• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include <linux/delay.h>
15 #include "blk.h"
16 #include "blk-cgroup-rwstat.h"
17 
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20 
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23 
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40 
41 static struct blkcg_policy blkcg_policy_throtl;
42 
43 /* A workqueue to queue throttle related work */
44 static struct workqueue_struct *kthrotld_workqueue;
45 
46 /*
47  * To implement hierarchical throttling, throtl_grps form a tree and bios
48  * are dispatched upwards level by level until they reach the top and get
49  * issued.  When dispatching bios from the children and local group at each
50  * level, if the bios are dispatched into a single bio_list, there's a risk
51  * of a local or child group which can queue many bios at once filling up
52  * the list starving others.
53  *
54  * To avoid such starvation, dispatched bios are queued separately
55  * according to where they came from.  When they are again dispatched to
56  * the parent, they're popped in round-robin order so that no single source
57  * hogs the dispatch window.
58  *
59  * throtl_qnode is used to keep the queued bios separated by their sources.
60  * Bios are queued to throtl_qnode which in turn is queued to
61  * throtl_service_queue and then dispatched in round-robin order.
62  *
63  * It's also used to track the reference counts on blkg's.  A qnode always
64  * belongs to a throtl_grp and gets queued on itself or the parent, so
65  * incrementing the reference of the associated throtl_grp when a qnode is
66  * queued and decrementing when dequeued is enough to keep the whole blkg
67  * tree pinned while bios are in flight.
68  */
69 struct throtl_qnode {
70 	struct list_head	node;		/* service_queue->queued[] */
71 	struct bio_list		bios;		/* queued bios */
72 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
73 };
74 
75 struct throtl_service_queue {
76 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
77 
78 	/*
79 	 * Bios queued directly to this service_queue or dispatched from
80 	 * children throtl_grp's.
81 	 */
82 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
83 	unsigned int		nr_queued[2];	/* number of queued bios */
84 
85 	/*
86 	 * RB tree of active children throtl_grp's, which are sorted by
87 	 * their ->disptime.
88 	 */
89 	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
90 	unsigned int		nr_pending;	/* # queued in the tree */
91 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
92 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
93 };
94 
95 enum tg_state_flags {
96 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
97 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
98 };
99 
100 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
101 
102 enum {
103 	LIMIT_LOW,
104 	LIMIT_MAX,
105 	LIMIT_CNT,
106 };
107 
108 struct throtl_grp {
109 	/* must be the first member */
110 	struct blkg_policy_data pd;
111 
112 	/* active throtl group service_queue member */
113 	struct rb_node rb_node;
114 
115 	/* throtl_data this group belongs to */
116 	struct throtl_data *td;
117 
118 	/* this group's service queue */
119 	struct throtl_service_queue service_queue;
120 
121 	/*
122 	 * qnode_on_self is used when bios are directly queued to this
123 	 * throtl_grp so that local bios compete fairly with bios
124 	 * dispatched from children.  qnode_on_parent is used when bios are
125 	 * dispatched from this throtl_grp into its parent and will compete
126 	 * with the sibling qnode_on_parents and the parent's
127 	 * qnode_on_self.
128 	 */
129 	struct throtl_qnode qnode_on_self[2];
130 	struct throtl_qnode qnode_on_parent[2];
131 
132 	/*
133 	 * Dispatch time in jiffies. This is the estimated time when group
134 	 * will unthrottle and is ready to dispatch more bio. It is used as
135 	 * key to sort active groups in service tree.
136 	 */
137 	unsigned long disptime;
138 
139 	unsigned int flags;
140 
141 	/* are there any throtl rules between this group and td? */
142 	bool has_rules[2];
143 
144 	/* internally used bytes per second rate limits */
145 	uint64_t bps[2][LIMIT_CNT];
146 	/* user configured bps limits */
147 	uint64_t bps_conf[2][LIMIT_CNT];
148 
149 	/* internally used IOPS limits */
150 	unsigned int iops[2][LIMIT_CNT];
151 	/* user configured IOPS limits */
152 	unsigned int iops_conf[2][LIMIT_CNT];
153 
154 	/* Number of bytes dispatched in current slice */
155 	uint64_t bytes_disp[2];
156 	/* Number of bio's dispatched in current slice */
157 	unsigned int io_disp[2];
158 
159 	unsigned long last_low_overflow_time[2];
160 
161 	uint64_t last_bytes_disp[2];
162 	unsigned int last_io_disp[2];
163 
164 	unsigned long last_check_time;
165 
166 	unsigned long latency_target; /* us */
167 	unsigned long latency_target_conf; /* us */
168 	/* When did we start a new slice */
169 	unsigned long slice_start[2];
170 	unsigned long slice_end[2];
171 
172 	unsigned long last_finish_time; /* ns / 1024 */
173 	unsigned long checked_last_finish_time; /* ns / 1024 */
174 	unsigned long avg_idletime; /* ns / 1024 */
175 	unsigned long idletime_threshold; /* us */
176 	unsigned long idletime_threshold_conf; /* us */
177 
178 	unsigned int bio_cnt; /* total bios */
179 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
180 	unsigned long bio_cnt_reset_time;
181 
182 	atomic_t io_split_cnt[2];
183 	atomic_t last_io_split_cnt[2];
184 
185 	struct blkg_rwstat stat_bytes;
186 	struct blkg_rwstat stat_ios;
187 };
188 
189 /* We measure latency for request size from <= 4k to >= 1M */
190 #define LATENCY_BUCKET_SIZE 9
191 
192 struct latency_bucket {
193 	unsigned long total_latency; /* ns / 1024 */
194 	int samples;
195 };
196 
197 struct avg_latency_bucket {
198 	unsigned long latency; /* ns / 1024 */
199 	bool valid;
200 };
201 
202 struct throtl_data
203 {
204 	/* service tree for active throtl groups */
205 	struct throtl_service_queue service_queue;
206 
207 	struct request_queue *queue;
208 
209 	/* Total Number of queued bios on READ and WRITE lists */
210 	unsigned int nr_queued[2];
211 
212 	unsigned int throtl_slice;
213 
214 	/* Work for dispatching throttled bios */
215 	struct work_struct dispatch_work;
216 	unsigned int limit_index;
217 	bool limit_valid[LIMIT_CNT];
218 
219 	unsigned long low_upgrade_time;
220 	unsigned long low_downgrade_time;
221 
222 	unsigned int scale;
223 
224 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
225 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
226 	struct latency_bucket __percpu *latency_buckets[2];
227 	unsigned long last_calculate_time;
228 	unsigned long filtered_latency;
229 
230 	bool track_bio_latency;
231 };
232 
233 static void throtl_pending_timer_fn(struct timer_list *t);
234 
pd_to_tg(struct blkg_policy_data * pd)235 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
236 {
237 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
238 }
239 
blkg_to_tg(struct blkcg_gq * blkg)240 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
241 {
242 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
243 }
244 
tg_to_blkg(struct throtl_grp * tg)245 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
246 {
247 	return pd_to_blkg(&tg->pd);
248 }
249 
250 /**
251  * sq_to_tg - return the throl_grp the specified service queue belongs to
252  * @sq: the throtl_service_queue of interest
253  *
254  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
255  * embedded in throtl_data, %NULL is returned.
256  */
sq_to_tg(struct throtl_service_queue * sq)257 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
258 {
259 	if (sq && sq->parent_sq)
260 		return container_of(sq, struct throtl_grp, service_queue);
261 	else
262 		return NULL;
263 }
264 
265 /**
266  * sq_to_td - return throtl_data the specified service queue belongs to
267  * @sq: the throtl_service_queue of interest
268  *
269  * A service_queue can be embedded in either a throtl_grp or throtl_data.
270  * Determine the associated throtl_data accordingly and return it.
271  */
sq_to_td(struct throtl_service_queue * sq)272 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
273 {
274 	struct throtl_grp *tg = sq_to_tg(sq);
275 
276 	if (tg)
277 		return tg->td;
278 	else
279 		return container_of(sq, struct throtl_data, service_queue);
280 }
281 
282 /*
283  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
284  * make the IO dispatch more smooth.
285  * Scale up: linearly scale up according to lapsed time since upgrade. For
286  *           every throtl_slice, the limit scales up 1/2 .low limit till the
287  *           limit hits .max limit
288  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
289  */
throtl_adjusted_limit(uint64_t low,struct throtl_data * td)290 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
291 {
292 	/* arbitrary value to avoid too big scale */
293 	if (td->scale < 4096 && time_after_eq(jiffies,
294 	    td->low_upgrade_time + td->scale * td->throtl_slice))
295 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
296 
297 	return low + (low >> 1) * td->scale;
298 }
299 
tg_bps_limit(struct throtl_grp * tg,int rw)300 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
301 {
302 	struct blkcg_gq *blkg = tg_to_blkg(tg);
303 	struct throtl_data *td;
304 	uint64_t ret;
305 
306 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
307 		return U64_MAX;
308 
309 	td = tg->td;
310 	ret = tg->bps[rw][td->limit_index];
311 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
312 		/* intermediate node or iops isn't 0 */
313 		if (!list_empty(&blkg->blkcg->css.children) ||
314 		    tg->iops[rw][td->limit_index])
315 			return U64_MAX;
316 		else
317 			return MIN_THROTL_BPS;
318 	}
319 
320 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
321 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
322 		uint64_t adjusted;
323 
324 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
325 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
326 	}
327 	return ret;
328 }
329 
tg_iops_limit(struct throtl_grp * tg,int rw)330 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
331 {
332 	struct blkcg_gq *blkg = tg_to_blkg(tg);
333 	struct throtl_data *td;
334 	unsigned int ret;
335 
336 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
337 		return UINT_MAX;
338 
339 	td = tg->td;
340 	ret = tg->iops[rw][td->limit_index];
341 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
342 		/* intermediate node or bps isn't 0 */
343 		if (!list_empty(&blkg->blkcg->css.children) ||
344 		    tg->bps[rw][td->limit_index])
345 			return UINT_MAX;
346 		else
347 			return MIN_THROTL_IOPS;
348 	}
349 
350 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
351 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
352 		uint64_t adjusted;
353 
354 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
355 		if (adjusted > UINT_MAX)
356 			adjusted = UINT_MAX;
357 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
358 	}
359 	return ret;
360 }
361 
362 #define request_bucket_index(sectors) \
363 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
364 
365 /**
366  * throtl_log - log debug message via blktrace
367  * @sq: the service_queue being reported
368  * @fmt: printf format string
369  * @args: printf args
370  *
371  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
372  * throtl_grp; otherwise, just "throtl".
