1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include <linux/delay.h>
15 #include "blk.h"
16 #include "blk-cgroup-rwstat.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 static struct blkcg_policy blkcg_policy_throtl;
42
43 /* A workqueue to queue throttle related work */
44 static struct workqueue_struct *kthrotld_workqueue;
45
46 /*
47 * To implement hierarchical throttling, throtl_grps form a tree and bios
48 * are dispatched upwards level by level until they reach the top and get
49 * issued. When dispatching bios from the children and local group at each
50 * level, if the bios are dispatched into a single bio_list, there's a risk
51 * of a local or child group which can queue many bios at once filling up
52 * the list starving others.
53 *
54 * To avoid such starvation, dispatched bios are queued separately
55 * according to where they came from. When they are again dispatched to
56 * the parent, they're popped in round-robin order so that no single source
57 * hogs the dispatch window.
58 *
59 * throtl_qnode is used to keep the queued bios separated by their sources.
60 * Bios are queued to throtl_qnode which in turn is queued to
61 * throtl_service_queue and then dispatched in round-robin order.
62 *
63 * It's also used to track the reference counts on blkg's. A qnode always
64 * belongs to a throtl_grp and gets queued on itself or the parent, so
65 * incrementing the reference of the associated throtl_grp when a qnode is
66 * queued and decrementing when dequeued is enough to keep the whole blkg
67 * tree pinned while bios are in flight.
68 */
69 struct throtl_qnode {
70 struct list_head node; /* service_queue->queued[] */
71 struct bio_list bios; /* queued bios */
72 struct throtl_grp *tg; /* tg this qnode belongs to */
73 };
74
75 struct throtl_service_queue {
76 struct throtl_service_queue *parent_sq; /* the parent service_queue */
77
78 /*
79 * Bios queued directly to this service_queue or dispatched from
80 * children throtl_grp's.
81 */
82 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
83 unsigned int nr_queued[2]; /* number of queued bios */
84
85 /*
86 * RB tree of active children throtl_grp's, which are sorted by
87 * their ->disptime.
88 */
89 struct rb_root_cached pending_tree; /* RB tree of active tgs */
90 unsigned int nr_pending; /* # queued in the tree */
91 unsigned long first_pending_disptime; /* disptime of the first tg */
92 struct timer_list pending_timer; /* fires on first_pending_disptime */
93 };
94
95 enum tg_state_flags {
96 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
97 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
98 };
99
100 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
101
102 enum {
103 LIMIT_LOW,
104 LIMIT_MAX,
105 LIMIT_CNT,
106 };
107
108 struct throtl_grp {
109 /* must be the first member */
110 struct blkg_policy_data pd;
111
112 /* active throtl group service_queue member */
113 struct rb_node rb_node;
114
115 /* throtl_data this group belongs to */
116 struct throtl_data *td;
117
118 /* this group's service queue */
119 struct throtl_service_queue service_queue;
120
121 /*
122 * qnode_on_self is used when bios are directly queued to this
123 * throtl_grp so that local bios compete fairly with bios
124 * dispatched from children. qnode_on_parent is used when bios are
125 * dispatched from this throtl_grp into its parent and will compete
126 * with the sibling qnode_on_parents and the parent's
127 * qnode_on_self.
128 */
129 struct throtl_qnode qnode_on_self[2];
130 struct throtl_qnode qnode_on_parent[2];
131
132 /*
133 * Dispatch time in jiffies. This is the estimated time when group
134 * will unthrottle and is ready to dispatch more bio. It is used as
135 * key to sort active groups in service tree.
136 */
137 unsigned long disptime;
138
139 unsigned int flags;
140
141 /* are there any throtl rules between this group and td? */
142 bool has_rules[2];
143
144 /* internally used bytes per second rate limits */
145 uint64_t bps[2][LIMIT_CNT];
146 /* user configured bps limits */
147 uint64_t bps_conf[2][LIMIT_CNT];
148
149 /* internally used IOPS limits */
150 unsigned int iops[2][LIMIT_CNT];
151 /* user configured IOPS limits */
152 unsigned int iops_conf[2][LIMIT_CNT];
153
154 /* Number of bytes dispatched in current slice */
155 uint64_t bytes_disp[2];
156 /* Number of bio's dispatched in current slice */
157 unsigned int io_disp[2];
158
159 unsigned long last_low_overflow_time[2];
160
161 uint64_t last_bytes_disp[2];
162 unsigned int last_io_disp[2];
163
164 unsigned long last_check_time;
165
166 unsigned long latency_target; /* us */
167 unsigned long latency_target_conf; /* us */
168 /* When did we start a new slice */
169 unsigned long slice_start[2];
170 unsigned long slice_end[2];
171
172 unsigned long last_finish_time; /* ns / 1024 */
173 unsigned long checked_last_finish_time; /* ns / 1024 */
174 unsigned long avg_idletime; /* ns / 1024 */
175 unsigned long idletime_threshold; /* us */
176 unsigned long idletime_threshold_conf; /* us */
177
178 unsigned int bio_cnt; /* total bios */
179 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
180 unsigned long bio_cnt_reset_time;
181
182 atomic_t io_split_cnt[2];
183 atomic_t last_io_split_cnt[2];
184
185 struct blkg_rwstat stat_bytes;
186 struct blkg_rwstat stat_ios;
187 };
188
189 /* We measure latency for request size from <= 4k to >= 1M */
190 #define LATENCY_BUCKET_SIZE 9
191
192 struct latency_bucket {
193 unsigned long total_latency; /* ns / 1024 */
194 int samples;
195 };
196
197 struct avg_latency_bucket {
198 unsigned long latency; /* ns / 1024 */
199 bool valid;
200 };
201
202 struct throtl_data
203 {
204 /* service tree for active throtl groups */
205 struct throtl_service_queue service_queue;
206
207 struct request_queue *queue;
208
209 /* Total Number of queued bios on READ and WRITE lists */
210 unsigned int nr_queued[2];
211
212 unsigned int throtl_slice;
213
214 /* Work for dispatching throttled bios */
215 struct work_struct dispatch_work;
216 unsigned int limit_index;
217 bool limit_valid[LIMIT_CNT];
218
219 unsigned long low_upgrade_time;
220 unsigned long low_downgrade_time;
221
222 unsigned int scale;
223
224 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
225 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
226 struct latency_bucket __percpu *latency_buckets[2];
227 unsigned long last_calculate_time;
228 unsigned long filtered_latency;
229
230 bool track_bio_latency;
231 };
232
233 static void throtl_pending_timer_fn(struct timer_list *t);
234
pd_to_tg(struct blkg_policy_data * pd)235 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
236 {
237 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
238 }
239
blkg_to_tg(struct blkcg_gq * blkg)240 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
241 {
242 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
243 }
244
tg_to_blkg(struct throtl_grp * tg)245 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
246 {
247 return pd_to_blkg(&tg->pd);
248 }
249
250 /**
251 * sq_to_tg - return the throl_grp the specified service queue belongs to
252 * @sq: the throtl_service_queue of interest
253 *
254 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
255 * embedded in throtl_data, %NULL is returned.
256 */
sq_to_tg(struct throtl_service_queue * sq)257 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
258 {
259 if (sq && sq->parent_sq)
260 return container_of(sq, struct throtl_grp, service_queue);
261 else
262 return NULL;
263 }
264
265 /**
266 * sq_to_td - return throtl_data the specified service queue belongs to
267 * @sq: the throtl_service_queue of interest
268 *
269 * A service_queue can be embedded in either a throtl_grp or throtl_data.
270 * Determine the associated throtl_data accordingly and return it.
271 */
sq_to_td(struct throtl_service_queue * sq)272 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
273 {
274 struct throtl_grp *tg = sq_to_tg(sq);
275
276 if (tg)
277 return tg->td;
278 else
279 return container_of(sq, struct throtl_data, service_queue);
280 }
281
282 /*
283 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
284 * make the IO dispatch more smooth.
285 * Scale up: linearly scale up according to lapsed time since upgrade. For
286 * every throtl_slice, the limit scales up 1/2 .low limit till the
287 * limit hits .max limit
288 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
289 */
throtl_adjusted_limit(uint64_t low,struct throtl_data * td)290 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
291 {
292 /* arbitrary value to avoid too big scale */
293 if (td->scale < 4096 && time_after_eq(jiffies,
294 td->low_upgrade_time + td->scale * td->throtl_slice))
295 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
296
297 return low + (low >> 1) * td->scale;
298 }
299
tg_bps_limit(struct throtl_grp * tg,int rw)300 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
301 {
302 struct blkcg_gq *blkg = tg_to_blkg(tg);
303 struct throtl_data *td;
304 uint64_t ret;
305
306 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
307 return U64_MAX;
308
309 td = tg->td;
310 ret = tg->bps[rw][td->limit_index];
311 if (ret == 0 && td->limit_index == LIMIT_LOW) {
312 /* intermediate node or iops isn't 0 */
313 if (!list_empty(&blkg->blkcg->css.children) ||
314 tg->iops[rw][td->limit_index])
315 return U64_MAX;
316 else
317 return MIN_THROTL_BPS;
318 }
319
320 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
321 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
322 uint64_t adjusted;
323
324 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
325 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
326 }
327 return ret;
328 }
329
tg_iops_limit(struct throtl_grp * tg,int rw)330 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
331 {
332 struct blkcg_gq *blkg = tg_to_blkg(tg);
333 struct throtl_data *td;
334 unsigned int ret;
335
336 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
337 return UINT_MAX;
338
339 td = tg->td;
340 ret = tg->iops[rw][td->limit_index];
341 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
342 /* intermediate node or bps isn't 0 */
343 if (!list_empty(&blkg->blkcg->css.children) ||
344 tg->bps[rw][td->limit_index])
345 return UINT_MAX;
346 else
347 return MIN_THROTL_IOPS;
348 }
349
350 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
351 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
352 uint64_t adjusted;
353
354 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
355 if (adjusted > UINT_MAX)
356 adjusted = UINT_MAX;
357 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
358 }
359 return ret;
360 }
361
362 #define request_bucket_index(sectors) \
363 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
364
365 /**
366 * throtl_log - log debug message via blktrace
367 * @sq: the service_queue being reported
368 * @fmt: printf format string
369 * @args: printf args
370 *
371 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
372 * throtl_grp; otherwise, just "throtl".
