, next))
765 return NULL;
766 break;
767 case ELEVATOR_BACK_MERGE:
768 if (!ll_merge_requests_fn(q, req, next))
769 return NULL;
770 break;
771 default:
772 return NULL;
773 }
774
775 /*
776 * If failfast settings disagree or any of the two is already
777 * a mixed merge, mark both as mixed before proceeding. This
778 * makes sure that all involved bios have mixable attributes
779 * set properly.
780 */
781 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
782 (req->cmd_flags & REQ_FAILFAST_MASK) !=
783 (next->cmd_flags & REQ_FAILFAST_MASK)) {
784 blk_rq_set_mixed_merge(req);
785 blk_rq_set_mixed_merge(next);
786 }
787
788 /*
789 * At this point we have either done a back merge or front merge. We
790 * need the smaller start_time_ns of the merged requests to be the
791 * current request for accounting purposes.
792 */
793 if (next->start_time_ns < req->start_time_ns)
794 req->start_time_ns = next->start_time_ns;
795
796 req->biotail->bi_next = next->bio;
797 req->biotail = next->biotail;
798
799 req->__data_len += blk_rq_bytes(next);
800
801 if (!blk_discard_mergable(req))
802 elv_merge_requests(q, req, next);
803
804 /*
805 * 'next' is going away, so update stats accordingly
806 */
807 blk_account_io_merge_request(next);
808
809 trace_block_rq_merge(next);
810
811 /*
812 * ownership of bio passed from next to req, return 'next' for
813 * the caller to free
814 */
815 next->bio = NULL;
816 return next;
817 }
818
attempt_back_merge(struct request_queue * q,struct request * rq)819 static struct request *attempt_back_merge(struct request_queue *q,
820 struct request *rq)
821 {
822 struct request *next = elv_latter_request(q, rq);
823
824 if (next)
825 return attempt_merge(q, rq, next);
826
827 return NULL;
828 }
829
attempt_front_merge(struct request_queue * q,struct request * rq)830 static struct request *attempt_front_merge(struct request_queue *q,
831 struct request *rq)
832 {
833 struct request *prev = elv_former_request(q, rq);
834
835 if (prev)
836 return attempt_merge(q, prev, rq);
837
838 return NULL;
839 }
840
841 /*
842 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
843 * otherwise. The caller is responsible for freeing 'next' if the merge
844 * happened.
845 */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)846 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
847 struct request *next)
848 {
849 return attempt_merge(q, rq, next);
850 }
851
blk_rq_merge_ok(struct request * rq,struct bio * bio)852 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
853 {
854 if (!rq_mergeable(rq) || !bio_mergeable(bio))
855 return false;
856
857 if (req_op(rq) != bio_op(bio))
858 return false;
859
860 /* different data direction or already started, don't merge */
861 if (bio_data_dir(bio) != rq_data_dir(rq))
862 return false;
863
864 /* must be same device */
865 if (rq->rq_disk != bio->bi_disk)
866 return false;
867
868 /* don't merge across cgroup boundaries */
869 if (!blk_cgroup_mergeable(rq, bio))
870 return false;
871
872 /* only merge integrity protected bio into ditto rq */
873 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
874 return false;
875
876 /* Only merge if the crypt contexts are compatible */
877 if (!bio_crypt_rq_ctx_compatible(rq, bio))
878 return false;
879
880 /* must be using the same buffer */
881 if (req_op(rq) == REQ_OP_WRITE_SAME &&
882 !blk_write_same_mergeable(rq->bio, bio))
883 return false;
884
885 /*
886 * Don't allow merge of different write hints, or for a hint with
887 * non-hint IO.
888 */
889 if (rq->write_hint != bio->bi_write_hint)
890 return false;
891
892 if (rq->ioprio != bio_prio(bio))
893 return false;
894
895 return true;
896 }
897
blk_try_merge(struct request * rq,struct bio * bio)898 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
899 {
900 if (blk_discard_mergable(rq))
901 return ELEVATOR_DISCARD_MERGE;
902 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
903 return ELEVATOR_BACK_MERGE;
904 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
905 return ELEVATOR_FRONT_MERGE;
906 return ELEVATOR_NO_MERGE;
907 }
908
blk_account_io_merge_bio(struct request * req)909 static void blk_account_io_merge_bio(struct request *req)
910 {
911 if (!blk_do_io_stat(req))
912 return;
913
914 part_stat_lock();
915 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
916 part_stat_unlock();
917 }
918
919 enum bio_merge_status {
920 BIO_MERGE_OK,
921 BIO_MERGE_NONE,
922 BIO_MERGE_FAILED,
923 };
924
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)925 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
926 struct bio *bio, unsigned int nr_segs)
927 {
928 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
929
930 if (!ll_back_merge_fn(req, bio, nr_segs))
931 return BIO_MERGE_FAILED;
932
933 trace_block_bio_backmerge(req->q, req, bio);
934 rq_qos_merge(req->q, req, bio);
935
936 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
937 blk_rq_set_mixed_merge(req);
938
939 req->biotail->bi_next = bio;
940 req->biotail = bio;
941 req->__data_len += bio->bi_iter.bi_size;
942
943 bio_crypt_free_ctx(bio);
944
945 blk_account_io_merge_bio(req);
946 return BIO_MERGE_OK;
947 }
948
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)949 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
950 struct bio *bio, unsigned int nr_segs)
951 {
952 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
953
954 if (!ll_front_merge_fn(req, bio, nr_segs))
955 return BIO_MERGE_FAILED;
956
957 trace_block_bio_frontmerge(req->q, req, bio);
958 rq_qos_merge(req->q, req, bio);
959
960 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
961 blk_rq_set_mixed_merge(req);