373  */
374 #define throtl_log(sq, fmt, args...)	do {				\
375 	struct throtl_grp *__tg = sq_to_tg((sq));			\
376 	struct throtl_data *__td = sq_to_td((sq));			\
377 									\
378 	(void)__td;							\
379 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
380 		break;							\
381 	if ((__tg)) {							\
382 		blk_add_cgroup_trace_msg(__td->queue,			\
383 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
384 	} else {							\
385 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
386 	}								\
387 } while (0)
388 
throtl_bio_data_size(struct bio * bio)389 static inline unsigned int throtl_bio_data_size(struct bio *bio)
390 {
391 	/* assume it's one sector */
392 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
393 		return 512;
394 	return bio->bi_iter.bi_size;
395 }
396 
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)397 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
398 {
399 	INIT_LIST_HEAD(&qn->node);
400 	bio_list_init(&qn->bios);
401 	qn->tg = tg;
402 }
403 
404 /**
405  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
406  * @bio: bio being added
407  * @qn: qnode to add bio to
408  * @queued: the service_queue->queued[] list @qn belongs to
409  *
410  * Add @bio to @qn and put @qn on @queued if it's not already on.
411  * @qn->tg's reference count is bumped when @qn is activated.  See the
412  * comment on top of throtl_qnode definition for details.
413  */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)414 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
415 				 struct list_head *queued)
416 {
417 	bio_list_add(&qn->bios, bio);
418 	if (list_empty(&qn->node)) {
419 		list_add_tail(&qn->node, queued);
420 		blkg_get(tg_to_blkg(qn->tg));
421 	}
422 }
423 
424 /**
425  * throtl_peek_queued - peek the first bio on a qnode list
426  * @queued: the qnode list to peek
427  */
throtl_peek_queued(struct list_head * queued)428 static struct bio *throtl_peek_queued(struct list_head *queued)
429 {
430 	struct throtl_qnode *qn;
431 	struct bio *bio;
432 
433 	if (list_empty(queued))
434 		return NULL;
435 
436 	qn = list_first_entry(queued, struct throtl_qnode, node);
437 	bio = bio_list_peek(&qn->bios);
438 	WARN_ON_ONCE(!bio);
439 	return bio;
440 }
441 
442 /**
443  * throtl_pop_queued - pop the first bio form a qnode list
444  * @queued: the qnode list to pop a bio from
445  * @tg_to_put: optional out argument for throtl_grp to put
446  *
447  * Pop the first bio from the qnode list @queued.  After popping, the first
448  * qnode is removed from @queued if empty or moved to the end of @queued so
449  * that the popping order is round-robin.
450  *
451  * When the first qnode is removed, its associated throtl_grp should be put
452  * too.  If @tg_to_put is NULL, this function automatically puts it;
453  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
454  * responsible for putting it.
455  */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)456 static struct bio *throtl_pop_queued(struct list_head *queued,
457 				     struct throtl_grp **tg_to_put)
458 {
459 	struct throtl_qnode *qn;
460 	struct bio *bio;
461 
462 	if (list_empty(queued))
463 		return NULL;
464 
465 	qn = list_first_entry(queued, struct throtl_qnode, node);
466 	bio = bio_list_pop(&qn->bios);
467 	WARN_ON_ONCE(!bio);
468 
469 	if (bio_list_empty(&qn->bios)) {
470 		list_del_init(&qn->node);
471 		if (tg_to_put)
472 			*tg_to_put = qn->tg;
473 		else
474 			blkg_put(tg_to_blkg(qn->tg));
475 	} else {
476 		list_move_tail(&qn->node, queued);
477 	}
478 
479 	return bio;
480 }
481 
482 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)483 static void throtl_service_queue_init(struct throtl_service_queue *sq)
484 {
485 	INIT_LIST_HEAD(&sq->queued[0]);
486 	INIT_LIST_HEAD(&sq->queued[1]);
487 	sq->pending_tree = RB_ROOT_CACHED;
488 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
489 }
490 
throtl_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)491 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
492 						struct request_queue *q,
493 						struct blkcg *blkcg)
494 {
495 	struct throtl_grp *tg;
496 	int rw;
497 
498 	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
499 	if (!tg)
500 		return NULL;
501 
502 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
503 		goto err_free_tg;
504 
505 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
506 		goto err_exit_stat_bytes;
507 
508 	throtl_service_queue_init(&tg->service_queue);
509 
510 	for (rw = READ; rw <= WRITE; rw++) {
511 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
512 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
513 	}
514 
515 	RB_CLEAR_NODE(&tg->rb_node);
516 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
517 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
518 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
519 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
520 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
521 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
522 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
523 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
524 	/* LIMIT_LOW will have default value 0 */
525 
526 	tg->latency_target = DFL_LATENCY_TARGET;
527 	tg->latency_target_conf = DFL_LATENCY_TARGET;
528 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
529 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
530 
531 	return &tg->pd;
532 
533 err_exit_stat_bytes:
534 	blkg_rwstat_exit(&tg->stat_bytes);
535 err_free_tg:
536 	kfree(tg);
537 	return NULL;
538 }
539 
throtl_pd_init(struct blkg_policy_data * pd)540 static void throtl_pd_init(struct blkg_policy_data *pd)
541 {
542 	struct throtl_grp *tg = pd_to_tg(pd);
543 	struct blkcg_gq *blkg = tg_to_blkg(tg);
544 	struct throtl_data *td = blkg->q->td;
545 	struct throtl_service_queue *sq = &tg->service_queue;
546 
547 	/*
548 	 * If on the default hierarchy, we switch to properly hierarchical
549 	 * behavior where limits on a given throtl_grp are applied to the
550 	 * whole subtree rather than just the group itself.  e.g. If 16M
551 	 * read_bps limit is set on the root group, the whole system can't
552 	 * exceed 16M for the device.
553 	 *
554 	 * If not on the default hierarchy, the broken flat hierarchy
555 	 * behavior is retained where all throtl_grps are treated as if
556 	 * they're all separate root groups right below throtl_data.
557 	 * Limits of a group don't interact with limits of other groups
558 	 * regardless of the position of the group in the hierarchy.
559 	 */
560 	sq->parent_sq = &td->service_queue;
561 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
562 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
563 	tg->td = td;
564 }
565 
566 /*
567  * Set has_rules[] if @tg or any of its parents have limits configured.
568  * This doesn't require walking up to the top of the hierarchy as the
569  * parent's has_rules[] is guaranteed to be correct.
570  */
tg_update_has_rules(struct throtl_grp * tg)571 static void tg_update_has_rules(struct throtl_grp *tg)
572 {
573 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
574 	struct throtl_data *td = tg->td;
575 	int rw;
576 
577 	for (rw = READ; rw <= WRITE; rw++)
578 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
579 			(td->limit_valid[td->limit_index] &&
580 			 (tg_bps_limit(tg, rw) != U64_MAX ||
581 			  tg_iops_limit(tg, rw) != UINT_MAX));
582 }
583 
throtl_pd_online(struct blkg_policy_data * pd)584 static void throtl_pd_online(struct blkg_policy_data *pd)
585 {
586 	struct throtl_grp *tg = pd_to_tg(pd);
587 	/*
588 	 * We don't want new groups to escape the limits of its ancestors.
589 	 * Update has_rules[] after a new group is brought online.
590 	 */
591 	tg_update_has_rules(tg);
592 }
593 
blk_throtl_update_limit_valid(struct throtl_data * td)594 static void blk_throtl_update_limit_valid(struct throtl_data *td)
595 {
596 	struct cgroup_subsys_state *pos_css;
597 	struct blkcg_gq *blkg;
598 	bool low_valid = false;
599 
600 	rcu_read_lock();
601 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
602 		struct throtl_grp *tg = blkg_to_tg(blkg);
603 
604 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
605 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
606 			low_valid = true;
607 			break;
608 		}
609 	}
610 	rcu_read_unlock();
611 
612 	td->limit_valid[LIMIT_LOW] = low_valid;
613 }
614 
615 static void throtl_upgrade_state(struct throtl_data *td);
throtl_pd_offline(struct blkg_policy_data * pd)616 static void throtl_pd_offline(struct blkg_policy_data *pd)
617 {
618 	struct throtl_grp *tg = pd_to_tg(pd);
619 
620 	tg->bps[READ][LIMIT_LOW] = 0;
621 	tg->bps[WRITE][LIMIT_LOW] = 0;
622 	tg->iops[READ][LIMIT_LOW] = 0;
623 	tg->iops[WRITE][LIMIT_LOW] = 0;
624 
625 	blk_throtl_update_limit_valid(tg->td);
626 
627 	if (!tg->td->limit_valid[tg->td->limit_index])
628 		throtl_upgrade_state(tg->td);
629 }
630 
throtl_pd_free(struct blkg_policy_data * pd)631 static void throtl_pd_free(struct blkg_policy_data *pd)
632 {
633 	struct throtl_grp *tg = pd_to_tg(pd);
634 
635 	del_timer_sync(&tg->service_queue.pending_timer);
636 	blkg_rwstat_exit(&tg->stat_bytes);
637 	blkg_rwstat_exit(&tg->stat_ios);
638 	kfree(tg);
639 }
640 
641 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)642 throtl_rb_first(struct throtl_service_queue *parent_sq)
643 {
644 	struct rb_node *n;
645 
646 	n = rb_first_cached(&parent_sq->pending_tree);
647 	WARN_ON_ONCE(!n);
648 	if (!n)
649 		return NULL;
650 	return rb_entry_tg(n);
651 }
652 
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)653 static void throtl_rb_erase(struct rb_node *n,
654 			    struct throtl_service_queue *parent_sq)
655 {
656 	rb_erase_cached(n, &parent_sq->pending_tree);
657 	RB_CLEAR_NODE(n);
658 	--parent_sq->nr_pending;
659 }
660 
update_min_dispatch_time(struct throtl_service_queue * parent_sq)661 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
662 {
663 	struct throtl_grp *tg;
664 
665 	tg = throtl_rb_first(parent_sq);
666 	if (!tg)
667 		return;
668 
669 	parent_sq->first_pending_disptime = tg->disptime;
670 }
671 
tg_service_queue_add(struct throtl_grp * tg)672 static void tg_service_queue_add(struct throtl_grp *tg)
673 {
674 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
675 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
676 	struct rb_node *parent = NULL;
677 	struct throtl_grp *__tg;
678 	unsigned long key = tg->disptime;
679 	bool leftmost = true;
680 
681 	while (*node != NULL) {
682 		parent = *node;
683 		__tg = rb_entry_tg(parent);
684 
685 		if (time_before(key, __tg->disptime))
686 			node = &parent->rb_left;
687 		else {
688 			node = &parent->rb_right;
689 			leftmost = false;
690 		}
691 	}
692 
693 	rb_link_node(&tg->rb_node, parent, node);
694 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
695 			       leftmost);
696 }
697 
throtl_enqueue_tg(struct throtl_grp * tg)698 static void throtl_enqueue_tg(struct throtl_grp *tg)
699 {
700 	if (!(tg->flags & THROTL_TG_PENDING)) {
701 		tg_service_queue_add(tg);
702 		tg->flags |= THROTL_TG_PENDING;
703 		tg->service_queue.parent_sq->nr_pending++;
704 	}
705 }
706 
throtl_dequeue_tg(struct throtl_grp * tg)707 static void throtl_dequeue_tg(struct throtl_grp *tg)
708 {
709 	if (tg->flags & THROTL_TG_PENDING) {
710 		throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
711 		tg->flags &= ~THROTL_TG_PENDING;
712 	}
713 }
714 
715 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)716 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
717 					  unsigned long expires)
718 {
719 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
720 
721 	/*
722 	 * Since we are adjusting the throttle limit dynamically, the sleep
723 	 * time calculated according to previous limit might be invalid. It's
724 	 * possible the cgroup sleep time is very long and no other cgroups
725 	 * have IO running so notify the limit changes. Make sure the cgroup
726 	 * doesn't sleep too long to avoid the missed notification.