373 */
374 #define throtl_log(sq, fmt, args...) do { \
375 struct throtl_grp *__tg = sq_to_tg((sq)); \
376 struct throtl_data *__td = sq_to_td((sq)); \
377 \
378 (void)__td; \
379 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
380 break; \
381 if ((__tg)) { \
382 blk_add_cgroup_trace_msg(__td->queue, \
383 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
384 } else { \
385 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
386 } \
387 } while (0)
388
throtl_bio_data_size(struct bio * bio)389 static inline unsigned int throtl_bio_data_size(struct bio *bio)
390 {
391 /* assume it's one sector */
392 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
393 return 512;
394 return bio->bi_iter.bi_size;
395 }
396
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)397 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
398 {
399 INIT_LIST_HEAD(&qn->node);
400 bio_list_init(&qn->bios);
401 qn->tg = tg;
402 }
403
404 /**
405 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
406 * @bio: bio being added
407 * @qn: qnode to add bio to
408 * @queued: the service_queue->queued[] list @qn belongs to
409 *
410 * Add @bio to @qn and put @qn on @queued if it's not already on.
411 * @qn->tg's reference count is bumped when @qn is activated. See the
412 * comment on top of throtl_qnode definition for details.
413 */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)414 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
415 struct list_head *queued)
416 {
417 bio_list_add(&qn->bios, bio);
418 if (list_empty(&qn->node)) {
419 list_add_tail(&qn->node, queued);
420 blkg_get(tg_to_blkg(qn->tg));
421 }
422 }
423
424 /**
425 * throtl_peek_queued - peek the first bio on a qnode list
426 * @queued: the qnode list to peek
427 */
throtl_peek_queued(struct list_head * queued)428 static struct bio *throtl_peek_queued(struct list_head *queued)
429 {
430 struct throtl_qnode *qn;
431 struct bio *bio;
432
433 if (list_empty(queued))
434 return NULL;
435
436 qn = list_first_entry(queued, struct throtl_qnode, node);
437 bio = bio_list_peek(&qn->bios);
438 WARN_ON_ONCE(!bio);
439 return bio;
440 }
441
442 /**
443 * throtl_pop_queued - pop the first bio form a qnode list
444 * @queued: the qnode list to pop a bio from
445 * @tg_to_put: optional out argument for throtl_grp to put
446 *
447 * Pop the first bio from the qnode list @queued. After popping, the first
448 * qnode is removed from @queued if empty or moved to the end of @queued so
449 * that the popping order is round-robin.
450 *
451 * When the first qnode is removed, its associated throtl_grp should be put
452 * too. If @tg_to_put is NULL, this function automatically puts it;
453 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
454 * responsible for putting it.
455 */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)456 static struct bio *throtl_pop_queued(struct list_head *queued,
457 struct throtl_grp **tg_to_put)
458 {
459 struct throtl_qnode *qn;
460 struct bio *bio;
461
462 if (list_empty(queued))
463 return NULL;
464
465 qn = list_first_entry(queued, struct throtl_qnode, node);
466 bio = bio_list_pop(&qn->bios);
467 WARN_ON_ONCE(!bio);
468
469 if (bio_list_empty(&qn->bios)) {
470 list_del_init(&qn->node);
471 if (tg_to_put)
472 *tg_to_put = qn->tg;
473 else
474 blkg_put(tg_to_blkg(qn->tg));
475 } else {
476 list_move_tail(&qn->node, queued);
477 }
478
479 return bio;
480 }
481
482 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)483 static void throtl_service_queue_init(struct throtl_service_queue *sq)
484 {
485 INIT_LIST_HEAD(&sq->queued[0]);
486 INIT_LIST_HEAD(&sq->queued[1]);
487 sq->pending_tree = RB_ROOT_CACHED;
488 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
489 }
490
throtl_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)491 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
492 struct request_queue *q,
493 struct blkcg *blkcg)
494 {
495 struct throtl_grp *tg;
496 int rw;
497
498 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
499 if (!tg)
500 return NULL;
501
502 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
503 goto err_free_tg;
504
505 if (blkg_rwstat_init(&tg->stat_ios, gfp))
506 goto err_exit_stat_bytes;
507
508 throtl_service_queue_init(&tg->service_queue);
509
510 for (rw = READ; rw <= WRITE; rw++) {
511 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
512 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
513 }
514
515 RB_CLEAR_NODE(&tg->rb_node);
516 tg->bps[READ][LIMIT_MAX] = U64_MAX;
517 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
518 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
519 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
520 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
521 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
522 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
523 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
524 /* LIMIT_LOW will have default value 0 */
525
526 tg->latency_target = DFL_LATENCY_TARGET;
527 tg->latency_target_conf = DFL_LATENCY_TARGET;
528 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
529 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
530
531 return &tg->pd;
532
533 err_exit_stat_bytes:
534 blkg_rwstat_exit(&tg->stat_bytes);
535 err_free_tg:
536 kfree(tg);
537 return NULL;
538 }
539
throtl_pd_init(struct blkg_policy_data * pd)540 static void throtl_pd_init(struct blkg_policy_data *pd)
541 {
542 struct throtl_grp *tg = pd_to_tg(pd);
543 struct blkcg_gq *blkg = tg_to_blkg(tg);
544 struct throtl_data *td = blkg->q->td;
545 struct throtl_service_queue *sq = &tg->service_queue;
546
547 /*
548 * If on the default hierarchy, we switch to properly hierarchical
549 * behavior where limits on a given throtl_grp are applied to the
550 * whole subtree rather than just the group itself. e.g. If 16M
551 * read_bps limit is set on the root group, the whole system can't
552 * exceed 16M for the device.
553 *
554 * If not on the default hierarchy, the broken flat hierarchy
555 * behavior is retained where all throtl_grps are treated as if
556 * they're all separate root groups right below throtl_data.
557 * Limits of a group don't interact with limits of other groups
558 * regardless of the position of the group in the hierarchy.
559 */
560 sq->parent_sq = &td->service_queue;
561 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
562 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
563 tg->td = td;
564 }
565
566 /*
567 * Set has_rules[] if @tg or any of its parents have limits configured.
568 * This doesn't require walking up to the top of the hierarchy as the
569 * parent's has_rules[] is guaranteed to be correct.
570 */
tg_update_has_rules(struct throtl_grp * tg)571 static void tg_update_has_rules(struct throtl_grp *tg)
572 {
573 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
574 struct throtl_data *td = tg->td;
575 int rw;
576
577 for (rw = READ; rw <= WRITE; rw++)
578 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
579 (td->limit_valid[td->limit_index] &&
580 (tg_bps_limit(tg, rw) != U64_MAX ||
581 tg_iops_limit(tg, rw) != UINT_MAX));
582 }
583
throtl_pd_online(struct blkg_policy_data * pd)584 static void throtl_pd_online(struct blkg_policy_data *pd)
585 {
586 struct throtl_grp *tg = pd_to_tg(pd);
587 /*
588 * We don't want new groups to escape the limits of its ancestors.
589 * Update has_rules[] after a new group is brought online.
590 */
591 tg_update_has_rules(tg);
592 }
593
blk_throtl_update_limit_valid(struct throtl_data * td)594 static void blk_throtl_update_limit_valid(struct throtl_data *td)
595 {
596 struct cgroup_subsys_state *pos_css;
597 struct blkcg_gq *blkg;
598 bool low_valid = false;
599
600 rcu_read_lock();
601 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
602 struct throtl_grp *tg = blkg_to_tg(blkg);
603
604 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
605 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
606 low_valid = true;
607 break;
608 }
609 }
610 rcu_read_unlock();
611
612 td->limit_valid[LIMIT_LOW] = low_valid;
613 }
614
615 static void throtl_upgrade_state(struct throtl_data *td);
throtl_pd_offline(struct blkg_policy_data * pd)616 static void throtl_pd_offline(struct blkg_policy_data *pd)
617 {
618 struct throtl_grp *tg = pd_to_tg(pd);
619
620 tg->bps[READ][LIMIT_LOW] = 0;
621 tg->bps[WRITE][LIMIT_LOW] = 0;
622 tg->iops[READ][LIMIT_LOW] = 0;
623 tg->iops[WRITE][LIMIT_LOW] = 0;
624
625 blk_throtl_update_limit_valid(tg->td);
626
627 if (!tg->td->limit_valid[tg->td->limit_index])
628 throtl_upgrade_state(tg->td);
629 }
630
throtl_pd_free(struct blkg_policy_data * pd)631 static void throtl_pd_free(struct blkg_policy_data *pd)
632 {
633 struct throtl_grp *tg = pd_to_tg(pd);
634
635 del_timer_sync(&tg->service_queue.pending_timer);
636 blkg_rwstat_exit(&tg->stat_bytes);
637 blkg_rwstat_exit(&tg->stat_ios);
638 kfree(tg);
639 }
640
641 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)642 throtl_rb_first(struct throtl_service_queue *parent_sq)
643 {
644 struct rb_node *n;
645
646 n = rb_first_cached(&parent_sq->pending_tree);
647 WARN_ON_ONCE(!n);
648 if (!n)
649 return NULL;
650 return rb_entry_tg(n);
651 }
652
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)653 static void throtl_rb_erase(struct rb_node *n,
654 struct throtl_service_queue *parent_sq)
655 {
656 rb_erase_cached(n, &parent_sq->pending_tree);
657 RB_CLEAR_NODE(n);
658 --parent_sq->nr_pending;
659 }
660
update_min_dispatch_time(struct throtl_service_queue * parent_sq)661 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
662 {
663 struct throtl_grp *tg;
664
665 tg = throtl_rb_first(parent_sq);
666 if (!tg)
667 return;
668
669 parent_sq->first_pending_disptime = tg->disptime;
670 }
671
tg_service_queue_add(struct throtl_grp * tg)672 static void tg_service_queue_add(struct throtl_grp *tg)
673 {
674 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
675 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
676 struct rb_node *parent = NULL;
677 struct throtl_grp *__tg;
678 unsigned long key = tg->disptime;
679 bool leftmost = true;
680
681 while (*node != NULL) {
682 parent = *node;
683 __tg = rb_entry_tg(parent);
684
685 if (time_before(key, __tg->disptime))
686 node = &parent->rb_left;
687 else {
688 node = &parent->rb_right;
689 leftmost = false;
690 }
691 }
692
693 rb_link_node(&tg->rb_node, parent, node);
694 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
695 leftmost);
696 }
697
throtl_enqueue_tg(struct throtl_grp * tg)698 static void throtl_enqueue_tg(struct throtl_grp *tg)
699 {
700 if (!(tg->flags & THROTL_TG_PENDING)) {
701 tg_service_queue_add(tg);
702 tg->flags |= THROTL_TG_PENDING;
703 tg->service_queue.parent_sq->nr_pending++;
704 }
705 }
706
throtl_dequeue_tg(struct throtl_grp * tg)707 static void throtl_dequeue_tg(struct throtl_grp *tg)
708 {
709 if (tg->flags & THROTL_TG_PENDING) {
710 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
711 tg->flags &= ~THROTL_TG_PENDING;
712 }
713 }
714
715 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)716 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
717 unsigned long expires)
718 {
719 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
720
721 /*
722 * Since we are adjusting the throttle limit dynamically, the sleep
723 * time calculated according to previous limit might be invalid. It's
724 * possible the cgroup sleep time is very long and no other cgroups
725 * have IO running so notify the limit changes. Make sure the cgroup
726 * doesn't sleep too long to avoid the missed notification.