962
963 bio->bi_next = req->bio;
964 req->bio = bio;
965
966 req->__sector = bio->bi_iter.bi_sector;
967 req->__data_len += bio->bi_iter.bi_size;
968
969 bio_crypt_do_front_merge(req, bio);
970
971 blk_account_io_merge_bio(req);
972 return BIO_MERGE_OK;
973 }
974
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)975 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
976 struct request *req, struct bio *bio)
977 {
978 unsigned short segments = blk_rq_nr_discard_segments(req);
979
980 if (segments >= queue_max_discard_segments(q))
981 goto no_merge;
982 if (blk_rq_sectors(req) + bio_sectors(bio) >
983 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
984 goto no_merge;
985
986 rq_qos_merge(q, req, bio);
987
988 req->biotail->bi_next = bio;
989 req->biotail = bio;
990 req->__data_len += bio->bi_iter.bi_size;
991 req->nr_phys_segments = segments + 1;
992
993 blk_account_io_merge_bio(req);
994 return BIO_MERGE_OK;
995 no_merge:
996 req_set_nomerge(q, req);
997 return BIO_MERGE_FAILED;
998 }
999
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1000 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1001 struct request *rq,
1002 struct bio *bio,
1003 unsigned int nr_segs,
1004 bool sched_allow_merge)
1005 {
1006 if (!blk_rq_merge_ok(rq, bio))
1007 return BIO_MERGE_NONE;
1008
1009 switch (blk_try_merge(rq, bio)) {
1010 case ELEVATOR_BACK_MERGE:
1011 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1012 return bio_attempt_back_merge(rq, bio, nr_segs);
1013 break;
1014 case ELEVATOR_FRONT_MERGE:
1015 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1016 return bio_attempt_front_merge(rq, bio, nr_segs);
1017 break;
1018 case ELEVATOR_DISCARD_MERGE:
1019 return bio_attempt_discard_merge(q, rq, bio);
1020 default:
1021 return BIO_MERGE_NONE;
1022 }
1023
1024 return BIO_MERGE_FAILED;
1025 }
1026
1027 /**
1028 * blk_attempt_plug_merge - try to merge with %current's plugged list
1029 * @q: request_queue new bio is being queued at
1030 * @bio: new bio being queued
1031 * @nr_segs: number of segments in @bio
1032 * @same_queue_rq: pointer to &struct request that gets filled in when
1033 * another request associated with @q is found on the plug list
1034 * (optional, may be %NULL)
1035 *
1036 * Determine whether @bio being queued on @q can be merged with a request
1037 * on %current's plugged list. Returns %true if merge was successful,
1038 * otherwise %false.
1039 *
1040 * Plugging coalesces IOs from the same issuer for the same purpose without
1041 * going through @q->queue_lock. As such it's more of an issuing mechanism
1042 * than scheduling, and the request, while may have elvpriv data, is not
1043 * added on the elevator at this point. In addition, we don't have
1044 * reliable access to the elevator outside queue lock. Only check basic
1045 * merging parameters without querying the elevator.
1046 *
1047 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1048 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)1049 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1050 unsigned int nr_segs, struct request **same_queue_rq)
1051 {
1052 struct blk_plug *plug;
1053 struct request *rq;
1054 struct list_head *plug_list;
1055
1056 plug = blk_mq_plug(q, bio);
1057 if (!plug)
1058 return false;
1059
1060 plug_list = &plug->mq_list;
1061
1062 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1063 if (rq->q == q && same_queue_rq) {
1064 /*
1065 * Only blk-mq multiple hardware queues case checks the
1066 * rq in the same queue, there should be only one such
1067 * rq in a queue
1068 **/
1069 *same_queue_rq = rq;
1070 }
1071
1072 if (rq->q != q)
1073 continue;
1074
1075 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1076 BIO_MERGE_OK)
1077 return true;
1078 }
1079
1080 return false;
1081 }
1082
1083 /*
1084 * Iterate list of requests and see if we can merge this bio with any
1085 * of them.
1086 */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1087 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1088 struct bio *bio, unsigned int nr_segs)
1089 {
1090 struct request *rq;
1091 int checked = 8;
1092
1093 list_for_each_entry_reverse(rq, list, queuelist) {
1094 if (!checked--)
1095 break;
1096
1097 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1098 case BIO_MERGE_NONE:
1099 continue;
1100 case BIO_MERGE_OK:
1101 return true;
1102 case BIO_MERGE_FAILED:
1103 return false;
1104 }
1105
1106 }
1107
1108 return false;
1109 }
1110 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1111
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1112 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1113 unsigned int nr_segs, struct request **merged_request)
1114 {
1115 struct request *rq;
1116
1117 switch (elv_merge(q, &rq, bio)) {
1118 case ELEVATOR_BACK_MERGE:
1119 if (!blk_mq_sched_allow_merge(q, rq, bio))
1120 return false;
1121 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1122 return false;
1123 *merged_request = attempt_back_merge(q, rq);
1124 if (!*merged_request)
1125 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1126 return true;
1127 case ELEVATOR_FRONT_MERGE:
1128 if (!blk_mq_sched_allow_merge(q, rq, bio))
1129 return false;
1130 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1131 return false;
1132 *merged_request = attempt_front_merge(q, rq);
1133 if (!*merged_request)
1134 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1135 return true;
1136 case ELEVATOR_DISCARD_MERGE:
1137 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1138 default:
1139 return false;
1140 }
1141 }
1142 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1143