727 	 */
728 	if (time_after(expires, max_expire))
729 		expires = max_expire;
730 	mod_timer(&sq->pending_timer, expires);
731 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
732 		   expires - jiffies, jiffies);
733 }
734 
735 /**
736  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
737  * @sq: the service_queue to schedule dispatch for
738  * @force: force scheduling
739  *
740  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
741  * dispatch time of the first pending child.  Returns %true if either timer
742  * is armed or there's no pending child left.  %false if the current
743  * dispatch window is still open and the caller should continue
744  * dispatching.
745  *
746  * If @force is %true, the dispatch timer is always scheduled and this
747  * function is guaranteed to return %true.  This is to be used when the
748  * caller can't dispatch itself and needs to invoke pending_timer
749  * unconditionally.  Note that forced scheduling is likely to induce short
750  * delay before dispatch starts even if @sq->first_pending_disptime is not
751  * in the future and thus shouldn't be used in hot paths.
752  */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)753 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
754 					  bool force)
755 {
756 	/* any pending children left? */
757 	if (!sq->nr_pending)
758 		return true;
759 
760 	update_min_dispatch_time(sq);
761 
762 	/* is the next dispatch time in the future? */
763 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
764 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
765 		return true;
766 	}
767 
768 	/* tell the caller to continue dispatching */
769 	return false;
770 }
771 
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)772 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
773 		bool rw, unsigned long start)
774 {
775 	tg->bytes_disp[rw] = 0;
776 	tg->io_disp[rw] = 0;
777 
778 	atomic_set(&tg->io_split_cnt[rw], 0);
779 
780 	/*
781 	 * Previous slice has expired. We must have trimmed it after last
782 	 * bio dispatch. That means since start of last slice, we never used
783 	 * that bandwidth. Do try to make use of that bandwidth while giving
784 	 * credit.
785 	 */
786 	if (time_after_eq(start, tg->slice_start[rw]))
787 		tg->slice_start[rw] = start;
788 
789 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
790 	throtl_log(&tg->service_queue,
791 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
792 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
793 		   tg->slice_end[rw], jiffies);
794 }
795 
throtl_start_new_slice(struct throtl_grp * tg,bool rw)796 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
797 {
798 	tg->bytes_disp[rw] = 0;
799 	tg->io_disp[rw] = 0;
800 	tg->slice_start[rw] = jiffies;
801 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
802 
803 	atomic_set(&tg->io_split_cnt[rw], 0);
804 
805 	throtl_log(&tg->service_queue,
806 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
807 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
808 		   tg->slice_end[rw], jiffies);
809 }
810 
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)811 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
812 					unsigned long jiffy_end)
813 {
814 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
815 }
816 
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)817 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
818 				       unsigned long jiffy_end)
819 {
820 	throtl_set_slice_end(tg, rw, jiffy_end);
821 	throtl_log(&tg->service_queue,
822 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
823 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
824 		   tg->slice_end[rw], jiffies);
825 }
826 
827 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)828 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
829 {
830 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
831 		return false;
832 
833 	return true;
834 }
835 
836 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)837 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
838 {
839 	unsigned long nr_slices, time_elapsed, io_trim;
840 	u64 bytes_trim, tmp;
841 
842 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
843 
844 	/*
845 	 * If bps are unlimited (-1), then time slice don't get
846 	 * renewed. Don't try to trim the slice if slice is used. A new
847 	 * slice will start when appropriate.
848 	 */
849 	if (throtl_slice_used(tg, rw))
850 		return;
851 
852 	/*
853 	 * A bio has been dispatched. Also adjust slice_end. It might happen
854 	 * that initially cgroup limit was very low resulting in high
855 	 * slice_end, but later limit was bumped up and bio was dispatched
856 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
857 	 * is bad because it does not allow new slice to start.
858 	 */
859 
860 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
861 
862 	time_elapsed = jiffies - tg->slice_start[rw];
863 
864 	nr_slices = time_elapsed / tg->td->throtl_slice;
865 
866 	if (!nr_slices)
867 		return;
868 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
869 	do_div(tmp, HZ);
870 	bytes_trim = tmp;
871 
872 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
873 		HZ;
874 
875 	if (!bytes_trim && !io_trim)
876 		return;
877 
878 	if (tg->bytes_disp[rw] >= bytes_trim)
879 		tg->bytes_disp[rw] -= bytes_trim;
880 	else
881 		tg->bytes_disp[rw] = 0;
882 
883 	if (tg->io_disp[rw] >= io_trim)
884 		tg->io_disp[rw] -= io_trim;
885 	else
886 		tg->io_disp[rw] = 0;
887 
888 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
889 
890 	throtl_log(&tg->service_queue,
891 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
892 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
893 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
894 }
895 
tg_with_in_iops_limit(struct throtl_grp * tg,struct bio * bio,u32 iops_limit,unsigned long * wait)896 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
897 				  u32 iops_limit, unsigned long *wait)
898 {
899 	bool rw = bio_data_dir(bio);
900 	unsigned int io_allowed;
901 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
902 	u64 tmp;
903 
904 	if (iops_limit == UINT_MAX) {
905 		if (wait)
906 			*wait = 0;
907 		return true;
908 	}
909 
910 	jiffy_elapsed = jiffies - tg->slice_start[rw];
911 
912 	/* Round up to the next throttle slice, wait time must be nonzero */
913 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
914 
915 	/*
916 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
917 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
918 	 * will allow dispatch after 1 second and after that slice should
919 	 * have been trimmed.
920 	 */
921 
922 	tmp = (u64)iops_limit * jiffy_elapsed_rnd;
923 	do_div(tmp, HZ);
924 
925 	if (tmp > UINT_MAX)
926 		io_allowed = UINT_MAX;
927 	else
928 		io_allowed = tmp;
929 
930 	if (tg->io_disp[rw] + 1 <= io_allowed) {
931 		if (wait)
932 			*wait = 0;
933 		return true;
934 	}
935 
936 	/* Calc approx time to dispatch */
937 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
938 
939 	if (wait)
940 		*wait = jiffy_wait;
941 	return false;
942 }
943 
tg_with_in_bps_limit(struct throtl_grp * tg,struct bio * bio,u64 bps_limit,unsigned long * wait)944 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
945 				 u64 bps_limit, unsigned long *wait)
946 {
947 	bool rw = bio_data_dir(bio);
948 	u64 bytes_allowed, extra_bytes;
949 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
950 	unsigned int bio_size = throtl_bio_data_size(bio);
951 
952 	if (bps_limit == U64_MAX) {
953 		if (wait)
954 			*wait = 0;
955 		return true;
956 	}
957 
958 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
959 
960 	/* Slice has just started. Consider one slice interval */
961 	if (!jiffy_elapsed)
962 		jiffy_elapsed_rnd = tg->td->throtl_slice;
963 
964 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
965 	bytes_allowed = mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed_rnd,
966 					    (u64)HZ);
967 
968 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
969 		if (wait)
970 			*wait = 0;
971 		return true;
972 	}
973 
974 	/* Calc approx time to dispatch */
975 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
976 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
977 
978 	if (!jiffy_wait)
979 		jiffy_wait = 1;
980 
981 	/*
982 	 * This wait time is without taking into consideration the rounding
983 	 * up we did. Add that time also.
984 	 */
985 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
986 	if (wait)
987 		*wait = jiffy_wait;
988 	return false;
989 }
990 
991 /*
992  * Returns whether one can dispatch a bio or not. Also returns approx number
993  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
994  */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)995 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
996 			    unsigned long *wait)
997 {
998 	bool rw = bio_data_dir(bio);
999 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1000 	u64 bps_limit = tg_bps_limit(tg, rw);
1001 	u32 iops_limit = tg_iops_limit(tg, rw);
1002 
1003 	/*
1004  	 * Currently whole state machine of group depends on first bio
1005 	 * queued in the group bio list. So one should not be calling
1006 	 * this function with a different bio if there are other bios
1007 	 * queued.
1008 	 */
1009 	BUG_ON(tg->service_queue.nr_queued[rw] &&
1010 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1011 
1012 	/* If tg->bps = -1, then BW is unlimited */
1013 	if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1014 		if (wait)
1015 			*wait = 0;
1016 		return true;
1017 	}
1018 
1019 	/*
1020 	 * If previous slice expired, start a new one otherwise renew/extend
1021 	 * existing slice to make sure it is at least throtl_slice interval
1022 	 * long since now. New slice is started only for empty throttle group.