727 */
728 if (time_after(expires, max_expire))
729 expires = max_expire;
730 mod_timer(&sq->pending_timer, expires);
731 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
732 expires - jiffies, jiffies);
733 }
734
735 /**
736 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
737 * @sq: the service_queue to schedule dispatch for
738 * @force: force scheduling
739 *
740 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
741 * dispatch time of the first pending child. Returns %true if either timer
742 * is armed or there's no pending child left. %false if the current
743 * dispatch window is still open and the caller should continue
744 * dispatching.
745 *
746 * If @force is %true, the dispatch timer is always scheduled and this
747 * function is guaranteed to return %true. This is to be used when the
748 * caller can't dispatch itself and needs to invoke pending_timer
749 * unconditionally. Note that forced scheduling is likely to induce short
750 * delay before dispatch starts even if @sq->first_pending_disptime is not
751 * in the future and thus shouldn't be used in hot paths.
752 */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)753 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
754 bool force)
755 {
756 /* any pending children left? */
757 if (!sq->nr_pending)
758 return true;
759
760 update_min_dispatch_time(sq);
761
762 /* is the next dispatch time in the future? */
763 if (force || time_after(sq->first_pending_disptime, jiffies)) {
764 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
765 return true;
766 }
767
768 /* tell the caller to continue dispatching */
769 return false;
770 }
771
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)772 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
773 bool rw, unsigned long start)
774 {
775 tg->bytes_disp[rw] = 0;
776 tg->io_disp[rw] = 0;
777
778 atomic_set(&tg->io_split_cnt[rw], 0);
779
780 /*
781 * Previous slice has expired. We must have trimmed it after last
782 * bio dispatch. That means since start of last slice, we never used
783 * that bandwidth. Do try to make use of that bandwidth while giving
784 * credit.
785 */
786 if (time_after_eq(start, tg->slice_start[rw]))
787 tg->slice_start[rw] = start;
788
789 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
790 throtl_log(&tg->service_queue,
791 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
792 rw == READ ? 'R' : 'W', tg->slice_start[rw],
793 tg->slice_end[rw], jiffies);
794 }
795
throtl_start_new_slice(struct throtl_grp * tg,bool rw)796 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
797 {
798 tg->bytes_disp[rw] = 0;
799 tg->io_disp[rw] = 0;
800 tg->slice_start[rw] = jiffies;
801 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
802
803 atomic_set(&tg->io_split_cnt[rw], 0);
804
805 throtl_log(&tg->service_queue,
806 "[%c] new slice start=%lu end=%lu jiffies=%lu",
807 rw == READ ? 'R' : 'W', tg->slice_start[rw],
808 tg->slice_end[rw], jiffies);
809 }
810
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)811 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
812 unsigned long jiffy_end)
813 {
814 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
815 }
816
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)817 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
818 unsigned long jiffy_end)
819 {
820 throtl_set_slice_end(tg, rw, jiffy_end);
821 throtl_log(&tg->service_queue,
822 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
823 rw == READ ? 'R' : 'W', tg->slice_start[rw],
824 tg->slice_end[rw], jiffies);
825 }
826
827 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)828 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
829 {
830 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
831 return false;
832
833 return true;
834 }
835
836 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)837 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
838 {
839 unsigned long nr_slices, time_elapsed, io_trim;
840 u64 bytes_trim, tmp;
841
842 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
843
844 /*
845 * If bps are unlimited (-1), then time slice don't get
846 * renewed. Don't try to trim the slice if slice is used. A new
847 * slice will start when appropriate.
848 */
849 if (throtl_slice_used(tg, rw))
850 return;
851
852 /*
853 * A bio has been dispatched. Also adjust slice_end. It might happen
854 * that initially cgroup limit was very low resulting in high
855 * slice_end, but later limit was bumped up and bio was dispatched
856 * sooner, then we need to reduce slice_end. A high bogus slice_end
857 * is bad because it does not allow new slice to start.
858 */
859
860 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
861
862 time_elapsed = jiffies - tg->slice_start[rw];
863
864 nr_slices = time_elapsed / tg->td->throtl_slice;
865
866 if (!nr_slices)
867 return;
868 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
869 do_div(tmp, HZ);
870 bytes_trim = tmp;
871
872 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
873 HZ;
874
875 if (!bytes_trim && !io_trim)
876 return;
877
878 if (tg->bytes_disp[rw] >= bytes_trim)
879 tg->bytes_disp[rw] -= bytes_trim;
880 else
881 tg->bytes_disp[rw] = 0;
882
883 if (tg->io_disp[rw] >= io_trim)
884 tg->io_disp[rw] -= io_trim;
885 else
886 tg->io_disp[rw] = 0;
887
888 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
889
890 throtl_log(&tg->service_queue,
891 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
892 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
893 tg->slice_start[rw], tg->slice_end[rw], jiffies);
894 }
895
tg_with_in_iops_limit(struct throtl_grp * tg,struct bio * bio,u32 iops_limit,unsigned long * wait)896 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
897 u32 iops_limit, unsigned long *wait)
898 {
899 bool rw = bio_data_dir(bio);
900 unsigned int io_allowed;
901 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
902 u64 tmp;
903
904 if (iops_limit == UINT_MAX) {
905 if (wait)
906 *wait = 0;
907 return true;
908 }
909
910 jiffy_elapsed = jiffies - tg->slice_start[rw];
911
912 /* Round up to the next throttle slice, wait time must be nonzero */
913 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
914
915 /*
916 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
917 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
918 * will allow dispatch after 1 second and after that slice should
919 * have been trimmed.
920 */
921
922 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
923 do_div(tmp, HZ);
924
925 if (tmp > UINT_MAX)
926 io_allowed = UINT_MAX;
927 else
928 io_allowed = tmp;
929
930 if (tg->io_disp[rw] + 1 <= io_allowed) {
931 if (wait)
932 *wait = 0;
933 return true;
934 }
935
936 /* Calc approx time to dispatch */
937 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
938
939 if (wait)
940 *wait = jiffy_wait;
941 return false;
942 }
943
tg_with_in_bps_limit(struct throtl_grp * tg,struct bio * bio,u64 bps_limit,unsigned long * wait)944 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
945 u64 bps_limit, unsigned long *wait)
946 {
947 bool rw = bio_data_dir(bio);
948 u64 bytes_allowed, extra_bytes;
949 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
950 unsigned int bio_size = throtl_bio_data_size(bio);
951
952 if (bps_limit == U64_MAX) {
953 if (wait)
954 *wait = 0;
955 return true;
956 }
957
958 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
959
960 /* Slice has just started. Consider one slice interval */
961 if (!jiffy_elapsed)
962 jiffy_elapsed_rnd = tg->td->throtl_slice;
963
964 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
965 bytes_allowed = mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed_rnd,
966 (u64)HZ);
967
968 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
969 if (wait)
970 *wait = 0;
971 return true;
972 }
973
974 /* Calc approx time to dispatch */
975 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
976 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
977
978 if (!jiffy_wait)
979 jiffy_wait = 1;
980
981 /*
982 * This wait time is without taking into consideration the rounding
983 * up we did. Add that time also.
984 */
985 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
986 if (wait)
987 *wait = jiffy_wait;
988 return false;
989 }
990
991 /*
992 * Returns whether one can dispatch a bio or not. Also returns approx number
993 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
994 */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)995 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
996 unsigned long *wait)
997 {
998 bool rw = bio_data_dir(bio);
999 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1000 u64 bps_limit = tg_bps_limit(tg, rw);
1001 u32 iops_limit = tg_iops_limit(tg, rw);
1002
1003 /*
1004 * Currently whole state machine of group depends on first bio
1005 * queued in the group bio list. So one should not be calling
1006 * this function with a different bio if there are other bios
1007 * queued.
1008 */
1009 BUG_ON(tg->service_queue.nr_queued[rw] &&
1010 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1011
1012 /* If tg->bps = -1, then BW is unlimited */
1013 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1014 if (wait)
1015 *wait = 0;
1016 return true;
1017 }
1018
1019 /*
1020 * If previous slice expired, start a new one otherwise renew/extend
1021 * existing slice to make sure it is at least throtl_slice interval
1022 * long since now. New slice is started only for empty throttle group.
1023 * If there is queued bio, that means there should be an active
1024 * slice and it should be extended instead.