1023 	 * If there is queued bio, that means there should be an active
1024 	 * slice and it should be extended instead.
1025 	 */
1026 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1027 		throtl_start_new_slice(tg, rw);
1028 	else {
1029 		if (time_before(tg->slice_end[rw],
1030 		    jiffies + tg->td->throtl_slice))
1031 			throtl_extend_slice(tg, rw,
1032 				jiffies + tg->td->throtl_slice);
1033 	}
1034 
1035 	if (iops_limit != UINT_MAX)
1036 		tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
1037 
1038 	if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1039 	    tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1040 		if (wait)
1041 			*wait = 0;
1042 		return true;
1043 	}
1044 
1045 	max_wait = max(bps_wait, iops_wait);
1046 
1047 	if (wait)
1048 		*wait = max_wait;
1049 
1050 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1051 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1052 
1053 	return false;
1054 }
1055 
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)1056 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1057 {
1058 	bool rw = bio_data_dir(bio);
1059 	unsigned int bio_size = throtl_bio_data_size(bio);
1060 
1061 	/* Charge the bio to the group */
1062 	tg->bytes_disp[rw] += bio_size;
1063 	tg->io_disp[rw]++;
1064 	tg->last_bytes_disp[rw] += bio_size;
1065 	tg->last_io_disp[rw]++;
1066 
1067 	/*
1068 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1069 	 * more than once as a throttled bio will go through blk-throtl the
1070 	 * second time when it eventually gets issued.  Set it when a bio
1071 	 * is being charged to a tg.
1072 	 */
1073 	if (!bio_flagged(bio, BIO_THROTTLED))
1074 		bio_set_flag(bio, BIO_THROTTLED);
1075 }
1076 
1077 /**
1078  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1079  * @bio: bio to add
1080  * @qn: qnode to use
1081  * @tg: the target throtl_grp
1082  *
1083  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1084  * tg->qnode_on_self[] is used.
1085  */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)1086 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1087 			      struct throtl_grp *tg)
1088 {
1089 	struct throtl_service_queue *sq = &tg->service_queue;
1090 	bool rw = bio_data_dir(bio);
1091 
1092 	if (!qn)
1093 		qn = &tg->qnode_on_self[rw];
1094 
1095 	/*
1096 	 * If @tg doesn't currently have any bios queued in the same
1097 	 * direction, queueing @bio can change when @tg should be
1098 	 * dispatched.  Mark that @tg was empty.  This is automatically
1099 	 * cleared on the next tg_update_disptime().
1100 	 */
1101 	if (!sq->nr_queued[rw])
1102 		tg->flags |= THROTL_TG_WAS_EMPTY;
1103 
1104 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1105 
1106 	sq->nr_queued[rw]++;
1107 	throtl_enqueue_tg(tg);
1108 }
1109 
tg_update_disptime(struct throtl_grp * tg)1110 static void tg_update_disptime(struct throtl_grp *tg)
1111 {
1112 	struct throtl_service_queue *sq = &tg->service_queue;
1113 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1114 	struct bio *bio;
1115 
1116 	bio = throtl_peek_queued(&sq->queued[READ]);
1117 	if (bio)
1118 		tg_may_dispatch(tg, bio, &read_wait);
1119 
1120 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1121 	if (bio)
1122 		tg_may_dispatch(tg, bio, &write_wait);
1123 
1124 	min_wait = min(read_wait, write_wait);
1125 	disptime = jiffies + min_wait;
1126 
1127 	/* Update dispatch time */
1128 	throtl_dequeue_tg(tg);
1129 	tg->disptime = disptime;
1130 	throtl_enqueue_tg(tg);
1131 
1132 	/* see throtl_add_bio_tg() */
1133 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1134 }
1135 
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)1136 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1137 					struct throtl_grp *parent_tg, bool rw)
1138 {
1139 	if (throtl_slice_used(parent_tg, rw)) {
1140 		throtl_start_new_slice_with_credit(parent_tg, rw,
1141 				child_tg->slice_start[rw]);
1142 	}
1143 
1144 }
1145 
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)1146 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1147 {
1148 	struct throtl_service_queue *sq = &tg->service_queue;
1149 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1150 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1151 	struct throtl_grp *tg_to_put = NULL;
1152 	struct bio *bio;
1153 
1154 	/*
1155 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1156 	 * from @tg may put its reference and @parent_sq might end up
1157 	 * getting released prematurely.  Remember the tg to put and put it
1158 	 * after @bio is transferred to @parent_sq.
1159 	 */
1160 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1161 	sq->nr_queued[rw]--;
1162 
1163 	throtl_charge_bio(tg, bio);
1164 
1165 	/*
1166 	 * If our parent is another tg, we just need to transfer @bio to
1167 	 * the parent using throtl_add_bio_tg().  If our parent is
1168 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1169 	 * bio_lists[] and decrease total number queued.  The caller is
1170 	 * responsible for issuing these bios.
1171 	 */
1172 	if (parent_tg) {
1173 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1174 		start_parent_slice_with_credit(tg, parent_tg, rw);
1175 	} else {
1176 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1177 				     &parent_sq->queued[rw]);
1178 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1179 		tg->td->nr_queued[rw]--;
1180 	}
1181 
1182 	throtl_trim_slice(tg, rw);
1183 
1184 	if (tg_to_put)
1185 		blkg_put(tg_to_blkg(tg_to_put));
1186 }
1187 
throtl_dispatch_tg(struct throtl_grp * tg)1188 static int throtl_dispatch_tg(struct throtl_grp *tg)
1189 {
1190 	struct throtl_service_queue *sq = &tg->service_queue;
1191 	unsigned int nr_reads = 0, nr_writes = 0;
1192 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1193 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1194 	struct bio *bio;
1195 
1196 	/* Try to dispatch 75% READS and 25% WRITES */
1197 
1198 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1199 	       tg_may_dispatch(tg, bio, NULL)) {
1200 
1201 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1202 		nr_reads++;
1203 
1204 		if (nr_reads >= max_nr_reads)
1205 			break;
1206 	}
1207 
1208 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1209 	       tg_may_dispatch(tg, bio, NULL)) {
1210 
1211 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1212 		nr_writes++;
1213 
1214 		if (nr_writes >= max_nr_writes)
1215 			break;
1216 	}
1217 
1218 	return nr_reads + nr_writes;
1219 }
1220 
throtl_select_dispatch(struct throtl_service_queue * parent_sq)1221 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1222 {
1223 	unsigned int nr_disp = 0;
1224 
1225 	while (1) {
1226 		struct throtl_grp *tg;
1227 		struct throtl_service_queue *sq;
1228 
1229 		if (!parent_sq->nr_pending)
1230 			break;
1231 
1232 		tg = throtl_rb_first(parent_sq);
1233 		if (!tg)
1234 			break;
1235 
1236 		if (time_before(jiffies, tg->disptime))
1237 			break;
1238 
1239 		throtl_dequeue_tg(tg);
1240 
1241 		nr_disp += throtl_dispatch_tg(tg);
1242 
1243 		sq = &tg->service_queue;
1244 		if (sq->nr_queued[0] || sq->nr_queued[1])
1245 			tg_update_disptime(tg);
1246 
1247 		if (nr_disp >= THROTL_QUANTUM)
1248 			break;
1249 	}
1250 
1251 	return nr_disp;
1252 }
1253 
1254 static bool throtl_can_upgrade(struct throtl_data *td,
1255 	struct throtl_grp *this_tg);
1256 /**
1257  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1258  * @t: the pending_timer member of the throtl_service_queue being serviced
1259  *
1260  * This timer is armed when a child throtl_grp with active bio's become
1261  * pending and queued on the service_queue's pending_tree and expires when
1262  * the first child throtl_grp should be dispatched.  This function
1263  * dispatches bio's from the children throtl_grps to the parent
1264  * service_queue.
1265  *
1266  * If the parent's parent is another throtl_grp, dispatching is propagated
1267  * by either arming its pending_timer or repeating dispatch directly.  If
1268  * the top-level service_tree is reached, throtl_data->dispatch_work is
1269  * kicked so that the ready bio's are issued.
1270  */
throtl_pending_timer_fn(struct timer_list * t)1271 static void throtl_pending_timer_fn(struct timer_list *t)
1272 {
1273 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1274 	struct throtl_grp *tg = sq_to_tg(sq);
1275 	struct throtl_data *td = sq_to_td(sq);
1276 	struct request_queue *q = td->queue;
1277 	struct throtl_service_queue *parent_sq;
1278 	bool dispatched;
1279 	int ret;
1280 
1281 	spin_lock_irq(&q->queue_lock);
1282 	if (throtl_can_upgrade(td, NULL))
1283 		throtl_upgrade_state(td);
1284 
1285 again:
1286 	parent_sq = sq->parent_sq;
1287 	dispatched = false;
1288 
1289 	while (true) {
1290 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1291 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1292 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1293 
1294 		ret = throtl_select_dispatch(sq);
1295 		if (ret) {
1296 			throtl_log(sq, "bios disp=%u", ret);
1297 			dispatched = true;
1298 		}
1299 
1300 		if (throtl_schedule_next_dispatch(sq, false))
1301 			break;
1302 
1303 		/* this dispatch windows is still open, relax and repeat */
1304 		spin_unlock_irq(&q->queue_lock);
1305 		cpu_relax();
1306 		spin_lock_irq(&q->queue_lock);
1307 	}
1308 
1309 	if (!dispatched)
1310 		goto out_unlock;
1311 
1312 	if (parent_sq) {
1313 		/* @parent_sq is another throl_grp, propagate dispatch */
1314 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1315 			tg_update_disptime(tg);
1316 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1317 				/* window is already open, repeat dispatching */
1318 				sq = parent_sq;
1319 				tg = sq_to_tg(sq);
1320 				goto again;
1321 			}
1322 		}
1323 	} else {
1324 		/* reached the top-level, queue issuing */
1325 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1326 	}
1327 out_unlock:
1328 	spin_unlock_irq(&q->queue_lock);
1329 }
1330 
1331 /**
1332  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1333  * @work: work item being executed
1334  *
1335  * This function is queued for execution when bios reach the bio_lists[]
1336  * of throtl_data->service_queue.  Those bios are ready and issued by this
1337  * function.