1025 */
1026 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1027 throtl_start_new_slice(tg, rw);
1028 else {
1029 if (time_before(tg->slice_end[rw],
1030 jiffies + tg->td->throtl_slice))
1031 throtl_extend_slice(tg, rw,
1032 jiffies + tg->td->throtl_slice);
1033 }
1034
1035 if (iops_limit != UINT_MAX)
1036 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
1037
1038 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1039 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1040 if (wait)
1041 *wait = 0;
1042 return true;
1043 }
1044
1045 max_wait = max(bps_wait, iops_wait);
1046
1047 if (wait)
1048 *wait = max_wait;
1049
1050 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1051 throtl_extend_slice(tg, rw, jiffies + max_wait);
1052
1053 return false;
1054 }
1055
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)1056 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1057 {
1058 bool rw = bio_data_dir(bio);
1059 unsigned int bio_size = throtl_bio_data_size(bio);
1060
1061 /* Charge the bio to the group */
1062 tg->bytes_disp[rw] += bio_size;
1063 tg->io_disp[rw]++;
1064 tg->last_bytes_disp[rw] += bio_size;
1065 tg->last_io_disp[rw]++;
1066
1067 /*
1068 * BIO_THROTTLED is used to prevent the same bio to be throttled
1069 * more than once as a throttled bio will go through blk-throtl the
1070 * second time when it eventually gets issued. Set it when a bio
1071 * is being charged to a tg.
1072 */
1073 if (!bio_flagged(bio, BIO_THROTTLED))
1074 bio_set_flag(bio, BIO_THROTTLED);
1075 }
1076
1077 /**
1078 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1079 * @bio: bio to add
1080 * @qn: qnode to use
1081 * @tg: the target throtl_grp
1082 *
1083 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1084 * tg->qnode_on_self[] is used.
1085 */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)1086 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1087 struct throtl_grp *tg)
1088 {
1089 struct throtl_service_queue *sq = &tg->service_queue;
1090 bool rw = bio_data_dir(bio);
1091
1092 if (!qn)
1093 qn = &tg->qnode_on_self[rw];
1094
1095 /*
1096 * If @tg doesn't currently have any bios queued in the same
1097 * direction, queueing @bio can change when @tg should be
1098 * dispatched. Mark that @tg was empty. This is automatically
1099 * cleared on the next tg_update_disptime().
1100 */
1101 if (!sq->nr_queued[rw])
1102 tg->flags |= THROTL_TG_WAS_EMPTY;
1103
1104 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1105
1106 sq->nr_queued[rw]++;
1107 throtl_enqueue_tg(tg);
1108 }
1109
tg_update_disptime(struct throtl_grp * tg)1110 static void tg_update_disptime(struct throtl_grp *tg)
1111 {
1112 struct throtl_service_queue *sq = &tg->service_queue;
1113 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1114 struct bio *bio;
1115
1116 bio = throtl_peek_queued(&sq->queued[READ]);
1117 if (bio)
1118 tg_may_dispatch(tg, bio, &read_wait);
1119
1120 bio = throtl_peek_queued(&sq->queued[WRITE]);
1121 if (bio)
1122 tg_may_dispatch(tg, bio, &write_wait);
1123
1124 min_wait = min(read_wait, write_wait);
1125 disptime = jiffies + min_wait;
1126
1127 /* Update dispatch time */
1128 throtl_dequeue_tg(tg);
1129 tg->disptime = disptime;
1130 throtl_enqueue_tg(tg);
1131
1132 /* see throtl_add_bio_tg() */
1133 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1134 }
1135
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)1136 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1137 struct throtl_grp *parent_tg, bool rw)
1138 {
1139 if (throtl_slice_used(parent_tg, rw)) {
1140 throtl_start_new_slice_with_credit(parent_tg, rw,
1141 child_tg->slice_start[rw]);
1142 }
1143
1144 }
1145
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)1146 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1147 {
1148 struct throtl_service_queue *sq = &tg->service_queue;
1149 struct throtl_service_queue *parent_sq = sq->parent_sq;
1150 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1151 struct throtl_grp *tg_to_put = NULL;
1152 struct bio *bio;
1153
1154 /*
1155 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1156 * from @tg may put its reference and @parent_sq might end up
1157 * getting released prematurely. Remember the tg to put and put it
1158 * after @bio is transferred to @parent_sq.
1159 */
1160 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1161 sq->nr_queued[rw]--;
1162
1163 throtl_charge_bio(tg, bio);
1164
1165 /*
1166 * If our parent is another tg, we just need to transfer @bio to
1167 * the parent using throtl_add_bio_tg(). If our parent is
1168 * @td->service_queue, @bio is ready to be issued. Put it on its
1169 * bio_lists[] and decrease total number queued. The caller is
1170 * responsible for issuing these bios.
1171 */
1172 if (parent_tg) {
1173 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1174 start_parent_slice_with_credit(tg, parent_tg, rw);
1175 } else {
1176 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1177 &parent_sq->queued[rw]);
1178 BUG_ON(tg->td->nr_queued[rw] <= 0);
1179 tg->td->nr_queued[rw]--;
1180 }
1181
1182 throtl_trim_slice(tg, rw);
1183
1184 if (tg_to_put)
1185 blkg_put(tg_to_blkg(tg_to_put));
1186 }
1187
throtl_dispatch_tg(struct throtl_grp * tg)1188 static int throtl_dispatch_tg(struct throtl_grp *tg)
1189 {
1190 struct throtl_service_queue *sq = &tg->service_queue;
1191 unsigned int nr_reads = 0, nr_writes = 0;
1192 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1193 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1194 struct bio *bio;
1195
1196 /* Try to dispatch 75% READS and 25% WRITES */
1197
1198 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1199 tg_may_dispatch(tg, bio, NULL)) {
1200
1201 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1202 nr_reads++;
1203
1204 if (nr_reads >= max_nr_reads)
1205 break;
1206 }
1207
1208 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1209 tg_may_dispatch(tg, bio, NULL)) {
1210
1211 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1212 nr_writes++;
1213
1214 if (nr_writes >= max_nr_writes)
1215 break;
1216 }
1217
1218 return nr_reads + nr_writes;
1219 }
1220
throtl_select_dispatch(struct throtl_service_queue * parent_sq)1221 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1222 {
1223 unsigned int nr_disp = 0;
1224
1225 while (1) {
1226 struct throtl_grp *tg;
1227 struct throtl_service_queue *sq;
1228
1229 if (!parent_sq->nr_pending)
1230 break;
1231
1232 tg = throtl_rb_first(parent_sq);
1233 if (!tg)
1234 break;
1235
1236 if (time_before(jiffies, tg->disptime))
1237 break;
1238
1239 throtl_dequeue_tg(tg);
1240
1241 nr_disp += throtl_dispatch_tg(tg);
1242
1243 sq = &tg->service_queue;
1244 if (sq->nr_queued[0] || sq->nr_queued[1])
1245 tg_update_disptime(tg);
1246
1247 if (nr_disp >= THROTL_QUANTUM)
1248 break;
1249 }
1250
1251 return nr_disp;
1252 }
1253
1254 static bool throtl_can_upgrade(struct throtl_data *td,
1255 struct throtl_grp *this_tg);
1256 /**
1257 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1258 * @t: the pending_timer member of the throtl_service_queue being serviced
1259 *
1260 * This timer is armed when a child throtl_grp with active bio's become
1261 * pending and queued on the service_queue's pending_tree and expires when
1262 * the first child throtl_grp should be dispatched. This function
1263 * dispatches bio's from the children throtl_grps to the parent
1264 * service_queue.
1265 *
1266 * If the parent's parent is another throtl_grp, dispatching is propagated
1267 * by either arming its pending_timer or repeating dispatch directly. If
1268 * the top-level service_tree is reached, throtl_data->dispatch_work is
1269 * kicked so that the ready bio's are issued.
1270 */
throtl_pending_timer_fn(struct timer_list * t)1271 static void throtl_pending_timer_fn(struct timer_list *t)
1272 {
1273 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1274 struct throtl_grp *tg = sq_to_tg(sq);
1275 struct throtl_data *td = sq_to_td(sq);
1276 struct request_queue *q = td->queue;
1277 struct throtl_service_queue *parent_sq;
1278 bool dispatched;
1279 int ret;
1280
1281 spin_lock_irq(&q->queue_lock);
1282 if (throtl_can_upgrade(td, NULL))
1283 throtl_upgrade_state(td);
1284
1285 again:
1286 parent_sq = sq->parent_sq;
1287 dispatched = false;
1288
1289 while (true) {
1290 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1291 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1292 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1293
1294 ret = throtl_select_dispatch(sq);
1295 if (ret) {
1296 throtl_log(sq, "bios disp=%u", ret);
1297 dispatched = true;
1298 }
1299
1300 if (throtl_schedule_next_dispatch(sq, false))
1301 break;
1302
1303 /* this dispatch windows is still open, relax and repeat */
1304 spin_unlock_irq(&q->queue_lock);
1305 cpu_relax();
1306 spin_lock_irq(&q->queue_lock);
1307 }
1308
1309 if (!dispatched)
1310 goto out_unlock;
1311
1312 if (parent_sq) {
1313 /* @parent_sq is another throl_grp, propagate dispatch */
1314 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1315 tg_update_disptime(tg);
1316 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1317 /* window is already open, repeat dispatching */
1318 sq = parent_sq;
1319 tg = sq_to_tg(sq);
1320 goto again;
1321 }
1322 }
1323 } else {
1324 /* reached the top-level, queue issuing */
1325 queue_work(kthrotld_workqueue, &td->dispatch_work);
1326 }
1327 out_unlock:
1328 spin_unlock_irq(&q->queue_lock);
1329 }
1330
1331 /**
1332 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1333 * @work: work item being executed
1334 *
1335 * This function is queued for execution when bios reach the bio_lists[]
1336 * of throtl_data->service_queue. Those bios are ready and issued by this
1337 * function.
1338 */
blk_throtl_dispatch_work_fn(struct work_struct * work)1339 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1340 {
1341 struct throtl_data *td = container_of(work, struct throtl_data,
1342 dispatch_work);
1343 struct throtl_service_queue *td_sq = &td->service_queue;
1344 struct request_queue *q = td->queue;
1345 struct bio_list bio_list_on_stack;
1346 struct bio *bio;
1347 struct blk_plug plug;
1348 int rw;
1349
1350 bio_list_init(&bio_list_on_stack);
1351
1352 spin_lock_irq(&q->queue_lock);
1353 for (rw = READ; rw <= WRITE; rw++)
1354 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1355 bio_list_add(&bio_list_on_stack, bio);
1356 spin_unlock_irq(&q->queue_lock);
1357
1358 if (!bio_list_empty(&bio_list_on_stack)) {
1359 blk_start_plug(&plug);
1360 while ((bio = bio_list_pop(&bio_list_on_stack)))
1361 submit_bio_noacct(bio);
1362 blk_finish_plug(&plug);
1363 }
1364 }
1365
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1366 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1367 int off)
1368 {
1369 struct throtl_grp *tg = pd_to_tg(pd);
1370 u64 v = *(u64 *)((void *)tg + off);
1371
1372 if (v == U64_MAX)
1373 return 0;
1374 return __blkg_prfill_u64(sf, pd, v);
1375 }
1376
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1377 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1378 int off)
1379 {
1380 struct throtl_grp *tg = pd_to_tg(pd);
1381 unsigned int v = *(unsigned int *)((void *)tg + off);
1382
1383 if (v == UINT_MAX)
1384 return 0;
1385 return __blkg_prfill_u64(sf, pd, v);
1386 }
1387
tg_print_conf_u64(struct seq_file * sf,void * v)1388 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1389 {
1390 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1391 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1392 return 0;
1393 }
1394
tg_print_conf_uint(struct seq_file * sf,void * v)1395 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1396 {
1397 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1398 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1399 return 0;
1400 }
1401
tg_conf_updated(struct throtl_grp * tg,bool global)1402 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1403 {
1404 struct throtl_service_queue *sq = &tg->service_queue;
1405 struct cgroup_subsys_state *pos_css;
1406 struct blkcg_gq *blkg;
1407
1408 throtl_log(&tg->service_queue,
1409 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1410 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1411 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1412
1413 /*
1414 * Update has_rules[] flags for the updated tg's subtree. A tg is
1415 * considered to have rules if either the tg itself or any of its
1416 * ancestors has rules. This identifies groups without any
1417 * restrictions in the whole hierarchy and allows them to bypass
1418 * blk-throttle.
1419 */
1420 blkg_for_each_descendant_pre(blkg, pos_css,
1421 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1422 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1423 struct throtl_grp *parent_tg;
1424
1425 tg_update_has_rules(this_tg);
1426 /* ignore root/second level */
1427 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1428 !blkg->parent->parent)
1429 continue;
1430 parent_tg = blkg_to_tg(blkg->parent);
1431 /*
1432 * make sure all children has lower idle time threshold and
1433 * higher latency target
1434 */
1435 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1436 parent_tg->idletime_threshold);
1437 this_tg->latency_target = max(this_tg->latency_target,
1438 parent_tg->latency_target);
1439 }
1440
1441 /*
1442 * We're already holding queue_lock and know @tg is valid. Let's
1443 * apply the new config directly.
1444 *
1445 * Restart the slices for both READ and WRITES. It might happen
1446 * that a group's limit are dropped suddenly and we don't want to
1447 * account recently dispatched IO with new low rate.
1448 */
1449 throtl_start_new_slice(tg, READ);
1450 throtl_start_new_slice(tg, WRITE);
1451
1452 if (tg->flags & THROTL_TG_PENDING) {
1453 tg_update_disptime(tg);
1454 throtl_schedule_next_dispatch(sq->parent_sq, true);
1455 }
1456 }
1457
throtl_check_init_done(struct request_queue * q)1458 static inline int throtl_check_init_done(struct request_queue *q)
1459 {
1460 if (test_bit(QUEUE_FLAG_THROTL_INIT_DONE, &q->queue_flags))
1461 return 0;
1462
1463 return blk_queue_dying(q) ? -ENODEV : -EBUSY;
1464 }
1465
1466 /*
1467 * If throtl_check_init_done() return -EBUSY, we should retry after a short
1468 * msleep(), since that throttle init will be completed in blk_register_queue()
1469 * soon.
1470 */
throtl_restart_syscall_when_busy(int errno)1471 static inline int throtl_restart_syscall_when_busy(int errno)
1472 {
1473 int ret = errno;
1474
1475 if (ret == -EBUSY) {
1476 msleep(10);
1477 ret = restart_syscall();
1478 }
1479
1480 return ret;
1481 }
1482
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1483 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1484 char *buf, size_t nbytes, loff_t off, bool is_u64)
1485 {
1486 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1487 struct blkg_conf_ctx ctx;
1488 struct throtl_grp *tg;
1489 int ret;
1490 u64 v;
1491
1492 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1493 if (ret)
1494 return ret;
1495
1496 ret = throtl_check_init_done(ctx.disk->queue);
1497 if (ret)
1498 goto out_finish;
1499
1500 ret = -EINVAL;
1501 if (sscanf(ctx.body, "%llu", &v) != 1)
1502 goto out_finish;
1503 if (!v)
1504 v = U64_MAX;
1505
1506 tg = blkg_to_tg(ctx.blkg);
1507
1508 if (is_u64)
1509 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1510 else
1511 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1512
1513 tg_conf_updated(tg, false);
1514 ret = 0;
1515 out_finish:
1516 blkg_conf_finish(&ctx);
1517 ret = throtl_restart_syscall_when_busy(ret);
1518 return ret ?: nbytes;
1519 }
1520
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1521 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1522 char *buf, size_t nbytes, loff_t off)
1523 {
1524 return tg_set_conf(of, buf, nbytes, off, true);
1525 }
1526
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1527 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1528 char *buf, size_t nbytes, loff_t off)
1529 {
1530 return tg_set_conf(of, buf, nbytes, off, false);
1531 }
1532
tg_print_rwstat(struct seq_file * sf,void * v)1533 static int tg_print_rwstat(struct seq_file *sf, void *v)
1534 {
1535 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1536 blkg_prfill_rwstat, &blkcg_policy_throtl,
1537 seq_cft(sf)->private, true);
1538 return 0;
1539 }
1540
tg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1541 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1542 struct blkg_policy_data *pd, int off)
1543 {
1544 struct blkg_rwstat_sample sum;
1545
1546 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1547 &sum);
1548 return __blkg_prfill_rwstat(sf, pd, &sum);
1549 }
1550
tg_print_rwstat_recursive(struct seq_file * sf,void * v)1551 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1552 {
1553 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1554 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1555 seq_cft(sf)->private, true);
1556 return 0;
1557 }
1558
1559 static struct cftype throtl_legacy_files[] = {
1560 {
1561 .name = "throttle.read_bps_device",
1562 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1563 .seq_show = tg_print_conf_u64,
1564 .write = tg_set_conf_u64,
1565 },
1566 {
1567 .name = "throttle.write_bps_device",
1568 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1569 .seq_show = tg_print_conf_u64,
1570 .write = tg_set_conf_u64,
1571 },
1572 {
1573 .name = "throttle.read_iops_device",
1574 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1575 .seq_show = tg_print_conf_uint,
1576 .write = tg_set_conf_uint,
1577 },
1578 {
1579 .name = "throttle.write_iops_device",
1580 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1581 .seq_show = tg_print_conf_uint,
1582 .write = tg_set_conf_uint,
1583 },
1584 {
1585 .name = "throttle.io_service_bytes",
1586 .private = offsetof(struct throtl_grp, stat_bytes),
1587 .seq_show = tg_print_rwstat,
1588 },
1589 {
1590 .name = "throttle.io_service_bytes_recursive",
1591 .private = offsetof(struct throtl_grp, stat_bytes),
1592 .seq_show = tg_print_rwstat_recursive,
1593 },
1594 {
1595 .name = "throttle.io_serviced",
1596 .private = offsetof(struct throtl_grp, stat_ios),
1597 .seq_show = tg_print_rwstat,
1598 },
1599 {
1600 .name = "throttle.io_serviced_recursive",
1601 .private = offsetof(struct throtl_grp, stat_ios),
1602 .seq_show = tg_print_rwstat_recursive,
1603 },
1604 { } /* terminate */
1605 };
1606
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1607 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1608 int off)
1609 {
1610 struct throtl_grp *tg = pd_to_tg(pd);
1611 const char *dname = blkg_dev_name(pd->blkg);
1612 char bufs[4][21] = { "max", "max", "max", "max" };
1613 u64 bps_dft;
1614 unsigned int iops_dft;
1615 char idle_time[26] = "";
1616 char latency_time[26] = "";
1617
1618 if (!dname)
1619 return 0;
1620
1621 if (off == LIMIT_LOW) {
1622 bps_dft = 0;
1623 iops_dft = 0;
1624 } else {
1625 bps_dft = U64_MAX;
1626 iops_dft = UINT_MAX;
1627 }
1628
1629 if (tg->bps_conf[READ][off] == bps_dft &&
1630 tg->bps_conf[WRITE][off] == bps_dft &&
1631 tg->iops_conf[READ][off] == iops_dft &&
1632 tg->iops_conf[WRITE][off] == iops_dft &&
1633 (off != LIMIT_LOW ||
1634 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1635 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1636 return 0;
1637
1638 if (tg->bps_conf[READ][off] != U64_MAX)
1639 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1640 tg->bps_conf[READ][off]);
1641 if (tg->bps_conf[WRITE][off] != U64_MAX)
1642 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1643 tg->bps_conf[WRITE][off]);
1644 if (tg->iops_conf[READ][off] != UINT_MAX)
1645 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1646 tg->iops_conf[READ][off]);
1647 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1648 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1649 tg->iops_conf[WRITE][off]);
1650 if (off == LIMIT_LOW) {
1651 if (tg->idletime_threshold_conf == ULONG_MAX)