1338  */
blk_throtl_dispatch_work_fn(struct work_struct * work)1339 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1340 {
1341 	struct throtl_data *td = container_of(work, struct throtl_data,
1342 					      dispatch_work);
1343 	struct throtl_service_queue *td_sq = &td->service_queue;
1344 	struct request_queue *q = td->queue;
1345 	struct bio_list bio_list_on_stack;
1346 	struct bio *bio;
1347 	struct blk_plug plug;
1348 	int rw;
1349 
1350 	bio_list_init(&bio_list_on_stack);
1351 
1352 	spin_lock_irq(&q->queue_lock);
1353 	for (rw = READ; rw <= WRITE; rw++)
1354 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1355 			bio_list_add(&bio_list_on_stack, bio);
1356 	spin_unlock_irq(&q->queue_lock);
1357 
1358 	if (!bio_list_empty(&bio_list_on_stack)) {
1359 		blk_start_plug(&plug);
1360 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1361 			submit_bio_noacct(bio);
1362 		blk_finish_plug(&plug);
1363 	}
1364 }
1365 
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1366 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1367 			      int off)
1368 {
1369 	struct throtl_grp *tg = pd_to_tg(pd);
1370 	u64 v = *(u64 *)((void *)tg + off);
1371 
1372 	if (v == U64_MAX)
1373 		return 0;
1374 	return __blkg_prfill_u64(sf, pd, v);
1375 }
1376 
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1377 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1378 			       int off)
1379 {
1380 	struct throtl_grp *tg = pd_to_tg(pd);
1381 	unsigned int v = *(unsigned int *)((void *)tg + off);
1382 
1383 	if (v == UINT_MAX)
1384 		return 0;
1385 	return __blkg_prfill_u64(sf, pd, v);
1386 }
1387 
tg_print_conf_u64(struct seq_file * sf,void * v)1388 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1389 {
1390 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1391 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1392 	return 0;
1393 }
1394 
tg_print_conf_uint(struct seq_file * sf,void * v)1395 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1396 {
1397 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1398 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1399 	return 0;
1400 }
1401 
tg_conf_updated(struct throtl_grp * tg,bool global)1402 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1403 {
1404 	struct throtl_service_queue *sq = &tg->service_queue;
1405 	struct cgroup_subsys_state *pos_css;
1406 	struct blkcg_gq *blkg;
1407 
1408 	throtl_log(&tg->service_queue,
1409 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1410 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1411 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1412 
1413 	/*
1414 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1415 	 * considered to have rules if either the tg itself or any of its
1416 	 * ancestors has rules.  This identifies groups without any
1417 	 * restrictions in the whole hierarchy and allows them to bypass
1418 	 * blk-throttle.
1419 	 */
1420 	blkg_for_each_descendant_pre(blkg, pos_css,
1421 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1422 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1423 		struct throtl_grp *parent_tg;
1424 
1425 		tg_update_has_rules(this_tg);
1426 		/* ignore root/second level */
1427 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1428 		    !blkg->parent->parent)
1429 			continue;
1430 		parent_tg = blkg_to_tg(blkg->parent);
1431 		/*
1432 		 * make sure all children has lower idle time threshold and
1433 		 * higher latency target
1434 		 */
1435 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1436 				parent_tg->idletime_threshold);
1437 		this_tg->latency_target = max(this_tg->latency_target,
1438 				parent_tg->latency_target);
1439 	}
1440 
1441 	/*
1442 	 * We're already holding queue_lock and know @tg is valid.  Let's
1443 	 * apply the new config directly.
1444 	 *
1445 	 * Restart the slices for both READ and WRITES. It might happen
1446 	 * that a group's limit are dropped suddenly and we don't want to
1447 	 * account recently dispatched IO with new low rate.
1448 	 */
1449 	throtl_start_new_slice(tg, READ);
1450 	throtl_start_new_slice(tg, WRITE);
1451 
1452 	if (tg->flags & THROTL_TG_PENDING) {
1453 		tg_update_disptime(tg);
1454 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1455 	}
1456 }
1457 
throtl_check_init_done(struct request_queue * q)1458 static inline int throtl_check_init_done(struct request_queue *q)
1459 {
1460 	if (test_bit(QUEUE_FLAG_THROTL_INIT_DONE, &q->queue_flags))
1461 		return 0;
1462 
1463 	return blk_queue_dying(q) ? -ENODEV : -EBUSY;
1464 }
1465 
1466 /*
1467  * If throtl_check_init_done() return -EBUSY, we should retry after a short
1468  * msleep(), since that throttle init will be completed in blk_register_queue()
1469  * soon.
1470  */
throtl_restart_syscall_when_busy(int errno)1471 static inline int throtl_restart_syscall_when_busy(int errno)
1472 {
1473 	int ret = errno;
1474 
1475 	if (ret == -EBUSY) {
1476 		msleep(10);
1477 		ret = restart_syscall();
1478 	}
1479 
1480 	return ret;
1481 }
1482 
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1483 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1484 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1485 {
1486 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1487 	struct blkg_conf_ctx ctx;
1488 	struct throtl_grp *tg;
1489 	int ret;
1490 	u64 v;
1491 
1492 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1493 	if (ret)
1494 		return ret;
1495 
1496 	ret = throtl_check_init_done(ctx.disk->queue);
1497 	if (ret)
1498 		goto out_finish;
1499 
1500 	ret = -EINVAL;
1501 	if (sscanf(ctx.body, "%llu", &v) != 1)
1502 		goto out_finish;
1503 	if (!v)
1504 		v = U64_MAX;
1505 
1506 	tg = blkg_to_tg(ctx.blkg);
1507 
1508 	if (is_u64)
1509 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1510 	else
1511 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1512 
1513 	tg_conf_updated(tg, false);
1514 	ret = 0;
1515 out_finish:
1516 	blkg_conf_finish(&ctx);
1517 	ret = throtl_restart_syscall_when_busy(ret);
1518 	return ret ?: nbytes;
1519 }
1520 
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1521 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1522 			       char *buf, size_t nbytes, loff_t off)
1523 {
1524 	return tg_set_conf(of, buf, nbytes, off, true);
1525 }
1526 
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1527 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1528 				char *buf, size_t nbytes, loff_t off)
1529 {
1530 	return tg_set_conf(of, buf, nbytes, off, false);
1531 }
1532 
tg_print_rwstat(struct seq_file * sf,void * v)1533 static int tg_print_rwstat(struct seq_file *sf, void *v)
1534 {
1535 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1536 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1537 			  seq_cft(sf)->private, true);
1538 	return 0;
1539 }
1540 
tg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1541 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1542 				      struct blkg_policy_data *pd, int off)
1543 {
1544 	struct blkg_rwstat_sample sum;
1545 
1546 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1547 				  &sum);
1548 	return __blkg_prfill_rwstat(sf, pd, &sum);
1549 }
1550 
tg_print_rwstat_recursive(struct seq_file * sf,void * v)1551 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1552 {
1553 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1554 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1555 			  seq_cft(sf)->private, true);
1556 	return 0;
1557 }
1558 
1559 static struct cftype throtl_legacy_files[] = {
1560 	{
1561 		.name = "throttle.read_bps_device",
1562 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1563 		.seq_show = tg_print_conf_u64,
1564 		.write = tg_set_conf_u64,
1565 	},
1566 	{
1567 		.name = "throttle.write_bps_device",
1568 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1569 		.seq_show = tg_print_conf_u64,
1570 		.write = tg_set_conf_u64,
1571 	},
1572 	{
1573 		.name = "throttle.read_iops_device",
1574 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1575 		.seq_show = tg_print_conf_uint,
1576 		.write = tg_set_conf_uint,
1577 	},
1578 	{
1579 		.name = "throttle.write_iops_device",
1580 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1581 		.seq_show = tg_print_conf_uint,
1582 		.write = tg_set_conf_uint,
1583 	},
1584 	{
1585 		.name = "throttle.io_service_bytes",
1586 		.private = offsetof(struct throtl_grp, stat_bytes),
1587 		.seq_show = tg_print_rwstat,
1588 	},
1589 	{
1590 		.name = "throttle.io_service_bytes_recursive",
1591 		.private = offsetof(struct throtl_grp, stat_bytes),
1592 		.seq_show = tg_print_rwstat_recursive,
1593 	},
1594 	{
1595 		.name = "throttle.io_serviced",
1596 		.private = offsetof(struct throtl_grp, stat_ios),
1597 		.seq_show = tg_print_rwstat,
1598 	},
1599 	{
1600 		.name = "throttle.io_serviced_recursive",
1601 		.private = offsetof(struct throtl_grp, stat_ios),
1602 		.seq_show = tg_print_rwstat_recursive,
1603 	},
1604 	{ }	/* terminate */
1605 };
1606 
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1607 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1608 			 int off)
1609 {
1610 	struct throtl_grp *tg = pd_to_tg(pd);
1611 	const char *dname = blkg_dev_name(pd->blkg);
1612 	char bufs[4][21] = { "max", "max", "max", "max" };
1613 	u64 bps_dft;
1614 	unsigned int iops_dft;
1615 	char idle_time[26] = "";
1616 	char latency_time[26] = "";
1617 
1618 	if (!dname)
1619 		return 0;
1620 
1621 	if (off == LIMIT_LOW) {
1622 		bps_dft = 0;
1623 		iops_dft = 0;
1624 	} else {
1625 		bps_dft = U64_MAX;
1626 		iops_dft = UINT_MAX;
1627 	}
1628 
1629 	if (tg->bps_conf[READ][off] == bps_dft &&
1630 	    tg->bps_conf[WRITE][off] == bps_dft &&
1631 	    tg->iops_conf[READ][off] == iops_dft &&
1632 	    tg->iops_conf[WRITE][off] == iops_dft &&
1633 	    (off != LIMIT_LOW ||
1634 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1635 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1636 		return 0;
1637 
1638 	if (tg->bps_conf[READ][off] != U64_MAX)
1639 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1640 			tg->bps_conf[READ][off]);
1641 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1642 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1643 			tg->bps_conf[WRITE][off]);
1644 	if (tg->iops_conf[READ][off] != UINT_MAX)
1645 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1646 			tg->iops_conf[READ][off]);
1647 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1648 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1649 			tg->iops_conf[WRITE][off]);
1650 	if (off == LIMIT_LOW) {
1651 		if (tg->idletime_threshold_conf == ULONG_MAX)
1652 			strcpy(idle_time, " idle=max");
1653 		else
1654 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1655 				tg->idletime_threshold_conf);
1656 
1657 		if (tg->latency_target_conf == ULONG_MAX)
1658 			strcpy(latency_time, " latency=max");
1659 		else
1660 			snprintf(latency_time, sizeof(latency_time),
1661 				" latency=%lu", tg->latency_target_conf);
1662 	}
1663 
1664 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1665 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1666 		   latency_time);
1667 	return 0;
1668 }
1669 
tg_print_limit(struct seq_file * sf,void * v)1670 static int tg_print_limit(struct seq_file *sf, void *v)
1671 {
1672 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1673 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1674 	return 0;
1675 }
1676 
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1677 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1678 			  char *buf, size_t nbytes, loff_t off)
1679 {
1680 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1681 	struct blkg_conf_ctx ctx;
1682 	struct throtl_grp *tg;
1683 	u64 v[4];
1684 	unsigned long idle_time;
1685 	unsigned long latency_time;
1686 	int ret;
1687 	int index = of_cft(of)->private;
1688 
1689 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1690 	if (ret)
1691 		return ret;
1692 
1693 	ret = throtl_check_init_done(ctx.disk->queue);
1694 	if (ret)
1695 		goto out_finish;
1696 
1697 	tg = blkg_to_tg(ctx.blkg);
1698 	v[0] = tg->bps_conf[READ][index];
1699 	v[1] = tg->bps_conf[WRITE][index];
1700 	v[2] = tg->iops_conf[READ][index];
1701 	v[3] = tg->iops_conf[WRITE][index];
1702 
1703 	idle_time = tg->idletime_threshold_conf;
1704 	latency_time = tg->latency_target_conf;
1705 	while (true) {
1706 		char tok[27];	/* wiops=18446744073709551616 */
1707 		char *p;
1708 		u64 val = U64_MAX;
1709 		int len;
1710 
1711 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1712 			break;
1713 		if (tok[0] == '\0')
1714 			break;
1715 		ctx.body += len;
1716 
1717 		ret = -EINVAL;
1718 		p = tok;
1719 		strsep(&p, "=");
1720 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1721 			goto out_finish;
1722 
1723 		ret = -ERANGE;
1724 		if (!val)
1725 			goto out_finish;
1726 
1727 		ret = -EINVAL;
1728 		if (!strcmp(tok, "rbps") && val > 1)
1729 			v[0] = val;
1730 		else if (!strcmp(tok, "wbps") && val > 1)
1731 			v[1] = val;
1732 		else if (!strcmp(tok, "riops") && val > 1)
1733 			v[2] = min_t(u64, val, UINT_MAX);
1734 		else if (!strcmp(tok, "wiops") && val > 1)
1735 			v[3] = min_t(u64, val, UINT_MAX);
1736 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1737 			idle_time = val;
1738 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1739 			latency_time = val;
1740 		else
1741 			goto out_finish;
1742 	}
1743 
1744 	tg->bps_conf[READ][index] = v[0];
1745 	tg->bps_conf[WRITE][index] = v[1];
1746 	tg->iops_conf[READ][index] = v[2];
1747 	tg->iops_conf[WRITE][index] = v[3];
1748 
1749 	if (index == LIMIT_MAX) {
1750 		tg->bps[READ][index] = v[0];
1751 		tg->bps[WRITE][index] = v[1];
1752 		tg->iops[READ][index] = v[2];
1753 		tg->iops[WRITE][index] = v[3];
1754 	}
1755 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1756 		tg->bps_conf[READ][LIMIT_MAX]);
1757 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1758 		tg->bps_conf[WRITE][LIMIT_MAX]);
1759 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1760 		tg->iops_conf[READ][LIMIT_MAX]);
1761 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1762 		tg->iops_conf[WRITE][LIMIT_MAX]);
1763 	tg->idletime_threshold_conf = idle_time;
1764 	tg->latency_target_conf = latency_time;
1765 
1766 	/* force user to configure all settings for low limit  */
1767 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1768 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1769 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1770 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1771 		tg->bps[READ][LIMIT_LOW] = 0;
1772 		tg->bps[WRITE][LIMIT_LOW] = 0;
1773 		tg->iops[READ][LIMIT_LOW] = 0;
1774 		tg->iops[WRITE][LIMIT_LOW] = 0;
1775 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1776 		tg->latency_target = DFL_LATENCY_TARGET;
1777 	} else if (index == LIMIT_LOW) {
1778 		tg->idletime_threshold = tg->idletime_threshold_conf;
1779 		tg->latency_target = tg->latency_target_conf;
1780 	}
1781 
1782 	blk_throtl_update_limit_valid(tg->td);
1783 	if (tg->td->limit_valid[LIMIT_LOW]) {
1784 		if (index == LIMIT_LOW)
1785 			tg->td->limit_index = LIMIT_LOW;
1786 	} else
1787 		tg->td->limit_index = LIMIT_MAX;
1788 	tg_conf_updated(tg, index == LIMIT_LOW &&
1789 		tg->td->limit_valid[LIMIT_LOW]);
1790 	ret = 0;
1791 out_finish:
1792 	blkg_conf_finish(&ctx);
1793 	ret = throtl_restart_syscall_when_busy(ret);
1794 	return ret ?: nbytes;
1795 }
1796 
1797 static struct cftype throtl_files[] = {
1798 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1799 	{
1800 		.name = "low",
1801 		.flags = CFTYPE_NOT_ON_ROOT,
1802 		.seq_show = tg_print_limit,
1803 		.write = tg_set_limit,
1804 		.private = LIMIT_LOW,
1805 	},
1806 #endif
1807 	{
1808 		.name = "max",
1809 		.flags = CFTYPE_NOT_ON_ROOT,
1810 		.seq_show = tg_print_limit,
1811 		.write = tg_set_limit,
1812 		.private = LIMIT_MAX,
1813 	},
1814 	{ }	/* terminate */
1815 };
1816 
throtl_shutdown_wq(struct request_queue * q)1817 static void throtl_shutdown_wq(struct request_queue *q)
1818 {
1819 	struct throtl_data *td = q->td;
1820 
1821 	cancel_work_sync(&td->dispatch_work);
1822 }
1823 
1824 static struct blkcg_policy blkcg_policy_throtl = {
1825 	.dfl_cftypes		= throtl_files,
1826 	.legacy_cftypes		= throtl_legacy_files,
1827 
1828 	.pd_alloc_fn		= throtl_pd_alloc,
1829 	.pd_init_fn		= throtl_pd_init,
1830 	.pd_online_fn		= throtl_pd_online,
1831 	.pd_offline_fn		= throtl_pd_offline,
1832 	.pd_free_fn		= throtl_pd_free,
1833 };
1834 
__tg_last_low_overflow_time(struct throtl_grp * tg)1835 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1836 {
1837 	unsigned long rtime = jiffies, wtime = jiffies;
1838 
1839 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1840 		rtime = tg->last_low_overflow_time[READ];
1841 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1842 		wtime = tg->last_low_overflow_time[WRITE];
1843 	return min(rtime, wtime);
1844 }
1845 
1846 /* tg should not be an intermediate node */
tg_last_low_overflow_time(struct throtl_grp * tg)1847 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1848 {
1849 	struct throtl_service_queue *parent_sq;
1850 	struct throtl_grp *parent = tg;
1851 	unsigned long ret = __tg_last_low_overflow_time(tg);
1852 
1853 	while (true) {
1854 		parent_sq = parent->service_queue.parent_sq;
1855 		parent = sq_to_tg(parent_sq);
1856 		if (!parent)
1857 			break;
1858 
1859 		/*
1860 		 * The parent doesn't have low limit, it always reaches low
1861 		 * limit. Its overflow time is useless for children
1862 		 */
1863 		if (!parent->bps[READ][LIMIT_LOW] &&
1864 		    !parent->iops[READ][LIMIT_LOW] &&
1865 		    !parent->bps[WRITE][LIMIT_LOW] &&
1866 		    !parent->iops[WRITE][LIMIT_LOW])
1867 			continue;
1868 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1869 			ret = __tg_last_low_overflow_time(parent);
1870 	}
1871 	return ret;
1872 }
1873 
throtl_tg_is_idle(struct throtl_grp * tg)1874 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1875 {
1876 	/*
1877 	 * cgroup is idle if:
1878 	 * - single idle is too long, longer than a fixed value (in case user
1879 	 *   configure a too big threshold) or 4 times of idletime threshold
1880 	 * - average think time is more than threshold
1881 	 * - IO latency is largely below threshold
1882 	 */
1883 	unsigned long time;
1884 	bool ret;
1885 
1886 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1887 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1888 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1889 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1890 	      tg->avg_idletime > tg->idletime_threshold ||
1891 	      (tg->latency_target && tg->bio_cnt &&
1892 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1893 	throtl_log(&tg->service_queue,
1894 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1895 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1896 		tg->bio_cnt, ret, tg->td->scale);
1897 	return ret;
1898 }
1899 
throtl_tg_can_upgrade(struct throtl_grp * tg)1900 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1901 {
1902 	struct throtl_service_queue *sq = &tg->service_queue;
1903 	bool read_limit, write_limit;
1904 
1905 	/*
1906 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1907 	 * reaches), it's ok to upgrade to next limit
1908 	 */
1909 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1910 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1911 	if (!read_limit && !write_limit)
1912 		return true;
1913 	if (read_limit && sq->nr_queued[READ] &&
1914 	    (!write_limit || sq->nr_queued[WRITE]))
1915 		return true;
1916 	if (write_limit && sq->nr_queued[WRITE] &&
1917 	    (!read_limit || sq->nr_queued[READ]))
1918 		return true;
1919 
1920 	if (time_after_eq(jiffies,
1921 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1922 	    throtl_tg_is_idle(tg))
1923 		return true;
1924 	return false;
1925 }
1926 
throtl_hierarchy_can_upgrade(struct throtl_grp * tg)1927 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1928 {
1929 	while (true) {
1930 		if (throtl_tg_can_upgrade(tg))
1931 			return true;
1932 		tg = sq_to_tg(tg->service_queue.parent_sq);
1933 		if (!tg || !tg_to_blkg(tg)->parent)
1934 			return false;
1935 	}
1936 	return false;
1937 }
1938 
throtl_can_upgrade(struct throtl_data * td,struct throtl_grp * this_tg)1939 static bool throtl_can_upgrade(struct throtl_data *td,
1940 	struct throtl_grp *this_tg)
1941 {
1942 	struct cgroup_subsys_state *pos_css;
1943 	struct blkcg_gq *blkg;
1944 
1945 	if (td->limit_index != LIMIT_LOW)
1946 		return false;
1947 
1948 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1949 		return false;
1950 
1951 	rcu_read_lock();
1952 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1953 		struct throtl_grp *tg = blkg_to_tg(blkg);
1954 
1955 		if (tg == this_tg)
1956 			continue;
1957 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1958 			continue;
1959 		if (!throtl_hierarchy_can_upgrade(tg)) {
1960 			rcu_read_unlock();
1961 			return false;
1962 		}
1963 	}
1964 	rcu_read_unlock();
1965 	return true;
1966 }
1967 
throtl_upgrade_check(struct throtl_grp * tg)1968 static void throtl_upgrade_check(struct throtl_grp *tg)
1969 {
1970 	unsigned long now = jiffies;
1971 
1972 	if (tg->td->limit_index != LIMIT_LOW)
1973 		return;