1652 strcpy(idle_time, " idle=max");
1653 else
1654 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1655 tg->idletime_threshold_conf);
1656
1657 if (tg->latency_target_conf == ULONG_MAX)
1658 strcpy(latency_time, " latency=max");
1659 else
1660 snprintf(latency_time, sizeof(latency_time),
1661 " latency=%lu", tg->latency_target_conf);
1662 }
1663
1664 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1665 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1666 latency_time);
1667 return 0;
1668 }
1669
tg_print_limit(struct seq_file * sf,void * v)1670 static int tg_print_limit(struct seq_file *sf, void *v)
1671 {
1672 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1673 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1674 return 0;
1675 }
1676
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1677 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1678 char *buf, size_t nbytes, loff_t off)
1679 {
1680 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1681 struct blkg_conf_ctx ctx;
1682 struct throtl_grp *tg;
1683 u64 v[4];
1684 unsigned long idle_time;
1685 unsigned long latency_time;
1686 int ret;
1687 int index = of_cft(of)->private;
1688
1689 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1690 if (ret)
1691 return ret;
1692
1693 ret = throtl_check_init_done(ctx.disk->queue);
1694 if (ret)
1695 goto out_finish;
1696
1697 tg = blkg_to_tg(ctx.blkg);
1698 v[0] = tg->bps_conf[READ][index];
1699 v[1] = tg->bps_conf[WRITE][index];
1700 v[2] = tg->iops_conf[READ][index];
1701 v[3] = tg->iops_conf[WRITE][index];
1702
1703 idle_time = tg->idletime_threshold_conf;
1704 latency_time = tg->latency_target_conf;
1705 while (true) {
1706 char tok[27]; /* wiops=18446744073709551616 */
1707 char *p;
1708 u64 val = U64_MAX;
1709 int len;
1710
1711 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1712 break;
1713 if (tok[0] == '\0')
1714 break;
1715 ctx.body += len;
1716
1717 ret = -EINVAL;
1718 p = tok;
1719 strsep(&p, "=");
1720 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1721 goto out_finish;
1722
1723 ret = -ERANGE;
1724 if (!val)
1725 goto out_finish;
1726
1727 ret = -EINVAL;
1728 if (!strcmp(tok, "rbps") && val > 1)
1729 v[0] = val;
1730 else if (!strcmp(tok, "wbps") && val > 1)
1731 v[1] = val;
1732 else if (!strcmp(tok, "riops") && val > 1)
1733 v[2] = min_t(u64, val, UINT_MAX);
1734 else if (!strcmp(tok, "wiops") && val > 1)
1735 v[3] = min_t(u64, val, UINT_MAX);
1736 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1737 idle_time = val;
1738 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1739 latency_time = val;
1740 else
1741 goto out_finish;
1742 }
1743
1744 tg->bps_conf[READ][index] = v[0];
1745 tg->bps_conf[WRITE][index] = v[1];
1746 tg->iops_conf[READ][index] = v[2];
1747 tg->iops_conf[WRITE][index] = v[3];
1748
1749 if (index == LIMIT_MAX) {
1750 tg->bps[READ][index] = v[0];
1751 tg->bps[WRITE][index] = v[1];
1752 tg->iops[READ][index] = v[2];
1753 tg->iops[WRITE][index] = v[3];
1754 }
1755 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1756 tg->bps_conf[READ][LIMIT_MAX]);
1757 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1758 tg->bps_conf[WRITE][LIMIT_MAX]);
1759 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1760 tg->iops_conf[READ][LIMIT_MAX]);
1761 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1762 tg->iops_conf[WRITE][LIMIT_MAX]);
1763 tg->idletime_threshold_conf = idle_time;
1764 tg->latency_target_conf = latency_time;
1765
1766 /* force user to configure all settings for low limit */
1767 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1768 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1769 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1770 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1771 tg->bps[READ][LIMIT_LOW] = 0;
1772 tg->bps[WRITE][LIMIT_LOW] = 0;
1773 tg->iops[READ][LIMIT_LOW] = 0;
1774 tg->iops[WRITE][LIMIT_LOW] = 0;
1775 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1776 tg->latency_target = DFL_LATENCY_TARGET;
1777 } else if (index == LIMIT_LOW) {
1778 tg->idletime_threshold = tg->idletime_threshold_conf;
1779 tg->latency_target = tg->latency_target_conf;
1780 }
1781
1782 blk_throtl_update_limit_valid(tg->td);
1783 if (tg->td->limit_valid[LIMIT_LOW]) {
1784 if (index == LIMIT_LOW)
1785 tg->td->limit_index = LIMIT_LOW;
1786 } else
1787 tg->td->limit_index = LIMIT_MAX;
1788 tg_conf_updated(tg, index == LIMIT_LOW &&
1789 tg->td->limit_valid[LIMIT_LOW]);
1790 ret = 0;
1791 out_finish:
1792 blkg_conf_finish(&ctx);
1793 ret = throtl_restart_syscall_when_busy(ret);
1794 return ret ?: nbytes;
1795 }
1796
1797 static struct cftype throtl_files[] = {
1798 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1799 {
1800 .name = "low",
1801 .flags = CFTYPE_NOT_ON_ROOT,
1802 .seq_show = tg_print_limit,
1803 .write = tg_set_limit,
1804 .private = LIMIT_LOW,
1805 },
1806 #endif
1807 {
1808 .name = "max",
1809 .flags = CFTYPE_NOT_ON_ROOT,
1810 .seq_show = tg_print_limit,
1811 .write = tg_set_limit,
1812 .private = LIMIT_MAX,
1813 },
1814 { } /* terminate */
1815 };
1816
throtl_shutdown_wq(struct request_queue * q)1817 static void throtl_shutdown_wq(struct request_queue *q)
1818 {
1819 struct throtl_data *td = q->td;
1820
1821 cancel_work_sync(&td->dispatch_work);
1822 }
1823
1824 static struct blkcg_policy blkcg_policy_throtl = {
1825 .dfl_cftypes = throtl_files,
1826 .legacy_cftypes = throtl_legacy_files,
1827
1828 .pd_alloc_fn = throtl_pd_alloc,
1829 .pd_init_fn = throtl_pd_init,
1830 .pd_online_fn = throtl_pd_online,
1831 .pd_offline_fn = throtl_pd_offline,
1832 .pd_free_fn = throtl_pd_free,
1833 };
1834
__tg_last_low_overflow_time(struct throtl_grp * tg)1835 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1836 {
1837 unsigned long rtime = jiffies, wtime = jiffies;
1838
1839 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1840 rtime = tg->last_low_overflow_time[READ];
1841 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1842 wtime = tg->last_low_overflow_time[WRITE];
1843 return min(rtime, wtime);
1844 }
1845
1846 /* tg should not be an intermediate node */
tg_last_low_overflow_time(struct throtl_grp * tg)1847 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1848 {
1849 struct throtl_service_queue *parent_sq;
1850 struct throtl_grp *parent = tg;
1851 unsigned long ret = __tg_last_low_overflow_time(tg);
1852
1853 while (true) {
1854 parent_sq = parent->service_queue.parent_sq;
1855 parent = sq_to_tg(parent_sq);
1856 if (!parent)
1857 break;
1858
1859 /*
1860 * The parent doesn't have low limit, it always reaches low
1861 * limit. Its overflow time is useless for children
1862 */
1863 if (!parent->bps[READ][LIMIT_LOW] &&
1864 !parent->iops[READ][LIMIT_LOW] &&
1865 !parent->bps[WRITE][LIMIT_LOW] &&
1866 !parent->iops[WRITE][LIMIT_LOW])
1867 continue;
1868 if (time_after(__tg_last_low_overflow_time(parent), ret))
1869 ret = __tg_last_low_overflow_time(parent);
1870 }
1871 return ret;
1872 }
1873
throtl_tg_is_idle(struct throtl_grp * tg)1874 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1875 {
1876 /*
1877 * cgroup is idle if:
1878 * - single idle is too long, longer than a fixed value (in case user
1879 * configure a too big threshold) or 4 times of idletime threshold
1880 * - average think time is more than threshold
1881 * - IO latency is largely below threshold
1882 */
1883 unsigned long time;
1884 bool ret;
1885
1886 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1887 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1888 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1889 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1890 tg->avg_idletime > tg->idletime_threshold ||
1891 (tg->latency_target && tg->bio_cnt &&
1892 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1893 throtl_log(&tg->service_queue,
1894 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1895 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1896 tg->bio_cnt, ret, tg->td->scale);
1897 return ret;
1898 }
1899
throtl_tg_can_upgrade(struct throtl_grp * tg)1900 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1901 {
1902 struct throtl_service_queue *sq = &tg->service_queue;
1903 bool read_limit, write_limit;
1904
1905 /*
1906 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1907 * reaches), it's ok to upgrade to next limit
1908 */
1909 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1910 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1911 if (!read_limit && !write_limit)
1912 return true;
1913 if (read_limit && sq->nr_queued[READ] &&
1914 (!write_limit || sq->nr_queued[WRITE]))
1915 return true;
1916 if (write_limit && sq->nr_queued[WRITE] &&
1917 (!read_limit || sq->nr_queued[READ]))
1918 return true;
1919
1920 if (time_after_eq(jiffies,
1921 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1922 throtl_tg_is_idle(tg))
1923 return true;
1924 return false;
1925 }
1926
throtl_hierarchy_can_upgrade(struct throtl_grp * tg)1927 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1928 {
1929 while (true) {
1930 if (throtl_tg_can_upgrade(tg))
1931 return true;
1932 tg = sq_to_tg(tg->service_queue.parent_sq);
1933 if (!tg || !tg_to_blkg(tg)->parent)
1934 return false;
1935 }
1936 return false;
1937 }
1938
throtl_can_upgrade(struct throtl_data * td,struct throtl_grp * this_tg)1939 static bool throtl_can_upgrade(struct throtl_data *td,
1940 struct throtl_grp *this_tg)
1941 {
1942 struct cgroup_subsys_state *pos_css;
1943 struct blkcg_gq *blkg;
1944
1945 if (td->limit_index != LIMIT_LOW)
1946 return false;
1947
1948 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1949 return false;
1950
1951 rcu_read_lock();
1952 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1953 struct throtl_grp *tg = blkg_to_tg(blkg);
1954
1955 if (tg == this_tg)
1956 continue;
1957 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1958 continue;
1959 if (!throtl_hierarchy_can_upgrade(tg)) {
1960 rcu_read_unlock();
1961 return false;
1962 }
1963 }
1964 rcu_read_unlock();
1965 return true;
1966 }
1967
throtl_upgrade_check(struct throtl_grp * tg)1968 static void throtl_upgrade_check(struct throtl_grp *tg)
1969 {
1970 unsigned long now = jiffies;
1971