1974 
1975 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1976 		return;
1977 
1978 	tg->last_check_time = now;
1979 
1980 	if (!time_after_eq(now,
1981 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1982 		return;
1983 
1984 	if (throtl_can_upgrade(tg->td, NULL))
1985 		throtl_upgrade_state(tg->td);
1986 }
1987 
throtl_upgrade_state(struct throtl_data * td)1988 static void throtl_upgrade_state(struct throtl_data *td)
1989 {
1990 	struct cgroup_subsys_state *pos_css;
1991 	struct blkcg_gq *blkg;
1992 
1993 	throtl_log(&td->service_queue, "upgrade to max");
1994 	td->limit_index = LIMIT_MAX;
1995 	td->low_upgrade_time = jiffies;
1996 	td->scale = 0;
1997 	rcu_read_lock();
1998 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1999 		struct throtl_grp *tg = blkg_to_tg(blkg);
2000 		struct throtl_service_queue *sq = &tg->service_queue;
2001 
2002 		tg->disptime = jiffies - 1;
2003 		throtl_select_dispatch(sq);
2004 		throtl_schedule_next_dispatch(sq, true);
2005 	}
2006 	rcu_read_unlock();
2007 	throtl_select_dispatch(&td->service_queue);
2008 	throtl_schedule_next_dispatch(&td->service_queue, true);
2009 	queue_work(kthrotld_workqueue, &td->dispatch_work);
2010 }
2011 
throtl_downgrade_state(struct throtl_data * td)2012 static void throtl_downgrade_state(struct throtl_data *td)
2013 {
2014 	td->scale /= 2;
2015 
2016 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
2017 	if (td->scale) {
2018 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
2019 		return;
2020 	}
2021 
2022 	td->limit_index = LIMIT_LOW;
2023 	td->low_downgrade_time = jiffies;
2024 }
2025 
throtl_tg_can_downgrade(struct throtl_grp * tg)2026 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
2027 {
2028 	struct throtl_data *td = tg->td;
2029 	unsigned long now = jiffies;
2030 
2031 	/*
2032 	 * If cgroup is below low limit, consider downgrade and throttle other
2033 	 * cgroups
2034 	 */
2035 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2036 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
2037 					td->throtl_slice) &&
2038 	    (!throtl_tg_is_idle(tg) ||
2039 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2040 		return true;
2041 	return false;
2042 }
2043 
throtl_hierarchy_can_downgrade(struct throtl_grp * tg)2044 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2045 {
2046 	while (true) {
2047 		if (!throtl_tg_can_downgrade(tg))
2048 			return false;
2049 		tg = sq_to_tg(tg->service_queue.parent_sq);
2050 		if (!tg || !tg_to_blkg(tg)->parent)
2051 			break;
2052 	}
2053 	return true;
2054 }
2055 
throtl_downgrade_check(struct throtl_grp * tg)2056 static void throtl_downgrade_check(struct throtl_grp *tg)
2057 {
2058 	uint64_t bps;
2059 	unsigned int iops;
2060 	unsigned long elapsed_time;
2061 	unsigned long now = jiffies;
2062 
2063 	if (tg->td->limit_index != LIMIT_MAX ||
2064 	    !tg->td->limit_valid[LIMIT_LOW])
2065 		return;
2066 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2067 		return;
2068 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2069 		return;
2070 
2071 	elapsed_time = now - tg->last_check_time;
2072 	tg->last_check_time = now;
2073 
2074 	if (time_before(now, tg_last_low_overflow_time(tg) +
2075 			tg->td->throtl_slice))
2076 		return;
2077 
2078 	if (tg->bps[READ][LIMIT_LOW]) {
2079 		bps = tg->last_bytes_disp[READ] * HZ;
2080 		do_div(bps, elapsed_time);
2081 		if (bps >= tg->bps[READ][LIMIT_LOW])
2082 			tg->last_low_overflow_time[READ] = now;
2083 	}
2084 
2085 	if (tg->bps[WRITE][LIMIT_LOW]) {
2086 		bps = tg->last_bytes_disp[WRITE] * HZ;
2087 		do_div(bps, elapsed_time);
2088 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2089 			tg->last_low_overflow_time[WRITE] = now;
2090 	}
2091 
2092 	if (tg->iops[READ][LIMIT_LOW]) {
2093 		tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
2094 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2095 		if (iops >= tg->iops[READ][LIMIT_LOW])
2096 			tg->last_low_overflow_time[READ] = now;
2097 	}
2098 
2099 	if (tg->iops[WRITE][LIMIT_LOW]) {
2100 		tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
2101 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2102 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2103 			tg->last_low_overflow_time[WRITE] = now;
2104 	}
2105 
2106 	/*
2107 	 * If cgroup is below low limit, consider downgrade and throttle other
2108 	 * cgroups
2109 	 */
2110 	if (throtl_hierarchy_can_downgrade(tg))
2111 		throtl_downgrade_state(tg->td);
2112 
2113 	tg->last_bytes_disp[READ] = 0;
2114 	tg->last_bytes_disp[WRITE] = 0;
2115 	tg->last_io_disp[READ] = 0;
2116 	tg->last_io_disp[WRITE] = 0;
2117 }
2118 
blk_throtl_update_idletime(struct throtl_grp * tg)2119 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2120 {
2121 	unsigned long now;
2122 	unsigned long last_finish_time = tg->last_finish_time;
2123 
2124 	if (last_finish_time == 0)
2125 		return;
2126 
2127 	now = ktime_get_ns() >> 10;
2128 	if (now <= last_finish_time ||
2129 	    last_finish_time == tg->checked_last_finish_time)
2130 		return;
2131 
2132 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2133 	tg->checked_last_finish_time = last_finish_time;
2134 }
2135 
2136 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_update_latency_buckets(struct throtl_data * td)2137 static void throtl_update_latency_buckets(struct throtl_data *td)
2138 {
2139 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2140 	int i, cpu, rw;
2141 	unsigned long last_latency[2] = { 0 };
2142 	unsigned long latency[2];
2143 
2144 	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2145 		return;
2146 	if (time_before(jiffies, td->last_calculate_time + HZ))
2147 		return;
2148 	td->last_calculate_time = jiffies;
2149 
2150 	memset(avg_latency, 0, sizeof(avg_latency));
2151 	for (rw = READ; rw <= WRITE; rw++) {
2152 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2153 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2154 
2155 			for_each_possible_cpu(cpu) {
2156 				struct latency_bucket *bucket;
2157 
2158 				/* this isn't race free, but ok in practice */
2159 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2160 					cpu);
2161 				tmp->total_latency += bucket[i].total_latency;
2162 				tmp->samples += bucket[i].samples;
2163 				bucket[i].total_latency = 0;
2164 				bucket[i].samples = 0;
2165 			}
2166 
2167 			if (tmp->samples >= 32) {
2168 				int samples = tmp->samples;
2169 
2170 				latency[rw] = tmp->total_latency;
2171 
2172 				tmp->total_latency = 0;
2173 				tmp->samples = 0;
2174 				latency[rw] /= samples;
2175 				if (latency[rw] == 0)
2176 					continue;
2177 				avg_latency[rw][i].latency = latency[rw];
2178 			}
2179 		}
2180 	}
2181 
2182 	for (rw = READ; rw <= WRITE; rw++) {
2183 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2184 			if (!avg_latency[rw][i].latency) {
2185 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2186 					td->avg_buckets[rw][i].latency =
2187 						last_latency[rw];
2188 				continue;
2189 			}
2190 
2191 			if (!td->avg_buckets[rw][i].valid)
2192 				latency[rw] = avg_latency[rw][i].latency;
2193 			else
2194 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2195 					avg_latency[rw][i].latency) >> 3;
2196 
2197 			td->avg_buckets[rw][i].latency = max(latency[rw],
2198 				last_latency[rw]);
2199 			td->avg_buckets[rw][i].valid = true;
2200 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2201 		}
2202 	}
2203 
2204 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2205 		throtl_log(&td->service_queue,
2206 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2207 			"write latency=%ld, write valid=%d", i,
2208 			td->avg_buckets[READ][i].latency,
2209 			td->avg_buckets[READ][i].valid,
2210 			td->avg_buckets[WRITE][i].latency,
2211 			td->avg_buckets[WRITE][i].valid);
2212 }
2213 #else
throtl_update_latency_buckets(struct throtl_data * td)2214 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2215 {
2216 }
2217 #endif
2218 
blk_throtl_charge_bio_split(struct bio * bio)2219 void blk_throtl_charge_bio_split(struct bio *bio)
2220 {
2221 	struct blkcg_gq *blkg = bio->bi_blkg;
2222 	struct throtl_grp *parent = blkg_to_tg(blkg);
2223 	struct throtl_service_queue *parent_sq;
2224 	bool rw = bio_data_dir(bio);
2225 
2226 	do {
2227 		if (!parent->has_rules[rw])
2228 			break;
2229 
2230 		atomic_inc(&parent->io_split_cnt[rw]);
2231 		atomic_inc(&parent->last_io_split_cnt[rw]);
2232 
2233 		parent_sq = parent->service_queue.parent_sq;
2234 		parent = sq_to_tg(parent_sq);
2235 	} while (parent);
2236 }
2237 
blk_throtl_bio(struct bio * bio)2238 bool blk_throtl_bio(struct bio *bio)
2239 {
2240 	struct request_queue *q = bio->bi_disk->queue;
2241 	struct blkcg_gq *blkg = bio->bi_blkg;
2242 	struct throtl_qnode *qn = NULL;
2243 	struct throtl_grp *tg = blkg_to_tg(blkg);
2244 	struct throtl_service_queue *sq;
2245 	bool rw = bio_data_dir(bio);
2246 	bool throttled = false;
2247 	struct throtl_data *td = tg->td;
2248 
2249 	rcu_read_lock();
2250 
2251 	/* see throtl_charge_bio() */
2252 	if (bio_flagged(bio, BIO_THROTTLED))
2253 		goto out;
2254 
2255 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2256 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2257 				bio->bi_iter.bi_size);
2258 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2259 	}
2260 
2261 	if (!tg->has_rules[rw])
2262 		goto out;
2263 
2264 	spin_lock_irq(&q->queue_lock);
2265 
2266 	throtl_update_latency_buckets(td);
2267 
2268 	blk_throtl_update_idletime(tg);
2269 
2270 	sq = &tg->service_queue;
2271 
2272 again:
2273 	while (true) {
2274 		if (tg->last_low_overflow_time[rw] == 0)
2275 			tg->last_low_overflow_time[rw] = jiffies;
2276 		throtl_downgrade_check(tg);
2277 		throtl_upgrade_check(tg);
2278 		/* throtl is FIFO - if bios are already queued, should queue */
2279 		if (sq->nr_queued[rw])
2280 			break;
2281 
2282 		/* if above limits, break to queue */
2283 		if (!tg_may_dispatch(tg, bio, NULL)) {
2284 			tg->last_low_overflow_time[rw] = jiffies;
2285 			if (throtl_can_upgrade(td, tg)) {
2286 				throtl_upgrade_state(td);
2287 				goto again;
2288 			}
2289 			break;
2290 		}
2291 
2292 		/* within limits, let's charge and dispatch directly */
2293 		throtl_charge_bio(tg, bio);
2294 
2295 		/*
2296 		 * We need to trim slice even when bios are not being queued
2297 		 * otherwise it might happen that a bio is not queued for
2298 		 * a long time and slice keeps on extending and trim is not
2299 		 * called for a long time. Now if limits are reduced suddenly
2300 		 * we take into account all the IO dispatched so far at new
2301 		 * low rate and * newly queued IO gets a really long dispatch
2302 		 * time.