1972 if (tg->td->limit_index != LIMIT_LOW)
1973 return;
1974
1975 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1976 return;
1977
1978 tg->last_check_time = now;
1979
1980 if (!time_after_eq(now,
1981 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1982 return;
1983
1984 if (throtl_can_upgrade(tg->td, NULL))
1985 throtl_upgrade_state(tg->td);
1986 }
1987
throtl_upgrade_state(struct throtl_data * td)1988 static void throtl_upgrade_state(struct throtl_data *td)
1989 {
1990 struct cgroup_subsys_state *pos_css;
1991 struct blkcg_gq *blkg;
1992
1993 throtl_log(&td->service_queue, "upgrade to max");
1994 td->limit_index = LIMIT_MAX;
1995 td->low_upgrade_time = jiffies;
1996 td->scale = 0;
1997 rcu_read_lock();
1998 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1999 struct throtl_grp *tg = blkg_to_tg(blkg);
2000 struct throtl_service_queue *sq = &tg->service_queue;
2001
2002 tg->disptime = jiffies - 1;
2003 throtl_select_dispatch(sq);
2004 throtl_schedule_next_dispatch(sq, true);
2005 }
2006 rcu_read_unlock();
2007 throtl_select_dispatch(&td->service_queue);
2008 throtl_schedule_next_dispatch(&td->service_queue, true);
2009 queue_work(kthrotld_workqueue, &td->dispatch_work);
2010 }
2011
throtl_downgrade_state(struct throtl_data * td)2012 static void throtl_downgrade_state(struct throtl_data *td)
2013 {
2014 td->scale /= 2;
2015
2016 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
2017 if (td->scale) {
2018 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
2019 return;
2020 }
2021
2022 td->limit_index = LIMIT_LOW;
2023 td->low_downgrade_time = jiffies;
2024 }
2025
throtl_tg_can_downgrade(struct throtl_grp * tg)2026 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
2027 {
2028 struct throtl_data *td = tg->td;
2029 unsigned long now = jiffies;
2030
2031 /*
2032 * If cgroup is below low limit, consider downgrade and throttle other
2033 * cgroups
2034 */
2035 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2036 time_after_eq(now, tg_last_low_overflow_time(tg) +
2037 td->throtl_slice) &&
2038 (!throtl_tg_is_idle(tg) ||
2039 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2040 return true;
2041 return false;
2042 }
2043
throtl_hierarchy_can_downgrade(struct throtl_grp * tg)2044 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2045 {
2046 while (true) {
2047 if (!throtl_tg_can_downgrade(tg))
2048 return false;
2049 tg = sq_to_tg(tg->service_queue.parent_sq);
2050 if (!tg || !tg_to_blkg(tg)->parent)
2051 break;
2052 }
2053 return true;
2054 }
2055
throtl_downgrade_check(struct throtl_grp * tg)2056 static void throtl_downgrade_check(struct throtl_grp *tg)
2057 {
2058 uint64_t bps;
2059 unsigned int iops;
2060 unsigned long elapsed_time;
2061 unsigned long now = jiffies;
2062
2063 if (tg->td->limit_index != LIMIT_MAX ||
2064 !tg->td->limit_valid[LIMIT_LOW])
2065 return;
2066 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2067 return;
2068 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2069 return;
2070
2071 elapsed_time = now - tg->last_check_time;
2072 tg->last_check_time = now;
2073
2074 if (time_before(now, tg_last_low_overflow_time(tg) +
2075 tg->td->throtl_slice))
2076 return;
2077
2078 if (tg->bps[READ][LIMIT_LOW]) {
2079 bps = tg->last_bytes_disp[READ] * HZ;
2080 do_div(bps, elapsed_time);
2081 if (bps >= tg->bps[READ][LIMIT_LOW])
2082 tg->last_low_overflow_time[READ] = now;
2083 }
2084
2085 if (tg->bps[WRITE][LIMIT_LOW]) {
2086 bps = tg->last_bytes_disp[WRITE] * HZ;
2087 do_div(bps, elapsed_time);
2088 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2089 tg->last_low_overflow_time[WRITE] = now;
2090 }
2091
2092 if (tg->iops[READ][LIMIT_LOW]) {
2093 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
2094 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2095 if (iops >= tg->iops[READ][LIMIT_LOW])
2096 tg->last_low_overflow_time[READ] = now;
2097 }
2098
2099 if (tg->iops[WRITE][LIMIT_LOW]) {
2100 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
2101 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2102 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2103 tg->last_low_overflow_time[WRITE] = now;
2104 }
2105
2106 /*
2107 * If cgroup is below low limit, consider downgrade and throttle other
2108 * cgroups
2109 */
2110 if (throtl_hierarchy_can_downgrade(tg))
2111 throtl_downgrade_state(tg->td);
2112
2113 tg->last_bytes_disp[READ] = 0;
2114 tg->last_bytes_disp[WRITE] = 0;
2115 tg->last_io_disp[READ] = 0;
2116 tg->last_io_disp[WRITE] = 0;
2117 }
2118
blk_throtl_update_idletime(struct throtl_grp * tg)2119 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2120 {
2121 unsigned long now;
2122 unsigned long last_finish_time = tg->last_finish_time;
2123
2124 if (last_finish_time == 0)
2125 return;
2126
2127 now = ktime_get_ns() >> 10;
2128 if (now <= last_finish_time ||
2129 last_finish_time == tg->checked_last_finish_time)
2130 return;
2131
2132 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2133 tg->checked_last_finish_time = last_finish_time;
2134 }
2135
2136 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_update_latency_buckets(struct throtl_data * td)2137 static void throtl_update_latency_buckets(struct throtl_data *td)
2138 {
2139 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2140 int i, cpu, rw;
2141 unsigned long last_latency[2] = { 0 };
2142 unsigned long latency[2];
2143
2144 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2145 return;
2146 if (time_before(jiffies, td->last_calculate_time + HZ))
2147 return;
2148 td->last_calculate_time = jiffies;
2149
2150 memset(avg_latency, 0, sizeof(avg_latency));
2151 for (rw = READ; rw <= WRITE; rw++) {
2152 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2153 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2154
2155 for_each_possible_cpu(cpu) {
2156 struct latency_bucket *bucket;
2157
2158 /* this isn't race free, but ok in practice */
2159 bucket = per_cpu_ptr(td->latency_buckets[rw],
2160 cpu);
2161 tmp->total_latency += bucket[i].total_latency;
2162 tmp->samples += bucket[i].samples;
2163 bucket[i].total_latency = 0;
2164 bucket[i].samples = 0;
2165 }
2166
2167 if (tmp->samples >= 32) {
2168 int samples = tmp->samples;
2169
2170 latency[rw] = tmp->total_latency;
2171
2172 tmp->total_latency = 0;
2173 tmp->samples = 0;
2174 latency[rw] /= samples;
2175 if (latency[rw] == 0)
2176 continue;
2177 avg_latency[rw][i].latency = latency[rw];
2178 }
2179 }
2180 }
2181
2182 for (rw = READ; rw <= WRITE; rw++) {
2183 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2184 if (!avg_latency[rw][i].latency) {
2185 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2186 td->avg_buckets[rw][i].latency =
2187 last_latency[rw];
2188 continue;
2189 }
2190
2191 if (!td->avg_buckets[rw][i].valid)
2192 latency[rw] = avg_latency[rw][i].latency;
2193 else
2194 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2195 avg_latency[rw][i].latency) >> 3;
2196
2197 td->avg_buckets[rw][i].latency = max(latency[rw],
2198 last_latency[rw]);
2199 td->avg_buckets[rw][i].valid = true;
2200 last_latency[rw] = td->avg_buckets[rw][i].latency;
2201 }
2202 }
2203
2204 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2205 throtl_log(&td->service_queue,
2206 "Latency bucket %d: read latency=%ld, read valid=%d, "
2207 "write latency=%ld, write valid=%d", i,
2208 td->avg_buckets[READ][i].latency,
2209 td->avg_buckets[READ][i].valid,
2210 td->avg_buckets[WRITE][i].latency,
2211 td->avg_buckets[WRITE][i].valid);
2212 }
2213 #else
throtl_update_latency_buckets(struct throtl_data * td)2214 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2215 {
2216 }
2217 #endif
2218
blk_throtl_charge_bio_split(struct bio * bio)2219 void blk_throtl_charge_bio_split(struct bio *bio)
2220 {
2221 struct blkcg_gq *blkg = bio->bi_blkg;
2222 struct throtl_grp *parent = blkg_to_tg(blkg);
2223 struct throtl_service_queue *parent_sq;
2224 bool rw = bio_data_dir(bio);
2225
2226 do {
2227 if (!parent->has_rules[rw])
2228 break;
2229
2230 atomic_inc(&parent->io_split_cnt[rw]);
2231 atomic_inc(&parent->last_io_split_cnt[rw]);
2232
2233 parent_sq = parent->service_queue.parent_sq;
2234 parent = sq_to_tg(parent_sq);
2235 } while (parent);
2236 }
2237
blk_throtl_bio(struct bio * bio)2238 bool blk_throtl_bio(struct bio *bio)
2239 {
2240 struct request_queue *q = bio->bi_disk->queue;
2241 struct blkcg_gq *blkg = bio->bi_blkg;
2242 struct throtl_qnode *qn = NULL;
2243 struct throtl_grp *tg = blkg_to_tg(blkg);
2244 struct throtl_service_queue *sq;
2245 bool rw = bio_data_dir(bio);
2246 bool throttled = false;
2247 struct throtl_data *td = tg->td;
2248
2249 rcu_read_lock();
2250
2251 /* see throtl_charge_bio() */
2252 if (bio_flagged(bio, BIO_THROTTLED))
2253 goto out;
2254
2255 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2256 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2257 bio->bi_iter.bi_size);
2258 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2259 }
2260
2261 if (!tg->has_rules[rw])
2262 goto out;
2263
2264 spin_lock_irq(&q->queue_lock);
2265
2266 throtl_update_latency_buckets(td);
2267
2268 blk_throtl_update_idletime(tg);
2269
2270 sq = &tg->service_queue;
2271
2272 again:
2273 while (true) {
2274 if (tg->last_low_overflow_time[rw] == 0)
2275 tg->last_low_overflow_time[rw] = jiffies;
2276 throtl_downgrade_check(tg);
2277 throtl_upgrade_check(tg);
2278 /* throtl is FIFO - if bios are already queued, should queue */
2279 if (sq->nr_queued[rw])
2280 break;
2281
2282 /* if above limits, break to queue */
2283 if (!tg_may_dispatch(tg, bio, NULL)) {
2284 tg->last_low_overflow_time[rw] = jiffies;
2285 if (throtl_can_upgrade(td, tg)) {
2286 throtl_upgrade_state(td);
2287 goto again;
2288 }
2289 break;
2290 }
2291
2292 /* within limits, let's charge and dispatch directly */
2293 throtl_charge_bio(tg, bio);
2294
2295 /*
2296 * We need to trim slice even when bios are not being queued
2297 * otherwise it might happen that a bio is not queued for
2298 * a long time and slice keeps on extending and trim is not
2299 * called for a long time. Now if limits are reduced suddenly
2300 * we take into account all the IO dispatched so far at new
2301 * low rate and * newly queued IO gets a really long dispatch
2302 * time.
2303 *
2304 * So keep on trimming slice even if bio is not queued.
2305 */
2306 throtl_trim_slice(tg, rw);
2307
2308 /*
2309 * @bio passed through this layer without being throttled.
2310 * Climb up the ladder. If we're already at the top, it
2311 * can be executed directly.
2312 */
2313 qn = &tg->qnode_on_parent[rw];
2314 sq = sq->parent_sq;
2315 tg = sq_to_tg(sq);
2316 if (!tg)
2317 goto out_unlock;
2318 }
2319
2320 /* out-of-limit, queue to @tg */
2321 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2322 rw == READ ? 'R' : 'W',
2323 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2324 tg_bps_limit(tg, rw),
2325 tg->io_disp[rw], tg_iops_limit(tg, rw),
2326 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2327
2328 tg->last_low_overflow_time[rw] = jiffies;
2329
2330 td->nr_queued[rw]++;
2331 throtl_add_bio_tg(bio, qn, tg);
2332 throttled = true;
2333
2334 /*
2335 * Update @tg's dispatch time and force schedule dispatch if @tg
2336 * was empty before @bio. The forced scheduling isn't likely to
2337 * cause undue delay as @bio is likely to be dispatched directly if
2338 * its @tg's disptime is not in the future.
2339 */
2340 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2341 tg_update_disptime(tg);
2342 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2343 }
2344
2345 out_unlock:
2346 spin_unlock_irq(&q->queue_lock);
2347 out:
2348 bio_set_flag(bio, BIO_THROTTLED);
2349
2350 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2351 if (throttled || !td->track_bio_latency)
2352 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2353 #endif
2354 rcu_read_unlock();
2355 return throttled;
2356 }
2357
2358 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_track_latency(struct throtl_data * td,sector_t size,int op,unsigned long time)2359 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2360 int op, unsigned long time)
2361 {
2362 struct latency_bucket *latency;
2363 int index;
2364
2365 if (!td || td->limit_index != LIMIT_LOW ||
2366 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2367 !blk_queue_nonrot(td->queue))
2368 return;
2369
2370 index = request_bucket_index(size);
2371
2372 latency = get_cpu_ptr(td->latency_buckets[op]);
2373 latency[index].total_latency += time;
2374 latency[index].samples++;
2375 put_cpu_ptr(td->latency_buckets[op]);
2376 }
2377
blk_throtl_stat_add(struct request * rq,u64 time_ns)2378 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2379 {
2380 struct request_queue *q = rq->q;
2381 struct throtl_data *td = q->td;
2382
2383 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2384 time_ns >> 10);
2385 }
2386
blk_throtl_bio_endio(struct bio * bio)2387 void blk_throtl_bio_endio(struct bio *bio)
2388 {
2389 struct blkcg_gq *blkg;
2390 struct throtl_grp *tg;
2391 u64 finish_time_ns;
2392 unsigned long finish_time;
2393 unsigned long start_time;
2394 unsigned long lat;
2395 int rw = bio_data_dir(bio);
2396
2397 blkg = bio->bi_blkg;
2398 if (!blkg)
2399 return;
2400 tg = blkg_to_tg(blkg);
2401 if (!tg->td->limit_valid[LIMIT_LOW])
2402 return;
2403
2404 finish_time_ns = ktime_get_ns();
2405 tg->last_finish_time = finish_time_ns >> 10;
2406
2407 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2408 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2409 if (!start_time || finish_time <= start_time)
2410 return;
2411
2412 lat = finish_time - start_time;
2413 /* this is only for bio based driver */
2414 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2415 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2416 bio_op(bio), lat);
2417
2418 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2419 int bucket;
2420 unsigned int threshold;
2421
2422 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2423 threshold = tg->td->avg_buckets[rw][bucket].latency +
2424 tg->latency_target;
2425 if (lat > threshold)
2426 tg->bad_bio_cnt++;
2427 /*
2428 * Not race free, could get wrong count, which means cgroups
2429 * will be throttled
2430 */
2431 tg->bio_cnt++;
2432 }
2433
2434 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2435 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2436 tg->bio_cnt /= 2;
2437 tg->bad_bio_cnt /= 2;
2438 }
2439 }
2440 #endif
2441
blk_throtl_init(struct request_queue * q)2442 int blk_throtl_init(struct request_queue *q)
2443 {
2444 struct throtl_data *td;
2445 int ret;
2446
2447 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2448 if (!td)
2449 return -ENOMEM;
2450 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2451 LATENCY_BUCKET_SIZE, __alignof__(u64));
2452 if (!td->latency_buckets[READ]) {
2453 kfree(td);
2454 return -ENOMEM;
2455 }
2456 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2457 LATENCY_BUCKET_SIZE, __alignof__(u64));
2458 if (!td->latency_buckets[WRITE]) {
2459 free_percpu(td->latency_buckets[READ]);
2460 kfree(td);
2461 return -ENOMEM;
2462 }
2463
2464 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2465 throtl_service_queue_init(&td->service_queue);
2466
2467 q->td = td;
2468 td->queue = q;
2469
2470 td->limit_valid[LIMIT_MAX] = true;
2471 td->limit_index = LIMIT_MAX;
2472 td->low_upgrade_time = jiffies;
2473 td->low_downgrade_time = jiffies;
2474
2475 /* activate policy */
2476 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2477 if (ret) {
2478 free_percpu(td->latency_buckets[READ]);
2479 free_percpu(td->latency_buckets[WRITE]);
2480 kfree(td);
2481 }
2482 return ret;
2483 }
2484
blk_throtl_exit(struct request_queue * q)2485 void blk_throtl_exit(struct request_queue *q)
2486 {
2487 BUG_ON(!q->td);
2488 del_timer_sync(&q->td->service_queue.pending_timer);
2489 throtl_shutdown_wq(q);
2490 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2491 free_percpu(q->td->latency_buckets[READ]);
2492 free_percpu(q->td->latency_buckets[WRITE]);
2493 kfree(q->td);
2494 }
2495
blk_throtl_register_queue(struct request_queue * q)2496 void blk_throtl_register_queue(struct request_queue *q)
2497 {
2498 struct throtl_data *td;
2499 int i;
2500
2501 td = q->td;
2502 BUG_ON(!td);
2503
2504 if (blk_queue_nonrot(q)) {
2505 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2506 td->filtered_latency = LATENCY_FILTERED_SSD;
2507 } else {
2508 td->throtl_slice = DFL_THROTL_SLICE_HD;
2509 td->filtered_latency = LATENCY_FILTERED_HD;
2510 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2511 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2512 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2513 }
2514 }
2515 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2516 /* if no low limit, use previous default */
2517 td->throtl_slice = DFL_THROTL_SLICE_HD;
2518 #endif
2519
2520 td->track_bio_latency = !queue_is_mq(q);
2521 if (!td->track_bio_latency)
2522 blk_stat_enable_accounting(q);
2523 }
2524
2525 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
blk_throtl_sample_time_show(struct request_queue * q,char * page)2526 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2527 {
2528 if (!q->td)
2529 return -EINVAL;
2530 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2531 }
2532
blk_throtl_sample_time_store(struct request_queue * q,const char * page,size_t count)2533 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2534 const char *page, size_t count)
2535 {
2536 unsigned long v;
2537 unsigned long t;
2538
2539 if (!q->td)
2540 return -EINVAL;
2541 if (kstrtoul(page, 10, &v))
2542 return -EINVAL;
2543 t = msecs_to_jiffies(v);
2544 if (t == 0 || t > MAX_THROTL_SLICE)
2545 return -EINVAL;
2546 q->td->throtl_slice = t;
2547 return count;
2548 }
2549 #endif
2550
throtl_init(void)2551 static int __init throtl_init(void)
2552 {
2553 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2554 if (!kthrotld_workqueue)
2555 panic("Failed to create kthrotld\n");
2556
2557 return blkcg_policy_register(&blkcg_policy_throtl);
2558 }
2559
2560 module_init(throtl_init);
2561