2303 		 *
2304 		 * So keep on trimming slice even if bio is not queued.
2305 		 */
2306 		throtl_trim_slice(tg, rw);
2307 
2308 		/*
2309 		 * @bio passed through this layer without being throttled.
2310 		 * Climb up the ladder.  If we're already at the top, it
2311 		 * can be executed directly.
2312 		 */
2313 		qn = &tg->qnode_on_parent[rw];
2314 		sq = sq->parent_sq;
2315 		tg = sq_to_tg(sq);
2316 		if (!tg)
2317 			goto out_unlock;
2318 	}
2319 
2320 	/* out-of-limit, queue to @tg */
2321 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2322 		   rw == READ ? 'R' : 'W',
2323 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2324 		   tg_bps_limit(tg, rw),
2325 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2326 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2327 
2328 	tg->last_low_overflow_time[rw] = jiffies;
2329 
2330 	td->nr_queued[rw]++;
2331 	throtl_add_bio_tg(bio, qn, tg);
2332 	throttled = true;
2333 
2334 	/*
2335 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2336 	 * was empty before @bio.  The forced scheduling isn't likely to
2337 	 * cause undue delay as @bio is likely to be dispatched directly if
2338 	 * its @tg's disptime is not in the future.
2339 	 */
2340 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2341 		tg_update_disptime(tg);
2342 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2343 	}
2344 
2345 out_unlock:
2346 	spin_unlock_irq(&q->queue_lock);
2347 out:
2348 	bio_set_flag(bio, BIO_THROTTLED);
2349 
2350 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2351 	if (throttled || !td->track_bio_latency)
2352 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2353 #endif
2354 	rcu_read_unlock();
2355 	return throttled;
2356 }
2357 
2358 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_track_latency(struct throtl_data * td,sector_t size,int op,unsigned long time)2359 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2360 	int op, unsigned long time)
2361 {
2362 	struct latency_bucket *latency;
2363 	int index;
2364 
2365 	if (!td || td->limit_index != LIMIT_LOW ||
2366 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2367 	    !blk_queue_nonrot(td->queue))
2368 		return;
2369 
2370 	index = request_bucket_index(size);
2371 
2372 	latency = get_cpu_ptr(td->latency_buckets[op]);
2373 	latency[index].total_latency += time;
2374 	latency[index].samples++;
2375 	put_cpu_ptr(td->latency_buckets[op]);
2376 }
2377 
blk_throtl_stat_add(struct request * rq,u64 time_ns)2378 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2379 {
2380 	struct request_queue *q = rq->q;
2381 	struct throtl_data *td = q->td;
2382 
2383 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2384 			     time_ns >> 10);
2385 }
2386 
blk_throtl_bio_endio(struct bio * bio)2387 void blk_throtl_bio_endio(struct bio *bio)
2388 {
2389 	struct blkcg_gq *blkg;
2390 	struct throtl_grp *tg;
2391 	u64 finish_time_ns;
2392 	unsigned long finish_time;
2393 	unsigned long start_time;
2394 	unsigned long lat;
2395 	int rw = bio_data_dir(bio);
2396 
2397 	blkg = bio->bi_blkg;
2398 	if (!blkg)
2399 		return;
2400 	tg = blkg_to_tg(blkg);
2401 	if (!tg->td->limit_valid[LIMIT_LOW])
2402 		return;
2403 
2404 	finish_time_ns = ktime_get_ns();
2405 	tg->last_finish_time = finish_time_ns >> 10;
2406 
2407 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2408 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2409 	if (!start_time || finish_time <= start_time)
2410 		return;
2411 
2412 	lat = finish_time - start_time;
2413 	/* this is only for bio based driver */
2414 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2415 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2416 				     bio_op(bio), lat);
2417 
2418 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2419 		int bucket;
2420 		unsigned int threshold;
2421 
2422 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2423 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2424 			tg->latency_target;
2425 		if (lat > threshold)
2426 			tg->bad_bio_cnt++;
2427 		/*
2428 		 * Not race free, could get wrong count, which means cgroups
2429 		 * will be throttled
2430 		 */
2431 		tg->bio_cnt++;
2432 	}
2433 
2434 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2435 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2436 		tg->bio_cnt /= 2;
2437 		tg->bad_bio_cnt /= 2;
2438 	}
2439 }
2440 #endif
2441 
blk_throtl_init(struct request_queue * q)2442 int blk_throtl_init(struct request_queue *q)
2443 {
2444 	struct throtl_data *td;
2445 	int ret;
2446 
2447 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2448 	if (!td)
2449 		return -ENOMEM;
2450 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2451 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2452 	if (!td->latency_buckets[READ]) {
2453 		kfree(td);
2454 		return -ENOMEM;
2455 	}
2456 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2457 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2458 	if (!td->latency_buckets[WRITE]) {
2459 		free_percpu(td->latency_buckets[READ]);
2460 		kfree(td);
2461 		return -ENOMEM;
2462 	}
2463 
2464 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2465 	throtl_service_queue_init(&td->service_queue);
2466 
2467 	q->td = td;
2468 	td->queue = q;
2469 
2470 	td->limit_valid[LIMIT_MAX] = true;
2471 	td->limit_index = LIMIT_MAX;
2472 	td->low_upgrade_time = jiffies;
2473 	td->low_downgrade_time = jiffies;
2474 
2475 	/* activate policy */
2476 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2477 	if (ret) {
2478 		free_percpu(td->latency_buckets[READ]);
2479 		free_percpu(td->latency_buckets[WRITE]);
2480 		kfree(td);
2481 	}
2482 	return ret;
2483 }
2484 
blk_throtl_exit(struct request_queue * q)2485 void blk_throtl_exit(struct request_queue *q)
2486 {
2487 	BUG_ON(!q->td);
2488 	del_timer_sync(&q->td->service_queue.pending_timer);
2489 	throtl_shutdown_wq(q);
2490 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2491 	free_percpu(q->td->latency_buckets[READ]);
2492 	free_percpu(q->td->latency_buckets[WRITE]);
2493 	kfree(q->td);
2494 }
2495 
blk_throtl_register_queue(struct request_queue * q)2496 void blk_throtl_register_queue(struct request_queue *q)
2497 {
2498 	struct throtl_data *td;
2499 	int i;
2500 
2501 	td = q->td;
2502 	BUG_ON(!td);
2503 
2504 	if (blk_queue_nonrot(q)) {
2505 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2506 		td->filtered_latency = LATENCY_FILTERED_SSD;
2507 	} else {
2508 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2509 		td->filtered_latency = LATENCY_FILTERED_HD;
2510 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2511 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2512 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2513 		}
2514 	}
2515 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2516 	/* if no low limit, use previous default */
2517 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2518 #endif
2519 
2520 	td->track_bio_latency = !queue_is_mq(q);
2521 	if (!td->track_bio_latency)
2522 		blk_stat_enable_accounting(q);
2523 }
2524 
2525 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
blk_throtl_sample_time_show(struct request_queue * q,char * page)2526 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2527 {
2528 	if (!q->td)
2529 		return -EINVAL;
2530 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2531 }
2532 
blk_throtl_sample_time_store(struct request_queue * q,const char * page,size_t count)2533 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2534 	const char *page, size_t count)
2535 {
2536 	unsigned long v;
2537 	unsigned long t;
2538 
2539 	if (!q->td)
2540 		return -EINVAL;
2541 	if (kstrtoul(page, 10, &v))
2542 		return -EINVAL;
2543 	t = msecs_to_jiffies(v);
2544 	if (t == 0 || t > MAX_THROTL_SLICE)
2545 		return -EINVAL;
2546 	q->td->throtl_slice = t;
2547 	return count;
2548 }
2549 #endif
2550 
throtl_init(void)2551 static int __init throtl_init(void)
2552 {
2553 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2554 	if (!kthrotld_workqueue)
2555 		panic("Failed to create kthrotld\n");
2556 
2557 	return blkcg_policy_register(&blkcg_policy_throtl);
2558 }
2559 
2560 module_init(throtl_init);
2561